Condition for Admission

Candidates for admission to the first year of the four year B.E. Degree programmes shall be required to have passed the final examination of the plus 2 Higher Secondary Course with Mathematics, Physics and Chemistry as subjects of study and candidates who have passed the Higher Secondary Examination through vocational stream under Engineering, conducted by the Board of Secondary Education, Government of Tamilnadu or an examination of any other authority accepted by the Syndicate of this University as equivalent thereto. They shall satisfy the conditions regarding qualifying marks, age and physical fitness as may be prescribed by the Syndicate of the Annamalai University from time to time.

Candidates who have passed the Diploma course in Engineering of the State Board of Technical Education, Tamil Nadu (listed in Annexure-1) will be eligible for admission to the second year of the four year degree programme in B.E. under the lateral entry scheme provided they satisfy other conditions.

Branches of Study in B.E.

<table>
<thead>
<tr>
<th>BRANCH</th>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Civil Engineering</td>
</tr>
<tr>
<td>II</td>
<td>Civil and Structural Engineering</td>
</tr>
<tr>
<td>III</td>
<td>Mechanical Engineering</td>
</tr>
<tr>
<td>IV</td>
<td>Mechanical Engineering (Manufacturing)</td>
</tr>
<tr>
<td>V</td>
<td>Electrical and Electronics Engineering</td>
</tr>
<tr>
<td>VI</td>
<td>Electronics and Instrumentation Engineering</td>
</tr>
<tr>
<td>VII</td>
<td>Chemical Engineering</td>
</tr>
<tr>
<td>VIII</td>
<td>Computer Science and Engineering</td>
</tr>
<tr>
<td>IX</td>
<td>Information Technology</td>
</tr>
<tr>
<td>X</td>
<td>Electronics and Communication Engineering</td>
</tr>
</tbody>
</table>

Courses of study

The courses of study and the respective syllabi are given separately.

Scheme of Examinations

The scheme of Examinations is given separately.

Choice Based Credit System (CBCS)

The curriculum includes six components namely Humanities / Social Sciences/ Management, Basic Sciences, Engineering Sciences, Professional Core, Professional Electives and Open Electives in addition to Seminar & Industrial Training and
Project. Each semester curriculum shall normally have a blend of theory and practical courses. The total credits for the entire degree Programme is 176 (135 for lateral entry students).

Eligibility for the Degree

A candidate shall be eligible for the degree of Bachelor of Engineering if the candidate has satisfactorily undergone the prescribed courses of study for a period of four academic years and has passed the prescribed examinations in all the four academic years. For the award of the degree, a student has to

1. Earn a minimum of 176 credits (135 for lateral entry students).
2. Serve in any one of the Co-curricular activities such as
 - National Cadet Corps (NCC)
 - National Service Scheme (NSS)
 - National Sports Organization (NSO) and
 - Youth Red Cross (YRC)

for at least one year. The students enrolled in any one of the co-curricular activities (NCC / NSS / NSO / YRC) will undergo training for about 80 hours and attend a camp of about seven days. The training shall include classes on hygiene and health awareness and also training in first-aid. While the training activities will normally be during weekends, the camp will normally be during vacation period.

(or)

Enroll as a student member of a recognized professional society such as

- Student Chapters of Institution of Engineers (India)
- Student Chapters of other Professional bodies like ICI, ISA, IICHE

Assignment of Credits for Courses

Each course is normally assigned one credit per hour of lecture/tutorial per week and one credit for two hours or part thereof for laboratory or practical or drawing per week.

Duration of the programme

A student is normally expected to complete the B.E. programme in four years but in any case not more than eight years from the time of admission.

Registration for courses

A newly admitted student will automatically be registered for all the courses prescribed for the first, second and third semesters without any option.

Every other student shall enroll for the courses intended to be credited in the succeeding semester in the current semester itself by completing the registration form indicating the list of courses. This registration will be done a week before the last working day of the current semester.

A student is required to earn 176 (135 for lateral entry students) credits in order to be eligible for obtaining the degree. However the student is entitled to enjoy an option to earn either more or less than the total number of credits prescribed in the curriculum of a particular semester on the following guidelines:

The slow learners may be allowed to withdraw certain courses with the approval by Head of the Department and those courses may be completed by them in the fifth year of study and still they are eligible to be awarded with I Class.
A student can withdraw a maximum of 2 courses per semester from IV semester to VII semester and take up those courses in the fifth year of study. However, courses withdrawn during odd semesters (V and VII) must be registered in the odd semester of fifth year and courses withdrawn during even semesters (IV and VI) must be registered in the even semester of fifth year.

The advance learners may be allowed to take up the open elective subjects of eighth semester in sixth and seventh semesters one in each to enable them to pursue industrial training/project work in the entire eighth semester period provided they should register those courses in the fifth semester itself. Such students should meet the teachers offering those elective courses themselves for clarifications. No specific slots will be allotted in the time table for such courses.

Seminar / Industrial Training

The student has to present a seminar on the chosen topic. However, the student can select a topic duly approved by the Seminar Coordinator and the Head of the Department concerned. The student who has presented the seminar has to submit a report and appear for viva-voce examination at the end of the semester.

Project Work

The student typically registers for project at the end of seventh semester and completes it at the end of the eighth semester along with the courses prescribed for study in the eighth semester. However a student who has registered and successfully completed the courses of eighth semester by acquiring additional credits in the earlier semesters can attempt to spend his / her period of study in an industry and complete his / her project work, submit the project report and appear for viva-voce examination at the end of eighth semester.

Industrial Training (Value added courses)

One credit courses shall be offered by a Department with the prior approval from the Dean, Faculty of Engineering and Technology. For one credit course, a relevant potential topic may be selected by a committee consisting of Head of the department concerned and the Board of Studies member from the Department and a senior faculty member from the department concerned. An expert from industry familiar with the topic chosen may be accordingly invited to handle classes for the students. The details of the syllabus, time table and the name of the industrial expert may be sent by the above committee to the Dean for approval. The credits earned through the one credit courses shall be over and above the total credit requirement prescribed in the curriculum for the award of the degree. Students can take a maximum of two one credit courses (one each in VI and VII semesters). They shall be allowed to take one credit courses offered in other Departments with the permission of Head of the Department offering the course. A separate mark sheet shall be issued for one credit courses.

Electives

The elective courses fall under two categories: Professional Electives and Open Electives. The Professional Elective courses are offered in the concerned branch of specialization and a student can choose the Professional Elective courses with the approval of the Head of the Department concerned. Apart from the various Professional elective courses, a student can choose the open electives from any specialization offered in any Department in the Faculty of Engineering &
Technology during the entire period of study, with the approval of the Head of the Department and the Head of the Department offering the course.

Further, the student can also credit not more than two courses offered through the SWAYAM Portal of UGC with the approval of the Head of the Department concerned. These courses will be considered as equivalent of open electives.

Assessment

The break-up of continuous assessment and examination marks for theory courses is as follows:

- First assessment (Mid-Semester Test-I) : 10 marks
- Second assessment (Mid-Semester Test-II) : 10 marks
- Third Assessment : 5 marks
- End Semester Examination : 75 marks

The break-up of continuous assessment and examination marks for Practical courses is as follows:

- First assessment (Test-I) : 15 marks
- Second assessment (Test-II) : 15 marks
- Maintenance of record book : 10 marks
- End Semester Examination : 60 marks

The continuous assessment marks for the seminar / industrial training will be 40 and to be assessed by a seminar committee consisting of the Seminar Coordinator and a minimum of two members nominated by the Head of the Department. The continuous assessment marks will be awarded at the end of seminar session. 60 marks are allotted for the seminar / industrial training and viva voce examination conducted based on the seminar / industrial training report at the end of the semester.

The continuous assessment marks for the project work will be 40 and to be assessed by a review committee consisting of the project guide and a minimum of two members nominated by the Head of the Department. One of the committee members will be nominated as the Chairman by the Head of the Department. The Head of the Department may be a member or the Chairman. At least two reviews should be conducted during the semester by the review committee. The student shall make presentation on the progress made before the committee. 60 marks are allotted for the project work and viva voce examination at the end of the semester.

Substitute Assessment

A student, who has missed, for genuine reasons accepted by the Head of the Department, one or more of the assessments of a course other than the final examination, may take a substitute assessment for any one of the missed assessments. The substitute assessment must be completed before the date of the third meeting of the respective class committees.

A student who wishes to have a substitute assessment for a missed assessment must apply to the Dean / Head of the Department within a week from the date of the missed assessment.
Student Counsellors (Mentors)

To help the students in planning their course of study and for general advice on the academic programme, the Dean / Head of the Department will attach a certain number of students to a member of the faculty who shall function as student counsellor for those students throughout their period of study. Such student counsellors shall advise the students, give preliminary approval for the courses to be taken by the students during each semester and obtain the final approval of the Dean / Head of the Department.

Class Committee

For all the branches of study during the first two semesters, a common class committee will be constituted by the Dean of the faculty. From among the various teachers teaching the same common course to different classes during each semester of the first year, the Dean shall appoint one of them as course coordinator. The composition of the class committee during first and second semesters will be as follows:

- Course coordinators of all courses.
- All Heads of the Sections, among whom one may be nominated as Chairman by the Dean.
- The Dean may opt to be a member or the Chairman.

For each of the higher semesters, separate class committees will be constituted by the respective Head of the Departments. The composition of the class committees from third to eighth semester will be as follows:

- Teachers of the individual courses.
- A seminar coordinator (for seventh semester only) shall be appointed by the Head of the Department
- A project coordinator (for eighth semester only) shall be appointed by the Head of the Department from among the project supervisors.
- One Professor or Associate Professor, preferably not teaching the concerned class, appointed as Chairman by the Head of the Department.
- The Head of the Department may opt to be a member or the Chairman.

The class committee shall meet three times during the semester. The first meeting will be held within two weeks from the date of class commencement in which the type of assessment like test, assignment etc. for the third assessment and the dates of completion of the assessments will be decided.

The second meeting will be held within a week after the completion of the first assessment to review the performance and for follow-up action.

The third meeting will be held after all the assessments but before the University semester examinations are completed for all the courses, and at least one week before the commencement of the examinations. During this meeting the assessment on a maximum of 25 marks for theory / 40 marks for seminar / industrial training, practical and project work will be finalized for every student and tabulated and submitted to the Head of the Department (to the Dean in the case of I & II Semester) for approval and transmission to the Controller of Examinations.
Attendance requirements

The students with 75% attendance and above are permitted to appear for the University examinations. However, the Vice Chancellor may give a rebate / concession not exceeding 10% in attendance for exceptional cases only on Medical Grounds.

Temporary Break of Study

A student is permitted to go on break of study for a maximum period of one year either as two breaks of one semester each or a single break of one year.

The student applies for break of study, the student shall apply to the Dean in advance, in any case, not later than the last date of the first assessment period. The application duly filled by the student shall be submitted through the Head of the Department. In the case of short term employment/ training/ internship, the application for break of study shall be approved and forwarded by the Head of the department concerned to the Dean.

However, the student must complete the entire programme within the maximum period of eight years.

Procedure for Withdrawing from the Examinations

A student can withdraw from all the examinations of the semester only once during the entire programme on valid grounds accepted by the University. Such withdrawal from the examinations of a semester will be permitted only if the candidate applies for withdrawal at least 24 hours before the commencement of the last examination. The letter grade ‘W’ appears in the mark sheet for such candidates.

Passing and Declaration of Examination Results

All assessments of all the courses on an absolute marks basis will be considered and passed by the respective results passing boards in accordance with the rules of the University. Thereafter, the Controller of examinations shall convert the marks for each course to the corresponding letter grade as follows, compute the Grade Point Average (GPA) and Cumulative Grade Point Average (CGPA), and prepare the mark sheets.

<table>
<thead>
<tr>
<th>Marks</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 to 100 marks</td>
<td>'S'</td>
</tr>
<tr>
<td>80 to 89 marks</td>
<td>'A'</td>
</tr>
<tr>
<td>70 to 79 marks</td>
<td>'B'</td>
</tr>
<tr>
<td>60 to 69 marks</td>
<td>'C'</td>
</tr>
<tr>
<td>55 to 59 marks</td>
<td>'D'</td>
</tr>
<tr>
<td>50 to 54 marks</td>
<td>'E'</td>
</tr>
<tr>
<td>Less than 50 marks</td>
<td>'RA'</td>
</tr>
<tr>
<td>Withdrawn from the examination</td>
<td>'W'</td>
</tr>
</tbody>
</table>

A student who obtains less than 30 / 24 marks out of 75 / 60 in the theory / practical examinations respectively or is absent for the examination will be awarded grade RA.

A student who earns a grade of S, A, B, C, D or E for a course, is declared to have successfully completed that course. Such a course cannot be repeated by the student.
A student who is detained for lack of attendance must re-register for and repeat the courses in the respective semester.

A student who obtains letter grade RA / W in the mark sheet must reappear for the examination of the courses.

The following grade points are associated with each letter grade for calculating the grade point average and cumulative grade point average.

- S - 10; A - 9; B - 8; C - 7; D - 6; E - 5; RA - 0

Courses with grade RA / W are not considered for calculation of grade point average or cumulative grade point average.

A student can apply for re-totalling of one or more of his examination answer papers within a week from the date of issue of mark sheet to the student on payment of the prescribed fee per paper. The application must be made to the Controller of Examinations with the recommendation of the Head of the Department.

After the results are declared, mark sheets will be issued to the students. The mark sheet will contain the list of courses registered during the semester, the grades scored and the grade point average for the semester.

GPA is the sum of the products of the number of credits of a course with the grade point scored in that course, taken over all the courses for the semester, divided by the sum of the number of credits for all courses taken in that semester.

CGPA is similarly calculated considering all the courses taken from the time of admission.

Awarding Degree

After successful completion of the programme, the degree will be awarded with the following classification based on CGPA.

- For First Class with Distinction, the student must earn a minimum of 176 credits within four years (135 credits within three years for lateral entry students) for from the time of admission, pass all the courses in the first attempt and obtain a CGPA of 8.25 or above for all the subjects from I Semester to VIII Semester (III Semester to VIII Semester for lateral entry students).

- For First Class, the student must earn a minimum of 176 credits within five years (135 credits within four years for lateral entry students) from the time of admission and obtain a CGPA of 6.75 or above for all the subjects from I Semester to VIII Semester (III Semester to VIII Semester for lateral entry students).

- For Second Class, the student must earn a minimum of 176 credits within eight years (135 credits within seven years for lateral entry students) from the time of admission.

Ranking of Candidates

The candidates who are eligible to get the B.E. degree in the First Class with Distinction will be ranked together on the basis of CGPA for all the subjects of study from I Semester to VIII Semester (III Semester to VIII Semester for lateral entry students).
The Candidates passing with First Class will be ranked next after those with distinction on the basis of CGPA for all the subjects of study from I Semester to VIII Semester (III Semester to VIII Semester for lateral entry students).

The ranking of candidates will be done separately for each branch of study.

Transitory Regulations

The University shall have powers to revise or change or amend the regulations, the scheme of examinations, the courses of study and the syllabi from time to time.

Wherever there had been change of syllabi, examinations based on the existing syllabi will be conducted for three consecutive times after implementation of the new syllabi in order to enable the students to clear the arrears. Beyond that the students will have to take up their examinations in equivalent courses, as per the new syllabi, on the recommendations of the Head of the Department concerned.

Diploma Programmes Eligible for the B.E (Lateral Entry) Programmes offered in FEAT (from 2017-2018)

<table>
<thead>
<tr>
<th>Sl.No.</th>
<th>Branches of Study</th>
<th>Eligible Diploma Programme (FT / PT / SW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Civil Engineering</td>
<td>i. Civil Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ii. Civil Engineering (Architecture)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iii. Environmental Engineering and Pollution Control (Full Time)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iv. Architectural Assistantship</td>
</tr>
<tr>
<td></td>
<td></td>
<td>v. Civil Engineering (Rural Tech.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>vi. Civil and Rural Engineering</td>
</tr>
<tr>
<td>2.</td>
<td>Civil and Structural Engineering</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Mechanical Engineering</td>
<td>i. Mechanical Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ii. Mechanical and Rural Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iii. Mechanical Design and Drafting</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iv. Production Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>v. Production Technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>vi. Automobile Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>vii. Automobile Technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>viii. Metallurgy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ix. Mechatronics Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x. Machine Tool Maintenance and Repairs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>xi. Tool and Die making</td>
</tr>
<tr>
<td></td>
<td></td>
<td>xii. Tool Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>xiii. Tool Design</td>
</tr>
<tr>
<td></td>
<td></td>
<td>xiv. Foundry Technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>xv. Refrigeration and Air Conditioning</td>
</tr>
<tr>
<td></td>
<td></td>
<td>xvi. Agricultural Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>xvii. Agricultural Technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>xviii. Marine Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>xix. Mechanical Engineering(Production)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>xx. Mechanical Engineering(Tool &Die)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>xxii. Mechanical Engineering (Foundry)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>xxiii. Electronics(Robotics)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>xxiv. Mining Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td>xxv. Agricultural Engineering and Farm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>xxvi. Equipment Technology</td>
</tr>
<tr>
<td>Sl.No.</td>
<td>Branches of Study</td>
<td>Eligible Diploma Programme (FT / PT / SW)</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| 5. | **Electrical and Electronics Engineering** | i. Electrical and Electronics Engineering
ii. Electronics and Communication Engg.
iii. Electronics and Instrumentation Engg
iv. Electronics Engineering(Instrumentation)
v. Instrument Technology
vi. Instrumentation and Control Engineering
vii. Electrical Engineering (Instruments and Control)
viii. Electrical Engineering
ix. Instrumentation Technology
x. Electronics (Robotics)
xi. Mechatronics Engineering |
ix. Instrumentation Technology
x. Electronics (Robotics)
xi. Mechatronics Engineering |
| 7. | **Chemical Engineering** | i. Petrochemical Engineering
ii. Chemical Engineering
iii. Environmental Engineering and Pollution Control
v. Leather Technology (Footwear)
v. Leather Technology
vi. Plastic Technology
vii. Polymer Technology
viii. Sugar Technology
ix. Textile Technology
x. Chemical Technology
xi. Ceramic Technology
xii. Petro Chemical Technology
xiii. Pulp & Paper Technology
xiv. Petroleum Engineering |
| 8. | **Computer Science and Engineering** | i. Electronics and Communication Engineering
ii. Computer Technology
iii. Computer Science and Engineering
v. Information Technology
vi. Computer Networking
vii. Electronics(Robotics)
ix. Mechatronics Engineering |
| 9. | **Information Technology** | |
| 10. | **Electronics and Communication Engineering** | viii. Mechatronics Engineering |

FT- Full Time; PT-Part Time; SW- Sandwich.
COURSES AND CREDITS - SUMMARY

<table>
<thead>
<tr>
<th>Semester</th>
<th>No. of Courses</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Total Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T+P</td>
<td>HS</td>
<td>BS</td>
<td>ES</td>
<td>PC</td>
<td>PE</td>
<td>OE</td>
<td>S&IT</td>
<td>Proj.</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>4+2</td>
<td>6</td>
<td>3*</td>
<td>9</td>
<td>7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>1**</td>
<td></td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>4+4</td>
<td>8</td>
<td>4</td>
<td>13</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>6+2</td>
<td>8</td>
<td>3</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>6+2</td>
<td>8</td>
<td>-</td>
<td>4</td>
<td>3</td>
<td>16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>6+3</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>17</td>
<td>8</td>
<td>-</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>6+3</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>11</td>
<td>3</td>
<td>-</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>VII</td>
<td>5+3</td>
<td>8</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>5</td>
<td>8</td>
<td>3</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>VIII</td>
<td>2+1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>-</td>
<td>14</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>39+20</td>
<td>59</td>
<td>4</td>
<td>10</td>
<td>8</td>
<td>21</td>
<td>10</td>
<td>4</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>Courses</td>
<td></td>
<td></td>
<td>13</td>
<td>30</td>
<td>23</td>
<td>56</td>
<td>27</td>
<td>12</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>13</td>
<td>30</td>
<td>23</td>
<td>56</td>
<td>27</td>
<td>12</td>
<td>1</td>
<td>14</td>
</tr>
</tbody>
</table>

Details of Course Code

<table>
<thead>
<tr>
<th>Code (First Two digits)</th>
<th>Details</th>
<th>Code (3rd and 4th Digits)</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Common course for the faculty</td>
<td>HS</td>
<td>Humanities Theory</td>
</tr>
<tr>
<td>01</td>
<td>Civil Engg. Course</td>
<td>HP</td>
<td>Humanities Practical</td>
</tr>
<tr>
<td>02</td>
<td>Civil and Structural Engg. course</td>
<td>BS</td>
<td>Basic Science Theory</td>
</tr>
<tr>
<td>03</td>
<td>Mechanical Engg. Course</td>
<td>BP</td>
<td>Basic Science Practical</td>
</tr>
<tr>
<td>04</td>
<td>Mechanical Engg (Manufacturing). Course</td>
<td>ES</td>
<td>Engineering Science Theory</td>
</tr>
<tr>
<td>05</td>
<td>Electrical and Electronics Engg. Course</td>
<td>SP</td>
<td>Engineering Science Practical</td>
</tr>
<tr>
<td>06</td>
<td>Electronics and Instrumentation Engg. course</td>
<td>PC</td>
<td>Professional Core Theory</td>
</tr>
<tr>
<td>07</td>
<td>Chemical Engg. course</td>
<td>CP</td>
<td>Professional Core Practical</td>
</tr>
<tr>
<td>08</td>
<td>Computer Science and Engg. course</td>
<td>PE</td>
<td>Professional Elective Theory</td>
</tr>
<tr>
<td>09</td>
<td>Information Technology course</td>
<td>EP</td>
<td>Professional Elective Practical</td>
</tr>
<tr>
<td>10</td>
<td>Electronics and Communication Engg. course</td>
<td>ST</td>
<td>Seminar / Industrial Training</td>
</tr>
<tr>
<td>XX</td>
<td>Code of the programme concerned (01 to 10)</td>
<td>OE</td>
<td>Open Elective Theory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PV</td>
<td>Project and Viva-voce</td>
</tr>
</tbody>
</table>

5th digit represents the semester and 6th and 7th digits represent the serial number of courses.
COURSES OF STUDY AND SCHEME OF EXAMINATIONS

FIRST SEMESTER

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Category</th>
<th>Course Code</th>
<th>Course</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Exam</th>
<th>CA</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>HS-I</td>
<td>00HS101</td>
<td>Technical English</td>
<td>4</td>
<td></td>
<td></td>
<td>75</td>
<td>25</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>BS-I</td>
<td>00BS102</td>
<td>Engineering Mathematics I</td>
<td>4</td>
<td></td>
<td></td>
<td>75</td>
<td>25</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>BS-II</td>
<td>00BS103</td>
<td>Applied Physics I</td>
<td>4</td>
<td></td>
<td></td>
<td>75</td>
<td>25</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>BS-III</td>
<td>00BS104</td>
<td>Applied Chemistry I</td>
<td>4</td>
<td></td>
<td></td>
<td>75</td>
<td>25</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>ES-I Lab</td>
<td>00SP105</td>
<td>Computer Programming Laboratory</td>
<td>-</td>
<td>1</td>
<td>3</td>
<td>60</td>
<td>40</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>ES-II Lab</td>
<td>00SP106</td>
<td>Engineering Graphics</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>60</td>
<td>40</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td>3</td>
<td>6</td>
<td>420</td>
<td>180</td>
<td>600</td>
<td>19</td>
</tr>
</tbody>
</table>

SECOND SEMESTER

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Category</th>
<th>Course Code</th>
<th>Course</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Exam</th>
<th>CA</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>BS-IV</td>
<td>00BS201</td>
<td>Engineering Mathematics-II</td>
<td>4</td>
<td></td>
<td></td>
<td>75</td>
<td>25</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>BS-V</td>
<td>00BS202</td>
<td>Applied Physics-II</td>
<td>4</td>
<td></td>
<td></td>
<td>75</td>
<td>25</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>BS-VI</td>
<td>00BS203</td>
<td>Applied Chemistry II</td>
<td>4</td>
<td></td>
<td></td>
<td>75</td>
<td>25</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>ES-I</td>
<td>00ES204</td>
<td>Basic Engineering*</td>
<td>4</td>
<td></td>
<td></td>
<td>75</td>
<td>25</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>HS-II</td>
<td>00HP205</td>
<td>Communication Skills and Language Laboratory</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>60</td>
<td>40</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>6.</td>
<td>BS-I Lab</td>
<td>00BP206</td>
<td>Applied Physics Laboratory</td>
<td>-</td>
<td></td>
<td>3</td>
<td>60</td>
<td>40</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>7.</td>
<td>BS-II Lab</td>
<td>00BP207</td>
<td>Applied Chemistry Laboratory</td>
<td>-</td>
<td></td>
<td>3</td>
<td>60</td>
<td>40</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>ES-III Lab</td>
<td>00SP208</td>
<td>Engineering Workshop</td>
<td>-</td>
<td></td>
<td>3</td>
<td>60</td>
<td>40</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td>2</td>
<td>12</td>
<td>540</td>
<td>260</td>
<td>800</td>
<td>22</td>
</tr>
</tbody>
</table>

* Basic Civil Engg. Course for Mech., Manuf., EEE, EIE, ECE, CSE & IT.

L - Lecture; T-Tutorial; P-Practical.
Exam - End Semester Examination; CA-Continuous Assessment.
THIRD SEMESTER

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Category</th>
<th>Course Code</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Exam</th>
<th>CA</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>HS-III</td>
<td>00HS301</td>
<td>Environmental Studies</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>75</td>
<td>25</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>BS-VII</td>
<td>00BS302</td>
<td>Engineering Mathematics III</td>
<td>4</td>
<td>1</td>
<td>-</td>
<td>75</td>
<td>25</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>3.</td>
<td>ES-II</td>
<td>00ES303</td>
<td>Engineering Mechanics</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>75</td>
<td>25</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>ES-III</td>
<td>00ES304</td>
<td>Thermodynamics</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>75</td>
<td>25</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>PC-I</td>
<td>03PC305</td>
<td>Mechanical Measurements and Control</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>75</td>
<td>25</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>PC-II</td>
<td>03PC306</td>
<td>Electrical and Electronics Engineering</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>75</td>
<td>25</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>ES-IV Lab</td>
<td>03SP307</td>
<td>Machine Drawing</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>60</td>
<td>40</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>PC-I Lab</td>
<td>03CP308</td>
<td>Mechanical Lab-I</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>60</td>
<td>40</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>1</td>
<td>6</td>
<td>570</td>
<td>230</td>
<td>800</td>
<td>23</td>
</tr>
</tbody>
</table>

FOURTH SEMESTER

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Category</th>
<th>Course Code</th>
<th>Subject</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Exam</th>
<th>CA</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>BS-VIII</td>
<td>03BS401</td>
<td>Probability Random Process and Numerical Methods</td>
<td>4</td>
<td>1</td>
<td>-</td>
<td>75</td>
<td>25</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>2.</td>
<td>ES-IV</td>
<td>03ES402</td>
<td>Material Science</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>75</td>
<td>25</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>PC-III</td>
<td>03PC403</td>
<td>Strength of Materials</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>75</td>
<td>25</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>PC-IV</td>
<td>03PC404</td>
<td>Thermal Engineering</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>75</td>
<td>25</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>PC-V</td>
<td>03PC405</td>
<td>Fluid Mechanics</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>75</td>
<td>25</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>PC-VI</td>
<td>03PC406</td>
<td>Machine Design</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>75</td>
<td>25</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>PC-II Lab</td>
<td>03CP407</td>
<td>Strength of Materials Lab</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>60</td>
<td>40</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>PC-III Lab</td>
<td>03CP408</td>
<td>Electrical and Electronics Laboratory</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>60</td>
<td>40</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td>1</td>
<td>6</td>
<td>570</td>
<td>230</td>
<td>800</td>
<td>23</td>
</tr>
</tbody>
</table>

* Mathematics related subject to be handled by Mathematics section (FEAT).

* Department concerned may frame the syllabus by incorporating their field of specialization.

Department concerned may frame the syllabus incorporating their field of specialization.
FIFTH SEMESTER

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Category</th>
<th>Course Code</th>
<th>Course</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Exam</th>
<th>CA</th>
<th>Total Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>PC-VII</td>
<td>03PC501</td>
<td>Mechanics of Machines</td>
<td>4</td>
<td>1</td>
<td>-</td>
<td>75</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>2.</td>
<td>PC-VIII</td>
<td>03PC502</td>
<td>Manufacturing Technology</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>75</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>3.</td>
<td>PC-IX</td>
<td>03PC503</td>
<td>Hydraulics and Pneumatics</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>75</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>4.</td>
<td>PC-X</td>
<td>03PC504</td>
<td>Design of Transmission systems</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>75</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>5.</td>
<td>PE-I</td>
<td>03PE505</td>
<td>To be chosen</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>75</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>6.</td>
<td>PE-II</td>
<td>03PE506</td>
<td>To be chosen</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>75</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>7.</td>
<td>PC-IV Lab</td>
<td>03CP507</td>
<td>Workshop Practice-I</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>60</td>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td>8.</td>
<td>PC-V Lab</td>
<td>03CP508</td>
<td>Hydraulics laboratory</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>60</td>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td>9.</td>
<td>PE-I Lab</td>
<td>03EP509</td>
<td>Programming Laboratory</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>60</td>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>

Total: 24 L 1 T 9 P 630 Exam 270 CA 900 Credits 25

SIXTH SEMESTER

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Category</th>
<th>Course Code</th>
<th>Course</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Exam</th>
<th>CA</th>
<th>Total Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>PC-XI</td>
<td>03PC601</td>
<td>Power Plant Engineering</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>75</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>2.</td>
<td>PC-XII</td>
<td>03PC602</td>
<td>Refrigeration and Air Conditioning</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>75</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>3.</td>
<td>PE-III</td>
<td>03PE603</td>
<td>To be chosen</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>75</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>4.</td>
<td>PE-IV</td>
<td>03PE604</td>
<td>To be chosen</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>75</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>5.</td>
<td>PE-V</td>
<td>03PE605</td>
<td>To be chosen</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>75</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>6.</td>
<td>OE-I</td>
<td>03OE606</td>
<td>To be chosen</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>75</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>7.</td>
<td>PC-VI Lab</td>
<td>03CP607</td>
<td>Workshop Practice-II</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>60</td>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td>8.</td>
<td>PC-VII Lab</td>
<td>03CP608</td>
<td>Mechanical Laboratory-II</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>60</td>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td>9.</td>
<td>PE-II Lab</td>
<td>03EP609</td>
<td>Mechanical Laboratory-III</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>60</td>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>

Total: 24 L - T 9 P 630 Exam 270 CA 900 Credits 24
SEVENTH SEMESTER

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Category</th>
<th>Course Code</th>
<th>Course</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>S</th>
<th>Exam</th>
<th>CA</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>HS-IV</td>
<td>00HS701</td>
<td>Engineering Ethics</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>75</td>
<td>25</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>PC-XIII</td>
<td>03PC702</td>
<td>Heat and Mass Transfer</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>75</td>
<td>25</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>PE-VI</td>
<td>03PE703</td>
<td>To be chosen</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>75</td>
<td>25</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>4.</td>
<td>PE-VII</td>
<td>03PE704</td>
<td>To be chosen</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>75</td>
<td>25</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>5.</td>
<td>OE-II</td>
<td>03OE705</td>
<td>To be chosen</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>75</td>
<td>25</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>6.</td>
<td>PC-VIII</td>
<td>03CP706</td>
<td>Mechanical Laboratory-IV</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>60</td>
<td>40</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>7.</td>
<td>PE-III</td>
<td>03EP707</td>
<td>Mechanical Laboratory-V</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>60</td>
<td>40</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>8.</td>
<td>S & IT</td>
<td>03ST708</td>
<td>Seminar / Industrial Training*</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>60</td>
<td>40</td>
<td>100</td>
<td>1</td>
</tr>
</tbody>
</table>

Total 20 6 1 570 230 800 20

EIGHTH SEMESTER

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Category</th>
<th>Course Code</th>
<th>Course</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Exam</th>
<th>CA</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>OE-III</td>
<td>03OE801</td>
<td>To be chosen</td>
<td>4</td>
<td></td>
<td></td>
<td>75</td>
<td>25</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>OE-IV</td>
<td>03OE802</td>
<td>To be chosen</td>
<td>4</td>
<td></td>
<td></td>
<td>75</td>
<td>25</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>Project</td>
<td>03PV803</td>
<td>Project Work & Viva voce</td>
<td>-</td>
<td>15</td>
<td></td>
<td>60</td>
<td>40</td>
<td>100</td>
<td>14</td>
</tr>
</tbody>
</table>

Total 8 15 210 90 300 20

SYLLABUS

FIRST SEMESTER

00HS101 TECHNICAL ENGLISH

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES

- English technical communication focuses on developing the proficiency of Engineering students in communicative skills, ensuring them to face the demand of their profession with high command in English.
- At the end of the course, the learners will be able to use English for all purposes of technical communication and come out in “flying colours”.

Unit-I: Listening Strategies

This unit makes the students to get exposed to the listening exercises and get registered in their minds the nuances of listening and its importance.

1. Listening process.
2. Types of listening.
3. Barriers to listening.
5. Team listening and note making.
Unit–II : Critical Reading and Creative Writing Skills

This unit introduces communication model like courtesy, body language, role play and good presentation in an effective manner, where the students are given an opportunity to observe, analyze, interpret, imagine and implement their ideas too.

Poem : Road not taken – Robert Frost
Ulysses – Alfred Lord Tennyson.

Prose : Of Studies – Francis Bacon
Science – Destroyer or creator – J. Bronowski

Play : Pygmalion – Bernardshaw.

Unit–III : Speaking Skill

Students shall be motivated to speak in English on familiar or unfamiliar topics. It is a platform to train the students to achieve competency in oral expression.

1. Interview Techniques
2. Group discussion
3. Making presentation and Discussing on the presentation.
4. Sample interviews
5. Dialogue writing

Unit–IV : Professional Writing

Students shall be trained to create their own proficiency in writing like - calling for quotation, asking clarification, placing orders and so on.

1. Poster making
2. Letter writing (formal and E-mail)
3. Analytical writing
4. Format of memos
5. Report Writing

Unit–V : Theoretical Writing

The nuances of English grammar may be taught to the students so as to present flawless English both in their oral and written communication

2. Single word substitution
3. Concord
4. Tag Questions
5. Active voice and passive voice

TEXT BOOK

REFERENCE BOOKS

COURSE OUTCOMES
1) Understand the role of speaking in English and its contribution to their success.
2) Help the students increase the lingual power and word power, and frame suitable structures to use appropriately in different contexts.
3) Initiate the students to adopt different strategies for personal and professional writing.
4) Train the students use diversified rhetorical functions of technical English.

COURSE OBJECTIVES
To acquaint the student with the concepts in
- matrices,
- differential calculus,
- multiple integrals,
- Vector calculus, which are most important in connection with practical engineering problems.

Unit–I : Matrices

Unit–II : Differential Calculus
Curvature in Cartesian and parametric co-ordinates – Centre and radius of curvature – Circle of curvature – Evolutes – Envelopes.

Unit–III : Differential Calculus: Functions of Several Variables
Jacobians – Taylor’s and Maclaurin’s series expansions of functions of two variables – Maxima and Minima of functions of two variables – Constrained Maxima and Minima by Lagrange Method.

Unit–IV : Multiple Integrals

Unit–V : Laplace Transform
Definition, Transform of elementary functions, Properties, Derivatives and integrals of transforms, Transforms of derivatives, Convolution theorem, Transforms of periodic functions, Inverse Laplace transform, Application to solution of linear ordinary differential equations of second order with constant coefficients.

(Text books are not included)

TEXT BOOKS
REFERENCE BOOKS

COURSE OUTCOMES
1) This course equips students to have knowledge and understanding in matrices, differential calculus, multiple integrals and Laplace transforms.
2) Students will be able to solve problems related to above fields in engineering applications.

<table>
<thead>
<tr>
<th>00BS103</th>
<th>APPLIED PHYSICS – I</th>
<th>L</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES
At the end of the course the students would be exposed to fundamental knowledge in various engineering subjects and applications
- Determine the different modulus of elasticity and viscosity of the less and highly viscous liquids.
- Design of acoustically good buildings.
- Interferometric techniques in metrology, communication and civil engineering.
- Application of quantum physics to optical and electrical phenomena.
- Application of ultrasonics and acoustics.
- Structure identification of engineering materials.
- Applications of Radio isotopes and power reactor systems.

Unit–I : Properties of Matter

Unit–II : Sound
Introduction to Acoustics - factors affecting acoustics of buildings and their remedies– absorption coefficient– Sabine’s formula for reverberation time.
Introduction to Ultrasonics – production – magnetostriiction and piezo electric methods – Detection of Ultrasonic waves (Acoustics grating) – Applications.

Unit–III : Optics
Unit–IV : Crystal Physics

Lattice - Unit cell - Bravais lattice - Atomic radius, co-ordination number, Packing factor and their calculations of SC,BCC,FCC and HCP crystal structures - Miller indices - Crystal imperfections (Point defect, Line defect, surface defect and volume defect).

Unit–V : Nuclear Physics

TEXT BOOKS

REFERENCE BOOKS

COURSE OUTCOMES
Upon completion of the course, students will be able to
1) Gain basic knowledge in the field of optics, sound, nuclear physics and crystalline materials etc.
2) Provide the foundation for solving engineering problems.

<table>
<thead>
<tr>
<th>00BS104</th>
<th>APPLIED CHEMISTRY – I</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES
To make the student conversant with the
• Water treatment techniques and disinfection methods.
• Working principle of electrochemical cells.
• Sources, refining and various types of fuels.
• Mechanism, classification, applications of lubricants and introduction adhesives.
• Surface chemistry, principle and applications of chromatography.

Unit–I : Water Treatment

Water – Hardness of water – softening of water by ion-exchange process and zeolite process – boiler feed water – specifications – boiler troubles (Sludge and scale
formation, priming and foaming, caustic embrittlement and boiler corrosion) – removal of dissolved CO\textsubscript{2}, O\textsubscript{2} and acids – internal treatment of boiler feed water (colloidal, carbonate, phosphate, calgon and EDTA conditioning) – disinfection of water – break point chlorination – desalination of brackish water by reverse osmosis method - Determination of total hardness by EDTA method.

Unit–II : Electro Chemistry

Unit–III : Fuels and Combustion

Unit–IV : Engineering Materials – I

Unit–V : Analytical Technique and Surface Chemistry

Chromatography – Definition – classifications – partition chromatography and adsorption chromatography.

TEXT BOOKS

REFERENCE BOOKS

COURSE OUTCOMES
At the end of the course, the student will be able to
1) Understand and develop innovative methods to produce soft water for industrial use and potable water at cheaper cost.
2) Understand and apply the concepts of electrochemistry including electroplating.
3) Understand the properties, sources of fuel and the concept of combustion.
4) Gain the knowledge about types of lubricants, uses & their mechanisms and to understand the binding process of adhesives, and its application in building and construction.
5) Separate and purify various organic and inorganic compounds using different chromatographic techniques.
6) Understand the concept of surface chemistry and its applications.

<table>
<thead>
<tr>
<th>00SP105</th>
<th>COMPUTER PROGRAMMING LABORATORY</th>
<th>L</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES
- To enable the students to have a good understanding about the concepts of “C” programming.
- To provide the hands on experience in basic concepts of AUTOCAD to students.

C Programs Based on the Following Concepts
Basic structure of C Programs – Constants – Variables - Data Types - - Keywords – Identifiers - Operators - Expressions – IF, IF-ELSE, Nested IF-ELSE, Switch, WHILE, DO, FOR and GOTO statements - Arrays: one dimensional and two dimensional – Strings - Functions.

AutoCAD
Special Features – Dimensioning – Angular, Diameter and Radius – Hatching – Patterns – Slides – Attributes – Configuring – Plotting- Exercises in AUTOCAD (2D Drawings only)

TEXT BOOKS

REFERENCE BOOKS

COURSE OUTCOMES
At the end of the course, the student will be able to
1) Understand the concepts of C programming.
2) Apply the syntax of conditional and looping statements for writing C programs.
3) Use the features of AUTOCAD for 2D drawing.
COURSE OBJECTIVES

- To develop the ability to produce simple engineering drawing and sketches based on current practice.
- To develop the means for communication of ideas, thoughts and design of objects, related to engineering applications, to others through drawing.
- To develop the skills to read manufacturing and construction drawings used in industry.
- To develop a working knowledge of the layout of plant and equipment.
- To develop skills in abstracting information from calculation sheets and schematic diagrams to produce working drawings for manufacturers, installers and fabricators.
- To expose the international standards of technical drawing

Unit–I
Introduction to Engineering Drawing, Use of drafting instruments– Lettering and dimensioning. Construction of conic sections - Ellipse, Parabola & Hyperbola (Eccentricity Method, Rectangle method, Intersecting arcs method) - Special curves- Simple cycloids and involutes– Tangent and normal at points on the curves only.

Unit–II
Orthographic projections - Projections of Points- Projections of Straight lines (given the projections, to determine the true length and true inclinations).

Unit–III
Projections of Solids like prism, pyramid, cylinder, cone, tetrahedron and octahedron in simple positions.
Auxiliary Projections of prism, pyramid, cylinder, cone when the axis is inclined to one plane only.

Unit–IV
Sections of prism, pyramid, cylinder, cone in simple position – true shape of sections. Intersection of surfaces - cylinder to cylinder and cylinder to cone with axis intersecting at right angles. Development of lateral surfaces of prism, pyramid, cylinder, cone and cut solids.

Unit–V
Isometric Projections of simple solids and combinations. Perspective Projections of simple solids. Conversion of Pictorial view of simple objects into Orthographic views.

TEXT BOOKS

REFERENCE BOOKS
COURSE OUTCOMES
Upon completion of this course, the students will be able to:
1) Construct, read, and understand the Title and Revision Block
2) Enhance the usage of common drafting tools to construct engineering drawings
3) Apply dimensions on engineering drawing.
4) Convert sketches to engineered drawings.
5) Develop cognitive and psychomotor skills, visualize images and their dimensions
6) Develop good communication skills and team work.

SECOND SEMESTER

<table>
<thead>
<tr>
<th>00BS201</th>
<th>ENGINEERING MATHEMATICS II</th>
<th>L</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES
- To acquaint the student with the concepts in ordinary differential equations and vector calculus.
- To acquaint the student with the techniques in the theory of analytic functions and complex integration.

Unit–I : Ordinary Differential Equations
Second order linear differential equations with constant coefficients, Second order linear differential equations with variable coefficients (Euler and Legendre’s linear equations), Simultaneous first order linear equations with constant coefficients, method of variation of parameters.

Unit–II : Vector Differentiation
Gradient, divergence and curl, directional derivative, unit normal vector, irrotational and solenoidal vector fields, expansion formulae for operators involving ∇.

Unit–III : Vector Integration
Line, surface and volume integrals, Green’s theorem in a plane, Gauss divergence theorem, Stoke’s theorem – Verification of the above theorems and evaluation of integrals using them.

Unit–IV : Analytic Functions
Functions of a complex variable, Analytic function, the necessary conditions (Cauchy-Riemann equations), sufficient conditions, Properties of analytic functions, harmonic functions, construction of Analytic function by Milne-Thomson method, Conformal mapping: $w = z^2$, $1/z$, e^z, $\sin z$, $\cos z$.

Unit–V : Complex Integration
Statement and application of Cauchy theorem, Cauchy integral formulas, Taylor and Laurent expansion, Singularities – Classification; Residues – Statement and application of Cauchy residue theorem, Contour integration round the unit circle.
(In all units, proof of theorems are not included).
TEXT BOOKS

REFERENCE BOOKS

COURSE OUTCOMES
Upon completion of the course, students
1) Equip have knowledge and understanding in ordinary differential equations, vector calculus and complex variables.
2) Able to solve problems related to above fields in engineering applications.

| COURSE OBJECTIVES |
|-------------------|---|---|---|
| **00BS202** | | **APPLIED PHYSICS – II** | L | T | P |
| | 4 | | 0 | 0 | |

COURSE OBJECTIVES
At the end of the course the students would be exposed to fundamental knowledge in various materials and applications
- Application of lasers and fiber optics in engineering and technology.
- Astrophysics is the study of physics of the universe. In various objects, such as stars, planets and galaxies.
- To measure positions, brightness, spectra structure of gas clouds, planets, starts, galaxies, globular clusters, quasars etc.
- Physics of modern engineering materials.
- Electromagnetic phenomena and wave propagation
- Applications of nano materials, nano electronics and optoelectronic devices.
- Design of energy sources and applications of solar energy.

Unit I : Laser and Fiber Optics
Fiber optics - Principle and propagation of light in optical fibers - Numerical aperture and acceptance angle - Types of optical fibers (Material, Mode and refractive index) - Applications - Fiber Optic communication system.

Unit II : Dielectrics and Superconductors
Unit–III : Nano Materials

Unit–IV : Quantum Mechanics

The wave Equation, Schrödinger’s Time dependent wave equation, Schrödinger’s time independent wave equation - The Wave function and its physical significance - The particle in a box – energy quantization – Eigen values and Eigen functions.

Unit–V : Energy Physics

TEXT BOOKS

REFERENCE BOOKS

COURSE OUTCOMES
At the end of the course, the students
1) Possesses the theoretical knowledge in the field of laser, dielectrics, Nano technique, energy physics etc.
2) Able to solve problems in their respective fields of engineering.
COURSE OBJECTIVES
To make the students to understand the
- Types of polymers and polymerization processes.
- Phase rule with different kinds of systems.
- Different types of corrosion and their mechanism.
- Working principle and applications of primary and secondary batteries.
- Engineering materials such as refractories and abrasives.

Unit–I : Polymers

Unit–II : Phase Rule

Unit–III : Corrosion And Prevention

Unit–IV : Energy Storage Devices

Unit–V : Engineering Materials II

TEXT BOOKS
REFERENCE BOOKS

COURSE OUTCOMES
At the end of the course, the student will be able to
1) Understand the synthesis and applications of various types of polymers and moulding processes.
2) Understand the concept of phase rule and its applications, which is applicable in alloy preparation.
3) Understand the concept of corrosion and to apply the knowledge in the protection of different metals from corrosion.
4) Gain the knowledge about various energy storage devices, especially solar energy.
5) Have the knowledge of converting solar energy into most needy electrical energy efficiently and economically to reduce the environmental pollution.
6) Gain knowledge on classification, synthesis and applications of abrasives and refractories.

<table>
<thead>
<tr>
<th>00ES204</th>
<th>BASIC ENGINEERING (CIVIL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES
- To inculcate a knowledge on essentials of Civil Engineering
- To expose the students on the role, significance and contributions of Civil Engineering in satisfying societal needs
- To illustrate the concepts of various construction techniques

Unit–I
Introduction to Civil Engineering - various disciplines of Civil Engineering, relevance of Civil Engineering in the overall infrastructural development of the country. Introduction to various building materials – Stone, Bricks, Steel, Cement, Concrete, Timber – its characteristics, types and uses. Various types of buildings as per nbc; Selection of suitable site for buildings, Components of a residential building – its functions, Orientation of a building, simple definitions - plinth area / built up area, floor area / carpet area – floor space index.
Unit–II

Surveying - Principles and objectives of surveying; Types, Classifications of surveying, measurement of areas and distances – chain – compass: Introduction to Leveling, Total station, Remote sensing - fundamental principles and applications.

Unit–III

TEXT BOOKS

REFERENCE BOOKS

COURSE OUTCOMES

Upon completion of the course students will be able to

1) Understand the basic knowledge on civil engineering materials
2) Develop the skill to satisfy the social needs
3) Describe the suitable construction technique

<table>
<thead>
<tr>
<th>00ES204</th>
<th>BASIC ENGINEERING (ELECTRICAL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES

- To impart the basic principles of generation of electrical energy.
- To explain the operation of electrical machines and various measuring instruments.
- To understand the basic concepts of circuit analysis.
- To provide an overview of the principles, operation and application of semiconductor devices like diodes, BJT, FET and a basic knowledge of fundamentals of Communication Systems.
Unit–I

Sources of Electrical energy–Generation of electrical energy – working principles of DC generators and alternators– Advantages of electrical energy over other forms of Energy.

Working principles of MC and MI voltmeters and Ammeters, Dynamo meter type wattmeter, Induction type energy meter and Multimeter–types of wiring–requirements for house wiring–typical layout for a small house– earthing.

Unit–II

DC Circuits: Definition of current, voltage, power and energy– DC voltage and current sources– resistance, types of resistors, series and parallel connections of resistors, current and voltage division–loop method of analysis of simple circuits.

AC Circuits: Sinusoidal signals – average, r.m.s values –inductance, capacitance and their V–I relationships. Analysis of simple single phase series circuits– power and power factor–phasor diagrams– Introductions to three phase AC circuits.

Unit–III

Basic Electronics: Principle and characteristics, uses of PN junction Diode, Zenerdiode, BJT, FET, UJT, Thyristors.– Operating principle of Half wave, Full wave and Bridge rectifiers.

TEXT BOOKS

REFERENCE BOOKS

COURSE OUTCOMES

After the completion of the course, the student should be able to

1) Provide comprehensive idea about simple circuit analysis, working principles of machines and common measuring instruments
2) Analyze the behavior of any DC and AC circuits
3) Characterize semiconductor devices like diodes, BJT and digital functions.
4) Understand the fundamental principles of communication systems.
COURSE OBJECTIVES

- To familiarize the functioning of different types of Boilers, the mountings and accessories.
- To provide basic knowledge about the use of various machine tools and the basic principles of welding, brazing and soldering.
- To illustrate the concepts of various metal forming operations and metal joining techniques.

Unit–I

Boilers: Classification – Description and working of Simple vertical boiler, Cochran boiler, Babcock and Wilcox boiler - Description and working of boiler mountings: water level indicator, Pressure gauge, Dead weight and Spring loaded Safety value, Fusible plug, Feed check value, Steam stop value and Blow-off cock - Description and working of boiler accessories: Economiser and Super heater.

Unit–II

Unit–III

Machine Tools: Description of parts and operations performed – Lathe, Shaper and Drilling machine.

Metal Forming: Hot working versus cold working; Hand forging – Principle and operations; Rolling – Principle, rolling mill configurations; Extrusion – Direct versus indirect extrusion.

TEXT BOOKS

REFERENCE BOOKS

COURSE OUTCOMES

Upon completion of the course, students will be able to
1) Understand the construction and working principles of boilers.
2) Distinguish steam and gas turbines.
3) Select suitable manufacturing methods to produce a new component.

COURSE OBJECTIVES

- The Language Lab focuses on the production and practices of sounds of language
- The Language Lab familiarizes the students with the use of English in everyday situations and contexts.

Theoretical Session (Internal Assessment Only)
1) English sound pattern
2) Sounds of English
3) Pronunciation
4) Stress and Intonation
5) Situational Dialogues/ Role play
6) Oral presentations- Prepared or Extempore
7) ‘Just a Minute’ sessions (JAM)
8) Describing Objects /situations/ people
9) Debate
10) Giving Directions

Practical Session
- To make the students recognize the sounds of English through Audio Visual Aids
- To enable the students speak fluently without fear
- To develop their communicative skill with individual practice through the prescribed package
- The Globarena Package consists of the following exercises
 1. Reading comprehension
 2. Listening comprehension
 3. Vocabulary exercises
 4. Phonetics
 5. Role Play in dialogues
 6. Auto Speak

REFERENCE BOOKS
1) Globarena Package for communicative English
2) Cambridge Advanced Learner's English Dictionary
3) Spoken English (CIEFL) in 3 volumes with 6 cassettes, OUP.
Distribution and Weightage of Marks

English Language Laboratory Practical Paper:

1) The practical examinations for the English Language Laboratory shall be conducted as per the University norms prescribed for the core engineering practical sessions.

2) For the Language lab sessions, there shall be a continuous evaluation during the year for 40 sessional marks and 60 year-end Examination marks. The year-end Examination shall be conducted by the teacher concerned with the help of another member of the staff of the same department of the same institution.

COURSE OUTCOMES

1) Help the students cultivate the habit of reading passages from the computer monitor, thus providing them with the required facility to face computer-based competitive exams such as GRE, TOEFL, GMAT, etc.

2) Train the students to use language effectively to face interviews, group discussions, and public speaking.

3) Initiate the students into greater use of the computer in resume preparation, report writing, format-making, etc.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>L</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>00BP206</td>
<td>APPLIED PHYSICS LABORATORY</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES

The ability to offer students a variety of research opportunities

- To determine the radius of curvature of the plano convex lens and the wavelength of the sodium light by measuring the diameter of Newton’s rings.
- We can use a spectrometer to measure this angle of deviation.
- To measure the modulus of elastic material by torsional pendulum and bending of a beam.
- To determine the resistivity of a given steel and brass wire.
- To find the velocity of ultrasonic waves in a liquid.
- Less viscosity of the liquid by poiseuille’s method.

List of Experiments (Any Ten)

1) Non-Uniform Bending - Determination of Young’s modulus of the given scale or beam.

2) Newton’s rings - Determination of Radius of curvature of the given Plano convex lens.

3) Viscosity – Determination of co-efficient of Viscosity of a highly viscous liquid by Stoke’s method.

4) Spectrometer – Dispersive power of a given prism.

5) Torsional Pendulum – Determination of Moment of Inertia of the metallic disc and

6) Rigidity Modulus of the material of a wire.
7) Field along the axis of a coil – Determination of horizontal earth magnetic flux density.
8) Air wedge – Determination of thickness of a given thin wire and paper.
9) Viscosity - Determination of co-efficient of Viscosity of a less viscous liquid by Capillary flow method
10) Uniform bending- Determination of Young’s modulus of the given scale or beam.
11) Spectrometer – Determination of wavelength of the prominent spectral lines using Grating.
13) Band gap determination of a Semiconductor.

COURSE OUTCOMES

Upon completion of the course, students will be able to

1) Determine resistivity of a given steel and brass wire.
2) Find the velocity of ultrasonic waves in a liquid.
3) Measure the thickness of thin materials.
4) Determine the band gap of a given semiconductor.
5) Understand the applications of opto electronic devices.

<table>
<thead>
<tr>
<th>00BP207</th>
<th>APPLIED CHEMISTRY LABORATORY</th>
<th>L</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES

- To appreciate the practical significance of acidimetry, alkalimetry and permanganometry
- To analyse quantitatively the amount of a substance present in a given sample.
- To assess the composition of an alloy
- To test the water quality standards.

List of Experiments

1) Estimation of Potassium hydroxide
2) Estimation of Acetic acid in vinegar
3) Estimation of Temporary hardness of water sample
4) Estimation of Total hardness of water sample
5) Estimate separate amount of sodium carbonate and sodium hydroxide in a mixture.
6) Estimation of Ferrous sulphate
7) Estimation of Mohr’s salt
8) Estimation of ferrous iron
9) Estimation of Oxalic acid
10) Determination of available free chlorine in a water sample.
11) Estimation of copper in brass by iodometry
12) Estimation of iron by dichrometry
13) Estimation of nickel in an alloy

COURSE OUTCOMES

At the end of the course, the student will be able to
1) Gain knowledge in the quantitative chemical analysis of water quality related parameters, acid-base, red-ox and iodometry titrations.

<table>
<thead>
<tr>
<th>00SP 208</th>
<th>ENGINEERING WORKSHOP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES

- To provide the students simple hands-on-experience in the basic aspects of production engineering in fitting, carpentry and sheet metal.

Workshop Practice in the Shops

- Carpentry: Use of hand tools – exercises in planning and making joints namely, half lap joint, dovetail joint, mortising and tenoning.
- Fitting: Use of bench tools, vice, hammers, chisels, files, hacksaw, centre punch, twist drill, taps and dies – Simple exercises in making T joint and dovetail joints.
- Sheet Metal Work: Use of hand tools – Simple exercises in making objects like cone, funnel, tray, cylinder.
- Smithy: Demonstration of hand forging and drop forging.

COURSE OUTCOMES

Upon completion of this course, students will be able to
1. Use basic tools of fitting, carpentry and sheet metal fabrication.
2. Fabricate simple carpentry joints.
3. Develop skill to make simple fitting joints.
4. Create simple shapes of sheet material.
5. Distinguish hand forging and drop forging operation.
DEPARTMENT OF MECHANICAL ENGINEERING

VISION
The Mechanical Engineering Department endeavors to be recognized globally for outstanding education and research leading to well qualified engineers, who are innovative, entrepreneurial and successful in advanced fields of mechanical engineering to cater the ever changing industrial demands and social needs.

MISSION
The Mechanical Engineering program makes available a high quality, relevant engineering education. The Program dedicates itself to providing students with a set of skills, knowledge and attitudes that will permit its graduates to succeed and thrive as engineers and leaders. The Program strives to:

- Prepare its graduates to pursue life-long learning, serve the profession and meet intellectual, ethical and career challenges.
- Maintain a vital, state-of-the-art research enterprise to provide its students and faculty with opportunities to create, interpret, apply and disseminate knowledge.

PROGRAM EDUCATIONAL OBJECTIVES
1) To prepare the graduates with a solid foundation in Engineering, Science and Technology for a successful career in Mechanical Engineering.
2) To train the students to solve problems in Mechanical Engineering and related areas by thorough training in methods of engineering analysis, computation and experimentation, including understanding basic mathematical and scientific principles.
3) To inculcate students with professional and ethical attitude, effective communication skills, team work skills and multidisciplinary approach.
4) To train the students to adapt to the rapidly changing environment in the areas of mechanical engineering and scale new heights in their profession through lifelong learning.

PROGRAMME OUTCOMES
PO 1: Graduates will be able to apply knowledge of mathematics, science and engineering for the solution of mechanical engineering problems.
PO 2: Graduates will be able to formulate and analyze complex mechanical engineering problems.
PO 3: Graduates will be able to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, and public health.
PO 4: Graduates will be able to design and conduct experiments, and to analyze and interpret data.
PO 5: Graduates will be able to use the techniques, skills, and modern engineering tools necessary for mechanical engineering practice.
PO 6: Graduates will be able to include social, cultural, ethical issues with engineering solutions.
PO 7: Graduates will be able to function effectively on multidisciplinary teams.
PO 8: Graduates will be able to communicate effectively.
PO 9: Graduates will be able to adopt technological changes and promotes lifelong learning.

<table>
<thead>
<tr>
<th>Mapping PO with PEO</th>
</tr>
</thead>
<tbody>
<tr>
<td>POs</td>
</tr>
<tr>
<td>PO1</td>
</tr>
<tr>
<td>PO2</td>
</tr>
<tr>
<td>PO3</td>
</tr>
<tr>
<td>PO4</td>
</tr>
<tr>
<td>PO5</td>
</tr>
<tr>
<td>PO6</td>
</tr>
<tr>
<td>PO7</td>
</tr>
<tr>
<td>PO8</td>
</tr>
<tr>
<td>PO9</td>
</tr>
</tbody>
</table>

LIST OF PROFESSIONAL ELECTIVES (PE)
1. Applied Thermal Engineering
2. Automotive Engineering
3. Applied Mechanics of Machines
4. Industrial Relations and Organizational Development
5. Industrial Engineering and Management
6. Plant layout and Materials Handling
7. Renewable Energy Sources
8. Fuels and Combustion
9. Engine Pollution and Control
10. Operations Research
11. Computer oriented numerical analysis
12. Finite Element Methods
13. Applied Manufacturing Technologies
14. Computational Fluid Dynamics

LIST OF PROFESSIONAL ELECTIVE LABS (PE-LAB).
1. Programming Laboratory
2. Mechanical Laboratory – III (Dynamics)
3. Mechanical Laboratory-V (R & A/C and energy)

LIST OF OPEN ELECTIVES (OE)
1. Biology For Engineers
2. Human Rights
3. Entrepreneurship
4. National Service Scheme
5. Disaster Management
6. Turbo Machinery
7. Vibration and Noise Control
8. Total Quality Management
9. Mechatronics
10. Microprocessor Technology
11. Organizational Behavior
12. Quality Assurance and Reliability
13. CAD/CAM/CIM
15. Artificial Intelligence and Robotics
16. Maintenance and Safety Engineering
17. Production and Operation Management

THIRD SEMESTER

<table>
<thead>
<tr>
<th>COURSE CODE</th>
<th>COURSE TITLE</th>
<th>L</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>00HS301</td>
<td>ENVIRONMENTAL STUDIES</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES

- To study the nature and the facts about environment.
- To find and implement scientific, technological, economic and political solutions to environmental problems.
- To Study the dynamic processes and understand the features of the earth interior and surface.

Unit-I

Introduction - Multidisciplinary nature of environmental studies - Definition, scope and importance - Need for public awareness.

Natural resources - Forest resources: use and over-exploitation, deforestation, case studies. Timber extraction, mining, dams and their effects on forest and tribal people. Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems. Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, Energy resources: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources. Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification. Role of an individual in conservation of natural resources.- Equitable use of resources for sustainable lifestyles.

Unit-II

Concept of an ecosystem - Structure and function of an ecosystem - Producers, consumers and decomposers - Energy flow in the ecosystem - Ecological succession - Food chains, food webs and ecological - pyramids - Introduction, types, characteristic features, structure and function of the following ecosystem - Forest ecosystem, Grassland ecosystem, Desert ecosystem, Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)
Unit–III
Introduction – Definition: genetic, species and ecosystem diversity - Bio
geographical classification of India - Value of biodiversity : consumptive use,
productive use, social, ethical, aesthetic and option values - Biodiversity at global,
National and local levels - India as a mega-diversity nation - Hot-spots of
biodiversity - Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife
conflicts - Endangered and endemic species of India - Conservation of biodiversity:
In-situ and Ex-situ conservation of biodiversity.

Unit–IV
Definition - Cause, effects and control measures of Air pollution - Water
pollution - Soil pollution - Marine pollution - Noise pollution - Thermal pollution -
Nuclear hazards- Solid waste Management: Causes, effects and control measures of
urban and industrial wastes - Role of an individual in prevention of pollution -
Disaster management: floods, earthquake, cyclone and landslides. Sustainable
development - Urban problems related to energy - Water conservation, rain water
harvesting, and watershed management - Resettlement and rehabilitation of people;
it's problems and concerns. - Environmental ethics: Issues and possible solutions -
Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents
and holocaust.

Wasteland reclamation - Consumerism and waste products - Environment
Protection Act - Air (Prevention and Control of Pollution) Act - Water (Prevention
and control of Pollution) Act - Wildlife Protection Act - Forest Conservation Act -
Issues involved in enforcement of environmental legislation.

Unit–V
Population growth, variation among nations - Population explosion – Family
Welfare Programme - Environment and human health - Human Rights - Value
Education - HIV/AIDS - Women and Child Welfare - Role of Information Technology
in Environment and human health -Case Studies.

Field Work
Visit to a local area to document environmental assets-river / forest / grassland
/ hill / mountain - Visit to a local polluted site-Urban/Rural/ Industrial/
Agricultural - Study of common plants, insects, birds - Study of simple ecosystems-
pond, river, hill slopes, etc. (Field work Equal to 5 lecture hours)

TEXT BOOKS
2) Bharucha Erach, The Biodiversity of India, Mapin Publishing Pvt. Ltd.,
 Ahmedabad – 380 013, India, Email:mapin@icenet.net (R)

REFERENCE BOOKS
2) Clark R.S., Marine Pollution, Clanderson Press Oxford (TB)
4) De A.K., Environmental Chemistry, Wiley Eastern Ltd.
5) Down to Earth, Centre for Science and Environment (R)
COURSE OUTCOMES

Upon completion of this course, the students will be able to understand:

1) Public awareness of environment at infant stage.
2) Ignorance and incomplete knowledge has lead to misconception
3) Development and improvement in standard of living has lead to serious environmental disasters.

Mapping with Programme Outcomes

<table>
<thead>
<tr>
<th>COs</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES

- The students will be trained on the basics of chosen topics of mathematics, namely, partial differential equations, Fourier series, Boundary value problems, Fourier transform and Z-transform. The above topics introduced in this course will serve as basic tools for specialized studies in engineering.

Unit–I : Partial Differential Equations

Unit–II : Fourier Series

Dirichle’s conditions - General Fourier series - Odd and Even functions - Half range sine series - Half range cosine series - Complex form of Fourier series – Parseval’s identity.

Unit–III : Boundary Value Problems

Solutions of one dimensional wave equation – One dimensional heat equation (without derivation) – Fourier series solutions in Cartesian co-ordinates.

Unit–IV : Fourier Transform

Fourier integral theorem (without proof) – Fourier transform pair – Sine and Cosine transforms – Properties – Transforms of simple functions – Convolution theorem - Parseval’s identity

Unit–V : Z – Transform And Difference Equations

TEXT BOOKS

REFERENCE BOOKS

COURSE OUTCOMES
Students acquire basic understanding of the most common partial differential equations, Fourier series, Fourier transform and Z-transform and to learn some methods of solving them. The students should be able to solve some boundary value problems.

<table>
<thead>
<tr>
<th>Mapping with Programme Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>COs</td>
</tr>
<tr>
<td>CO1</td>
</tr>
</tbody>
</table>

00ES303 | ENGINEERING MECHANICS | L | T | P |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES
- To introduce the fundamentals of forces and their effects with their governing laws.
- To understand the definitions of particle, body forces and their equilibrium conditions.
- To understand and predict the forces and its related motions.

Unit–I : Statics of Particles
Equilibrium of Particle-Vector representation of Space Force-Equilibrium of Particle in Space-Equivalent System of Forces-Principle of Transmissibility.

Unit–II : Equilibrium of Rigid Bodies

Unit–III : Geometrical Properties of Surfaces and Solids
Centroid and Centre of Gravity-Determination of Centroid of Sections of Different Geometry- Centre of Gravity of a Body-Area Moment of Inertia-Parallel Axis Theorem-Perpendicular Axis Theorem-Determination of Moment of Inertia of Rectangular, Triangular, Circular and Semi-circular- Moment of Inertia of structural Steel Sections of Standard and Composite Sections.
Polar Moment of Inertia-Radius of Gyration-Principal Moment of Inertia-Mass Moment of Inertia- Determination of Mass Moment of Inertia of a Thin Rectangular Plate, Thin Circular Disc, Solid Cylinder, Prism, Sphere and Cone from first principles.
Unit–IV : Dynamics of Particles

Unit–V : Friction and Elements of Rigid Body Dynamics

Rolling Resistance–Translation and Rotation of Rigid Bodies–Velocity and Acceleration–General Plane Motion of Simple Rigid Bodies such as Cylinder, Disc/Wheel and Sphere.

TEXT BOOKS

REFERENCE BOOKS
5) Vela Murali, Engineering mechanics

WEBSITES
1) http://www.vssut.ac.in/lecture_notes/lecture1423904717.pdf
2) https://www.civil.iitb.ac.in/~naresh/teaching/ce221/Emech_equilibrium_review_w1.pdf
3) http://nptel.ac.in/courses/Webcourse-contents/IIT KANPUR/engg_mechanics/ui/TableofContents.html
4) www.btechguru.com/Mobile-SD-Cards
5) www.solidmechanics.org/contents.htm

COURSE OUTCOMES

Students can able
1) Understand the forces and its related laws of mechanics in static and dynamic conditions.
2) Analyse the forces and its motions on particles, rigid bodies and structures.
3) Solve the moment of inertia of any sections and masses for the structural members.
COURSE OBJECTIVES

- To understand the principles of Thermodynamics and analysis of energy systems in Mechanical Engineering

Unit–I : Basic Concepts and First Law

Unit–II : Second Law of Thermodynamics

Unit–III : Pure Substances and Steam Power Cycle

 Properties of pure substance- formation of Steam and its thermodynamic properties - p-v, p-T, T–v, T-s, h-s diagrams. PVT surface. Determination of dryness fraction. Calculation of work done and heat transfer in non-flow and flow processes using Steam Table and Mollier Chart. Rankine cycles- cycle efficiency-reheat cycle-regenerative cycle (concept only)

Unit–IV : Ideal and Real Gases Thermodynamic Relations

Unit–V : Gas Mixtures and Psychrometry

 Gas and gas-vapour mixtures - Dalton's and Amagat's laws, properties of ideal gas mixtures. Psychrometric properties - Property calculations using Psychrometric chart and expressions. Psychrometric processes - adiabatic saturation, sensible
heating and cooling, humidification, dehumidification, evaporative cooling and adiabatic mixing.

(Use of Steam tables, Mollier chart and Psychrometric chart are permitted)

TEXT BOOKS

REFERENCE BOOKS

COURSE OUTCOMES

Upon completion of this course, the students will be able to understand:

1) Fundamental concepts and definitions, Thermodynamic principles to Engineering applications.
2) The fundamentals properties of steam, gas and gas mixtures.

<table>
<thead>
<tr>
<th>C01</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

| C02 | | | | | | | | ✓ |

03PC305 MECHANICAL MEASUREMENTS AND CONTROL

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES

- To educate students on different measurement systems and on common types of errors.
- To introduce different types of sensors, transducers, strain gauges, thermocouples, thermometers and flow meters used for measurement.
- To introduce control equipments and combined modes of control systems.

Unit–I

Unit–II

Unit–III

Measurements of Pressure and flow - Measurements of high pressure and low pressure - Measurements of flow by obstruction meters - Velocity probes - Hot wire anemometer - Calibration of pressure gauges and flow meters - Time constant of pressure gauges.

Unit–IV

Elementary ideas of automatic control - Open and closed systems, on-off, proportional, and floating modes, reset and rate actions. Basic combined modes for pneumatic, hydraulic and electrical systems.

Unit–V

Transfer function - Stability - Routh’s criterion - Analysis of second order systems – System response to step – step, pulse - ramp inputs. Introduction to computerized measurement and control systems (Description only)

TEXT BOOKS

2) Benjamin Kuo, Automotive Control Engineering, EEE Publications.

REFERENCE BOOKS

1) D.S. Kumar, ‘Mechanical Measurement & Control’, Metropolitan Book Company.
2) Beckwith, T.C & Buck, N.L., Mechanical Measurements, Addison Wesley.
3) Nagarth and Gopal, Control Engineering, Wiley Eastern Ltd.
4) Control System by Nagoor Kani, RBA Publications.

COURSE OUTCOMES

Upon completion of this course, the students will be able to
1) Work in Quality control and quality assurances divisions in industries
2) Design a sensors and transducers used for stress analysis.
3) Design and maintain measuring equipments for the measurement of temperature and flow.

<table>
<thead>
<tr>
<th>COs</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES

- To explain the operating principle of DC motors, Transformers, AC induction and synchronous motors.
- To introduce the basic theory of various semiconductor devices and their applications.
- To illustrate the usage of transistorized circuits in different applications including amplifiers and oscillators.

Unit–I : DC Motors

Unit–II : Transformers

Unit–III : Induction and Synchronous Motors

Unit–IV : Electronic Devices

P-N junction – characteristics and uses of semi conductor devices: diode, photo diode, zener diode, BJT, FET, UJT and SCR – half wave, full wave and bridge rectifier circuits – filters – zener voltage regulators.

Unit–V : Amplifiers and Oscillators

TEXT BOOKS

REFERENCE BOOKS

COURSE OUTCOMES:
Upon completing this course, students should be able to:
1) Understand the DC and AC motor operation.
2) Explore the operation and application transformers.
3) Establish the working of semiconductor devices.
4) Suggest the applicability of transistors for amplifiers and oscillators.

<table>
<thead>
<tr>
<th>COs</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td></td>
<td></td>
<td>✔️</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td></td>
<td></td>
<td>✔️</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>✔️</td>
<td>✔️</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

03SP307 MACHINE DRAWING

COURSE OBJECTIVES
- Students have an ability to apply knowledge of modeling, science & engineering.
- Student can modeled this drawing even in CAD/CAM software by applying the basic knowledge of machine drawing.
- Students will able to demonstrate an ability to design and conduct experiments, analyze and interpret data, assembly and disassembly drawings knowledge will be provided.

Unit–I : Free Hand Sketches
Fasteners: Different form of rivet heads – Single, double riveted lap and butt joints - Foundation bolts - Locking arrangements for nuts - lock nut, split pin, locking plate and spring washer - Stud Set screws – Different forms of machine screws - pan, countersunk, slotted and philip headed screws - Keys - sunk taper key, gib headed taper key, feather key, woodruff key, saddle key.

Unit–II : Orthographic and Assembly Drawings
To draw orthographic views from the given isometric views of simple objects. Detailed assembly drawing and additional views from the given drawing.
(a) Shaft coupling - Protected type and Pin type flexible coupling
(b) Bearings and Supports - Bushed bearing, Foot step bearing and Plummer Block
(c) Eccentric
(d) Steam engine stuffing box
(e) Screw jack.
TEXT BOOKS

REFERENCE BOOKS
2) Parkinson, A.C., Intermediate Engineering Drawing.

COURSE OUTCOMES
Upon completing this course, students should be able to:
1) Understand and apply the knowledge of machine drawing as a system of communication in which ideas are expressed clearly and all information fully conveyed.
2) Understand the design of a system, component or process to meet desired needs within realistic constraints such as manufacturability, economic, environmental, safety & sustainability etc., to represent a part drawing and assembly drawings.
3) Recognize the need and an ability to engage in self education and life-long learning.

<table>
<thead>
<tr>
<th>CoS</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>CO3</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

03CP308 | MECHANICAL LABORATORY-1 | L | T | P |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES
To inculcate the knowledge about the working of I.C engines and different types of dynamometers.
- To study the valve timing and port timing of an IC engine
- To make the students understand the working principle of various flow and pressure measuring devices.

LIST OF EXPERIMENTS
1. Study and valve timing on four stroke diesel engine.
2. Study and port-timing on two stroke petrol engine.
3. Dismantling and assembling of four stroke diesel engine.
4. Study of Carburettor
5. Study of fuel injection pump
6. Study of cooling system
7. Study of lubrication system
8. Study of air compressor
9. Measurement of temperature using resistance temperature detector
10. Determination of coefficient of discharge of orifice / Venturimeter
11. Measurement of displacement using LVDT
12. Experiments on DC Servo motor controller
13. Experiment on DC motor position control system

COURSE OUTCOMES

Upon completion of course, the students will be able to:

1) Understand the various types of engines and working principles of dynamometers.
2) Know the dismantling and assembling procedure of a four stroke CI engines.
3) Determine the coefficient of discharge of various flow measuring devices.
4) Understand the concept of proportional control action, integral control action and derivative control action in a control system.

<p>| Mapping with Programme Outcomes |</p>
<table>
<thead>
<tr>
<th>COs</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>CO3</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

FOURTH SEMESTER

<table>
<thead>
<tr>
<th>03BS401</th>
<th>PROBABILITY RANDOM PROCESS AND NUMERICAL METHODS</th>
<th>L</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RELATIVE FREQUENCY DISTRIBUTIONS</td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES

- Be exposed to probability, random processes, and statistical methods designed to contribute to the process of making scientific judgments in the face of uncertainty and variation.
- To develop the skills of the students in numerical mathematics - using method of finite difference interpolation, finding numerical solution of algebraic and transcendental equations, and finding numerical solution of ordinary and partial differential equations.

Unit–I : Probability and Random Variables

Definition – Types of random variables - probability distribution function - probability density function – expectation and moments – moment generating functions - joint probability distribution - marginal probability distribution function – joint probability density function – marginal probability density function – conditional probability density function.

Unit–II : Random Processes

Unit–III : Test of Significance

Hypothesis, testing – Large sampling tests – small sampling test based on t, F and chi-square distributions – interval estimates of mean, standard deviation and proportion.

Unit–IV : Interpolation, Numerical Differentiation and Integration

Interpolation: Gregory Newton forward and backward interpolation formula; Stirling’s central difference formula; Lagrange’s interpolation formula for unequal interval.

Numerical differentiation: Using Newton’s forward and backward interpolation formula.

Numerical integration: Trapezoidal rule, Simpson’s one-third and three-eight rule.

Unit–V : Solution of Algebraic, Transcendental and ordinary Differential Equations

TEXT BOOKS

REFERENCE BOOKS

COURSE OUTCOMES

1) Acquire skills in handling situations involving random variables, random processes and to solve problems for engineers in using numerical methods.

<table>
<thead>
<tr>
<th>Course Outcomes</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES

- To impart fundamental knowledge on the structure, properties, heat treatment, testing and applications of metals and alloys.

Unit–I

Unit cell, Crystal systems, BCC, FCC & HCP structures, Crystallographic planes & direction, Miller indices, Crystal imperfections - point, line & area defects. Constitution of alloys, compounds & solid solutions. Metallography - metallurgical microscope - preparation of specimen, micro & macro examination. Grain size ASTM grain size number, grain size measurement.

Unit–II

Iron - Carbon equilibrium diagram - Classification of steel - Plain carbon steels - effect of C, Mn, Si, P & S. Purpose of alloying, effect of important alloying elements. - Important low alloy steels, stainless steel, tool steels - types, compositions and applications ; Cast iron - types, composition and applications.

Unit–III

Unit–IV

Non ferrous metals: Physical, Mechanical and Metallurgical Properties of Aluminum alloys, Magnesium alloys, Copper alloys, Nickel alloys, Titanium alloys – Classification of these alloys and applications; Powder metallurgy : Process fundamentals, production of metal powders, characteristics, powder blending, compacting, Sintering, applications; Corrosion - Factors influencing corrosion, types of corrosion - corrosion prevention.

Unit–V

TEXT BOOKS

REFERENCE BOOKS

COURSE OUTCOMES

Upon completing this course, students should be able to:
1) Understand the correlation between structure and properties of metals and alloys;
2) Select the appropriate alloy for specific applications;
3) Design heat treatment methods for specific applications;
4) Protect the metals and alloys from environmental degradation;
5) Evaluate the mechanical properties of materials by modern tools and equipments.

<table>
<thead>
<tr>
<th>COs</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES

- To gain knowledge of simple stresses, strains and deformation in components due to external loads.
- To assess stresses and deformations through mathematical models of beams, twisting bars or combinations of both.
- Effect of component dimensions and shape on stresses and deformations are to be understood.
- The study would provide knowledge for use in the design courses

Unit–I

Unit–II

Principal stress and principal strain - triaxial stresses - strain energy and work done in tension and compression - stress in compound bars - temperature stresses - stress concentration.

Unit–III

Bending moments and shearing forces under dead loads - cantilevers - simply supported and overhanging beams with different types of loading - bending moment and shear force diagrams - maximum bending moment - maximum shear force -
Point of inflexion - Bending stress in beams - simple theory of bending stress in beams of varying sections - stresses in composite sections - moment of resistance - beams of uniform strength.

Unit–IV
Deflection of Determinate beams - Determination of elastic curve - Double integration method, Macaulay's method - Area moment methods - strain energy - The theorem of Castingliano.

Unit–V
Theory of columns- Eulers theory for long columns – Rankine’s formula – Johnson’s formula – Columns subjected to eccentric loading – Thin cylinders – Stresses in thin cylindrical shell due to internal pressure – circumferential and longitudinal stresses and deformation in thin cylinders - Threaded fasteners – Bolted joints – simple and eccentrically loaded bolted joints -

TEXT BOOKS

REFERENCE BOOKS
3) Papov, Mechanics of Materials.
4) Etan, Mechanics of Materials

COURSE OUTCOMES
Upon completing this course, students should be able to:
1) Critically analyses components like beams and twisting bars
2) Understand theories on columns and springs
3) Employ the knowledge gained in designing machine components.

<table>
<thead>
<tr>
<th>Cos</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>03PC404</th>
<th>THERMAL ENGINEERING</th>
<th>L</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES
- To apply the thermodynamic concepts into various thermal application like internal combustion engines, Steam engines and Compressors.
- To get an insight on the working and performance of air compressors
- To understand the working of various auxiliary systems present in internal combustion engines.
Unit–I : Gas Power Cycles

Unit–II : Reciprocating Air Compressor

Unit–III : Internal Combustion Engines

Unit–IV : Internal Combustion Engine Performance and Systems

Unit–V : Steam Engines
 Steam engines - cycle of operation - Piston valve and Mayer expansion valve - mechanical, thermal, Rankine and overall efficiencies - missing quantity - Willan's line - method of compounding – advantages.

TEXT BOOKS

REFERENCE BOOKS

COURSE OUTCOMES
 Upon completion of this course, the students will be able to:
1) Understand Basics of internal combustion engines and reciprocating compressors
2) Analyse the theory and performance of air-standard cycles
3) Understand functioning and performance of IC engines and its sub systems
4) Understand the working of steam engine their performance
Mapping with Programme Outcomes

<table>
<thead>
<tr>
<th>COs</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

03PC405	FLUID MECHANICS	L	T	P
4 | 0 | 0

COURSE OBJECTIVES

- To understand the structure and the properties of the fluid.
- To analyze and appreciate the complexities involved in solving the fluid flow problems.
- To study the mathematical techniques already in vogue and apply them to the solutions of practical flow problems.
- To understand the energy exchange process in fluid mechanics handling incompressible fluids.
- To understand the phenomenon of shock waves and its effect on compressible fluid flow.

Unit–I : Properties of Fluids

Ideal and Real fluid- Fluid properties -Pressure in a fluid - Static fluid in a gravitational field - Pressure-height relation for incompressible fluid – Manometers-Hydrostatic forces on surfaces- Total pressure and Centre of pressure on different surfaces – Buoyancy and static stability – Determination of Metacentric height – Experimental and theoretical method-Pressure-height relation in compressible fluids.

Unit–II : Kinematics of Fluid Flow

Types of fluid flow and flow pattern(Stream lines, Stream tube, Path line and streak line)- One dimensional flow analysis - equation of continuity – steady flow equation of continuity - unsteady flow - velocity distribution - Euler's equation for frictionless fluid - Bernoulli’s equation and its applications (Orifice meter, Venturimeter and Pitot tube).

Unit–III : Boundary Layer Concept and Flow Through Pipes

Boundary layer -.Laminar - Turbulent flow - separation - Transition between laminar and turbulent flow- types of boundary layer thickness - Free and forced vortex flow (Theory only) - Flow through pipes- - Frictional loss in circular and noncircular pipes – Darcy Weisbach and chezy’s equation for friction loss in pipe-Major and minor losses -smooth and rough pipes.

Unit–IV : Dimensional Analysis

Buckingham's π theorem - Physical significance of dimensionless numbers - Mach number, Reynold’s number, Froude number and Weber number.

Unit–V : Flow of Compressible Fluids

Velocity of sound, physical difference between subsonic and supersonic flow - Mach cone and Mach angle - Stagnation properties - One dimensional compressible flow - Isentropic flow elementary ideas of Rayleigh and Fanno lines - normal and oblique shocks (Description only).
TEXT BOOKS

REFERENCE BOOKS
1) Zuab and Husain, Gas Dynamics.

COURSE OUTCOMES
Upon completion of this course, the students will be able to:
1) Apply mathematical knowledge to predict the properties and characteristics of a fluid
2) Know the basics of gas dynamic principles and its applications

<table>
<thead>
<tr>
<th>C0s</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
</tr>
</thead>
<tbody>
<tr>
<td>C01</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C02</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

03PC406 MACHINE DESIGN

COURSE OBJECTIVES
- To familiarize the various steps involved in the Design Process.
- To understand the principles involved in evaluating the shape and dimensions of Component to satisfy functional and strength requirements.
- To learn to use standard practices and standard data To learn to use catalogues and standard machine components.

Unit–I
Introduction: Types of Design factors. Factor of safety, Theories of failure - Curved beam, Crane hook and C frames.

Unit–II
Shafts - Material and design stresses - Calculation of equivalent bending moment and twisting moment - Design of shafts subjected to combined bending moment and twisting moment.

Unit–III
Theory of columns: Design of push rod, piston rod and I.C. Engine connecting rods sections.
Wire ropes - Stresses - selection Design procedure–leaf springs - construction equalized stresses in leaves - material and design. Open and closed coiled helical springs stress - Wahl's factor.

Unit–IV

Power screws - Thread forms Design consideration and materials - wear and shear - design procedure. Coupling - Types - Design and selection of coupling - Flange coupling, Bushed pin type, flexible coupling design and selection.

Unit–V

TEXT BOOKS

REFERENCE BOOKS

COURSE OUTCOMES

Upon completing this course, students should be able to:

1) Appreciate the functions of various machine elements and assemblies

2) Design various machine components according to the requirement as per the prescribed standards

3) Apply the knowledge of materials and their properties

4) Use a standard design data book.

<table>
<thead>
<tr>
<th>COs</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>CO3</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

03CP407 | STRENGTH OF MATERIALS LABORATORY | L | T | P |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES

- To impart practical training on simple machines like screw jack, worm wheel, etc.
- To understand the theoretical and practical aspects of elasticity and plasticity of the materials through a variety of experiments
To determine the mechanical advantage and efficiency of some of the simple machines like screw jack, worm wheel, differential wheel and axle.

To study the behavior of the materials by conducting tension, compression and shear, hardness impact, deflection and ductility tests.

LIST OF EXPERIMENTS

1. Simple machine- compound wheel and axle.
2. Screw Jack
3. Worm wheel
4. Handle Winch
5. Deflection Test on Steel Pipe
6. Tension Test Steel Rod
7. Izod Impact Test
8. Shear Test on steel rod
9. Brinell Hardness Test
10. Rockwell Hardness Test
11. Test on Helical Springs

COURSE OUTCOMES

Upon completion of the course, the students will be able to

1) Analyze and design structural members subjected to tension, compression, torsion, bending and combined stresses using the fundamental concepts of stress, strain and elastic behavior of materials.
2) Utilize appropriate materials in design considering engineering properties, sustainability, cost and weight.
3) Perform engineering work in accordance with ethical and economic constraints related to the design of structures and machine parts.

<table>
<thead>
<tr>
<th>COs</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>CO2</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EXPERIMENTS

1. Load test on DC shunt motor.
2. Speed control of DC shunt motor.
3. Load test on single phase transformer.
4. Load test on three phase transformer.
5. Load test on single phase induction motor.
7. Half wave and full wave rectifiers with capacitor filter.
COURSE OUTCOMES

Upon completion of this course, the student will be able to

- Acquire the characteristics of simple electronic circuits.
- Develop the skill to operate simple electrical machines.
- Obtain the characteristic curves of electric machines.
- Explain and demonstrate the speed control methods of motors.

<table>
<thead>
<tr>
<th>Mapping with Programme Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>COs</td>
</tr>
<tr>
<td>CO1</td>
</tr>
<tr>
<td>CO2</td>
</tr>
<tr>
<td>CO3</td>
</tr>
<tr>
<td>CO4</td>
</tr>
</tbody>
</table>

FIFTH SEMESTER

03PC501 MECHANICS OF MACHINES L T P

<table>
<thead>
<tr>
<th>03PC501</th>
<th>MECHANICS OF MACHINES</th>
<th>L</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES

- To study the motion of different parts of a machine through determination of velocity and acceleration at different moments using graphical and analytical methods.
- To study the motion and forces concerning different parts of a mechanism and to understand the concepts of theory of machines involved in the design of parts.
- To draw the displacement, velocity, acceleration and jerk diagrams for a given cam profile and analyse the special contour cams.
- To distinguish and study the phenomena involving frictional force as an advantage or disadvantage.
- To acquaint the basic concepts on gears and gear trains needed for the design of the same.

Unit–I : Basic Concepts and Mechanisms

Unit–II : Kinematics of Linkage Mechanisms

Unit–III : Friction

Belt – Tension due to centrifugal force – Maximum power transmitted – rope drive – chain drive.

Unit–IV : Kinematics of Cam Mechanisms

Unit–V : Gears and Gear Trains

- Law of gearing – Spur Gear terminology and definitions - Involutes and cycloidal tooth profiles Gear tooth action - Contact ratio - Interference and undercutting - corrected and uncorrected gear teeth - Gear terminology and definitions - Helical, Bevel, Worm, Rack and Pinion gears.

- Gear trains - Speed ratio, train value - Epicyclic Gear Trains - Differentials - Automobile gear box

TEXT BOOKS

REFERENCE BOOKS

COURSE OUTCOMES

Upon completing this course, students should be able to:

1) Provide a clear and thorough presentation of the theory of mechanics of machines.
2) Carryout analysis and synthesis of mechanisms.
3) Perform the velocity and acceleration analysis on various links which constitute a mechanism.
4) Understand the working principle of clutches, belt drives, bearings, cams and gears.
5) Develop the ability to use mathematics as a tool whereby the solution to a problem may be carried out in the most direct and effective manner.
COURSE OBJECTIVES

- To understand the basics of foundry, metal forming, metal joining, metal cutting, working of standard machine tools such as lathe, shaping and allied machines, milling, drilling and allied machines, grinding and allied machines and broaching
- To understand the basic concepts of computer numerical control (CNC) machine tool and CNC programming.

Unit–I: Foundry
Use of patterns - types - constituents of mounding sand - sand moulding methods - use of cores - principles of die casting, centrifugal casting, investment casting and shell moulding.

Unit–II: Metal Forming
Hot and Cold working - principles of forging, rolling and extrusion processes - conditions for yielding of metals - stress-strain relations in elastic and plastic deformations- Basics of explosive forming. Type of presses - drive arrangement - operations - press tools.

Unit–III: Welding
Oxy-acetylene gas welding - type of flames and their uses - principles of arc welding, resistance welding - TIG and MIG welding and atomic hydrogen welding -Basics of explosive welding - soldering and brazing.

Unit–IV: Metal Machining Machine Tools-I
Lathe: Specifications of centre lathe - operations performed - accessories and attachments - principle of capstan and turret lathes - layout of tools.
Shaper, Planner and slotter: General arrangement - principle of operations - drive mechanisms.

Unit–V: Metal Machining Machine Tools - II
Milling machine: Types - specification - operations - type of cutters - attachments and accessories - examples of work.
Drilling and Boring: Types - specification of drilling machines - operations - accessories and attachments - type of boring machines - jig boring.
Sawing: Power saws - types and principle of operation.

TEXT BOOKS
REFERENCE BOOKS
2) Begeman, Manufacturing Processes.
3) Dieter, Mechanical Metallurgy.

COURSE OUTCOMES
Upon completing this course, students should be able to:
1) Understand the usage of pattern and casting production by using different methods
2) Understand the mechanical behaviour of materials
3) Understand the basic concepts of metal joining and their application
4) Understand the uses of machine tools.

<table>
<thead>
<tr>
<th>COs</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

03PC503 HYDRAULICS AND PNEUMATICS

COURSE OBJECTIVES
- This course will give an appreciation of the fundamental principles, design and operation of hydraulic and pneumatic components and systems and their application.
- To study the applications of basics of fluid mechanics on hydraulic machineries like hydraulic turbines, pump, etc., and to study the pneumatic circuits and systems.
- To enable the students understand the basics of hydraulics and pneumatics.
- Improve student’s knowledge on hydraulic pumps and various power supply sources.
- To teach students about the utilization of cylinders, accumulators, valves and various control components.
- Introduce students to fluid power maintenance and troubleshooting

Unit–I

Unit–II
Unit–III

Centrifugal pumps - Volute casing - velocity diagram for vane - Manometric and hydraulic efficiencies - pumping speed - cavitation - specific speed.

Reciprocating pumps - Bucket, Plunger and deep well pump - Slip and coefficient of discharge - Pump duty - Pressure variation in single cylinder single acting pump with and without air vessel.

Unit–IV

Unit–V

Compressors, filter, regulator, lubricator, muffler. Air control valves, quick exhaust valves-pneumatic actuators. Selection of components for hydraulic and pneumatic system applications. Installation, fault diagnosis, and maintenance. Micro processor and PLC applications, power packs.

TEXT BOOKS

REFERENCE BOOKS

COURSE OUTCOMES

After learning the course, the students should be able to:

1) Identify hydraulic and pneumatic components.
2) Ability to design hydraulic and pneumatic circuits.
3) Obtain knowledge on hydraulic and pneumatic components.
4) Select and develop hydraulic and pneumatic systems for certain industrial applications.
5) Design an appropriate hydraulic or pneumatic circuit or combination circuit like electro-hydraulics, electro-pneumatics for a given application. Develop a circuit diagram.

<table>
<thead>
<tr>
<th>COs</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES

- To gain knowledge on the principles and procedures for the design of power transmission components.
- To understand the standard procedure available for Design of transmission systems.
- To learn to use standard data and catalogues.

Unit-I

Unit-II

Belt Drives of flat belts, V-Belts using manufacturer's table - Matched set of V-Belts, Chain drives for Power transmission design procedure.

Unit-III

Unit-IV

Unit-V

Gear Box: Standard Step ratio - Speed diagram - Kinematics layout - Design of six speed, twelve speed, eighteen speed gear box - calculation of actual speed.

TEXT BOOKS

REFERENCE BOOKS

COURSE OUTCOMES

Upon completion of this course, the students will be able to:

1) Develop knowledge on the functions of various transmission elements.
2) Understand prerequisite for design of various transmission components.
3) Implement the basic engineering knowledge.
4) Work in the design team analyzing difficulties.
5) Design and develop solutions of various elements.
COURSE OBJECTIVES

- To impart practical training to the students on various welding processes
- To develop procedural and manual skills in machining and also to provide training in making greensand moulds

LIST OF EXPERIMENTS

Foundry shop
1. Face Plate (Solid Pattern)
2. Hexagonal Nut (Self Core Pattern)
3. Ball Handle (Split Pattern)
4. Pipe Flange (Split Pattern)
5. Lathe Saddle (Loose Piece Pattern)

Welding shop
1. Butt Joint
2. Lap Joint
3. Corner Joint
4. Arc Welding Power Sources with Effect of Heat input on bed geometry
5. Temperature Measurement of Arc Welding Process

Machine shop
1. Plain Turning
2. Step Turning
3. Taper Turning
4. Thread Cutting

COURSE OUTCOMES

Upon the completion of this course, the students will be able to
1. Handle metal working machine (Lathe) for making simple operations
2. Prepare green sand moulds of given patterns
3. Prepare different types of weld joints
To understand the properties of fluids and fluid statics, methods for
determination of co-efficient of discharged are to be explained and computed
practically.
 - To study of the characteristic features of pumps and turbines using
 experiments in envisaged.
 - To understand the significance and role of such utilities in their further
course of study.

LIST OF EXPERIMENTS
1) Determination of Co-efficient of discharge of Mouth Piece.
2) Determination of Co-efficient of discharge of Venturimeter.
3) Determination of Co-efficient of Head loss due to Sudden Change in Section.
4) Determination of Co-efficient of Head loss due to Friction in Pipe.
5) Determination of Co-efficient of discharge of Rectangular Notch.
6) Study of Performance characteristics of Elmo Pump (Centrifugal Pump).
7) Study of Performance characteristics of Sump Pump (Centrifugal Pump).
8) Study of Performance characteristics of Submersible Pump (Centrifugal Pump).
9) Study of Performance characteristics of Gould’s Pump (Reciprocating Pump).
10) Study of Performance characteristics of Pelton Turbine (Constant Speed
 method).
11) Study of Performance characteristics of Francis Turbine (Constant Head
 method).
12) Determination of Metacentric Height of a floating vessel (Demo Only).

COURSE OUTCOMES
1) Determine the properties of fluids, pressure and their measurements.
2) Measure flow in pipes and determine frictional losses.
3) Compute forces on immersed plane and curved plates applying continuity
 equation and energy equation in solving problems on flow through conduits.
4) Develop Characteristics of pumps and turbines.

<table>
<thead>
<tr>
<th>Cö</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES

- Basic knowledge of different types of power plants, working cycle criteria of each one of them.
- Understanding of thermal power plant operation, different types of high pressure boilers including supercritical and supercharged boilers, fluidized bed combustion systems.
- Design of chimney in thermal power plants, knowledge of cooling tower operation, numerical on surface condenser design.
- Basic knowledge of different types of nuclear power plants, power plant economics, safety and environmental.

Unit–I

Introduction to types, layouts and working cycles - Layouts of diesel-electric, hydro-electric, nuclear, gas turbine, steam, cogeneration, MHD and other power plants - Site selection - Reheat and regenerative steam cycles - Binary vapour cycle - Combined cycle - Topping cycle - Power plant instrumentation and control - air flow, furnace pressure, steam temperature control system - Governing system - Steam turbine.

Unit–II

Fuels, combustion and burning methods - Fuel classification - Solid, liquid and gaseous - Compositions and heating values - Classification of coal - Combustion process, atmosphere and control - ESP Furnace construction - Stokers - suspension firing - pulverised fuel firing - oil and gas burners and systems - Fuel control - Burner management system - FSSS - Ash handling system.

Unit–III

Steam power plant - Steam generators - fire tube, water tube, forced circulation, once through, super charged, super critical, Lamont, Loeffler, Schmide, Hortmen and Velox boilers, Fluidised Bed & Circulated Fluidised Bed boilers - Natural, artificial, balanced and steam jet drafts - Simple problems - Functions of super heaters, economisers, air-heaters, deaerators, feed heaters, air ejectors - Feed pumps - Injectors - Feed water control- Condensers – Jet and surface type - Simple problems - Cooling towers.

Unit–IV

Nuclear power plant - Basics of nuclear fuels - Fission and chain reaction - Reactor classification - Boiling water, pressurised water, homogeneous, gas cooled breeding and metal cooled.

Unit–V

Economics and safety - Actual load curves - Fixed and operating costs - Tariff methods for electrical energy - Peak load and variable load operations - Selection of generation type and general equipment. Introduction to safety aspects in power plants - Environmental impacts - assessment for thermal power plant.
TEXT BOOKS
1) S. Domkundwar, A.V. Domkundwar, S.C. Arora A Course in Power Plant Engineering, Dhanpat Rai Publications. 2013

REFERENCE BOOKS
3) Moarse, Power plant Engineering.

COURSE OUTCOMES
Upon completing this course, students should be able to:
1) Select the suitability of site and calculate the performance of power plant.
2) Understand the suitable ash handling, coal-handling method in a thermal power plant.
3) Know the working principle of different types of power plant.
4) Calculate average load and peak load on a power plant and indicate environmental and safety aspects of power plants.

<table>
<thead>
<tr>
<th>COs</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>CO4</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

03PC602 | REFRIGERATION AND AIRCONDITIONING | L | T | P
| | | 4 | 0 | 0

COURSE OBJECTIVES
- To provide in-depth study of the basics of refrigeration and air-conditioning
- To study the various refrigeration systems and their thermodynamic cycles.
- To study the basics of psychrometry and cooling load calculations of air-conditioning systems.

Unit–I

Unit–II
Introduction to Steam Jet Refrigeration, vapour absorption refrigeration and solar refrigeration – (Description only) – performance Analysis of vapour compression cycle – Ideal and actual conditions – Problems – Representation of
cycle on p-h and T-s diagram – Properties of refrigerants and their choice for different applications – Eco friendly refrigerant.

Unit–III

Unit–IV

Unit–V

TEXT BOOKS

REFERENCE BOOKS

COURSE OUTCOMES

Upon completion of this course the student will able to understand the

1) Operation of different types of refrigeration and air conditioning systems
2) Psychrometry of mixture of water vapor and air.

<table>
<thead>
<tr>
<th>Mapping with Programme Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>CO2</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES
- To provide hands on experience in handling precise metrology instruments and their calibration.
- To provide hands on experience in special machines

LIST OF EXPERIMENTS
Machine Shop
1. Keyway machining using a shaper
2. Angular machining using a shaper
3. Convex profile machining on a slotter

Special Machine Shop
1. Plain milling
2. Spur gear milling

Metrology Lab
1. Inspection of screw - thread
 (A) Checking the straightness of straight edge
 (B) Measurement of radius (internal and external)
2. Calibration of micrometer

Metallurgy Lab
1. Effect of section size on hardness
2. End quenching (or) Jominy hardenability test

COURSE OUTCOMES
Upon the completion of this course, the students would be able to
1) Understand the usage of precision instruments and the handling methods.
2) Learn the basic operation of various traditional and non-traditional manufacturing processes.
3) Justify the most appropriate manufacturing process and material for a given product.
4) Select/Suggest process for the production of gears.

<table>
<thead>
<tr>
<th>COs</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>CO4</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES
- To evaluate the performance and emission characteristics of an single cylinder diesel engine
- To conduct the load test, speed test of a single and double cylinder diesel engine
- To conduct performance test on double stage reciprocating air compressor
• To conduct the heat balance test on single and double cylinder diesel engine.
• To evaluate the performance of steam boiler, turbine and condenser.

LIST OF EXPERIMENTS
1) Load Test on Four Stroke Diesel Engine
2) Study and performance test on Air Compressor
3) Heat Balance Test on Four Stroke Diesel Engine
4) Speed test on Four Stroke Diesel Engine
5) Study and performance test on steam boilers
6) Study and performance test on Steam turbines
7) Study and performance test on Reader vertical steam engine.
8) Study and performance test on steam condenser.

COURSE OUTCOMES
Upon completion of this practical class, the students will be able to:
1) Learn about the different heat losses in the engine viz., cooling water, exhaust gas and un-accountable losses.
2) Understand the working principle of emission measuring instruments and calibration procedure.
3) Acquire the knowledge of emission standards and fuel modification in engines.
4) Experimentally determine the performance of a steam boiler, turbine and condenser.

<table>
<thead>
<tr>
<th>COs</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>CO2</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

SEVENTH SEMESTER

<table>
<thead>
<tr>
<th>00HS701</th>
<th>ENGINEERING ETHICS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES
• To understand the moral and ethical dimensions in engineering.
• To take balanced decisions.

Unit–I

Unit–II
Unit-III

Unit-IV

Unit-V

TEXT BOOKS

REFERENCE BOOKS

COURSE OUTCOMES

Upon the completion of the course, the students will be able to:

1) Understand the relationship between the engineer and the society.

2) Learn the importance of codes in engineering practice.

3) Acquire knowledge on the legal, moral and ethical aspects in engineering.

<table>
<thead>
<tr>
<th>COs</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES

- To understand the modes of heat transfer through various configuration.
- To learn the mechanism of heat transfer in both steady and unsteady state conditions.
- To understand the concept of heat transfer and physical significance of non-dimensional numbers and numerical heat transfer.
- To learn the thermal analysis of heat exchangers and basic concepts of mass transfer.

Unit–I : Conduction

Unit–II : Two Dimensional And Unsteady State Heat Conduction

Two dimensional steady state heat conduction – conduction shape factor - One dimensional numerical analysis in conduction – conversion of partial differential equation (steady and unsteady) into finite difference equation – separation of variables – numerical method of solution for simple one/two dimensional system (relaxation or Gaussian elimination or iteration method – simple problems) – Introduction to unsteady state heat conduction – Lumped Analysis – Semi Infinite and Infinite Solids – Use of Heisler’s charts.

Unit–III : Convection

Unit–IV : Radiation

Unit–V : Applications

TEXT BOOKS

REFERENCE BOOKS

COURSE OUTCOMES
Upon the completion of the course, the students will be able to:
1) Understand the mechanism of heat and mass transfer and its application.
2) Design thermal insulation system
3) Design the heat exchangers

<table>
<thead>
<tr>
<th>Mapping with Programme Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>COs</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>CO1</td>
</tr>
<tr>
<td>CO2</td>
</tr>
<tr>
<td>CO3</td>
</tr>
</tbody>
</table>

03CP706
MECHANICAL LABORATORY – IV

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES
- To make the students understand the modes of heat transfer and to conduct the trails on various experiments to analyze the heat transfer parameters.
- To study and determine the properties of fuel like kinematic viscosity, calorific value etc.
- To study the effect of temperature on fuel properties

LIST OF EXPERIMENTS
1) Experiment on (parallel flow and counter flow) heat exchanger
2) Determination of Stefan-Boltzmann constant
3) Determination of critical heat flux
4) Experiment on composite wall apparatus.
5) Natural convection from vertical cylinder
6) Determination of calorific value of liquid fuel
7) Determination of flash and fire point of liquid fuel
8) Determination of cloud and pour point fuel
9) Determination of kinematic viscosity of fuel
COURSE OUTCOMES

Upon completing this course, students should be able to:
1) Calculate the temperature distribution and heat conduction in the metal rod.
2) Evaluate the radiation heat transfer between surfaces.
3) Analyze the performance of heat exchanger.
4) Determine kinematic viscosity and the influence of temperature on viscosity.

<table>
<thead>
<tr>
<th>Course Outcomes (COs)</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EIGHTH SEMESTER

03PV803 PROJECT WORK & VIVA VOCE

COURSE OBJECTIVES

- To develop the ability to solve a specific problem right from its identification and literature review till the successful solution of the same.
- To train the students in preparing project reports and to face reviews and viva voce examination.

COURSE OUTCOMES

Upon completing this course, students should be able to:
- Take up any challenging practical problems and find solution by formulating proper methodology.

<table>
<thead>
<tr>
<th>Course Outcomes (COs)</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

PROFESSIONAL ELECTIVES

03PEXXX APPLIED THERMAL ENGINEERING

COURSE OBJECTIVES

- To apply the thermodynamic concepts into various thermal application like rotary compressors, steam nozzles, steam turbines and gas turbines. To study the basics of jet propulsion and rocket propulsion

Unit-I

Unit–II
Steam Nozzles - Effect of back pressure - condition for maximum discharge -
effect of friction - supersaturated flow - impulse steam turbine - velocity diagrams -
blade efficiency - stage efficiency - end thrust - reheat factor.

Unit–III
Reaction steam turbine - degree of reaction - 50 % reaction turbine - influence
of blade speed to steam speed - height of reaction blading - Method of compounding
steam turbines - Methods of governing steam turbines.

Unit–IV
Gas turbine - cycles - optimum pressure ratio for maximum output - component
efficiencies – inter-cooling and reheating, regeneration - gas turbine combustion
chambers - different types of combustor arrangements.

Unit–V
Introduction to Jet propulsion systems - Aerofoil theory - Lift and Drag - Ramjet
- Turboprop - Rocket propulsion - Thrust - Specific impulse - propulsion efficiency
and overall efficiency.

TEXT BOOKS
Delhi, 2003.

REFERENCE BOOKS
2) Cohen and Rogers, Gas Turbine Theory and applications,
4) Mathur, M.L. & Mehta, F.S., Thermodynamics and Heat Power Engineering,

COURSE OUTCOMES
Upon completion of this course, the students will be able to:
1) Analyse the theory and performance of steam turbines
2) Understand performance of gas turbines
3) Analyse the performance of jet and rocket propulsion systems

<table>
<thead>
<tr>
<th>COs</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

Mapping with Programme Outcomes

<table>
<thead>
<tr>
<th>03PEXXX</th>
<th>AUTOMOTIVE ENGINEERING</th>
<th>L</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES
- To impart the knowledge about the engine chassis, transmission, steering,
suspension systems, rear axles and final drive of Automobiles.
- To Study the concept of electrical system, sensors and fuel injection system
in automobiles
Unit–I

Unit–II

Unit–III

Front axle and steering geometry - Principle of power steering - steering mechanism – Re-circulating ball mechanism - cam & double pin steering gear boxes - Camber angle, Caster angle, King pin inclination - Types of frames and suspension systems. Independent suspension - Rear suspension - Pneumatic suspension.

Unit–IV

Unit–V

TEXT BOOKS
2) Gupta, R.B., Automobile Engineering, Sathya Prakasam New Market, New Rohta road, New Delhi.

REFERENCE BOOKS
2) Crouse William, Automotive Emission Control, Gregg Division McGraw Hill.
5) Newton & Steeds, Motor Vehicles.

COURSE OUTCOMES
Upon completion of this course, the students will be able to:
1) Identify the different systems in an automobile
2) Understand different auxiliary, sensors, fuel injection and transmission systems in automobiles.
Mapping with Programme Outcomes

<table>
<thead>
<tr>
<th>COs</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>☑</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>☑</td>
</tr>
</tbody>
</table>

03PEXXX | APPLIED MECHANICS OF MACHINES | L | T | P
| | | 4 | 0 | 0 |

COURSE OBJECTIVES

- To determine the dynamic forces associated with rotating, reciprocating and accelerating masses at high speeds.
- To carryout dynamic analysis of mechanism to reduce vibration, wear, noise and / or even failure of the mechanism.
- To study and understand the working principle of various mechanisms for control like governor, gyroscopes and flywheel.
- To inculcate in the student the ability to analyse any problem in a simple and logical manner.

Unit–I : Turning Moment Diagram And Flywheel

Unit–II : Mechanisms For Control

Unit–III : Balancing

Static and dynamic balancing – Balancing of rotating masses – Single rotating mass by single mass in the same plane – Single rotating mass by two masses in different plane – different masses rotating in the same plane and in different planes.

Unit–IV : Vibration – Longitudinal

Unit–V : Vibration – Transverse and Torsional

Transverse vibration-natural frequency by energy method – Dunkerly method-whirling of shaft – critical speed with single and two rotors.

Torsional oscillation of single, two and three rotor systems – equivalent shaft-Geared systems.
TEXT BOOKS

REFERENCE BOOKS

COURSE OUTCOMES
Upon the completion of the course, the students will be able to:
1) Provide a clear and through presentation of the theory and application of mechanics of machines.
2) Apply the concept of balancing to reduce the ill effects of unbalanced forces in rotating and reciprocating machines.
3) Apply the concept of mechanical vibrations to one degree of freedom systems with different system components.
4) Develop the ability to use mathematics as a tool whereby the solution to a problem may be carried out in the most direct and effective manner.

<table>
<thead>
<tr>
<th>C01</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C02</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>C03</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C04</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

03PEXXX | INDUSTRIAL RELATIONS & ORGANIZATIONAL DEVELOPMENT | L | T | P
| 4 | 0 | 0 |

COURSE OBJECTIVES
- To inculcate the changes in the Industrial relation policies and economic policies.
- To acquaint the student with the determinants of intra-individual, inter-personnel and inter-group behaviour in organisational setting and to equip them with behavioural skills in managing people at work.
- To provide an overview of theories and practices in organisational behaviour in individual, group and organizational level.

Unit-I
Impact of Industrial Revolution – Industrial Relations: Concept – Importance of Industrial Relations – Scope and Aspects of Industrial Relations –Factors Affecting Industrial Relations – Perspectives/Approaches to Industrial Relations –
Organisation of Industrial Relations – Dimensions of Industrial Relations Work – Prerequisite Successful Industrial Relations Programme.

Unit–II

Unit–III

Unit–IV
Group Behaviour: Group Dynamics, Cohesiveness and Productivity; Management of Dysfunctional groups; Group Decision Making; Organisational Politics. Leadership- Concept and Styles; Fielder’s Contingency Model; House’s Path –Goal Theory; Leadership Effectiveness; Sources, patterns, levels, and types of conflict; Traditional and modern approaches to conflict; Functional and dysfunctional conflicts; Resolution of conflict.

Unit–V
Organization structure – Formation – Groups in organizations – Influence – Group dynamics – Emergence of informal leaders and working norms – Group decision making techniques – Team building - Interpersonal relations – Communication – Control.

TEXT BOOKS
REFERENCES BOOKS

COURSE OUTCOMES
Upon the completion of the course, the students will be able to:
1) Understand the industrial disputes, conflicts, typology of strikes and lockouts.
2) Gain skills in managing grievances in the industry to handle the industrial policy during the plan period.
3) Obtain the better knowledge about group dynamics and group behaviour.
4) Understand the importance of prevention and managing of stress for the workers, and make them capable in increasing the job satisfaction in the industry.
5) Acquire leadership skills.

<table>
<thead>
<tr>
<th>Mapping with Programme Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>COs</td>
</tr>
<tr>
<td>CO1</td>
</tr>
<tr>
<td>CO2</td>
</tr>
<tr>
<td>CO3</td>
</tr>
<tr>
<td>CO4</td>
</tr>
<tr>
<td>CO5</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES
- To introduce students various Industrial Engineering and Management concepts.
- To provide an understanding of the systematic approaches of various management functions.
- To enhance the management skills through the application of appropriate techniques.

Unit–I : Engineering Economics

Unit–II : Organizational Behavior

Unit–III : Elements of Management

Costing
Objectives - Elements of costs - estimation of selling price, Allocation of overheads - Introduction to activity based costing.

Unit–IV
Break-even analysis - concept and applications - Depreciation - straight line and declining balance method.

Plant Location: Influencing factors. Location models – Breakeven analysis – Qualitative factor rating Method.

Unit–V
Method Study: Objectivess and procedure for methods analysis, Recording techniques,

Work Measurement: Objectives, Work measurement techniques – time study, work sampling - Determination of time standards- Observed time, basic time, normal time, rating factors, allowances, and standard time.

TEXT BOOKS

REFERENCE BOOKS

COURSE OUTCOMES

Upon completing this course, students are able to:

1) Recognize the factors such as demand and production for pricing criteria
2) Determine the cost and profit conditions to cover up for the benefits of markets
3) Understand and learn the effective interpersonal, team building and leadership skills
4) Improve the organizational performance through the effective management of human resources
5) Practice the process of management’s four functions: planning, organizing, leading, and controlling

<table>
<thead>
<tr>
<th>COs</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>03PEXXX</th>
<th>PLANT LAYOUT AND MATERIALS HANDLING</th>
<th>L</th>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES

- To impart knowledge to students in the factors to be considered for a plant location, different types of plant layouts and their importance, importance and scope of material handling.

Unit–I

Plant Location: Factors to be considered - influence of location in Plant layout - Selection of plant site. Consideration in facilities planning and layout. Physical facilities: Equipments required for plant operation. Capacity serviceability and flexibility and analysis in selection of equipments, space requirements, man power requirements.

Unit–II

Plant layout: Need for layout, types of layout, factors influencing product, process, fixed and combination layout; tools and techniques for developing layout, process chart, flow diagram, string diagram, template and scale models- machine date. Layout planning procedure, visualization of layout, balancing of fabrication and assembly lines.

Unit–III

Material handling: Important and scope, principles of material handling. Planning, Operating and costing principles - types of materials handling systems, factors influencing their choice.
Unit–IV
Industrial building and utilities: Centralised electrical, pneumatic water line systems. Types of buildings, lighting, heating, air-condition and ventilation utilities planning and maintenance, waste handling, statutory requirements, packing and storage of materials, importance of packaging, layout for packaging - Packaging machinery - wrapping and packing of materials, cushion materials.

Unit–V
Analysis of material handling: Factors involved, motor analysis, flow analysis, graphic analysis, safety analysis, equipment cost analysis, pelletization analysis for operation, material handling surveys.

TEXT BOOKS

REFERENCE BOOKS
1) R. Muther, Practical Plant Layout, McGraw Hill, 1955
2) Facility Layout & Location an Analytical Approach/ RL Francis/Leon F. McGinnis, Jr /John A. White /PHI.
3) Production and Operations Management/ R. Panneerselvam/Age.
4) Introduction to Material Handling/ Ray, Siddhartha/ New Age.

COURSE OUTCOMES
Upon the completion of the course, the students will be able to:
1) Impart the knowledge on identify plant locations, different types of plant layout and their importance
2) Design / development of problem analysis on material handling
3) Understand the modern tool usage of plant layout & material handling.

<table>
<thead>
<tr>
<th>Mapping with Programme Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>COs</td>
</tr>
<tr>
<td>CO1</td>
</tr>
<tr>
<td>CO2</td>
</tr>
<tr>
<td>CO3</td>
</tr>
</tbody>
</table>

03PEXXX | RENEWABLE ENERGY SOURCES | L | T | P |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES
This course will enable the student,
- To gain knowledge on the various renewable energy sources like solar, wind, geothermal, biogas, biomass, OTEC and tidal.
- To understand the construction and working of various solar energy gadgets.

Unit–I
Unit–II

Unit–III

Unit–IV
Solar water heater: types, characteristics and performance - simple problems.
Solar space heating and cooling system – Elementary design methods. Storage of solar energy.

Unit–V

TEXT BOOKS

REFERENCE BOOKS

COURSE OUTCOMES
Upon completion of this course students will be able to
1) Understand and learn the importance of renewable energy.
2) Design various renewable energy gadgets
3) Understand the thermal storage of energy.
Mapping with Programme Outcomes

<table>
<thead>
<tr>
<th>COs</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>03PEXXX</th>
<th>FUELS AND COMBUSTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES

- To impart the knowledge about the different types of fuels.
- To study the principles of combustion, flame properties and fuel handling devices.
- To study the petroleum refining process and combustion systems.

Unit–I

Unit–II

Petroleum—origin of petroleum—classification, composition and properties—specific gravity—viscosity—flash point—fire point—cloud point—pour point, freezing point, smoke point, carbon residue, diesel index, sulphur content, moisture content, octane and cetane number. Petroleum refining and other conversion processes. Liquefaction of solid fuels. Storage and handling of liquid fuels.

Unit–III

Unit–IV

Unit–V

TEXT BOOKS

1) Om Prakash Gupta, Elements of Fuels, Furnaces and Refractories, Khanna publishers, 1999.
REFERENCE BOOKS

COURSE OUTCOMES
Upon completion of this course, the students will be able to:
1) Understand the various kinds of fuels and their characteristics.
2) Understand the thermodynamics behind combustion, flame propagation and choice of combustion systems.

Mapping with Programme Outcomes

<table>
<thead>
<tr>
<th>COs</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

03PEXXX ENGINE POLLUTION AND CONTROL

COURSE OBJECTIVES
- To create awareness on air pollution due to I.C. engines and its effects on human health.
- To study the different emission formation mechanism of engines.
- To study the methods of reducing or eliminating the harmful gases from engine.
- To study the different norms and legislations to put a check over the air pollution.
- To know about the fuel modification in I.C. engines

Unit–I

Unit–II
Pollution formation mechanism- SI and CI engine– oxides of nitrogen, Zeldovich mechanism, carbon monoxide, hydrocarbon formation and different types of smoke, smog, particulate emission, soot formation.

Unit–III
reduction (SCR) – DeNOx catalyst – application of micro processor in emission control.

Unit-IV

Unit-V

Fuel modification – GDI, HCCI and CRDI – driving cycles for emission measurement – chassis dynamometer – constant volume sampling (CVS) system – National and international emission norms, driving cycles.

TEXT BOOKS

REFERENCE BOOKS

COURSE OUTCOMES

Upon completion of this course, the students will be able to:

1) Understand the various types of engine pollution, mechanism, controlling methods and emission measuring equipments.

2) Acquire the knowledge of emission standards and fuel modification in engines.

<table>
<thead>
<tr>
<th>COs</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>❌</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES

- To introduce students how to use quantitative methods and techniques for effective decision-making.
- To provide an understanding of the systematic approach to solve decision making problems.
- To enhance the decision-making skills through the application of appropriate models.

Unit-I

Unit–II

Unit–III
Waiting line Problems - cost of waiting and cost of providing service - single channel - single stage type of problems - Monte Carlo simulation for queue problems.

Unit–IV
PERT and CPM - basic steps - rules for constructing the network - Fulkerson's rule - time estimates - PERT calculations - probability of meeting the time schedule - time - cost trade off (crashing) - difference between PERT and CPM – applications.

Unit–V
Decision Theory - Decision making under risk condition - expected value criteria - Decision trees - Decision making under uncertain conditions - Minimax, maximin, maximax, Hurwitz regret criteria.

TEXT BOOKS
2) Vohra, N.D., Quantitative Techniques in Management, TMH, 1990.

REFERENCE BOOKS

COURSE OUTCOMES
Upon the completion of the course, the students will be able to:
1) Impart the basic characteristics of different types of decision-making environments.
2) Enhance their ability to build and solve various operations research models.
3) Expertise to select appropriate decision making models for the real life problems.

<table>
<thead>
<tr>
<th>COs</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>CO2</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES

- To learn the basics of numerical methods
- To learn the solutions of linear algebraic equations
- To learn the solutions of differential and integral equations

Unit–I

Finite difference solution of one dimensional heat equation by explicit and implicit methods – one dimensional wave equation and two dimensional Laplace and Poisson equations.

Unit–II

Unit–III

Unit–IV

Unit–V

TEXT BOOKS

REFERENCE BOOKS

2) Rajaraman, V., Computer Oriented Numerical Methods, Prentice Hall of India, Delhi.

COURSE OUTCOMES

Upon the completion of the course, the students will be able to:

1) Learn the basics of numerical methods.
2) Solve linear algebraic, differential and integral equations.

<table>
<thead>
<tr>
<th>COs</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

03PEXXX | FINITE ELEMENT METHODS |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES

- To learn the basics of solid mechanics and numerical solutions
- To learn the discretization of differential equations by finite element method and solve field problems

Unit–I

Fundamentals of stress-strain relationships, Strain-displacement relationships, Initial strain due to temperature effects, Saint Venant’s principle, Properties of matrices and determinants, Solution of linear algebraic systems by Gauss elimination, Cholesky factorization and conjugate gradient methods.

Unit–II

Basic concepts of FEM, Historical background of FEM, FEM in engineering applications, Boundary conditions, Need for weighted integral forms, Weighted residual approach, weak formulation of boundary value problem, variational methods - Rayleigh-Ritz method.

Unit–III

One dimensional solid and structural mechanics problems – Finite element modeling, Coordinates and shape functions, the potential energy approach, Assembly of global stiffness matrix and load vector, Treatment of boundary conditions and Quadratic shape functions.

Unit–IV

Two dimensional solid and structural mechanics simple problems – Constant strain triangle element, Axisymmetric solids subjected to axisymmetric loads, isoparametric elements and numerical integration.

Unit–V

One dimensional steady state heat transfer problems for conduction and convection – Derivation of elemental equation, One dimensional steady state fluid flow problems.

TEXT BOOKS

REFERENCE BOOKS

COURSE OUTCOMES
Upon completing this course, students should be able to:
1) Understand the basics of solid, structural mechanics, heat transfer and fluid flow problems.
2) Understand the physical boundary condition and formulation of global elemental equations.
3) Solve simple one and two dimensional problems.

<table>
<thead>
<tr>
<th>COs</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES
To understand the theory of metal cutting, cutting tools and materials involved in the cutting operations.
- To explore the special purpose machines and understand their working operation
- To understand the abrasive processes and their grinding metrology
- To understand the basic concepts of jigs and fixtures and their design and manufacturing
- To introduce and understand the mechanisms of unconventional machining processes and their applications

Unit–I : Theory of Metal Cutting
Material removal processes: Cutting tool geometry, Tool signature, Theory of metal cutting: orthogonal and oblique cutting, chip formation, Power requirements for turning, Cutting tool materials, Tool wear, Tool life, Tool life equation, Cutting fluids.

Unit–II : Special Purpose Machines
Capstan and turret lathes –Comparison - Turret Indexing mechanism, Bar feed mechanism.

Automats and transfer machines: Single spindle and multiple spindle automatic lathes, transfer machines - Rotary indexing lathe and drum type transfer machines.

Gear cutting – forming and generation principle, gear hobbing and gear shaping processes –finishing of gears.
Unit–III : Abrasive Machining Processes
Types of grinding process: Cylindrical grinding, surface grinding, center less grinding and internal grinding- Typical applications.
Grinding wheel: specifications and selection, Wheel truing and dressing.

Unit–IV : Jigs and Fixtures
Elements of jigs and fixtures - 3-2-1 principle - Locating devices and types - clamping devices and types - types of jigs: drill jigs - template jigs.
Elements of fixtures: Types of fixtures - milling fixtures - turning fixtures – Modular fixtures.

Unit–V : Unconventional Machining Processes
Basic principle and metal removal mechanism of Abrasive Jet Machining (AJM), Ultrasonic Machining (USM), Electric Discharge Machining (EDM), Electro Chemical Machining (ECM), Laser Beam Machining (LBM) and Electron Beam Machining (EBM).
Basics of Rapid prototyping.

TEXT BOOKS

REFERENCE BOOKS
2) Begeman, Manufacturing Processes.

COURSE OUTCOMES
Upon completion of the course students will be able to
1) Identify, formulate and solve technical problems
2) Work effectively on teams and within a diverse environment
3) Recognize the need for self-improvement through continuing education and the ability to engage in lifelong learning.

<table>
<thead>
<tr>
<th>COs</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES
- To gain the basic knowledge of Computational Fluid Dynamics, the various forms of the governing equations of fluid flow.
- To understand the formulation of Finite Difference & Methods and Numerical solution strategies.
- To understand the grid formation and significance of grid transformations
- To understand the finite volume method of numerical modeling and its role in the field of heat transfer and fluid flow.
Unit–I
Basic concepts of fluid flow – derivation of the governing equations, conservation of mass, momentum and energy. Mathematical classification of flow – hyperbolic, parabolic, elliptic and mixed flow types.

Unit–II

Unit–III
Choice of grid, grid oriented velocity components, Cartesian velocity components, staggered and collocated arrangements, adaptive grids.

Unit–IV
Lax – Wendroff technique – MacCormack’s technique, relaxation technique. Artificial viscosity, ADI technique, Pressure correction technique.

Unit–V

TEXT BOOKS

REFERENCE BOOKS

COURSE OUTCOMES
Upon the completion of the course, the students will be able to:
1) Formulate basic fluid dynamics problems
2) Set up numerical experiments

<table>
<thead>
<tr>
<th>COs</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
PROFESSIONAL ELECTIVE LABORATORIES

03EPXXX PROGRAMMING LABORATORY 0 0 3

COURSE OBJECTIVES
 • To understand the strength of OOPS (polymorphism & inheritance) using C++
 • To impart programming skills in C++ programming.
 • To provide hands-on experience in developing basic mechanical models and assembly drawing using AUTO CAD.
 • To introduce the basics of MAT LAB.

LIST OF EXPERIMENTS
 Preliminary Auto CAD 2 D drawing exercise
 Auto CAD machine drawing
 Knuckle Joint
 Bushed bearing
 C++, Programming,
 Otto cycle efficiency
 Compressor dimensions
 Simple MATLAB Exercises

COURSE OUTCOMES
 Upon completing this course, students should be able to:
 1) Write and compile programmes in C++
 2) Develop assembly drawings with different views using auto cad
 3) Exchange file formats between AutoCAD & other analysis packages
 4) Solve simple mathematical models using MATLAB

<table>
<thead>
<tr>
<th>COs</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

03EPXXX MECHANICAL LABORATORY – III 0 0 3

COURSE OBJECTIVES
 • To supplement the principles learnt in kinematics and Dynamics of Machinery.
 • To make the students understand the working principle of various types of governors, balancing systems, Cam analyzer, Torsional vibration of single rotor system, whirling speed concept, action of forces in gyroscope.

LIST OF EXPERIMENTS
 1) Experimental verification of natural frequency in undamped vibration of single rotor system.
 2) Determine the characteristic curves of watt/Hartnell governors.
 3) Determination of mass moment of inertia of connecting rod and fly wheel.
 4) Studies on cam analyser
 5) Study of gyroscopic couple.
7) Study and experiments on static and dynamic balancing of rotating masses.

COURSE OUTCOMES

Upon the completion of the course, the students will be able to:
1) Determine the mass moment of inertia of connecting rod and flywheel either experimentally or theoretically or both.
2) Understand the working principle of governors.
3) Calculate the stiffness of springs.
4) Analyze the different types of motion in cams.
5) Ability to analyze particle dynamics.

<table>
<thead>
<tr>
<th>COs</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES

- To understand the behavior of a system at different operating conditions
- To understand the usage of different refrigeration tools.
- The students will learn the basics of solar energy, how to determine solar intensity, and how to estimate daily and annual solar energy potential at each location

LIST OF EXPERIMENTS
1) Performance test on Refrigeration trainer
2) Experimental Ice Plant Trial
3) Performance test on window air conditioner
4) Performance test on central A/C plant
5) Performance test on heat pump trainer
6) Performance test on Solar air heater
7) Performance test on water heater
8) Performance test on Solar Still

COURSE OUTCOMES

Upon completing this course, students should be able to:
1) Understand the basic analysis of any refrigeration system

<table>
<thead>
<tr>
<th>COs</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

OPEN ELECTIVES
COURSE OBJECTIVES

- The course acts as a bridge between engineering and biology to provide basic understanding of biological mechanisms of living systems from engineering perspective.
- It will illustrate the many possible means to utilize living things’ relevance to engineering principles.
- With substantial knowledge and continuing interest will make a student into a specialist in the technical diversity.

Unit–I : Requirements of biological systems

- Biological Units Need Water; Biological Units Need the Right Amount of Oxygen; Biological Units Need Food and Nutrients; Biological Units Become Ill in the Presence of Wastes; Biological Units Need Heat Sources and Sinks.

Unit–II : Behavior of biological systems

- Biological Units Adapt to Their Environments; Biological Units Modify Their Environments; Adaptations Require Extra Energy and Resources; Biological Units, If Possible, Move to Friendlier Environments; Biological Units Evolve under Environmental Pressures.

Unit–III : Response to stress by biological systems

- Crowding of Biological Units Produces Stress; Biological Units Are Affected by Chemical Stresses; Biological Units Respond to Mechanical Stresses; Optimization Is Used to Save Energy and Nutrient Resources; Biological Units Alter Themselves to Protect against Harsh Environments.

Unit–IV : Existence of biological systems

- Biological Units Cooperate with Other Biological Units; Biological Units Compete with Other Biological Units; Biological Units Reproduce; Biological Units Coordinate Activities through Communication; Biological Units Maintain Stability with Exquisite Control; Biological Units go through Natural Cycles; Biological Units Need Emotional Satisfaction and Intellectual Stimulation; Biological Units Die.

Unit–V : Scaling factors and biological engineering solutions

- Allometric Relationships from Evolutionary Pressure; Dimensional Analysis; Golden Ratio; Fractal Scaling within an Organism; Self-Similarity for Tissues and Organs; Self-Similarity in Populations; Systems Approach; Relationships between Engineering and Biology; The Completed Design.

TEXT BOOKS

REFERENCE BOOKS

COURSE OUTCOMES
1) The ability to understand the information known about familiar living systems.
2) The ability to anticipate the properties of an unfamiliar group of living things from knowledge about a familiar group.
3) The ability to demonstrate the relevance of engineering to biological systems.
4) The knowledge about the biological responses and it is scaling with respect to scientific principles that cannot be related back.
5) The knowledge of biological principles and generalizations that can lead to useful products and processes.
6) The ability to avoid or mitigate unintended consequences of dealing with any and all living system.

<p>| Mapping with Programme Outcomes |</p>
<table>
<thead>
<tr>
<th>COs</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO6</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES

- At the end of this course the student is expected to understand what is human rights, how to obey the rights, what is the role of a human being in making a good society for the future generations.

Unit–I

Unit–II

Unit–III

Unit–IV

Unit–V

TEXT BOOKS

REFERENCE BOOKS
3) Mausice Cranston- What is Human Rights.
5) Human Rights, A Selected Bibliography, USIS.

COURSE OUTCOMES
Upon the completion of the course, the students will be able to:
1) Understand the principles of human rights
2) Understand the role of human being in making a good society for the future generation.

<table>
<thead>
<tr>
<th>COs</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES
- Develop an entrepreneurship sprit
- Help to identify business opportunities within an organization or independently
- Initiate action on the business plan from the prospective business through EDC

Unit-I
Unit–II

Unit–III

Meaning and nature of direction – Principles of directing – Leadership and leadership style – Motivation – Communication – Need and feedback in communication – Importance of communication – Channels of communication – Types of communication – Forms of communication.

Unit–IV

Evolution of concept of entrepreneur – Concept of entrepreneur – Characteristics of entrepreneur – Distinction between entrepreneur and manager – Technical entrepreneur – Charms of being an entrepreneur – Types of entrepreneur – Role of entrepreneurship in economic development – Barriers in entrepreneurship.

Unit–V

TEXT BOOKS

REFERENCE BOOKS

1) “Creativity, Innovation, Entrepreneurship and Enterprise in Construction and Development”, University of Reading, Alan Barrell – Entrepreneur in Residence Entrepreneur in Residence, University of Xiamen, Xiamen 2012.

COURSE OUTCOMES

At the end of this course the student should

1) Understand entrepreneurship and gain knowledge about the principles of business Plan.

<table>
<thead>
<tr>
<th>Mapping with Programme Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>COs</td>
</tr>
<tr>
<td>CO1</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES

- Understand the community in which they work and their relation
- Identify the needs and problems of the community and involve them in problem-solving
- Develop capacity to meet emergencies and natural disasters
- Practice national integration and social harmony and
- Utilize their knowledge in finding practical solutions to individual and community problems.

Unit–I : National Service Scheme

a. History and its Objectives
b. Organizational structure of N.S.S. at National, State, University and College Levels
c. Advisory committee and their functions with special reference to college principal,
d. Programme officer, N.S.S. group leader and N.S.S. volunteers in the implementation.

Unit–II : National Integration

a. Need of National integration
b. Various obstacles in the way of National Integration; such as caste, religion, language and provisional problems etc.

Unit–III : Special Programme

a. Legal awareness
b. Health awareness
c. First-aid
d. Career guidance
e. Leadership training - cum - Cultural Programme

Unit–IV : Special Camping Programme

a. Nature and its objectives
b. Selection of camp site and physical arrangement
c. Organization of N.S.S. camp through various committees and discipline in the camp.
d. Activities to be undertaken during the N.S.S. camp.
e. Use of the mass media in the N.S.S. activities.

Unit–V : N.S.S. Regular Activities

a. Traffic regulation
b. Working with Police Commissioner's Office
c. Working with Corporation of Chennai
d. Working with Health Department

e. Blind assistance

f. Garments collection

g. Non-formal education

h. ‘Environmental Education, Awareness and Training (EEAT)’

i. Blood donation.

REFERENCE BOOKS

2) Training Programme on National Programme scheme, TISS.

3) Orientation Courses for N.S.S. Programme officers, TISS.

4) Case material as Training Aid for field workers, Gurmeet Hans.

5) Social service opportunities in Hospitals, KapiilK.Krishan, TISS.

COURSE OUTCOMES

Upon completing this course, students should be able to:

1) Develop social and civic responsibility

2) Acquire competence for group living and sharing responsibilities

3) Acquire leadership qualities and democratic attitude;

4) Develop capacity to meet emergencies and natural disasters; and

5) Practice national integration

<table>
<thead>
<tr>
<th>COs</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
</tr>
</tbody>
</table>

02OEXXXX | **DISASTER MANAGEMENT** |
| L | T | P |
| 4 | 0 | 0 |

COURSE OBJECTIVES

- This course helps in providing the basic concepts of disasters and also gives a thorough knowledge and experience to reduce disaster risks.

Unit–I

Introduction – Disaster- Characteristics and types of Disasters- Causes and effects of Disaster -Risk- Vulnerability – Preparedness- Disaster mitigation and disaster management- Classification of mitigation measures-Vulnerability Analysis-Observation and Perception of Vulnerability- Socio-Economic Factors of Vulnerability- Vulnerability in India- Disaster related policy goals of UNDP UNDRO and Govt. of India- Appraising disaster needs- Needs for technical expertise- Role of various Agencies in Disaster Management and Development -Disaster risk reduction planning- Role of Developmental Planning for disaster Management
Unit – II
Earthquake - Cause of Earthquake- General characteristics- Measuring Earthquakes- Distribution pattern of Earthquakes in India- Earthquake prone areas- case studies of important Indian earthquakes - Forecasting techniques and risk analysis- Possible risk reduction measures- earthquake resistance buildings and re-engineering techniques in India.

Unit – III
Tsunamis- Causes of a Tsunami- General Characteristics- Tsunami warning system- Distribution pattern of Tsunami in India- Possible risk reduction measures- Integrated coastal zone management.

Unit – IV
Tropical cyclones- Structure of tropical cyclones- Nature of tropical cyclones- Cyclone experience in India and Tamilnadu- Preparedness- Tropical cyclones and their warning systems- Tropical cyclone warning strategy in India special nature of the problem in the region- Classification- Protection of buildings from cyclones of India- Precautions during and before cyclones.

Unit – V
Coastal floods- Intensification of hazards due to human interference- Management- River and coastal floods- Temperature extremes and wild fires- Physiological hazards- Flood forecasting- mitigation- planning- management- flood prone areas the Indian scenario- Flood experience in India and Tamilnadu.

Environmental hazards- Typology- Assessment and response- Strategies -The scale of disaster- Vulnerability- Disaster trends- Paradigms towards a balanced view- Chemical hazards and toxicology- Biological hazards- Risk analysis- Other technological disasters.

TEXT BOOKS

REFERENCES
3) Sinha, P.C. Technological Disasters , 1997, 516 pp Anmol Publications Trivedi,
COURSE OUTCOMES

1) Develop an understanding of the key concepts, definitions key perspectives of all Hazards Emergency Management
2) Develop a basic understanding of Prevention, Mitigation, Preparedness, Response and Recovery

<table>
<thead>
<tr>
<th>COs</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES

- To understand in-depth knowledge of dimensional analysis of turbo machines.
- To enlighten the thermodynamic aspects of energy transfer in turbo machines.
- To study the flow characteristics of turbo machines.
- To understand the process of energy transfer and operating principles of various turbo machines and their use for various engineering applications

Unit–I : Energy Transfer in Turbo Machines

Introduction to turbo machinery – classification – applications - Euler’s equations - components of energy transfer- Work and efficiencies in turbine stage (Total-to-total, Total-to-static, Polytropic and finite stage) - Effect of reheat factor in turbine-Work and efficiencies in compressors stage (Total-to-total, Static-to-static, Polytropic and finite stage) - Effect of preheat factor in compressor- simple problems.

Unit–II : Aerofoil Theory

Aerofoil section – Classification - lift and drag on the blade - Blade terminology - Cascade testing - Axial turbine cascade, Nomenclature, Velocity triangles and Blade forces - lift and drag coefficients - Estimation of losses using various empirical correlations (theory only).

Axial compressor cascade, nomenclature, velocity triangles, blade forces- lift and drag coefficients, losses - Estimation of losses using empirical correlations (Howell’s) - Annular cascades - Radial cascade (theory only).

Unit–III : Axial Flow and Radial Flow Fans

Centrifugal fans and Blowers - Types of centrifugal fan - Backward-Swept, radial and forward swept blade - Velocity triangles - Stage parameters - Design parameters -Performance of radial flow fans.
Unit–IV : Radial Turbines
Radial turbine stages - Elements of radial turbine stage - IFR turbine with cantilever blade - Ninety degree IFR turbine - inward mix-flow turbine - velocity triangles - h-s diagram - Spouting velocity stage efficiency - Effect of exhaust diffuser - Degree of reaction - Stage losses - Performance characteristics - blade to gas speed ratio - Out ward flow radial turbine (Ljungstrom turbine) theory only.

Unit–V : Dimensional Analysis and Similarity Law
Dimensional analysis and similarity law - Applied to Incompressible flow machines - head, capacity, power coefficient - Specific speed - Compressible flow machine - Pressure ratio - Dimensionless speed and mass flow parameter - power coefficient - similarity law - Reynolds model law and Mach model law.

TEXT BOOKS

REFERENCE BOOKS

COURSE OUTCOMES
Upon the completion of the course, the students will be able to:
1) Impart fundamental understanding of transport processes and mathematical modeling of these transport processes through turbo machine passages.
2) Employ analytical and numerical tools required for performance evaluation and innovative research in the area of rotodynamic machines.
3) Determine the velocity triangles in turbo machinery stages operating at design and off design conditions.
4) Perform the preliminary design of turbo machines (pumps, compressors, turbines).
5) Recognize and discuss today’s and tomorrow’s use of turbo machines for enabling a sustainable society.

<table>
<thead>
<tr>
<th>COs</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES

- This course introduces to the students the different types of vibrations, the causes of vibrations and means of damping it out.

Unit-I

Free vibrations with viscous damping, - logarithmic decrement, - forced vibrations, - vibration isolation and transmissibility - Force due to unbalance - Force due to support motion - Vibration measuring instruments - vibrometers - accelerometers.

Unit-II

Two degree of Freedom Systems: Principal modes of Vibration - spring mass system. - Double pendulum two rotor system - Vibration of geared systems - combined rectilinear and angular modes - undamped dynamic vibration absorber.

Unit-III

Multi degree freedom systems - influence numbers and Maxwell’s reciprocal theorem - Matrix method - stiffness matrix, dynamic matrix - Natural frequencies and principal modes by matrix iteration.

Unit-IV

Basics of noise, amplitude, frequency, wavelength and sound pressure level, addition, subtraction and averaging decibel levels, noise dose level, legislation, measurement and analysis of noise, measurement environment, equipment, frequency analysis, tracking analysis, sound quality analysis.

Unit-V

Source of noise and methods for control of engine noise, combustion noise, mechanical noise, predictive analysis, palliative treatments and enclosures, automotive noise control principles, sound in enclosures, sound energy absorption, sound transmission through barriers.

TEXT BOOKS

2) Singh, V.P., Mechanical Vibration – Dhanpat Rai & Sons.

REFERENCE BOOKS

1) TSE S. Morse Ivan & Hinkle T., Mechanical Vibrations, PHI.
COURSE OUTCOMES

Upon the completion of the course, the students will be able to:

1) Analyze all vibrations in a machine
2) Damp out vibrations

<table>
<thead>
<tr>
<th>Co</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES

- To provide an understanding of modern techniques and tools of quality management
- To impart the knowledge and on the application of the statistical quality control techniques which are used in manufacturing and service industries.
- To provide knowledge and understanding of the modern manufacturing strategies and to present a broad conceptual framework for the management of the operations function across the supply chain.

Unit–I

Unit–II

Objectives of statistical quality control - inspection and its importance – Introduction to Single sampling plan – OC Curve - differences between inspection and quality control - Causes and types of variations - Theory of control charts, Control charts for attributes - p, np, c and u charts.

Unit–III

Control charts for variables, \(\bar{X} - R \) charts, standard deviation charts - Moving range chart. Relationship between statistical control limits and specification limits - modified control chart, process capability studies (Cp and Cpk) – concept of six sigma.

Unit–IV

Unit–V

TEXT BOOKS

REFERENCE BOOKS

COURSE OUTCOMES
Upon completing this course, students should be able to:
1) Understand the core features of the Total quality management in terms of various dimensions of quality.
2) Measure the cost of poor quality and process effectiveness and efficiency to track performance quality and to identify areas for improvement
3) Develop an understanding on quality management philosophies and frameworks
4) Develop the ability to apply the tools of quality control and quality management.
5) Understand proven methodologies to enhance management processes, such as benchmarking and business process reengineering, lean manufacturing.

<table>
<thead>
<tr>
<th>COs</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Mapping with Programme Outcomes
COURSE OBJECTIVES

- To develop an ability to identify, formulate, and solve engineering problems.
- To develop an ability to design a system, component, or process to meet desired needs within realistic constraints
- To understand the interdisciplinary applications of Electronics, Electrical, Mechanical and Computer Systems for the Control of Mechanical and Electronic Systems.

Unit–I

Unit–II

Construction and Reduction Techniques - Block Diagram - Signal Flow Graph. Stability Analysis – Routh Criterion - Frequency Response – Polar Plot - Bode Plot - Nichols Plot

Unit–III

Unit–IV

Unit–V

TEXT BOOKS

REFERENCE BOOKS

COURSE OUTCOMES

Upon completion of this course, the students will be able to:

1) Model and analyze electrical and mechanical systems and their interconnection.
2) Integrate mechanical, electronics, control and computer engineering in the design of mechatronics systems.
3) Complete design, building, interfacing and actuation of a mechatronic system for a set of specifications.
4) Gain knowledge related to Microprocessor, PLC and other Electrical and Electronics Circuits.

<table>
<thead>
<tr>
<th>COs</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES

- To gain the Concepts of Binary Systems and basic knowledge of Microprocessors.
- To understand the constructional details of Microprocessors.
- To gain the knowledge of programming languages for Microprocessors in accordance with hardware.
- To understand the interfacing of microprocessors with peripheral devices and process control applications.

Unit-I

Unit–II
Microprocessor architecture: RAM, ROM, EPROM - memory mapping - INTEL 8085 Architecture - ALU, registers, address bus, data bus, control buses, tristate devices - overview of other 8-bit, 16-bit, 32-bit microprocessors (instruction set not included)

Unit–III
Microprocessor programming: INTEL 8085 Mnemonic - Data transfer, Arithmetic, Logic, Branching instructions - subroutines - simple programs

Unit–IV
Interfacing & peripheral devices: Basic interfacing concepts - 8085 interrupts, 8255 programmable peripheral interface - DMA controller - A/D & D/A conversion.

Unit–V
Control of pressure, temperature, speed - stepper motor control, process control - Automotive applications - introduction to micro controllers.

TEXT BOOKS
2) Ahson, S.I., Microprocessors with applications in process control, Tata McGraw Hill.

REFERENCE BOOKS
1) Gaonkar, R.S., Microprocessor Architecture, Programming & Application, Wiley Eastern.
2) Leventhal, L.A., Introduction to Microprocessors software and hardware programming, PHI.
3) Barney, G.C., Intelligent Instrumentation, PHI.
4) Peatman, Designing with Micro controllers, McGraw Hill.
5) Douglas V. Hall, Microprocessors - Programming & Interfacing, McGraw Hill.

COURSE OUTCOMES
Upon completion of this course, the students will be able to:
1) Understand the basic architecture and functions of 8085 Microprocessors
2) Interface with Peripheral Devices
3) Set up basic Process control Units.

<table>
<thead>
<tr>
<th>COs</th>
<th>CO1</th>
<th>CO2</th>
<th>CO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO1</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO2</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>PO3</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>PO4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO9</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES

- To provide an overview of theories and practices in organizational behavior in individual, group and organizational level.
- To learn human behavior and improve cooperation to achieve targets.

Unit–I : Focus and purpose

Definition, need and importance of organizational behavior – Nature and scope – Frame work – Organizational behavior models.

Unit–II : Individual Behaviour

Unit–III : Group Behaviour

Organization structure – Formation – Groups in organizations – Influence – Group dynamics – Emergence of informal leaders and working norms – Group decision making techniques – Team building - Interpersonal relations – Communication – Control.

Unit–IV : Leadership and Power

Unit–V : Dynamics of Organizational Behaviour

TEXT BOOKS

REFERENCES BOOKS

COURSE OUTCOMES

1) Design the model for every industry
2) Study the character of every individual and to shape the individual to the requirement of company
3) Identify the top level people /leader for the smooth operation of organization.
4) Improve the quality to act as a team player.
5) Identify the power centers’ against the top level management.

<table>
<thead>
<tr>
<th>COs</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

03OEXXX | QUALITY ASSURANCE AND RELIABILITY | L | T | P
| | | 4 | 0 | 0

COURSE OBJECTIVES

- To introduce students how to use various control chart, sampling techniques for controlling quality and reliability concepts
- To provide an understanding of the systematic approach to solve quality control problems.
- To enhance the basic statistical skills.

Unit–I

Objectives of statistical quality control – inspection and its importance – difference between inspection and quality control - basic statistical methods – technique of quality control- control charts for attributes P chart with constant sub group size and variable sub group size – np chart, C – chart – U chart- illustrative examples.

Unit–II

Control chart for variables: Chart for controlling central tendency – average chart (x – chart), charts for controlling dispersion – Range cart (R-Chart) and standard deviation chart (s-Chart)- Maintenance of control charts.
Unit–III

Relationship between statistical control limits and specifications limits – Process variability-evaluation of process capability.

Unit–IV

Acceptance sampling-use of binominal-position and normal distributions in sampling-operating characteristics curves-procedure risk, consumers risk, AQL and LTPD-construction of O.C Curves use of IS 2500 part-I- Effects of sampling plan parameter changes, types of sampling plans-single sampling plan - use of BIS 2500 part I and II.

Unit–V

Reliability Engineering - Definition, failure rate, mean time to failure, mean time between failure, hazard rate, life testing – System reliability, series, parallel and mixed configuration – Active and standby redundancy – Availability and Maintainability concepts – Reliability centered maintenance –FTA, FMECA.

TEXT BOOKS
1) Gupta R.C., Statistical Quality Control, Khanna pub., New Delhi, 1998.

REFERENCE BOOKS
1) Statistics Quality Control, Grant E.L., TMH, 1996.
3) I.S. 2500 – 1973 Part –I and II.
4) I.S. 397 – 1970 Part I and II.

COURSE OUTCOMES

Upon completion of this course, the students will be able to:
1) Impart the basic characteristics of different types of sampling plans and reliability concepts.
2) Enhances their ability to solve various control charts and sampling plans.
3) Expertise to select appropriate control charts and sampling plans for the real life problems.
4) Implement statistical process control and acceptance sampling procedures in manufacturing and service environment to improve quality of processes / products.

<table>
<thead>
<tr>
<th>COs</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>CO4</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES

- Understand the basic analytical fundamentals that are used to create and manipulate geometric models in a computer program,
- Implementing part programs for basic machining operations.
- Gain knowledge on how computers are integrated at various levels of design, planning and manufacturing.
- Understand the types and applications of robots

Unit–I

Unit–II

Unit–III

Unit–IV

Unit–V

TEXT BOOKS

REFERENCE BOOKS

COURSE OUTCOMES
Upon completion of this course, the students will be able to:
1) Understand the various procedures in the design process.
2) Understand the mathematical modeling of mechanical elements.
3) Acquire the knowledge of computer aided planning and manufacturing.
4) Understand the applications of computers in integrated manufacturing.
5) Understand the basic elements, working and applications of industrial robots.

<table>
<thead>
<tr>
<th>COs</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td></td>
<td></td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES
- To familiarize the basic concepts of CAD / CAM / CIM
- To introduce the various aspects of automated manufacturing
- To introduce the fundamentals of materials handling and storage system and robotics
- To introduce the concepts of automated assembly and control system

Unit–I : Introduction

Unit–II : Automated Production Systems And Material Handling And Storage System

Unit–III : Robotics

Unit–IV : Group Technology & Flexible Manufacturing System

Unit–V : Automated Assembly, Computer Process Control and Shop Floor Control

TEXT BOOKS

REFERENCE BOOKS

COURSE OUTCOMES
Upon completing this course, students should be able to:
1) Provide engineering knowledge on the importance of CAD / CAM / CIM
2) Understand the various aspects of automated manufacturing
3) Provide knowledge on the concepts of automated assembly and control system
4) Understand the usage of modern materials handling and storage system and industrial robots.
COURSE OBJECTIVES

- To study the concepts of expert systems and machine learning
- To learn the methods of solving problems using Artificial Intelligence

Unit–I : Introduction

Unit–II : Planning

Planning with forward and backward State space search – Partial order planning – Planning graphs– Planning with propositional logic – Planning and acting in real world.

Unit–III : Reasoning

Unit–IV : Learning

Forms of learning – Knowledge in learning – Statistical learning methods – reinforcement learning, communication, perceiving and acting, Probabilistic language processing, perception.

Unit–V : AI In Robotics

Robotic perception, localization, mapping- configuring space, planning uncertain movements, dynamics and control of movement, Ethics and risks of artificial intelligence in robotics.

TEXT BOOKS

REFERENCE BOOKS

COURSE OUTCOMES
Upon completing this course, students should be able to:
1) Identify problems that are amenable to solution by AI methods.
2) Formalize a given problem in the language/framework of different AI methods.
3) Implement basic AI algorithms.
4) Design and carry out an empirical evaluation of different algorithms on a problem.
5) Solve complex problems in robot kinematics, dynamics and control.

<table>
<thead>
<tr>
<th>COs</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES
- To develop your ability in formulating suitable maintenance strategies to achieve reliable a manufacturing system and achieve continuous system availability for production.
- To equip you with essential system diagnosis techniques so that you can identify and take appropriate actions on error symptoms and causes of failures.
- Apply safe working practices and understand the principles of preventive and first-line maintenance.
- Understand the principles of power transmission systems; remove and refit bearings, keyed shafts, belts & chains; install & align shafts; tension drive train components and to empower you with the skills to manage manufacturing system and man safely.
Unit–I
Need for Maintenance - Types of maintenance - Maintenance organisation charts for large, medium and small size plants - Basic functions of maintenances. Preventive maintenance - Need for preventive maintenance - Starting of preventive maintenance programme - Equipment record - Check list - Inspection - What to inspect - Frequency of inspection aids to good preventive maintenance.

Unit–II
Maintenance of Ball, Roller and Tapered Bearing - Maintenance of Belt, Chain, Gears, Pulleys, Shafting and Fasteners.

Unit–III

Unit–IV
Devices for safeguarding machines - points to be considered in designing the guards - Enclosures, covers and barricades - Safeguarding of fast and loose pulleys, chain and rope drives, revolving machines, pressure plates and self acting machines - Remote tripping and starting devices.

Unit–V
Safety Engineering - Accident Prevention - Various steps to accomplish accident prevention - Safety measures and safety precaution in workshops - Protection of eyes - Protection against dangerous fumes - Protection against fire - Wage incentive to satisfy workman compensation.

TEXT BOOKS
1) Morrow, Industrial Maintenance

REFERENCE BOOKS
1) Rolland P. Blake - Industrial Safety, Prentice Hall of India Pvt. Ltd.
2) Mayard, Industrial Engineering.
3) Agarwal, Machine Building Technology.

COURSE OUTCOMES
1) Understand the relationship of key concepts in reliability engineering and application to maintenance strategies in a manufacturing environment.
2) Establish maintenance strategies according to system characteristics and design transition programs to implement these strategies.
3) Manage the manufacturing organization with highest possible availability with safety.

<table>
<thead>
<tr>
<th>C0s</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
</tr>
</thead>
<tbody>
<tr>
<td>C01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C02</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C03</td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td>✔</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES

- To provide an understanding of the modern approaches to manage the operations and to present a broad conceptual framework for the management of the operations function in an organization.

Unit–I

Production and operation management – Evolution and Objectives - Concept of Production system - Types of Production systems – Continuous, Intermittent - Elements of Production planning and control, concept of Productivity - Production versus Services. Aggregate planning: Costs, Strategies – Application of chase and level strategies and Transportation model - Simple problems.

Unit–II

Capacity planning: Defining and measuring capacity – determinants of effective capacity – Developing capacity alternatives.

Unit–III

Inventory planning and control: Need, inventory costs, Determination of EOQ, EPQ/ELS (without shortages) - Effect of quantity discounts. Determination of ROL, Safety Stocks - Methods of calculating safety stock using Normal - single period inventory model, Inventory control systems - P, Q, and S- s System.

Unit–IV

Materials Requirements Planning (MRP) - Master production schedule, Bill of materials, MRP concept, Lot sizing: Lot-for-lot technique, EOQ approach, Periodic order quantity approach – Illustrative Examples.

Unit–V

Operations scheduling and sequencing: Notations and definitions - Job shop scheduling: sequencing of n jobs through one machine - Priority decision rules – Measures of Performance - n jobs through 2 machines - Jackson’s rule. Flow shop scheduling: sequencing of n jobs through 2, 3 machines, Johnson’s rule. n jobs through m machines - CDS algorithm.

TEXT BOOKS

REFERENCE BOOKS

COURSE OUTCOMES
Upon completing this course, students should be able to:
1) Develop and understand the various types of production systems.
2) Differentiate Production and services.
3) Gain an understanding and appreciation of the principles and applications relevant to the planning, design and operations of manufacturing/service firms.
4) Develop the ability to identify operational methodologies to assess and improve an organization's performance.
5) Gain ability to recognize situations in a production system environment that suggests the use of certain quantitative methods to assist in decision making in the areas such as aggregate planning, Inventory control, forecasting MRP and scheduling.

<table>
<thead>
<tr>
<th>COs</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

* * *