
UNIT  - I 
 

Overview of Graphics System 
 

Video Display Devices 

 

The Primary output device in Computer Graphics is a Monitor 

which operates on the standard cathode-ray tube(CRT) design and 

a few more technological hardware have also come into the 

concept. Computer graphics is a complex and diversified 

technology.  

 

Refresh Cathode-Ray Tubes 

  

The following figure illustrates the basic operation of how does 

a CRT work. An electron beam comes from the electron gun, passes 

through focus and deflection systems that send the beam towards 

directed positions on the phosphor-coated screen. The phosphor 

in return emits a small spot of light at each position where 

ever the electron beam makes contact. As the light which is 

emitted by the phosphor fades very easily, some mechanism is 

required for managing the picture on the screen. One method to 

make the phosphor glowing is to keep on redrawing the picture in 

a repeated manner by quickly projecting the electron beam over 

the same points again and again. 

 

 



The heated metal cathode and a control grid are the key 

components of an electron gun in a CRT. Through the coil of 

wire, called the filament, inside the cylindrical cathode 

structure, heat is supplied to the cathode by directing a 

current which makes electrons to be 'boiled off" the hot cathode 

surface. The free, negatively charged electrons are then 

accelerated toward the phosphor coating by a high positive 

voltage, in the vacuum inside the CRT envelope. The accelerating 

voltage can be generated with a positively charged metal coating 

on the inside of the CRT envelope near the phosphor screen, or 

an accelerating anode can be used, as in Figure. Most of the 

times the electron gun is meant to contain the accelerating 

anode and focusing system within the same unit. Intensity of the 

electron beam is maintained by keeping voltage levels on the 

control grid, which is a metallic cylinder and that fits over 

the shape of the cathode. A high negative voltage applied to the 

control grid shuts off the beam as it repels electrons and stops 

them from passing through the small hole at the end of the 

control grid structure. A smaller negative voltage on the 

control grid all-together decreases the total number of 

electrons passing through it. Since the amount of light emitted 

by the phosphor coating depends on the number of electrons which 

strike the screen, the brightness of a display can be controlled 

by changing the voltage on the control grid. In the electron 

beam, electrons spread all over the screen as a result of 

repulsion among them. To make the electron beam strike at one 

point, focusing anode is present in the CRT. Hence our focusing 

mechanism makes the electron beam to strike the phosphor screen 

at a small spot and focusing is following by usage of magnetic 

and electric field. Magnetic deflected is carried out by using 2 

pairs of magnetic coils within the CRT. One pair is on the top 

and down position and the other one pair is on the opposite 

sides of CRT as it is shown in the Figure Magnetics field thus 

produced by each pair creates a transverse deflection force, 

perpendicular to the way of magnetic field and to the direction 

in which the electron bean is travelling. Moreover Horizontal 

deflection of electron bean is accomplished by one pair of coils 

and vertical deflection is carried out by the others.  

 

Electric deflection is carried out by using two pairs of 

deflecting plates inside CRT, the two pairs are mounted 

vertically and horizontally. 

 

 

 

 

 



 
 

Horizontal deflecting plates provide vertical deflection to the 

electron beam and vertical deflecting plates provide horizontal 

deflection to the electron beam. Important terminologies in CRT 

are as follows:  

Refresh rate: It denotes the number of images which are 

displayed every second, or we can say that it is the number of 

times the images is remapped per second. And It is also known as 

vertical scan rate and is expressed in Hertz (Hz).  

Resolution : It denotes the number of pixels per surface unit 

and can be abbreviated as DPI or dots per inches and is 

calculated both vertically and horizontally. A resolution of 

200dpi means that 200 columns and 200 rows of pixels per square  

Size : It is calculated by taking the dimension of the diagonal 

of the screen and is expressed  

Aspect Ratio : It is termed as the ratio of vertical points to 

horizontal points. 

 

Raster scan Displays 

 

Our home television sets use Raster scan technologies. In this 

sort of Display Mechanism, an electron beam scans every row of 

the screen display row by row starting from top to the bottom. 

Each screen point represents the intensity value either 0 or 1 

and the intensity value is kept in refresh buffer or frame 

buffer. Thus, each pixel value or screen point keeps on changing 

from 0 to 1 or from 1 to 0 depending on its intensity value in 

refresh buffer. And this is the way the screen is painted one 

row at a time. And this is shown in the Figure.  

 

The range of the intensity depends upon the system capabilities. 

We can plot only two different colors or intensities if it is a 

black and white system. In this case one bit per pixel is 

enough, 1 for white intensity and bit value 0 for black 

intensity. More bits can be used to display color and intensity 

for colors. So, bitmap is the term used for frame buffer for 

black and white systems and Pixmap is the term which is used for 

Frame buffer which stores multiple bits per pixel.  



For raster system the refresh rate is generally 60 to 80 frames 

per second, it can be higher for some systems. After it scans 

one row and it returns to the left of the screen for scanning 

next row, it is called horizontal retrace. After it has 

refreshed each scan line, it moves to the top left corner of the 

display and again starts the refreshing process and this is 

called vertical retrace. 

 

 
 

 

Raster scan systems are much more capable than the random 

systems. As it stores the intensity values for each screen 

position, it is capable of displaying the color variations and 

shade which is not possible with random systems. But raster 

system has lower resolution as compared to random system. This 

is because, random system follows the line path to be drawn and 

line drawing commands are stored in refresh buffer. For raster 

system, intensity values are stored for each screen. 

 

Random Scan Displays 

  

The arrangement of a simple random scan system is shown in the 

following figure. System stores and application program in the 

system memory along with a graphics package. With the help of 

graphics package the Graphics command in the application program 

are converted into a display file stored in the system memory. 

And this file helps the system to refresh the screen. When 

operated as a random-scan display unit, a CRT has the electron 



beam directed only to the parts of the screen where a picture is 

to be drawn. Random-scan monitor draw a picture one line at a 

time and for this reason are also referred to as vector displays 

(or stroke-writing of calligraphic displays). 

 

 
 

The component lines of a picture can be drawn and refreshed by a 

random-scan system in any specified order Figure. A pen plotter 

in a similar way and is an example of a random-scan, hard-copy 

device.  

 

Refresh rate on a random-scan system depends on the number of 

lines to be displayed. Picture definition is now stored as a set 

of line-drawing commands in an area of memory referred to as the 

refresh display file. Sometimes the refresh display file is 

called the display list, display program,  

or simply the refresh buffer. To display a specified picture, 

the system cycles through the set of commands in the display 

file, drawing each component line in turn. After all line 

drawing commands have been processed, the system cycle back to 

the first line command in the list. Random-scan displays are 

designed to draw all the component lines of a picture 30 to 60 

times each second. 

  

High-quality vector systems are capable of handling 

approximately 100,000 “short” lines at this refresh rate. When a 

small set of lines is to be displayed, each refresh cycle is 

delayed to avoid refresh rates greater than 60 frames per 

second. Otherwise, faster refreshing of the set of lines could 

burn out the phosphor. Random-scan systems are designed for 

line-drawing applications and can-not display realistic shaded 

scenes. 

 
 
 



 
 

Since picture definition is stored as a set of line-drawing 

instruction and not as a set of intensity values for all screen 

points, vector displays generally have higher resolution then 

raster system. Also, vector displays produce smooth line 

drawings because the CRT beam directly follows the line path. A 

raster system, in contrast, produces jagged lines that are 

plotted as discrete point sets. 

 

COLOR CRT 

 

A CRT monitor displays color picture by using a combination of 

phosphor that emit different-colored light. By combining the 

emitted light from the different phosphor, a range of colors can 

be generated. The two basic techniques for producing color 

displays with a CRT are the beam-penetration method and the 

shadow-mask method.  

 

The beam-penetration method for displaying color pictures has 

been used with random-scan monitors. Two layers of phosphor, 

usually red and green, are coated onto the inside of the CRT 

screen, and the displayed color depends on how far the electron 

beam penetrates into the phosphor layers. A beam of slow 

electrons excites only the outer red layer. A beam of very fast 

electron penetrates through the red layer and excites the inner 

green layer. At intermediate beam speeds, combinations of red 

and green light are emitted to show two additional colors, 

orange and yellow. The speed of the electrons, and hence the 

screen color at any point, is controlled by the beam-



acceleration voltage. Beam penetration has been an inexpensive 

way to produce color in random-scan monitor, but only four 

colors are possible, and the quality of picture is not as good 

as with other methods.  

  

Shadow-mask methods are commonly used in raster-scan system 

(including color TV) because they produce a much wider range of 

colors than the beam penetration method. A shadow-mask CRT has 

three phosphor color dots at each pixel position. One phosphor 

dot emits a red light, another emits a green light, and the 

third emits a blue light. This type ofCRT has three electron 

guns, one for each color dot, and a shadow-mask grid just behind 

the phosphor-coated screen. Figure 2-10 illustrates the delta-

delta shadow-mask method, commonly used in color CRT system. The 

three beams are deflected and focused as a group onto the shadow 

mask, which contains a series of holes aligned with the 

phosphor-dot patterns. When the three beams pass through a hole 

in the shadow mask, they activate a dot triangle, which appears 

as a small color spot on the screen. The phosphor dots in the 

triangles are arranged so that each electron beam can activate 

only its corresponding color dot when it passes through the 

shadow mask. Another configuration for the three electron guns 

is an in-line arrangement in which the three electron guns, and 

the corresponding red-green-blue color dots on the screen, are 

aligned along one scan line instead of in a triangular pattern. 

This in-line arrangement of electron guns is easier to keep in 

alignment and is commonly used in high-resolution color CRTs. 

 

 
 

 

 



We obtain color variations in a shadow-mask CRT by varying the 

intensity levels of the three electron beams. By turning off the 

red and green guns, we get only the color coming from the blue 

phosphor. Other combinations of beam intensities produce a small 

light spot for each pixel position, since our eyes tend to merge 

the three colors into one composite. The color we see depends on 

the amount of excitation of the red, green, and blue phosphors. 

 

 A white (or gray) area is the result of activating all three 

dots with equal intensity. Yellow is produced with the green and 

red dots only, magenta is produced with the blue and red dots, 

any cyan shows up when blue and green are activated equally. In 

some low-cost systems, the electron beam can only be set to on 

or off, limiting displays to eight colors. More sophisticated 

systems can set intermediate intensity level for the electron 

beam, allowing several million different colors to be generated. 

  

Color graphics systems can be designed to be used with several 

types of CRT display devices. Some inexpensive home-computer 

system and video games are designed for use with a color TV set 

and an RF (radio-frequency) modulator. The purpose of the RF 

modulator is to simulate the signal from a broad-cast TV 

station. This means that the color and intensity information of 

the picture must be combined and superimposed on the broadcast-

frequency carrier signal that the TV needs to have as input. 

Then the circuitry in the TV takes this signal from the RF 

modulator, extracts the picture information, and paints it on 

the screen. As we might expect, this extra handling of the 

picture information by the RF modulator and TV circuitry 

decreased the quality of displayed images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



RASTER-SCAN SYSTEMS 

Interactive raster-graphics systems typically employ several 

processing units. In addition to the central processing unit, or 

CPU, a special-purpose processor, called the video controller or 

display controller, is used to control the operation of the 

display device. Organization of a simple raster system is shown 

in Figure. Here, the frame buffer can be anywhere in the system 

memory, and the video controller accesses the frame buffer to 

refresh the screen. In addition to the video controller, more 

sophisticated raster systems employ other processors as 

coprocessors and accelerators to implement various graphics 

operations. 

 

 
 

Video Controller 

Figure shows a commonly used organization for raster systems. A 

fixed area of the system memory is reserved for the frame 

buffer, and the video controller is given direct access to the 

frame-buffer memory. 

Frame-buffer locations, and the corresponding screen positions, 

are referenced in Cartesian coordinates.  

 
 



 
 

The basic refresh operations of the video controller are 

diagrammed. Two registers are used to store the coordinate 

values for the screen pixels. Initially, the x register is set 

to 0 and the y register is set to the value for the top scan 

line. The contents of the frame buffer at this pixel position 

are then retrieved and used to set the intensity of the CRT 

beam. Then the x register is incremented by 1, and the process 

is repeated for the next pixel on the top scan line. This 

procedure continues for each pixel along the top scan line. 

 

After the last pixel on the top scan line has been processed, 

the x register is reset to 0 and the y register is set to the 

value for the next scan line down from the top of the screen. 

Pixels along this scan line are then processed in turn, and the 

procedure is repeated for each successive scan line. After 

cycling through all pixels along the bottom scan line, the video 

controller resets the registers to the first pixel position on 

the top scan line and the refresh process starts over. Since the 

screen must be refreshed at a rate of at least 60 frames per 

second, the simple procedure illustrated in Figure may not be 

accommodated by typical RAM chips if the cycle time is too slow. 



To speed up pixel processing, video controllers can retrieve 

multiple pixel values from the refresh buffer on each pass. 

 

The multiple pixel intensities are then stored in a separate 

register and used to control the CRT beam intensity for a group 

of adjacent pixels. When that group of pixels has been 

processed, the next block of pixel values is retrieved from the 

frame buffer. 

 

Raster-Scan Display Processor 

Figure shows one way to organize the components of a raster 

system that contains a separate display processor, sometimes 

referred to as a graphics controller or a display coprocessor. 

The purpose of the display processor is to free the CPU from the 

graphics chores. In addition to the system memory, a separate 

display-processor memory area can be provided. 

 

A major task of the display processor is digitizing a picture 

definition given in an application program into a set of pixel 

values for storage in the frame buffer. 

 

 
 

This digitization process is called scan conversion. Graphics 

commands specifying straight lines and other geometric objects 

are scan converted into a set of discrete points, corresponding 

to screen pixel positions. Scan converting a straight-line 

segment, for example, means that we have to locate the pixel 

positions closest to the line path and store the color for each 

position in the frame buffer. Similar methods are used for scan 

converting other objects in a picture definition. Characters can 

be defined with rectangular pixel grids, as in Figure. or they 

can be defined with outline shapes, as in Figure. The array size 

for character grids can vary from about 5 by 7 to 9 by 12 or 



more for higher-quality displays. A character grid is displayed 

by superimposing the rectangular grid pattern into the frame 

buffer at a specified coordinate position. For characters that 

are defined as outlines, the shapes are scan converted into the 

frame buffer by locating the pixel positions closest to the 

outline. 

 

Display processors are also designed to perform a number of 

additional operations. These functions include generating 

various line styles (dashed, dotted, or solid), displaying color 

areas, and applying transformations to the objects in a scene. 

Also, display processors are typically designed to interface 

with interactive input devices, such as a mouse. 

 

 

 

 

 

 
RANDOM-SCAN SYSTEMS 

 
The organization of a simple random-scan (vector) system is 

shown in Figure. An application program is input and stored in 

the system memory along with a graphics package. Graphics 

commands in the application program are translated by the 

graphics package into a display file stored in the system 

memory. This display file is then accessed by the display 

processor to refresh the screen. The display processor cycles 

through each command in the display file program once during 

every refresh cycle. Sometimes the display processor in a 

random-scan system is referred to as a display processing unit 

or a graphics controller. 

 

 

 



 
 

 

Graphics patterns are drawn on a random-scan system by directing 

the electron beam along the component lines of the picture. 

Lines are defined by the values for their coordinate endpoints, 

and these input coordinate values are converted to x and y 

deflection voltages. A scene is then drawn one line at a time by 

positioning the beam to fill in the line between specified 

endpoints. 

 

INTERACTIVE INPUT DEVICES 

 

Introduction 

As hardware cost is plummeting, which is considered as the major 

bottleneck for the progress; now communication devices is more 

listened for better development. For that reason, techniques for 

developing high-quality user interfaces are moving to the 

forefront in computer science and are becoming the "last 

frontier" in providing computing to a wide variety of users—as 

other aspects of technology continue to improve, but the human 

users remain the same. Interest in the quality of user-computer 

interfaces is a recent part of the formal study of computers. 

The emphasis until the early 1980s was on optimizing two scarce 

hardware resources, computer time and memory. Program efficiency 

was the highest goal. With today’s plummeting hardware costs and 

powerful graphics-oriented personal computing environments the 

focus turns to optimizing user efficiency rather than computer 

efficiency. Thus, although many of the ideas presented in this 

chapter require additional CPU cycles and memory space, the 

potential rewards in user productivity and satisfaction well 

outweigh the modest additional cost of these resources. 

The quality of the user interface often determines whether users 

enjoy or despise a system, whether the designers of the system 

are praised or damned, whether a system succeeds or fails in the 

market. Actually, a poor user interface such as in air traffic 

control or in nuclear power plant monitoring can lead to 

catastrophic consequences. 



The desktop user-interface metaphor, with its windows, icons, 

and pull-down menus, all making heavy use of raster graphics, is 

popular because it is easy to learn and requires little typing 

skill. Most users of such systems are not computer programmers 

and have little sympathy for the old-style difficult-to-learn 

keyboard-oriented command-language interfaces that many 

programmers take for granted. The designer of an interactive 

graphics application must be sensitive to users’ desire for 

easy-to-learn yet powerful interfaces. In this chapter, we 

discuss the three basic low-level elements of user interfaces: 

input devices, interaction techniques, and interaction tasks. 

Interaction techniques are the primitive building blocks from 

which a user interface is crafted. 

We focus in this chapter on input devices—those pieces of 

hardware by which a user enters information into a computer 

system. Input devices for the earliest computers were 

switches and knobs, jumper wires placed in patch boards, and 

punched cards. These were followed by the teletype, the text-

only forerunner of today’s interactive terminals. The mouse and 

keyboard now predominate, but a wide variety of input devices 

can be used. 

An interaction task is the entry of a unit of information by the 

user. Basic interaction tasks are position, text, select, and 

quantify. The unit of information that is input in a position 

interaction task is of course a position; the text task yields a 

text string; the select task yields an object identification; 

and the quantify task yields a numeric value. A designer begins 

with the interaction tasks necessary for a particular 

application. 

For each such task, the designer chooses an appropriate 

interaction device and interaction technique. Many different 

interaction techniques can be used for a given interaction task, 

and there may be several different ways of using the same device 

to perform the same task. For instance, a selection task can be 

carried out by using a mouse to select items from a menu, using 

a keyboard to enter the name of the selection, pressing a 

function key, circling the desired command with the mouse, or 

even writing the name of the command with the mouse. Similarly, 

a single device can be used for different tasks: A mouse is 

often used for both positioning and selecting. 

Interaction tasks are defined by what the user accomplishes, 

whereas logical input devices categorize how that task is 

accomplished by the application program and the graphics system. 

Interaction tasks are user-centered, whereas logical input 

devices are a programmer and graphics-system concept. By analogy 

with a natural language, single actions with input devices are 

similar to the individual letters of the alphabet from which 



words are formed. The sequence of input-device actions that 

makes up an interaction technique is analogous to the sequence 

of letters that makes up a word. A word is a unit of meaning; 

just as several interaction techniques can be used to carry out 

the same interaction task, so too words that are synonyms convey 

the same meaning. An interactive dialogue is made up of 

interaction-task sequences, just as a sentence is constructed 

from word sequences. 

Concept of Positioning and Pointing 

Most display terminals provide the user with an alphanumeric 

keyboard with which to type commands and enter data for the 

program. For some applications, however, the keyboard is 

inconvenient or inadequate. For example, the user may wish to 

indicate one of a number of symbols on the screen, in order to 

erase the symbol. If each symbol is labeled, he can do so by 

typing the symbol’s name; by pointing at the symbol, however, 

he may be able to erase more rapidly, and the extra clutter of 

labels can be avoided. 

Another problem arises if the user has to add lines or symbols 

to the picture on the screen. Although he can identify an 

items’s position by typing coordinates he can do so 

even better by pointing at the screen, particularly if what 

matters most is the items’s position relative to the rest of the 

picture. 

These two examples illustrate the two basic types of graphical 

interaction: pointing at items already on the screen and 

positioning new items. The need to interact in these ways 

has stimulated the developed of a number of different types of 

graphical input device,some of which are described in this 

chapter. 

Ideally a graphical input device should lend itself both to 

pointing and to positioning. In reality there are no devices 

with this versatility. Most devices are much better at 

positioning than at pointing; one device, the light pen, is the 

exact opposite. Fortunately, however we can supplement the 

deficiencies of these devices by software and in this way 

produce hardware-software system that has both capabilities. 

Nevertheless the distinction between pointing and positioning 

capability is extremely important. 

Another important distinction is between devices that can be 

used directly on the screen surface and devices that cannot. The 

latter might appear to be less useful, but this is far from 

true. Radar operators and air-traffic controllers have for years 

used devices like the joystick and the tracker ball neither of 

which can be pointed at the screen. The effectiveness of these 

input devices depends on the use of visual feedback: the x and y 



outputs of the device control the movement of a small cross, or 

cursor, displayed on the screen. The user of the device steers 

the cursor around the screen as if it were a toy boat 

on the surface of a pond. Although this operation sounds as if 

it requires a lot of skill, it is in fact very easy. 

The use of visual feedback has an additional advantage: just as 

in any control system, it compensates for any lack of linearity 

in the device. A linear input device is one that faithfully 

increases or decreases the input coordinate value in exact 

proportion to the user’s hand movement. If the device is being 

used to trace a graph or a map. Linearity is important. A 

cursor, however, can be controlled quite easily even if the 

device behaves in a fairly nonlinear fashion. For example, the 

device may be much less sensitive near the left – hand region of 

its travel: a 1 – inch hand movement may change the x value by 

only 50 units, whereas the same movement elsewhere may change x 

by 60 units. The user will simply change his hand movement to 

compensate, often without even noticing the no linearity. This 

phenomenon has allowed simple, inexpensive devices like the 

mouse to be used very successfully for graphical input. 

Interactive Graphic Devices 

Various devices are available for data input on graphics 

workstations. Most systems have a keyboard and one or more 

additional devices specially designed for interactive input. 

These include a mouse, trackball, spaceball, joystick, 

digitizers, dials, and button boxes. 

Some other input devices used in particular applications are 

data gloves, touch panels,image scanners, and voice systems. 

Keyboards 

The well-known QWERTY keyboard has been with us for many years. 

It is ironic that this keyboard was originally designed to slow 

down typists, so that the typewriter hammers would not be so 

likely to jam. Studies have shown that the newer Dvorak 

keyboard , which places vowels and other high-frequency 

characters under the home positions of the fingers, is somewhat 

faster than is the QWERTY design. It has not been widely 

accepted. Alphabetically organized keyboards are sometimes used 

when many of the users are non typists. But more and more people 

are being exposed to QWERTY keyboards, and experiments have 

shown no advantage of alphabetic over QWERTY keyboards .In 

recent years, the chief force serving to displace the keyboard 

has been the shrinking size of computers, with laptops, 

notebooks, palmtops, and personal digital assistants. The 

typewriter keyboard is becoming the largest component of such 

pocketsized devices, and often the main component standing in 

the way of reducing its overall size. The chord keyboard has 

five keys similar to piano keys, and is operated with one 



hand, by pressing one or more keys simultaneously to "play a 

chord." With five keys, 31 different chords can be played. 

Learning to use a chord keyboard (and other similar stenographer 

style keyboards) takes longer than learning the QWERTY keyboard, 

but skilled users can type quite rapidly, leaving the second 

hand free for other tasks. This increased training time means, 

however, that such keyboards are not suitable substitutes 

for general use of the standard alphanumeric keyboard. Again, as 

computers become smaller, the benefit of a keyboard that allows 

touch typing with only five keys may come to outweigh the 

additional difficulty of learning the chords. Other keyboard-

oriented considerations, involving not hardware but software 

design, are arranging for a user to enter frequently used 

punctuation or correction characters without needing 

simultaneously to press the control or shift keys, and assigning 

dangerous actions (such as delete) to keys that are distant from 

other frequently used keys. 

Touch Panels 

As the name implies, touch panels allow displayed objects or 

screen positions to be selected with the touch of a finger. A 

typical application of touch panels is for the selection of 

processing options that are represented with graphical icons. 

Other systems can be adapted for touch input by fitting a 

transparent device with a touch-sensing mechanism over the video 

monitor screen. Touch input can be recorded using optical, 

electrical, or acoustical methods. 

Optical touch panels employ a line of infrared light-emitting 

diodes (LEDs) along one vertical edge and along one horizontal 

edge of the frame. The opposite vertical and horizontal edges 

contain light detectors. These detectors are used to record 

which beams are interrupted when the panel is touched. The two 

crossing beams that are interrupted identify the horizontal and 

vertical coordinates of the screen position selected. Positions 

can be selected with an accuracy of about inch. With closely 

spaced LEDs, it is possible to break two horizontal or two 

vertical beams simultaneously. In this case, an average position 

between the two interrupted beams is recorded. The LEDs operate 

at infrared frequencies, so that the light is not visible to a 

user. An electrical touch panel is constructed with two 

transparent plates separated by a small distance. One of the 

plates is coated with a conducting material, and the other plate 

is coated with a resistive material. 

When the outer plate is touched, it is forced into contact with 

the inner plate. This contact creates a voltage drop across the 

resistive plate that is converted to the coordinate values of 

the selected screen position. 



In acoustical touch panels, high-frequency sound waves are 

generated in the horizontal and vertical directions across a 

glass plate. Touching the screen causes part of each wave 

to be reflected from the finger to the emitters. The screen 

position at the point of contact is calculated from a 

measurement of the time interval between the transmission of 

each wave and its reflection to the emitter. 

Light pens 

The pencil-shaped devices 's are used to select screen positions 

by detecting the light coming from point on the CRT screen. They 

are sensitive to the short burst of light emitted from the 

phosphor coating at the instant the electron beam strikes a 

particular point. Other light sources, such as the background 

light in the room, are usually not detected by a light pen. An 

activated light pen, pointed at a spot on the screen as the 

electron beam lights up that spot, generates an electrical pulse 

that causes the coordinate position of the electron beam to be 

recorded. As with cursor-positioning devices,recorded light-pen 

coordinates can be used to position an object or to select a 

processing option. Although light pens are still with us, they 

are not as popular as they once were since they have several 

disadvantages compared to other input devices that have been 

developed. For one, when a light pen is pointed at the screen, 

part of the screen image is obscured by the hand and pen. And 

prolonged use of the light pen can cause arm fatigue. 

Also, light pens require special implementation for some 

applications because they cannot detect positions within black 

areas. To be able to select positions in any screen area with a 

light pen, we must have some nonzero intensity assigned to each 

screen pixel. 

In addition, light pens sometime give false readings due to 

background lighting in a room. 

Graphics Tablets 

One type of digitizer is the graphics tablet (also referred to 

as a data tablet), which is used to input two-dimensional 

coordinates by activating a hand cursor or stylus at selected 

positions on a flat surface. A hand cursor contains cross hairs 

for sighting positions, while a stylus is a pencil-shaped device 

that is pointed at positions on the tablet. This allows an 

artist to produce different brush strokes with different 

pressures on the tablet surface. 

Tablet size varies from 12 by 12 inches for desktop models to 4 

by 60 inches or larger for floor models. Graphics tablets 

provide a highly accurate method for selecting coordinate 

positions, with an accuracy that varies from about 0.2 mm on 

desktop models to about 0.05 mm or less on larger models. Many 



graphics tablets are constructed with a rectangular grid of wire 

embedded in the tablet surface. Electromagnetic pulses are 

generated in sequence along the wires, and an electric signal is 

induced in a wire coil in an activated stylus or hand cursor to 

record a tablet position. Depending on the technology, a their 

signal strength, coded pulses, or phase shifts can be used to 

determine the position on the tablet. 

Joysticks 

A joystick consists of a small, vertical lever (called the 

stick) mounted on a base that is used to steer the screen cursor 

around. Most joysticks select screen positions with actual 

stick movement; others respond to pressure on the stick. The 

distance that the stick is moved in any direction from its 

center position corresponds to screen-cursor movement in that 

direction. Potentiometers mounted at the base of the joystick 

measure the amount of movement, and springs return the stick to 

the center position when it is released. One or more buttons can 

be programmed to act as input switchs to signal certain actions 

once a screen position has been selected. 

Mouse 

A mouse is small hand-held box used to position the screen 

cursor. Wheels or rollers on the bottom of the mouse can be used 

to record the amount and direction of movement. 

Another method for detecting mouse motion is with an optical 

sensor. For these systems, the mouse is moved over a special 

mouse pad that has a grid of horizontal and vertical lines. The 

optical sensor detects movement across the lines in the grid. 

Since a mouse can be picked up and put down at another position 

without change in cursor movement, it is used for making 

relative changes in the position of the screen cursor. One, two, 

or three buttons are usually included on the top of the mouse 

for signaling the execution of some operation, such as recording 

cursor position or invoking a function. Most general-purpose 

graphics systems now include a mouse and a keyboard as the major 

input devices. 

Voice Systems 

Speech recognizers are used in some graphics workstations as 

input devices to accept voice commands. The voice-system input 

can be used to initiate graphics operations or to enter data. 

These systems operate by matching an input against a predefined 

dictionary of words and phrases. 

A dictionary is set up for a particular operator by having the 

operator speak the command words to be used into the system. 

Each word is spoken several times, and the system analyzes the 

word and establishes a frequency pattern for that word in the 

dictionary along with the corresponding function to be 

performed. Later, when a voice command is given, the system 



searches the dictionary for a frequency-pattern match. Voice 

input is typically spoken into a microphone mounted on a 

headset. The microphone is designed to minimize input of other 

background sounds. If a different operator is to use the system, 

the dictionary must be reestablished with that operator's voice 

patterns. Voice systems have some advantage over other input 

devices, since the attention of the operator does not have to be 

switched from one device to another to enter a command. 

 

Logical Input Devices  

Some APIs (PHIGS, GKS, Direct xx) supports 6 classes of logical 

input devices – OpenGL does not take this approach 

Two older APIs (GKS, PHIGS) defined six types of logical input 

 

Locator: return a position: 

Pick: return ID of an object: 

Keyboard: return strings of characters: 

Stroke: return array of positions: 

Valuator: return floating point number: 

Choice: return one of n items 

 

String – logical device providing ASCII strings – keyboard 

Locator – provides a position in world coordinates – usually 

implemented via pointing device– mouse, trackball. OpenGL 

provides similar but conversion from screen coordinates to world 

coordinates must be made by a user 

Pick – returns identifier of an object – in OpenGL process 

called selection can be used to accomplish picking 

Choice – allows the user to select on of a discrete number of 

options – in OpenGL various widgets provided by the window 

system can be used; widget is a graphical interactive device 

provided by window system or a toolkit (menu with n selections 

etc.) 

Dial – provides analog input to the user program – slide bars 

etc. 

Stroke – device returns an array of locations – different 

implementations – usually: mouse button down, transfer data to 

an array with different positions, release button – ends the 

transfer 

 

 

 

 

 

 

 

 



Input Modes 

Input devices contain a trigger which can be used to send a 

signal to the operating system Button on mouse Pressing or 

releasing a key 

 

When triggered, input devices return information (their measure) 

to the system)Mouse returns position information Keyboard 

returns ASCII code 

 

Request Mode 

Input provided to program only when user triggers the device 

 

Typical of keyboard input Can erase (backspace), edit, correct 

until enter (return) key (the trigger) is depressed 

 

Event Mode 

Most systems have more than one input device, each of which can 

be triggered at an arbitrary time by a user 

 

Each trigger generates an event whose measure is put in an event 

queue which can be examined by the user program 

 

Event Types 

Window: resize, expose, iconify 

Mouse: click one or more buttons 

Motion: move mouse 

Keyboard: press or release a key 

Idle: nonevent  

Define what should be done if no other event is in queue 

 

OUTPUT PRIMITIVES 

Output primitives are the geometric structures such as straight 

line segments (pixel array) and polygon color areas, used to 

describe the shapes and colors of the objects. Points and 

straight line segments are the simplest geometric components of 

pictures. Additional output primitive includes: circles and 

other conic sections, quadric surfaces, spline curves and 

surfaces, polygon color areas and character strings. Here, we 

discuss picture generation algorithm by examining device-level 

algorithms for displaying two-dimensional output primitives, 

with emphasis on scan-conversion methods for raster graphics 

system. 

 

Points and Lines 

Point plotting is done in CRT monitor by turning on the electron 

beam to illuminate at the screen phosphor at the selected 

location. 



 

Random-scan systems: stores point plotting instructions in the 

display list and co-ordinate values in these instructions are 

converted into deflection voltages that position the electron 

beam at selected location. 

 

B/W raster system: Within frame buffer, bit value is set to 1 

for specified screen position. Electron beam then sweeps across 

each horizontal scan line, it emits a burst of electrons (plots 

a point) whenever value of 1 is encountered in the frame buffer. 

RGB raster system: Frame buffer is loaded with the color codes 

for the intensities that are to be displayed at the screen pixel 

positions. 

 

Line drawing is accomplished by calculating intermediate 

positions along the line path between two specified endpoint 

positions. An output device is then directed to fill in these 

positions between the endpoints. 

 

For analog devices (vector-pen plotter and random-scan display), 

a straight line can be drawn smoothly between two points.  

Reason: linearly varying horizontal and vertical deflection 

voltages are generated that are proportional to the required 

changes in the x and y directions. 

 

Digital devices display a straight line segment by plotting 

discrete points between two end-points. Discrete integer 

coordinates are calculated from the equation of the line. Since 

rounding of coordinate values occur [(4.48, 48.51) would be 

converted to (4, 49)], line is displayed with stair step 

appearance. 

 

SOFTWARE STANDARDS 

Primary goal of standardized graphics software is portability. 

When packages are designed with standard graphics functions, 

software can he moved easily from one hardware system to another 

and used in different implementations and applications. 

International and national standards planning organizations in 

many countries have cooperated in an effort to develop a 

generally accepted standard for computer graphics.  

 

After considerable effort, this work led to following standards: 

GKS (Graphical Kernel System):This system was adopted as the 

first graphics software standardby the International Standards 

Organization (ISO) and American National Standards Institute 

(ANSI). Although GKS was originally designed as a two-



dimensional graphics package, a three-dimensional GKS extension 

was subsequently developed. 

PHIGS (Programmer’s Hierarchical Interactive Graphics 

Standard):Extension to GKS, Increased Capabilities for object 

modeling, color specifications, surface rendering and picture 

manipulations are provided. Subsequently, an extension of PHIGS, 

called PHIGS+, was developed to provide three-dimensional 

surface-shading capabilities not available in PHIGS. 

 

Although PHIGS presents a specification for basic graphics 

functions, it does not provide a standard methodology for a 

graphics interface to output devices (i.e. still machine 

dependent). Nor does it specify methods for storing and 

transmitting pictures. Separate standards have been developed 

for these areas: 

CGI (Computer Graphics interface):Standardization for device 

interface 

CGM (Computer Graphics Metafile):Standards for archiving and 

transporting pictures 

 

 

 

GRAPHICS SOFTWARE 

There are two general categories of graphics software 

General programming packages:  

Provides extensive set of graphics functions for high level 

languages (FORTRAN, C etc).  

Basic   functions   include   those   for   generating   picture   

components   (straight   lines, polygons,  circles,  and  other  

figures),  setting  color  and  intensity  values,  selecting  

views, and applying transformations. 

Example: GL(Graphics Library) 

Special-purpose application packages: Designed  for  

nonprogrammers,  so  that  users  can  generate  displays  

without  worrying about how graphics operations work.  

The  interface  to  the  graphics  routines  in  such  packages  

allows  users  to  communicate with the programs in their own 

terms.  

Example: artist's painting programs and various business, 

medical, and CAD systems. 

 

 

 

 

 

 

 



CONCEPTUAL FRAMEWORK  FOR INTERACTIVE GRAPHICS SYSTEM 

 

The high-level conceptual framework shown here can be used to 

describe almost any interactive graphics system. 

 
The three major parts of the framework are: 

Application Modeling 

Calculating what is to be displayed 

Displaying the Model 

Calling the graphics API routines 

Interaction Handling 

Handling user interaction, which will change the model, and 

therefore the display. 

typically an event driven loop 

 

- Graphics Library - Between application and display hardware 

there is graphics library / API. 

 

- Application Program - An application program maps all 

application objects to images by invoking graphics.  

 

- Graphics System – An interface that interacts between Graphics 

library and Hardware. 

 

- Modifications to images are the result of user interaction. 

 



UNIT I 

 
Line Drawing Algorithms 

 
1) Digital Differential Analyzer (DDA) Algorithm:   

 Straight Line Equation in the form of Slope intercept is as follows: 
 

y = m x + b ------------1 
 

where m represents the slope of the line and b as the y intercept which it 
makes with the Y axis. The two end point of a line segment are denoted by 
the positions (x1, y1) and (x2, y2) as shown in the following diagram. Using 
this Equation we can determine values for the slope m and y intercept b 
using the following calculations. 

 

M = 

y2 - y1  

----2   y2 

      
 

x2 - x1       
 

b = y1 – mx1 -----3 y1 
     

 

     
 

Value of y is calculated 

       
 

        
 

       
 

∆y – m . ∆x _ _ _ (4)   x1 x2 
 

Similarly we can obtain ∆ x interval Figure. (1) Line Path between   
 

endpoint           
 

∆ x = 

 y 

position (x1, y1) & (x2, y2) 
 

 

 

 

m 
 

 

For lines with slope magnitude m >1, ∆y can be set proportional to a 
 

small deflection voltage with the corresponding horizontal deflection 
voltage set proportional to ∆x. 

 

 

For lines with m = 1 ∆x = ∆y. 
 

DDA Algorithm : Also Called as Digital Differential Analyzer (DDA) 
performs scan. It is a Scan conversion line algorithm. It is also called an 
incremental algorithm, as it increments the value of x or y by 1 depending 
on the slope value. It tries to decrease the computation burden and 
increase the sped of computing. Conversion line Algorithm based on 
calculating either ∆y or ∆x using equation (4) & (5). 

 

 

We sample the line at unit intervals in one coordinate and determine 
corresponding integer values nearest. The line paths for the other 



  

coordinate. Now consider first a line with positive slope, as shown in 
Figure.(1). If the slope is less than one or equal to 1. We sample at unit x 
intervals (∆x = 1) compute each successive y values as : 

 

yk+1 = yk + m _ _ _ (6) 
 

Value k takes integer values starting form 1, for the first point & gets 
incremented by 1 until the final end point is reached. 

 

For lines with positive slope greater than 1, we reverse the role of x and y. 
That is we sample at unit y intervals (∆y = 1) and calculate each 
succeeding x value as :   

xk+1 = xk + 
1 _ _ _ (7)  
m 

 

  
 

 

Equation (6) and (7) are based on assumption that lines are to be 
processed form left end point to the right end point. 

 

If this processing is reversed the sign is changed 
 

∆x = - 1 & ∆y = - 1 
 

yk+1 = yk – m _ _ _ (8) 
 

xk+1 = xk – 
1  _ _ _(9)  

m 
 

  
 

 

Equations (6) to (9) are used to calculate pixel position along a line with 
negative slope. 

 

When the start endpoint is at the right we set ∆x = -1 and obtain y position 
from equation (7) similarly when Absolute value of Negative slope is 
greater than 1, we use ∆y = -1 & eq.(9) or we use ∆y = 1 & eq.(7). 

 

 

DDA Example: 

(0, 0) to (8, 5)  

       x1 = 0            y1 = 0 

       x2 = 8           y2 =  4 

m = 5 − 0 / 8 − 0 = 5/8 = 0.6 < 1 

so,  x = 0+1 y=0+0.6 (Round off  y values) 

i   x            y     (x,y)     

  0  0    

1  1.0       0.6  (1,1) 

2  2.0       1.2  (2,1) 

3  3.0       1.8  (3,2) 

4  4.0       2.4  (4,2) 

5  5.0       3.0  (5,3) 

6  6.0       3.6  (6,4) 

7  7.0       4.2  (7,4) 

8  8.0       4.8  (8,5) 
      Plot the graph with these (x,y) points. 



2) Bresenham’s Line Drawing Algorithm : 
 

 
 

This is very efficient and faster line drawing algorithm. It scan converts 
lines and uses only incremental integer calculations. Thus we can use this 
algorithm for drawing circles and similar other curves also. An accurate 
and efficient raster line generating Algorithm, developed by Bresenham, 
scan concerts line using only incremental integer calculations that can be 
adapted to display circles and other curves. The vertical axes show scan-
line position, & the horizontal axes identify pixel columns as shown in 
Figure. (5) & (6) . This algorithm follows the closeness theory to 
implement line plotting. 

 

 

As we did for DDA algorithm, here also we start with I octant where slope , 

m<1. Since m<1, we move in x-direction by sampling at unit x intervals. 
   

Thus we start plotting from initial, say(x0-y0) and take steps in success x-
columns an plot the point whose y-values is closest to the ideal line path. 
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  Figure.5        Figure.6   
 

We first consider the scan conversion process for lines with positive slope 
 

less than 1 to illustrate Bresenham’s approach. Pixel position along a line 
 

path are then determined by sampling at unit x intervals starting form left 

and point (x0 , y0) of a given line, we step at each successive column (x 

position) & plot the pixel whose scan line y is closest to the line path. Now 

assuming we have to determine that the pixel at (xk , yk) is to be 

displayed, we next need to divide which pixel to plot in column xk+1. 

Preference would be at the position (xk+1 , yk) and (xk+1 , yk+1). At sampling 

position xk+1, we label vertical pixel separations from the mathematical 

line path as d1 and d2. Figure.(8). 
 

 

 

 



The y coordinate on the mathematical line at pixel column position xk+1 is 

calculated as : 
 

y = m(xk + 1) +b 

  

_ _ _(10) 
  

Then 
 

d1 = y – yk = m (xk + 1) +b - yk 
 

d2 = (yk + 1) –y = yk + 1 – m (xk + 1) – b 
 

The difference can be define between these two separations as 

d1 - d2 = 2m (xk+1) - 2yk + 2b - 1 _ _ _ (11) 
 

The deciding Parameter Pk for the Kth step in the line algorithm can be 
obtained by making some rearrangements in eq.(11) so that it involves 
sort of integer calculation. We accomplish this by substituting m = ∆y/∆x. 
where ∆y & ∆x are the vertical & horizontal separation of the endpoint 
positions & defining. The sign of Pk remains same as that of the sign of d1 - 
d2. 

 

Pk = ∆x (d1 – d2) = 2∆y. xk - 2∆x yk + c _ _ _ (12) 
 

 

Since ∆x > 0 for our example Parameter C is constant & has the value 2∆y 
 

+ ∆x (2b -1), which is independent of pixel position. 
 

If the pixel position at yk is closer to line path than the pixel at yk+1 (that is 

d1 < d2), then decision Parameter Pk is Negative. In that case we plot the 

lower pixel otherwise we plot the upper pixel. Coordinate changes along 

the line owner in unit steps in either the x or directions. Therefore we can 

obtain the values of successive decision Parameter using incremental 

integer calculations. At step k = 1, the decision Parameter is evaluated 

form eq.(12) as : 
  

Pk+1 = 2∆y . xk+1 - 2∆x . yk+1 + C 

 
 

 

yk+1 

 

• 
 

 
 

 

y • 

 

yk • 

 
 
 

 

d2 
 
 

d1 

 



 
  

xk+1 Figure.8 

 

           xk 
 

Subtracting eq.(12) from the preceding equation we have  
 

Pk+1 – Pk = 2∆y (xk+1 – xk) - 2∆x (yk+1 – yk)  
 

But    xk+1 = xk + 1  
 

So that, Pk+1 = Pk + 2∆y - 2∆x (yk+1 – yk) _ _ _ (13) 
 

 

 

The term yk+1 - yk either results into 0 or 1, depending on sign of 

Parameter Pk.This recursive calculation of decision Parameter is 

performed each integer x position, starting at left coordinate endpoint of 
 

the line. The first parameter P0 is evaluated from equation (12) at starting 

pixel position (x0, y0) and with m evaluated as ∆y/∆x. 

 

P0 = 2∆y - ∆x _ _ _ (14) 
 

The following lines express how does Bresenham’s Line Drawing 

Algorithm work for   m <1 : 
 
 

Take input for two endpoints of a line & store the left end point in (x0 , y0). 

Load (x0 , y0) into frame buffer that is plot the first point. Calculate 

   

constants ∆x, ∆y, 2∆y and 2∆y - 2∆x and obtain the starting value for the 

decision parameter as : P0 = 2∆y - ∆x. At each xk along the line starting at k 
 

= 0, perform the following test if Pk < 0 the next point to plot is (xk+1 , yk) 

and Pk+1 = Pk + 2∆y otherwise the next point to plot is (xk+1 , yk+1) and Pk+1  
= Pk +2∆y - 2∆x. Repeat step 4 ∆x times. 

 

Example   : 

Digitize the line with end points (20, 10) & (30, 18) using Bresenham’s Line 
Drawing Algorithm. 

           slope of line, m = y2 - y1 =  18 - 10 =  8 = 0.8 

  x2 - x1 30 - 20  10  

∆x = 10 , ∆y = 8       

Initial decision parameter has the value 

P0 = 2∆y - ∆x = 2x8 – 10 = 6    

  Since P0 > 0, so next point is (xk + 1, yk + 1) (21, 11) 

Now k = 0, Pk+1 =  Pk + 2∆y - 2∆x 

 P1 =  P0 + 2∆y - 2∆x 

  =  6 + (-4)    

  =  2     

      Since P1 > 0,   Next point is (22, 12) 



 
 
Now k = 1, Pk+1 =  Pk + 2∆y - 2∆x 

 P2 =  2 + (- 4)    

  =  - 2     

      Since P2 < 0,   Next point is (23, 12) 

Now k = 2 Pk+1 =  Pk + 2∆y    

 P2 =  - 2 + 16    

  =  14       

Since P3 > 0, Next point is (24, 13) 

 
 

   

Now k = 6 Pk+1 = Pk + 2∆y - 2∆x  

 P7 = 2 + (- 4)  

  = - 2  

   Since P7 < 0,   Next point is (28, 16) 

Now k = 7 Pk+1 = Pk + 2∆y  

 P8 = - 2 + 16  

  = 14  

   Since P8 > 0,   Next point is (29, 17) 

Now k = 8 Pk+1 = Pk + 2∆y - 2∆x  

 P9 = 14 – 4  

  = 10  

   Since P9 > 0,   Next point is (30, 18) 

 K  Pk (xk+1, yk+1) 

 0  6 (21, 11) 

 1  2 (22, 12) 

Now k = 3 Pk+1 = Pk + 2∆y - 2∆x 

 P4 = 14 – 4 

  = 10 

   Since P4 > 0,   Next point is (25, 14) 

Now k = 4 Pk+1 = Pk + 2∆y - 2∆x 

 P5 = 10 – 4 

  = 6 

   Since P5 > 0,   Next point is (26, 15) 

Now k = 5 Pk+1 = Pk + 2∆y - 2∆x 

 P6 = 6 – 4 

  = 2 

   Since P6 > 0,   Next point is (27, 16) 



 2  -2 (23, 12) 

 3  14 (24, 13) 

 4  10 (25, 14) 

 5  6 (26, 15) 

 6  2 (27, 16) 

 7  -2 (28, 16) 

 8  14 (29, 17) 

 9  10 (30, 18) 

  Plot the graph with these points.  

 
Circle Drawing Algorithms 

 

 

1) Mid Point Circle Algorithm  
 

 The equation of a circle can be given as follows, where (xc,yc) represents 
the centre coordinates. 

 

(x – xc)2 + (y – yc)2 – r2 = 0 
 

In the following way the calculation is made for the position of points 
along the circlular path by moving in the x direction from (xc - r) to (xc + r) 
and determining the corresponding y values as :   

y = yc      (xc - x)2 - r2 
 

As it requires heavy computation this method is not the best method to 
calculate the circle point coordinates. Moreover spacing between the    

points is not uniform. Another method that can be used by calculating the 
polar coordinates r and θ where 

 

x = xc + r cos θ 
 

y = yc + r sin θ 
 

It requires heavy computation but this method results in equal spacing 

between the points. The efficient method is incremental calculation of 

decision parameter. 
 
 

Mid Point Algorithm : 
 

We assume that we are working in II octant of the circle .The concept 

behind Mid point circle is that, a midpoint M lies between two points and 

we have to decide if M lies between two points and we have to decide if M 

lies inside or outside the circle. This would tell the next point to be plotted 

along the circumference of the circle. We move in unit steps in the x-

direction and calculate the closed pixel position along the circle path at 

each step. 



 

For a given radius r & screen center position (xc, yc). We first set our 

Algorithm to calculate the position of points along the coordinate position 

(x0, y0). These calculated positions are then placed at this proper screen 

position by adding xc to x and yc to y. For a circle from x = 0 to x = y in 

first quadrant, the slope varies from 0 to 1. 
 

We move in the positive x direction and determine the decision parameter 

to find out the possible two y values along the circle path. And the Points 

calculation in other 7 octants is done using the symmetry pattern. 
 

  y (x = y) 
 

(y, x) 
 

(y, x) 
 

 
 

(-x, y)  (x, y) 
 

   
45º 

 
 

    

x (x = 0) 
 

    
 

(-x, -y)  (x, -y) 
 

 (-y, -x) 
 

(y, -y)  

 
 

 

 

The following function is used for the implementation of this method : 
 

fcircle( x, y) = x2 + y2 - r2 _ _ _ (1) 
   

Any point (x, y) on the boundary of the circle with radius r satisfies the 
equation of fcircle( x, y) = 0. The relative position of any point (x, y) can be 
determined by checking the sign of circle function. 

 
 
 

 

fcircle( x, y) 

 
 

 

< 0 if (x, y) denotes it inside circle boundary. 
 
= 0 if (x, y) denotes it on circle boundary._ _> (2)  

0 if (x, y) denotes it outside circle boundary. 
 
 



 
 

 

yk 
 

 

yk -1 

 

xk xk+1 xk+2 
 

 

Taking an assumption that we have just plotted a pixel at (xk, yk). We next 
need to determine whether the pixel (xk+1, yk) or (xk+1, yk-1) is closer. Our 
decision parameter is the circle function evaluated at the mid point 
between these two pixels. 

 

Pk = fcircle (xk + 1, yk - ½) 
 

Or Pk = (xk + 1 )2 +(yk - ½)2 – r2 _ _ _ (3) 
 

This denotes that If Pk < 0, Mid point is inside the circle boundary and the 

pixel on the scan line yk is closer to the circle boundary. Otherwise, Mid 

point is on or outside the circle boundary and the point on the scan line 

yk - 1 is closer. Successive decision parameters are obtained by 

incremental calculations. Again the next deciding parameter is calculate 

the position at next sampling position by taking the next position. 
 

xk+1 + 1 = xk + 2 
 

 Pk+1 = fcircle(xk+1 + 1, yk+1 - ½) 

Or Pk+1 = [(xk + 1) + 1]2 + (yk+1 - ½)2 – r2 

Or Pk+1 = Pk + 2(xk + 1) + (yk+1
2 – yk

2) – (yk + 1 – yk) + 1   _ _ _ (4) 

Successive increment for Pk is 2xk+1 +1(If Pk < 0) otherwise (2xk+1 +1 - 2yk+1) 
where 

 

2xk+1 = 2xk + 2 & 2yk+1 = 2yk – 2 
 

Initial decision parameter P0 is obtained as (0, r) = (x0, y0)    

 P0 = fcircle(x, y) = fcircle (1, r - ½) = 1 + (r - ½)2 – r2 
 

Or P0 = 
5 - r  

4 
 

    
 

 

If r is a integer then P0 = 1 – r 
 

Algorithm for this can be defined in the following steps for calculating 

the Mid Point: 
 

(1) Input radius r and circle center ( xc, yc) and obtain the first point on 

circumference of a circle centered on origin (x0, y0) = (0, r) 
 

(2) Calculate the initial value of the decision parameter as : P0 = 
5/

4  - r 
 



(3) At each xk position, starting at k = 0 if Pk < 0 the next point along 

the circle is (xk+1, yk) and Pk+1 = Pk + 2xk+1 + 1, otherwise the next 

point along the circle is (xk + 1, yk - 1) and Pk+1 = Pk + 2xk+1 + 1 – 

2yk+1 where 2xk+1 = 2xk + 2 & 2yk+1 = 2yk – 2. 
  

(1) Determine symmetry points in other seven octants. 
 

(2) Move each calculated pixel position (x, y) onto the circular path 

centered on (xc, yc) & plot coordinate values x = x + xc & y = y + yc. 
 

(3) Repeat step (3) through (5) until x ≥ y. 
 
 
 

 

Example:  Demonstrate the Mid Point Circle Algorithm with circle 
radius, r = 10. 

 

 P0 = 1 – r =1 - 10 = - 9 
 

Now the initial point (x0, y0) = (0, 10) and initial calculating terms for 
calculating decision parameter are 

 

2x0 = 0 , 2y0 = 20 

Since Pk < 0,   Next point is 
(1, 10) 

P1 = - 9 +3 = - 6 Now P1 < 0, 
Next point is 
(2, 10) 

P2 = - 6 + 5 = - 1 Now P2 < 0, 
Next point is 
(3, 10) 

P3 = -1+ 7 = 6 Now P3 > 0, 
Next point is 
(4, 9) 

P4 = 6 + 9 - 18 = - 3 Now P4 < 0, 
Next point is 
(5, 9) 

P5 = - 3 + 11 = 8 Now P5 > 0, 
Next point is 
(6, 8) 

P6 = 8 +13 - 16 = 5 Now P6 > 0, 
Next point is 
(7, 7) 

          

 K  (xk+1, yk+1)   2xk+1  2yk+1  

 0  (1, 10)   2   20  

 1  (2, 10)   4   20  

2 (3, 10) 6 20 

3 (4, 9) 8 18 

4 (5, 9) 10 18 

5 (6, 8) 12 16 

6 (7, 7) 14 14 
 

Plot the graph with these points. 



2) Bresenham’s Circle Drawing Algorithm:  

A continuous arc cannot be displayed in the raster. Hence nearest pixel position is 
chosen for completing the arc. 

It is observed from the following illustration that the pixel is put at (X, Y) location 
and to decide where to put the next pixel at N (X+1, Y) or at S (X+1, Y-1). 

This can be decided by the decision parameter d. 

• If d <= 0, then N(X+1, Y) is to be chosen as next pixel. 
• If d > 0, then S(X+1, Y-1) is to be chosen as the next pixel. 

 

 
 

 

 
Let's say our circle is at some random pixel P whose coordinates are (xk, yk). 
Now we need to find out our next pixel. 



Note- This is octet 2 so here x can never be decremented as per properties of a 
circle but y either needs to decremented or to be kept same. y is needed to be 
decided. 
 

Here it needs to decide whether go with N or S. 
 
For this bresenham's circle drawing algorithm will help us to decide by 

calculating the difference between radius and the coordinates of the next pixels. 
 
The shortest of d1 and d2 will help us Decide our next pixel. 
 
note-       xk+1 = xk +1  
                              As  xk+1  is the next consecutive pixel of xk 
similarly 
             yk-1 = yk -1 

 
 

   
Equation of Circle with Radius r 
 

(x– h)2 + (y – k)2 = r2 
 

When coordinates of centre are at Origin i.e., (h=0, k=0) 
 
     x2 + y2 = r2    (Pythagoras theorem) 

 
Function of Circle Equation 
 

F(C) = x2 + y2 - r2 
 

Function of Circle at N 
 
             F(N) = (xk+1)2 + (yk)2 – r2            (Positive) 
 
Here the value of F(N) will be positive because N is out-side the circle 
that makes  (xk+1)2 + (yk)2  Greater than r2 
 
Function of Circle at S 

             F(S) = (xk+1)2 + (yk-1)2 – r2          (Negative) 
 

Here the value of F(S) will be Negative because S is  in-side the circle that makes 
(xk+1)2 + (yk-1)2  Less than r2 

 
Now we need a decision parameter which help us decide the next pixel 
      Say Dk 
               And ,   Dk = F(N)+F(S) 
Here either we will get the positive or negative value of Dk 



 
So if Dk < 0 
              that means the negative F(S) is bigger then the positive F(N), that implies 
Point N is closer to the circle than point S. So we will select pixel N as our next 
pixel. 
 
and if   Dk > 0 
              that means positive F(N) is bigger and S is more closer as F(S) is  smaller. 
So we will Select S as our next pixel. 
 
Now lets find  Dk 

 Dk  =  (xk+1)2 + (yk)2 – r2   +  (xk+1)2 + (yk-1)2 – r2 
   (replacing xk+1 with xk + 1 and yk-1 with yk -1) 
 
       = (xk + 1)2 + (yk)2 – r2   +  (xk + 1)2 + (yk -1)2 – r2 
 
       = 2(xk + 1)2 + (yk)2  + (yk -1)2 – 2r2            ----- (i) 
 
Now lets find Dk+1  

(Replacing every k with k+1) 

 Dk+1 = 2(xk+1 + 1)2 +(yk+1)2  + (yk+1 -1)2 – 2r2 
 
  = 2(xk+1 + 1)2 + (yk+1)2  + (yk+1 -1)2 – 2r2 
(Replacing  xk+1  with  xk + 1   but now we can’t replace  yk+1 because we don’t 
know the exact value of yk ) 
 
  = 2(xk+1+ 1)2 + (yk+1)2  + (yk+1 -1)2 – 2r2 
 
  = 2(xk+2)2 + (yk+1)2  + (yk+1 -1)2 – 2r2          ----- (ii) 
 
 
    
 
Now to find out the decision parameter of next pixel i.e. Dk+1 
We need to find  
 Dk+1 - Dk = (ii) - (i) 

        = 2(xk+2)2 + (yk+1)2  + (yk+1 -1)2 – 2r2  

                       - [ 2(xk + 1)2 + (yk)2  + (yk -1)2 – 2r2] 
 
        =    2(xk)2

 + 8xk + 8 + (yk+1)2 + (yk+1)2 - 2yk+1 + 1 - 2r2  

     - 2xk  - 4xk
 – 2  - (yk)2  - (yk)2 + 2yk

  - 1  + 2r2  
 

        =  4xk + 2(yk+1)2  - 2yk+1  - 2(yk)2 - 2yk + 6 
 

Dk+1 = Dk + 4xk + 2(yk+1)2  - 2yk+1  - 2(yk)2 - 2yk + 6       ----- (iii) 



 
If (Dk < 0) then we will choose N point as discussed. 
i.e. (xk+1, yk) 
that means our next x coordinate is xk+1 and next y coordinate is yk i.e. yk+1 = 

yk, putting yk in (iii) in replace of yk+1 
now, 
 Dk+1 = Dk + 4xk + 2(yk)2  - 2yk  - 2(yk)2 - 2yk + 6   
     
=  Dk + 4xk + 6 
 
If (Dk > 0) then we will choose S point. 
i.e. (xk+1, yk-1) 

that means our next x coordinate is xk+1 and next y coordinate is yk i.e. yk+1 = yk-1 

putting yk-1 in (iii) in replace of yk+1 
now, 
 Dk+1 = Dk + 4xk + 2(yk-1)2  - 2yk-1  - 2(yk)2 - 2yk + 6 
Now we know  

yk-1 = yk – 1 
therefore,  

Dk+1 = Dk + 4xk + 2(yk -1)2  - 2(yk -1)  - 2(yk)2 - 2yk + 6 
 
 = Dk + 4xk + 2(yk) 

2 + 2 - 4yk
  - 2yk +2  - 2(yk)2 - 2yk + 6 

 
     = Dk + 4xk - 4yk + 10 
 

        = Dk + 4(xk - yk) + 10 
 
Now to find initial decision parameter means starting point that is (0,r) 

,value of y is r 
Putting (0,r) in (i) 
 
Dk = 2(xk + 1)2 + (yk)2  + (yk -1)2 – 2r2 
 
D0 = 2(0 + 1)2 + r2  + (r -1)2 – 2r2 
 
     = 2 + r2 +r2 + 1 – 2r – 2r2 
 
       = 3-2r 

 
A circle is made up of 8 Equal Octets so we need to find only coordinates of any 
one octet rest we can conclude using that coordinates. 
 
We took octet-2. Where X and Y will represent the pixel 
Let us make a function Circle() with parameters coordinates of Centre (Xc,Yc) and 
pixel point (X,Y) that will plot the pixel on screen. 



 
We will find pixels assuming that Centre is at Origin (0,0) then we will add the 
coordinates of centre to corresponding X and Y while drawing circle on screen. 
 
Circle (Xc,Yc,X,Y) { 
 
Plot (Y+Xc , X+Yc)         ……Octet-1 
Plot (X+Xc , Y+Yc)         ……Octet-2   
Plot (-X+Xc , Y+Yc)        ……Octet-3 
Plot (-Y+Xc , X+Yc)        …..Octet-4 
Plot (-Y+Xc , -X+Yc)       ……Octet-5 
Plot (-X+Xc , -Y+Yc)       ……Octet-6 
Plot (X+Xc , -Y+Yc)         ……Octet-7 
Plot (Y+Xc , -X+Yc)         ……Octet-8 
} 
 
Now, 
Each plot function is for different octet and will construct the circle while in loop. 
 
 
Step 1: Get the Radius of Circle R 
  And Coordinates of centre of circle (Xc,Yc). 
 
Step 2: X and Y are going to be plotted points 
      Set X=0 and Y=R 
 
Step 3: D = 3-2R              (Initial decision Parameter) 
 
Step 4: Plot Circle (Xc,Yc,X,Y) 



 
Step 5: if D < 0 Then 
   D = D + 4X + 6 
   X=X+1 
   Y=Y 
  Else 
   D=D+4(X-Y)+10 
   X=X+1 
   Y=Y-1 
 
Step 6: Check, if X=Y 
         Goto Step 7 
        Else  
         Goto Step 4 
 
Step 7: Stop/Exit. 
 

Example:  Demonstrate the Circle Algorithm with circle radius, r = 8 and 
mid point (xc,yc)=(30,40). 

 

 P0 = 3 – 2r =3 - 16 = - 13 
 

Now the initial point (x0, y0) = (0,8) and initial calculating terms for 
calculating decision parameter are 

 

 

P1= -13 +4*1+6 = −3 Now P1 < 0, 

P2 = - 3 + 4*2+6 = 11 Now P2 < 0, 

P3 = 11+4*(3−7)+10 =5 Now P3 > 0, 

P4 = 5 + 4*(4−6) + 10 = 7 Now P4 > 0. 

X+30 Y+40 P (X+Xc, Y+Yc) 

0 8 −13 (30,48) 

1 8 −3 (31,48) 

2 8 11 (32,48) 

3 7 5 (33,47) 

4 6 7 (34,46) 

5 5 (X=Y) (35,45) 
 

Plot the graph with these points. 

 
 
 
 
 
 
 



MID POINT ELLIPSE ALGORITHM 
 
The midpoint ellipse drawing algorithm uses the four way symmetry of the ellipse to generate it. The 
figure(a) shows the four-way symmetry of ellipse. This approach is similar to that used in displaying a 

raster circle. Here, the quadrant of the ellipse is divided into two regions. The figure(b) shows the 

division of the first quadrant according to the slope of an ellipse with rx < ry. As ellipse is drawn 
from 90 to 0 degrees ,the x moves in the Positive direction and y moves in the negative direction, and 

ellipse passes through two regions. It is important to note that while processing first quadrant we have 

to take steps in the x direction where the slope of the curve has a magnitude less than 1(for region 1) 
and to take steps in the y direction where the slope has a magnitude greater than 1 (for region 2). 

 

 

Like circle function, the ellipse function, 

 

serves as the decision parameter in the midpoint algorithm. At each sampling position, the 

next pixel along the ellipse Path is selected according to the sign of the ellipse function 

evaluated at midpoint between the two candidate pixels ( xi + 1 , yi or xi + 1, yi -1 for region 

1 and xi, yi - 1 or xi + l, yi - l for region2 ).  

Starting at (0, ry) we have to take unit steps in the x direction until we reach the boundary 

between region 1 and region 2. Then we have to switch to unit steps in the y direction over 

the remainder of the curve in the first quadrant. To check for boundary point between region 

1 and region 2 we have to test the value of the slope of the curve at each step. The slope of 

the ellipse at each step is given as 



 

we have to switch to unit steps in the y direction over the remainder of the curve in the first 

quadrant. The figure(c) shows the midpoint between the two candidate pixels at sampling 

position xi + 1 in the first region. The next position along the ellipse path can be evaluated by 

decision parameter at this midpoint. 

 

If d1i < 0, the midpoint is inside the ellipse and the pixel on scan line yi is closer to the 

ellipse boundary. 

If d1i ≥ 0, the midpoint is outside or on the ellipse boundary and the pixel on the scan line    

yi - 1 is closer to the ellipse boundary.  

The incremental calculation of decision parameter of region 1 can be given as  



 

In region 1, the initial value of the decision parameter can be obtained by evaluating the 

ellipse function at the start position (x0, y0) = (0, ry). 

 

For region 2, we sample at unit steps in the negative y direction, and the midpoint is now 

taken between horizontal pixels, at each step, as shown in the figure(c). For this region, the 

decision Parameter is evaluated as 

 

If d2i > 0, the midpoint is outside the ellipse boundary, and we select the pixel at xi.  

If d2i ≤ 0, the midpoint is inside or on the ellipse boundary, and we select pixel Position       

xi +1 . The incremental decision parameters for region 2 can be given as 



 

where x i +1 set either to xi or to xi + 1 depending on the sign of d2i 

In region 2, the initial value of the decision parameter can be obtained by evaluating the 

ellipse function at the last position in the region 1. 

 

ALGORITHM 

Calculating the Initial Decision Parameter  

In region 1 the initial value of a decision parameter is obtained by giving starting position = 

(0,ry). 

i.e. p10=ry
2+1/4rx

2-rx
2ry 

When we enter into a region 2 the initial position is taken as the last position selected in 

region 1 and the initial decision parameter in region 2 is then: 

p20=ry
2(x0+1/2)2+rx

2(y0-1)2-rx
2ry

2 

 

1. Take the input and ellipse centre and obtain the first point on an ellipse centered on 

the origin as a (x,y0)= (0,ry). 

2. Now calculate the initial decision parameter in region 1 as: 

p10=ry
2+1/4rx

2-rx
2ry  

3. At each xk position in region 1 perform the following task. If p1k<0 then the next 

point along the ellipse centered on (0,0) is (xk+1,yk). 

i.e. p1k+1=p1k+2ry
2xk+1+ry

2 

Otherwise the next point along the circle is (xk+1,yk -1)  

i.e. p1k+1=p1k+2ry
2xk+1 – 2rx

2yk+1+ry
2 

4. Now, again calculate the initial value in region 2 using the last point (x0,y0) calculated 

in a region 1 as : p20=ry
2(x0+1/2)2+rx

2(y0-1)2-rx
2ry

2 



5. At each yk position in region 2 starting at k =0 perform the following task. If p2k<0 

the next point along the ellipse centered on (0,0) is (xk , yk-1) 

i.e. p2k+1=p2k-2rx
2yk+1+rx

2 

Otherwise the next point along the circle will be (xk+1,yk -1)  

i.e. p2k+1 =p2k+2ry
2xk+1 -2rx

2yk+1+rx
2 

6. Now determine the symmetric points in another three quadrants. 

7. Plot the coordinate value as: x=x+xc , y=y+yc 

8. Repeat the steps for region 1 until 2ry
2x>=2rx

2y. 

 

If P1k >= 0  (Xk+1,Yk−1),  If P1k < 0 (Xk+1,Yk) 

If P2k >= 0  (Xk,Yk−1),  If P2k < 0 (Xk+1,Yk−1) 

Initial decision parameter for Region 2 is, P20 = −23 < 0 

K  (Xk,Yk) P2k (Xk+1,YK+1) 

7  (7,3)  −23  (8,2) 

P2k+1 = 361 > 0 

8  (8,2)  361  (8,1) 

P2k+1 = 297 > 0 

9  (8,1)  297  (8,0) 



UNIT II 

Scan Converting Lines 
 

Scan converting a line means to draw pixels on an integer coordinate system in such a way 

that these pixels are as close to the actual line as possible. To draw a line we need two points, 

the starting point (x1,y1) of the line and the ending point (x2,y2). x1, y1,x2,y2 represents the 

coordinates of the points. Mathematically a line can be represented by the following slope 

intercept form:    y = m x + c 

This equation is used to find any point on the line and is true for all the points on the line. 

Here  

x is the x coordinate of the point. 

y is the y coordinate of the point. 

m is the slope of the line. 

c is the y intercept. 

• m which is the slope of the line represents the angle, the line forms with the 

horizontal axis. If the angle of incidence is 45 degree then the slope (m) is 1. All lines 

parallel to x-axis have the m =0, whereas the lines parallel to y-axis have m as infinity 

( ∞ ). 

m  =  dy / dx   =  (y2-y1) / (x2-x1) 

 

 
 

Lines whose starting point is to the left of ending point have a positive (+ve) slope i.e. m > 0. 

And the lines with starting point to the right of ending point have –ve slope i.e. m<0 

c which is the y intercept is the point on the y-axis where the line will intersect with this 

axis. c can be calculated as : c = y1 – m x1.  The c of the following line is 2. 

 

Polynomial method (Direct method) 



This method makes the use of the equation of the line ( y = mx +c ) to draw a line segment 

whose end points are A and B. Coordinates of A are (x1,y1) and coordinates of B are (x2,y2).  

For this line:  

Slope   m = (y2-y1) / (x2-x1).  

y-interept c = y1 – m*x1 

 

For the lines with the value of m as  0 <= m <= 1  (Angle of incidence between 0 and 45), we 

step the value of x by 1 and calculate the corresponding value of y. 

 xi+1 = xi + 1 

 yi+1 = (m * xi+1) + c 

       The pixel (xi+1 , round(yi+1) ) is turned on. This is done while the value of x is <= x2.  

 

For the lines with the value of m as  1 < m < ∞  (Angle of incidence between 46 and 90), we 

step the value of y by 1 and calculate the corresponding value of x. 

yi+1 = yi + 1 

 xi+1 = (yi+1 - c) / m 

       The pixel (round(xi+1 ) , yi+1) ) is turned on. This is done while the value of y is <= y2. 

 

Disadvantages 

This method involves floating point multiplications and division, this takes 

considerably more time then addition. This makes the method slow. 

Accumulation of the round off errors may make the line drift away from the actual 

line. Thus accurate lines may not be produced. In the following picture Blue is the 

actual line, whereas the line in Red colour is the line drawn with the polynomial 

method. 

 
 

 

 

 

 

 

 

Scan Converting a circle 

 

A circle is a geometric figure which is round, and can be divided into 360 degrees. A circle is 

a symmetrical figure which follows 8-way symmetry. 



8-Way symmetry: Any circle follows 8-way symmetry. This means that for every point (x,y) 

8 points can be plotted. These (x,y), (y,x), (-y,x), (-x,y), (-x,-y), (-y,-x), (y,-x), (x,-y).  

For any point (x+a, y+b), points (x ± a, y ± b) and (y ± a, x ± b) also lie on the same circle. So 

it is sufficient to compute only 1/8 of a circle, and all the other points can be computed from 

it. 

 
Drawing a circle: To draw a circle we need two things, the coordinates of the centre and the 

radius of the circle. 
Radius: The radius of a circle is the length of the line from the centre to any point on its edge. 

Equation of the circle: For any point on the circle (x,y) and the centre at point (xc,yc), the 

equation of the circle is  

(x-xc)2+ (y-yc) 2- r2 = 0 

Here r is the radius of the circle. If the circle has origin (0,0) as its centre then the above 

equation can be reduced to  

x2 + y2 = r2 

Using polar coordinate system the point on the circle can be represented as: 

x = r * cos θ 

y = r * sin θ 

θ is the angle which the point makes With x-axis. 

 

 
 

Direct Method (Polynomial method) of Scan converting a circle : 

From equation of the circle   x2 + y2 = r2    we can derive that the value of   y. 

If we increment the value of   x   from 0 to r, and find the corresponding value of   y   for 

each   x, we can draw a circle very easily, by plotting the pixels (x,y), (-x,y), (-x,-y), (x,-y). 



 
 

Advantages : 

• This method is easy to understand. 

• Fairly easy to implement. 

Disadvantages: 

• Inefficient method as time required for calculation of square and square root is very 

large. 

• Does not take full advantage of 8-way symmetry. 

• Value of  y  needs to be converted to integer every time. 

• The resulting circle has large gaps where the slope approaches the vertical. i.e. 

Increase in x direction is uniform but the gap in y is not uniform, it increases as the 

circle approaches the x-axis. 

 

Polar Equations method : 

 

                                                           The polar equations of the circle are    x = r * cos θ             y = r * sin θ 

 

In this method we increment the value of   θ   from  0 to 2π , and we find the corresponding 

values of x and y. For every value of (x,y) thus calculated we can plot 7 other points taking 

advantage of 8-way symmetry. 

Disadvantages: 

•           The main issue with this method is that calculation of cos and sin at each step take 

a lot of time.  

•           This method is also inefficient, as it takes a lot of time. 

 

Scan Converting Ellipse 

 



 

 

 



 

 
 

 

 

 

 

 

 

 

 

AREA FILLING ALGORITHMS 

1) FLOOD FILL ALGORITHM 

2) BOUNDARY FILL ALGORITHM 

1) Flood fill algorithm 

Flood fill algorithm helps in visiting each and every point in a given area. It determines the 

area connected to a given cell in a multi-dimensional array.  



Implementation of flood fill algorithm: Bucket Fill in Paint 

 

Flood fill algorithm fills new color until the old color match. 

Flood fill algorithm:- 

// A recursive function to replace previous 

// color 'oldcolor' at  '(x, y)' and all  

// surrounding pixels of (x, y) with new  

// color 'newcolor' and 

floodfill(x, y, newcolor, oldcolor) 

1) If x or y is outside the screen, then 

   return. 

2) If color of getpixel(x, y) is same as 

   oldcolor, then  

3) Recur for top, bottom, right and left. 

    floodFill(x+1, y, newcolor, oldcolor); 

    floodFill(x-1, y, newcolor, oldcolor); 

    floodFill(x, y+1, newcolor, oldcolor); 

    floodFill(x, y-1, newcolor, oldcolor);  

2) Boundary Fill Algorithm 

Introduction : Boundary Fill Algorithm starts at a pixel inside the polygon to be filled and 

paints the interior proceeding outwards towards the boundary. This algorithm works only if 

the color with which the region has to be filled and the color of the boundary of the region are 

different. If the boundary is of one single color, this approach proceeds outwards pixel by 

pixel until it hits the boundary of the region. 

Boundary Fill Algorithm is recursive in nature. It takes an interior point(x, y), a fill color, 

and a boundary color as the input. The algorithm starts by checking the color of (x, y). If it’s 

color is not equal to the fill color and the boundary color, then it is painted with the fill color 

and the function is called for all the neighbours of (x, y). If a point is found to be of fill color 

or of boundary color, the function does not call its neighbours and returns. This process 

continues until all points up to the boundary color for the region have been tested. 

The boundary fill algorithm can be implemented by 4-connected pixels or 8-connected pixels. 

4-connected pixels : After painting a pixel, the function is called for four neighboring points. 

These are the pixel positions that are right, left, above and below the current pixel. Areas 

filled by this method are called 4-connected. Below given is the algorithm : 

void boundaryFill4(int x, int y, int fill_color,int boundary_color) 

{ 

    if(getpixel(x, y) != boundary_color && 

       getpixel(x, y) != fill_color) 

    { 

        putpixel(x, y, fill_color); 

        boundaryFill4(x + 1, y, fill_color, boundary_color); 

        boundaryFill4(x, y + 1, fill_color, boundary_color); 

        boundaryFill4(x - 1, y, fill_color, boundary_color); 

        boundaryFill4(x, y - 1, fill_color, boundary_color); 

    } 

} 



 

8-connected pixels : More complex figures are filled using this approach. The pixels to be 

tested are the 8 neighboring pixels, the pixel on the right, left, above, below and the 4 

diagonal pixels. Areas filled by this method are called 8-connected. Below given is the 

algorithm : 

void boundaryFill8(int x, int y, int fill_color,int boundary_color) 

{ 

    if(getpixel(x, y) != boundary_color && 

       getpixel(x, y) != fill_color) 

    { 

        putpixel(x, y, fill_color); 

        boundaryFill8(x + 1, y, fill_color, boundary_color); 

        boundaryFill8(x, y + 1, fill_color, boundary_color); 

        boundaryFill8(x - 1, y, fill_color, boundary_color); 

        boundaryFill8(x, y - 1, fill_color, boundary_color); 

        boundaryFill8(x - 1, y - 1, fill_color, boundary_color); 

        boundaryFill8(x - 1, y + 1, fill_color, boundary_color); 

        boundaryFill8(x + 1, y - 1, fill_color, boundary_color); 

        boundaryFill8(x + 1, y + 1, fill_color, boundary_color); 

    } 

} 

 

4-connected pixels Vs 8-connected pixels : 

Let us take a figure with the boundary color as GREEN and the fill color as RED. The 4-

connected method fails to fill this figure completely. This figure will be efficiently filled 

using the 8-connected technique. 



  

Flood fill Vs Boundary fill :  

Though both Flood fill and Boundary fill algorithms color a given figure with a chosen color, 

they differ in one aspect. In Flood fill, all the connected pixels of a selected color get replaced 

by a fill color. On the other hand, in Boundary fill, the program stops when a given color 

boundary is found. 

 

 

 

CHARACTER GENERATION 

There are three basic methods to generate characters on a computer screen:  

(1) hardware-based (2) vector-based and (3) bit map-based methods.  

In the hardware-based method, the  logic for generating character is built into the graphics 

terminal. Though the generation time is less the typefaces* are limited due to hardware 

restrictions.  

In the vector-based method the characters are developed using a set of polylines and splines 

that approximates the character outline. This form of character representation is completely 

device-independent; memory requirement is less as boldface, italics or different size can be 

produced by manipulating the curves outlining the character shapes – it doesn’t require 

separate memory blocks for each variation. 

https://www.geeksforgeeks.org/flood-fill-algorithm-implement-fill-paint/
https://www.geeksforgeeks.org/flood-fill-algorithm-implement-fill-paint/


 

In the bitmap based method small rectangular bitmap called character mask (containing 

binary values 1 and 0) is used to store pixel representation of each character in a framebuffer 

area known as font cache. Relative pixel locations corresponding to a character bitmap are 

marked depending on the size, face and style (font) of character. Size of each character masks 

range from 5 × 7 to 10 × 12. A single font in 10 different font sizes and 4 faces (normal, bold, 

italic, bold italic) would require 40 font caches. Characters are actually generated on display 

by copying the appropriate bitmaps from the frame buffer to the desired screen positions. A 

mask is referenced by the coordinate of the origin (lower left corner) of the mask w.r.t frame 

buffer addressing system. 

 

Bitmapped Font 

In bit map based method a bold face character is obtained by writing the corresponding 

‘normal’ character mask in consecutive frame buffer x-locations. Italics character is produced 

by necessary skewing of ‘normal’ character mask while being written in the frame buffer. In 

fact a typeface designer can create from scratch new fonts using a program like Windows 

Paint. The overall design style (font and face) for a set of characters is called a typeface. 

 

 

 

 

 

 



 

 

 

 

2D Transformations 
 

Introduction 

Transformations are fundamental part of computer graphics. In order to manipulate object 

in two dimensional space, we must apply various transformation functions to object. This 

allows us to change the position, size, and orientation of the objects. Transformations are 

used to position objects, to shape objects, to change viewing positions, and even to 

change how something is viewed. 

There are two complementary points of view for describing object movement. The first 

is that the object itself is moved relative to a stationary coordinate system or background. 

The mathematical statement of this viewpoint is described by geometric transformations 

applied to each point of the object. The second point of view holds that the object is held 

stationary while the coordinate system is moved relative to the object. This effect is 

attained through the application of coordinate transformations. An example involves the 

motion of an automobile against a scenic background. We can also keep the automobile 

fixed while moving the backdrop fixed (a geometric transformation). We can also keep 

the automobile fixed while moving the backdrop scenery (a coordinate transformation). 

In some situations, both methods are employed. 

Coordinate transformations play an important role in the instancing of an object – the 

placement of objects, each of which is defined in its own coordinate system, into an 

overall picture or design defined with respect to a master coordinate system. 

 

Geometric Transformations 

An object in the plane is represented as a set of points (vertices). Let us impose a 

coordinate system on a plane. An object Obj in the plane can be considered as a set of 

points. Every object point P has coordinates (x, y), and so the object is the sum total of 

all its coordinate points. If the object is moved to a new position, it can be regarded as a 

new object Obj' , all of whose coordinate point P’ can be obtained from the original 

points P by the application of a geometric transformation. 



 
Figure 4.1 

Points in 2-dimensional space will be represented as column vectors: 

We are interested in three types of transformation: 

• Translation 

• Scaling 

• Rotation 

• Mirror Reflection 

 

4.2.1 Translation 

In translation, an object is displaced a given and direction from its original position. If 

the displacement is given by the vector v t I t J x y = + , the new object point P'(x' ,y') can be 

found by applying the transformation Tv to P(x, y) (see Fig. 4.1). 

P' T (P) v = where x x'= x + t and y y'= y + t . 

4.2.2 Rotation about the origin 

In rotation, the object is rotated θ° about the origin. The convention is that the direction 

of rotation is counterclockwise if θ is a positive angle and clockwise if θ is a negative 

angle (see Fig. 4.2). The transformation of rotation θ R is 

P' R (P) θ = 

where x'= xcos(θ ) − ysin(θ ) and y'= xsin(θ) + y cos(θ) 



 
Figure 4.2 

4.2.3 Scaling with Respect to the origin 

Scaling is the process of expanding or compressing the dimension of an object. Positive 

scaling constants x S and y S , are used to describe changes in length with respect to the x 

direction and y direction, respectively. A scaling constant greater than one indicates an 

expansion of length, and less than one, compression of length. The scaling 

transformation sx sy S is given by P' S (P) sx s y = where x' s .x x = and y' s .y x = . Notice that 

after a scaling transformation is performed, the new object is located at a different 

position relative to the origin. In fact, in a scaling transformation the only point that 

remains fixed is the origin (Figure 4.3). 

 

 
Figure 4.3 

If both scaling constants have the same value s, the scaling transformation is said to be 

homogeneous. Furthermore, if s > 1, it is a magnification and for s < 1, a reduction 

4.2.4 Mirror Reflection about an Axis 

If either the x and y axis is treated as a mirror, the object has a mirror image or reflection. 

Since the reflection P' of an object point P is located the same distance from the mirror as 

P (Fig. 4.4), the mirror reflection transformation x M about the x-axis is given by 

P' M (P) x = 



where x'= x and y'= −y . 

Similarly, the mirror reflection about the y-axis is 

P' M (P) y = 

where x'= −x and y'= y . 

 
Figure 4.4 

4.2.5 Inverse Geometric Transformation 

Each geometric transformation has an inverse, which is described by the opposite 

operation performed by the transformation. 

 

 
4.3 Coordinate Transformations 

Suppose that we have two coordinate systems in the plane. The first system is located at 

origin O and has coordinate axes xy figure 4.6. The second coordinate system is located 

at origin O' and has coordinate axes x' y' Now each point in the plane has two coordinate 

descriptions: (x, y) or (x', y') , depending on which coordinate system is used. If we 

think of the second system x'y' as arising from a transformation applied to the first 

system xy, we say that a coordinate transformation has been applied. We can describe 

this transformation by determining how the (x' ,y') coordinates of a point P are related to 

the (x, y) coordinates of the same point. 



 
Figure 4.5 

4.3.1 Translation 

If the xy coordinate system is displaced to a new position, where the direction and 

distance of the displacement is given by the vector v I J x y = t + t , the coordinates of a point 

in both systems are related by the translation transformation Tv : 

(x' ,y') = Tv (x,y) 

where x x'= x − t and y y'= y − t 

4.3.2 Rotation about the Origin 

The xy system is rotated by θ ° about the origin figure 4.6. Then the coordinates of a 

point in both systems are related by the rotation transformation Rθ : 

(x' ,y') = Rθ(x,y) 

where x'= xcos(θ ) + y'sin(θ ) and y'= −xsin(θ) + y cos(θ) . 

 
Figure 4.6 

4.3.3 Scaling with Respect to the Origin 

Suppose that a new coordinate system is formed by leaving the origin and coordinate 

axes unchanged, but introducing different units of measurement along the x and y axes. 

If the new units are obtained from the old units by a scaling of y s units along the y-axis, 

the coordinates in the new system are related to coordinates in the old system through the 

scaling transformation Ss x ,sy : 



(x' ,y' ) S , (x,y) = s x sy 

where x ' = 1/ s x . x and y' 1/ sy .y = . Figure 4.7 shows coordinate scaling transformation 

using scaling factors sx = 2 and sy =1/2 . 

 

 

 
Figure 4.7 

4.3.4 Mirror Reflection about an Axis 

If the new coordinate system is obtained by reflecting the old system about either x or y 

axis, the relationship between coordinates is given by the coordinate transformations 

M x and M y : For reflection about the x axis (figure 4.8 (a)) 

(x' ,y') = Mx (x,y) 

where x'= x and y'= −y . For reflection about the y axis [figure 4.8(b)] 

(x' ,y') = My (x,y) 

where x'= −x and y'= y . 

 
Figure 4.8 

Notice that the reflected coordinate system is left-handed; thus reflection changes the 

orientation of the coordinate system. 

 



 

4.3.5 Inverse Coordinate Transformation 

Each coordinate transformation has an inverse which can be found by applying the 

opposite transformation: 

  
4.4 Composite Transformations 

More complex geometric and coordinate transformations can be built from the basic 

transformations described above by using the process of composition of functions. For 

example, such operations as rotation about a point other than the origin or reflection 

about lines other than the axes can be constructed from the basic transformations. 

Matrix Description of the Basic Transformations 

The transformations of rotation, scaling, and reflection can be represented as matrix 

functions: 

 

 
The translation transformation cannot be expressed as a 2 x 2 matrix function. However, 

a certain artifice allows us to introduce a 3 x 3 matrix function, which performs the 

translation transformation. 

We represent the coordinate pair (x, y) of a point P by the triple (x, y, 1). This is simply 

the homogeneous representation of P. Then translation in the direction v I J x y = t + t can 

be expressed by the matrix function. 



 
Then 

 

From this we extract the coordinate pair (x + t x, y + t y ). 

4.5 Shear Transformation 

The shear transformation distorts an object by scaling one coordinate using the other. If 

distorts the shape of an object in such a way as if the object were composed of internal 

layers that has been caused to slide over each other is called shear. Two common 

shearing transformations are those that shift coordinate x values and those that shift y 

values. 

2D Shear along X-direction 

Shear in X direction is represented by the following set of equations. 

 
where h is the negative or positive fraction of Y coordinate of P to be added to the X 

coordinate.  can be any real number. 

The matrix of form of shear in x-direction is given by 

 
(0.1) 

2D Shear along Y Direction 

Similarly, shear along y-direction is given by 

 
(0.2) 

Combining the shear in X and Y directions, 

 
where g is a non-zero fraction of to be added to the Y coordinate 



General matrix form of shear 
The general matrix form of shear is 

 
(0.3) 

Shear will reduce to a pure shear in the y-direction, when h=0. 

The inverse of Shear is given by 

 
(0.4) 

For Example, 

If h=0,5 g=0.8, then shear along X direction of the point P : (8,9) is obtained by 

substituting these values in (0.3). 

 

 
Shear in Y direction is 

 
 

 
2 Consider a square of side = 2. Show the effect of shear when (1) 



 
 

4.6 Summary 

􀁺 Transformation is a process carried out by means of transformation to 

these object or changing the orientation of the object or may be 

combination of these. 

􀁺 In translation, an object is displaced a given and direction from its 

original position 

􀁺 If the new coordinate system is obtained by reflecting the old system 

about either x or y axis, the relationship between coordinates is given by 

the coordinate transformations 

􀁺 Scaling is the process of expanding or compressing the dimension of an 

object 

􀁺 Multiplying the basic matrix transformations can do complex 

transformations 

􀁺 Shear transformation distorts an object by scaling one coordinate using 

the other in such a way as if the object were composed of internal layers 

that has been caused to slide over each other. 
 
 
 

WINDOW VIEWPORT TRANSFORMATIONS 
 

5.1 Introduction 

In very basic two dimensional graphics usually use device coordinates. If any graphics 

primitive lies partially or completely outside the window then the portion outside will not 

be drawn. It is clipped out of the image. In many situations we have to draw objects 

whose dimensions are given in units completely incompatible with the screen coordinates 

system. Programming in device coordinates is not very convenient since the programmer 

has to do any required scaling from the coordinates natural to the application to device 

coordinates. This has led to two dimensional packages being developed which allow the 

application programmer to work directly in the coordiate system which is natural to the 

application. These user coordinates are usually called World Coordinates (WC). The 

packages then coverts the coordinates to Device Coordinates (DC) automatically. The 

transformation form the WC to DC is often carried out in tow steps. First using the 

Normalisation Transformation and then the Workstation Transformation. The 

Viewing Transformation is the process of going form a window in World coordinates to 

viewport in Physical Device Coordinates (PDC). 

 



5.2 Window-to-Viewport Mapping 

A window is specified by four world coordinates : wxmin, wxmax, wymin,and wymax (see 

Fig. 5.1) Similarly, a viewport is described by four normalized device coordinates: 

vxmin,vxmax,vymin, and vy max. The objective of window – to – viewport mapping is to 

convert the world coordinates (wx, wy) of an arbitrary point to its corresponding 

normalized device coordinates (vx,vy). In order to maintain the same relative placement 

of the point in the viewport as in the window, we require: 

 
Since the eight coordinate values that define the window and the viewport are just 

constants, we can express these two formulas for computing (vx, vy) from (wx, wy) in 

terms of a translate-scale-translate transformation N 



 Fig. 5.1: Window-to-viewport mapping 

Note that geometric distortions occur (e.g. squares in the window become rectangles in 

the viewport) whenever the two scaling constants differ. 

 

5.3 Two – Dimensional Viewing and Clipping 

Much like what we see in real life through a small window on the wall or the viewfinder 

of a camera, a Computer-generated image often depicts a partial view of a large scene. 

Objects are placed into the scene by modeling transformations to a master coordinate 

system, commonly referred to as the world coordinate system (WCS). A rectangular 

window with its edge parallel to the axes of the WCS is used to select the portion of the 

scene for which an image is to be generated (see Fig. 5.2). Sometimes an additional 

coordinate system called the viewing coordinate system is introduced to simulate the 

effect of moving and / or tilting the camera. 

On the other hand, an image representing a view often becomes part of a larger image, 

like a photo on an album page, which models a computer monitor’s display area. Since 

album pages vary and monitor sizes differ from one system to another, we want to 

introduce a device-independent tool to describe the display area. This tool is called the 

normalized device coordinate system (NDCS) in which a unit (1 x 1) square whose lower 

left corner is at the origin of the coordinate system defines the display area of a virtual 

display device. A rectangular viewport with its edges parallel to the axes of the NDCS is 

used to specify a sub-region of the display area that embodies the image. 



 
Fig. 5.2: Viewing transformation 

The process that converts object coordinates in WCS to normalized device coordinate is 

called window–to– viewport mapping or normalization transformation. The process that 

maps normalized device coordinates to Physical Device Co-ordinates (PDC) / image 

coordinates is called work, station transformation, which is essentially a second windowto- 

viewport mapping., with a workstation window in the normalized device coordinate 

system and a workstation viewport in the device coordinate window in the normalized 

device coordinate system and a workstation viewport in the device coordinate system. 

Collectively, these two coordinate mapping operations are referred to as viewing 

transformation. 

Workstation transformation is dependent on the resolution of the display device/frame 

buffer. When the whole display area of the virtual device is mapped to a physical device 

that does not have a 1/1 aspect ratio, it may be mapped to a square sub-region (see fig. 

5.2) so as to avoid introducing unwanted geometric distortion. 

Along with the convenience and flexibility of using a window to specify a localized view 

comes the need for clipping, since objects in the scene may be completely inside the 

window, completely outside the window, or partially visible through the window. The 

clipping operation eliminates objects or portions of objects that are not visible through 

the window to ensure the proper construction of the corresponding image. 

Note that clipping may occur in the world coordinate or viewing coordinate space, where 

the window is used to clip the objects; it may also occur in the normalized device 

coordinate space, where the viewport/workstation window is used to clip. In either case 

we refer to the window or the viewport/workstation window as the clipping window. 

 

 

 

 

5.8 Window-To-Viewport Coordinate Transformation 

Once object descriptions have been transferred to the viewing reference frame, we choose 

the window extents in viewing coordinates and select the viewport limits in normalized 

coordinates. Object descriptions are then transferred to normalized device coordinates. 

We do this using a transformation that maintains the same relative placement of objects 

in normalized space as they had in viewing coordinates. If a coordinate position is at the 

center of the viewing window, for instance, it will be displayed at the center of the 

viewport. 



 
Figure 5.12 illustrates the window-to-viewport mapping. A point at position (xw, yw) in 

the window is mapped into position (xv, yv) in the associated view-port. To maintain the 

same relative placement in the viewport as in the window, we require that 

 
Above equations can also be derived with a set of transformations that converts the 

window area into the viewport area. This conversion is performed with the following 

sequence of transformations: 

1. Perform a scaling transformation using a fixed-point position of (xwmin, ywmin) that 

scales the window area to the size of the viewport. 

2. Translate the scaled window area to the position of the viewport. 



Relative proportions of objects are maintained if the scaling factors are the same (sx = 

sy). Otherwise, world objects will be stretched or contracted in either x or y direction 

when displayed on the output device. 

Character strings can be handled in two ways when they are mapped to a viewport. The 

simplest mapping maintains a constant character size, even though the viewport area may 

be enlarged or reduced relative to the window. This method would be employed when 

text is formed with standard character fonts that cannot be changed. In systems that allow 

.for changes in character size, string definitions can be windowed the same as other 

primitives. For characters formed with line segments, the mapping to the viewport can be 

carried out as a sequence of line transformations. 

From normalized coordinates, object descriptions are mapped to the viewport display 

devices. Any number of output devices can be open in a particular application, and 

another window-to-viewport transformation can be performed for each open output 

device. This mapping, called the workstation transformation, is accomplished by 

selecting a window area in normalized space and a viewport area in the coordinates of the 

display device. With the workstation transformation, we gain some additional control 

over the positioning of parts of a scene on individual output devices. As illustrated in Fig. 

5.13, we can use work station transformations to partition a view so that different parts of 

normalized space can be displayed on different output devices. 

 

 

 

 

 
 

 

 

 



 

 
Two Dimensional Concepts  

Clipping Algorithms  
 

 

Clipping:  
 

      Clipping is defined as the identification of the objects of the view which 

are outside the clipping region and which can be removed or clipped from 
the viewing window. Any procedure that identifies those portion of a 
picture that are either inside or outside of a specified region of space is 
referred to as a clipping Algorithm or clipping. 

 

 

The region against which the object needs to be clipped is known as clip 
window. We will assume here that clip window is a rectangular window 
but it might be a polygon shaped as well and can have boundaries in the 
curved form as well. Hence the objects which are not inside and are 
outside the rectangular clip window are hence discarded. The various 
clipping algorithms which are involved in the process of clipping are as 
follows: 

 

Point Clipping 
 

Line Clipping 
 

Polygon clipping 
 

Text Clipping 
 

Curve Clipping 
 

 

Here are a few examples of the application of the clipping concepts which 
are as follows: 

 

(1) Creating objects using solid-modeling procedures. 
 

(2) Drawing and painting operations. 
 

(3) Identifying visible surface in three dimensional views. 
 

(4) Antialising line segments or object boundaries. 
 

(5) Extracting parts of defined scene for viewing. 
 

(6) Displaying multi window environment. 
   

 1) Point Clipping.  

 Assuming that a point  P(x,y) is to be displayed on the screen we need to 

 determine if this point lies within the clip window or not. Assuring that 



 clip window is a rectangle in standard Position, we save a point P = (x, y) 

 for display if following inequalities are satisfied. And we have to compare 

 the point coordinates with window coordinates.  

 xwmin ≤ x ≤ xwmax  

 ywmin ≤ y ≤ ywmax  

 then the point (x,y) lies within the view window and can be displayed, 
 otherwise it needs to be discarded. Where the edges of clip window 

 (xwmin, xwmax, ywmin, ywmax) can be either coordinate window boundaries 

 or view port boundaries. If any one of these inequalities is not satisfied the 

 point is clipped.  

 Application of Point Clipping: Point clipping can be applied to scenes 

 involving explosions or sea foam that are modeled with particles (points) 

 distributed in some region of the scene.  

 2) Line Clipping:   
   

 A line consists of a sequence of number of points arranged between the 

 two end points. Here we just have to consider only the endpoints for 

 clipping purpose, and we would not consider the points between the 

 endpoints.  A line clipping procedure involves several parts First, we can 

 test a given line segment to determine whether it lies completely inside 

 the clipping window.  

 If the two endpoints of a line fall within the clip window, it is accepted. 
 And if in case one of the line end point falls inside and the other end point 

 goes  out  of  the  clip  window,  we  need  to  make  calculation  of  the 

 intersection of the line with the edges of the rectangular window.   If 

    
i
t 

 does not, we try to determine whether it lies completely outside the 

 window.   
 

 

Finally if we can not identify a line as completely inside or completely 
outside we must perform intersection calculation with one or more 
clipping boundaries. We process lines through inside-outside tests by 
checking the line end points. 
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A line with both end points outside any one of the clip boundaries 
(line P3, P4 in Figure.) is outside the window. 

 

A line with both end points inside all clipping boundaries such as 
line form P1 to P2 is saved. 

 

And all the other lines that cross one or more clipping boundaries 
and may require calculation of multiple intersection point. 

 

For a line segment with end points (x1, y1) and (x2, y2) and one or 
both end points outside clipping rectangle, the parametric 
representation.Could be used to determine values of parameter u 
for intersections with the clipping boundary coordinates. 

 

x = x1 + u(x2 – x1) 
 

y = y1 + u(y2 – y1), 0 ≤ u ≤ 1 
 

 

If the value of u for an intersection with a rectangle boundary edge 
is outside the range 0 to 1, the line does not enter the interior of the 
window at that boundary. If the value of u is within the range from 
0 to 1, the line segment does indeed cross into the clipping area. 

 

 
Cohen Sutherland Line Clipping: 

 

This algorithm also reduces calculations by the identification of the 

lines which can be trivially discarded or accepted. And this can be 

done by making comparison with the endpoints with the window 

coordinates (Xmin, Ymin) and (Xmax, Ymax). This is one of the 

oldest and most popular line clipping procedures. Generally, the 

method speeds up the processing of line segments by performing 

initial test that reduces the number of intersections that must be 

calculated. 



 
 

Every line end point in a picture is assigned a four digit binary 

code called, a region code, that identifies the location of the points 

relative to the boundaries of the clipping rectangle. For this 

purpose we assign 4-digit binary code to each endpoint of the line. 

As shown in the following diagram, we have extended the window 

to get a plane of nine regions. 
 
 
 
 

Xmin Xmax 
 
 

1001 1000 1010 
 

0000 

0001 WINDOW 0010 

 
 

0101 0100 0110 

 

Code for inside the window region is 0000. Each regions is defined or 
represented by 1 bit. First bit from left i.e., MSB is for the region above the 
top edge. If this bit is 1, it means point is above the top edge or y>ymax. 
Each bit position in the region code is used to indicate one of the four 
relative coordinate positions of the point with respect to the clip window: 
to the left, right, top and bottom. 

 

Second bit from left is for the region below the bottom 
 

By numbering the bit position in the region code as 1 through 4 right to 
left, the coordinate regions can be correlated with the bit positions as : 

 

bit 1 : left ; bit 2 : right ; bit 3 : below  ; bit 4 : above 
 

A value of 1 in any bit position indicates that point is in that relative 
position otherwise the bit position is set to 0. 

 

Now here bit values in the region are determined by comparing 
end point coordinate values (x, y) to the clip boundaries. 

 

Bit 1 is set to 1 if x < xwmin 
 

Bit 2 is set to 1 it xwmax < x 
 
 
 

Now  

Bit 1 sign bit of x – xwmin 
 

Bit 2 sign bit of xwmax – x 
 

Bit 3 sign bit of y – ywmin 
 

Bit 4 sing bit of ywmax – y 



 

(1) Any lines that are completely inside the clip window have a region 

code 0000 for both end points few points to be kept in mind while 

checking. 
 

(2) Any lines that have 1 in same bit position for both end points are 

considered to be completely outside. 
 

(3) Now here we use AND operation with both region codes and if result 

is not 0000 then line is completely outside. 
 
 

Now for lines that cannot be identified as completely inside or completely 

outside the window by this test are checked by intersection with window 

boundaries. 
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We check P1 against left right we find it is below window. We find 

intersection point P1’ and then discard line section P1 to P1’ & Now we have 
P1 to P2. Now we take P2 we find it in left position outside window then we 

take an intersection point P2’’. But we find it outside window then we again 

calculate final intersection point P2’’. Now we discard line P2 to P2’’. We 

finally get a line P2’’ to P1’ inside window similarly check for line P3 to P4. 
 

For end points (x1, y1) (x2, y2) y–coordinate with vertical boundary can be 
calculated as 

 

y = y1 + m(x – x1) where x is set to xwmin to xwmax 
 

 



Liang-Barsky Line Clipping 

 

Express line segment in parametric form: 

x = x1 + (x2 - x1) * m = x1 + dx * m 0.0 < m < 1.0 

y = y1 + (y2 - y1) * m = y1 + dy * m 

when m = 0.0 => x1, y1 

when m = 1.0 => x2, y2 

Any point P(x, y) on line segment which is inside window satisfies: 

Xwmin <= x <=xwmax and Ywmin <= y <= ywmax 

(Note that if Xwmin = x implies an intersection of the line with left 
boundary) 

or in Parametric form 

(1) Xwmin <= x1 + dx*m <= xwmax 

(2) Ywmin <= y1 + dy*m <= ywmax 

Now (1) can be rewritten as 

-dx * m <= x1 xwmin left boundary 

dx * m < xwmax x1 right boundary 

similarly (2) can be written as 

-dy * m < y1 ywmin bottom boundary 

dy * m < ywmax y1 top boundary 

Above are all of the form: 

Pi * m <qi i="1," 2, 3, 4 

where: 



P1 = -dx q1 = x1 - Xwmin -- Left 

P2 = dx q2 = Xwmax - x1 -- Right 

P3 = -dy q3 = y1 - Ywmin -- Bottom 

P4 = dy q4 = Ywmax - y1 -- Top 

ASIDE 

Now note that if a line is parallel to Left / Right boundary then 

dx = 0 -> P1 = P2 = 0 

Similarly if a line is parallel to Top / Bottom then 

dy = 0 -> P3 = P4 = 0 

Now if P1 = 0 

if (q1 = x1 - Xwmin) <0 then x1 < xwmin and line is outside of window 

then reject 

Similarly: 

if P2 = 0 and (q2 = Xwmax - x1) < 0 then x1> Xwmax -> reject. 

if P3 = 0 and (q3 = y1 - Ywmin) < 0 then y1 <& ywmin> reject. 

if P4 = 0 and (q4 = Ywmax - y1 ) < 0 then y1> Ywmax -> reject. 

So as a general rule: if Pi = 0 and qi < 0 reject the lines, else retain lines for 
further consideration. 

Look at case 

P1 = -dx < 0 

-dx = - (x2 - x1) < 0 

x1 - x2 < 0 x1 < x2 



so if extend line segment it goes from Left to Right or from outside of Left 
boundary to inside (see figure) 

 

 

 

 

 

 

Now if P1 < 0 then p2> 0, so extended line segment goes from inside of 
Right boundary to outside. Similarly if P3 = -dy = -(y2 - y1) = (y1 - y2) <0 
then y1 < y2 and line goes from outside of bottom boundary to inside and 
if P4 > 0, line goes from inside of top boundary to outside. 

Another way of looking at above. 

General inequality : 

Pi * m < qi> mi < qi / pi 

if Pi < 0 (outside> inside) -> mi > qi / |Pi| 

so point of intersection ( mi = qi / Pi ) is the minimum value for which the 
line is on the visible side of the boundary. Since m increases along line, the 



direction of the line is from the OUTSIDE (invisible) to the INSIDE 
(visible). 

Similarly if Pi > 0 -> mi <* qi / pi or point of intersection is maximum 
value of mi. then the direction of line is from inside to outside. 

Now remember that for our line segment: 0.0 < m < 1.0 

Now look at lines proceeding from outside to inside 

Compute intersection at XL, YT 

The visible part of line starts at largest such value of m. 

 

same is true, visible portion starts at largest value of m 

 

Remember: m > 0.0 so can express as (for cases of Pi < 0 i.e. 
outside>inside) 

m1 = MAX ( {qi / Pi | Pi < 0, i="1," 2, 3, 4} U {0} ) 

Reverse above endpoints for Pi > 0 and get 

m2 = MIN ( {qi / Pi | Pi > 0, i = 1, 2, 3, 4} U {1} ) 



Now if there is a visible segment it corresponds to the parametric interval 

m1 <= m <= m2 and m1 <= m2 

So if m1 > m2 reject line else compute visible endpoints from m1, m2. 

 

EXAMPLE : 
 

Let P1 (-1, -2), P2 (2, 4) 

XL = 0, XR = 1, YB = 0, YT 
= 1 

dx = 2 - (-1) = 3 dy = 4 - (-
2) = 6 

P1 = -dx = -3 q1 = x1 - XL 
= -1 - 0 = -1 q1 / P1 = 1/3 

P2 = dx = 3 q2 = XR - x1 = 
1 - (-1) = 2 q2 / P2 = 2/3 

P3 = -dy = -6 q3 = y1 - YR 
= -2 q3 / P3 = 1/3 

P4 = dy = 6 q4 = YT - y1 = 
3 q4 / P4 = 1/2 

for (Pi < 0) t1="MAX" ( 1 / 
3, 1 / 3, 0 )="1" / 3 

for (Pi > 0) t2 = MIN ( 2 / 
3, 1 / 2, 1 ) = 1 / 2 

Since t1 < t2 there is a 
visible section 

 



compute new endpoints 
t1 = 1 / 3 x1' = x1 + dx . t1 
= -1 + (3 . 1 / 3) = 0 
y1' = y1 + dy . t1 = -2 + (6 . 
1 / 3) = 0 
t2 = 1 / 2 x2' = x1 + dx . t2 
= -1 + (3 . 1 / 2) = 1 / 2 
y2' = y1 + dy . t2 = -1 + (6 . 
1 / 2) = 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Polygon-Clipping Algorithms 

Sutherland-Hodgman Polygon Clipping 

One of the earliest polygon-clipping algorithms is the Sutherland-Hodgman algorithm. 
It is based on clipping the entire subject polygon against an edge of the window (more 
precisely, the half plane determined by that edge which contains the clip polygon), then 
clipping the new polygon against the next edge of the window, and so on, until the 
polygon has been clipped against all of the four edges. An important aspect of their 
algorithm is that one can avoid generating a lot of intermediate data. 
 
Representing a polygon as a sequence of vertices P1, P2, . . ., Pn, suppose that we want 
to clip against a single edge e. The algorithm considers the input vertices Pi one at a 
time and generates a new sequence Q1, Q2, . . ., Qm. Each Pi generates 0, 1, or 2 of the 
Qj, depending on the position of the input vertices with respect to e. If we consider each 
input vertex P, except the first, to be the terminal vertex of an edge, namely the edge 
defined by P and the immediately preceding input vertex, call it S, then the Q’s 
generated by P depend on the relationship between the edge [S,P] and the line L 
determined by e. There are four possible cases. See Figure a) . The window side of the 
line is marked as “inside.” The circled vertices are those that are output. Figure 3.10 
shows an example of how the clipping works. Clipping the polygon with vertices 
labeled Pi against edge e1 produces the polygon with vertices Qi. Clipping the new 
polygon against edge e2 produces the polygon with vertices Ri. 
Note that we may end up with some bogus edges. For example, the edge R5R6 in 
Figure b) is not a part of the mathematical intersection of the subject polygon with the 
clip polygon. 



 
Figure a). The four cases in Sutherland- Hodgman polygon clipping. 

http://what-when-how.com/wp-content/uploads/2012/06/tmpc646363_thumb2221.png


 
Figure b). A Sutherland-Hodgman polygon-clipping example. 
Eliminating such edges from the final result would be a nontrivial effort, but normally 
they do not cause any problems. We run into this bogus edge problem with other 
clipping algorithms also. 

 

Weiler Artherton Polygon Clipping 

Weiler and Atherton needed a new algorithm because the Sutherland-Hodgman 
algorithm would have created too many auxiliary polygons.  
Here is a very brief description of the algorithm: 
The boundaries of polygons are assumed to be oriented so that the inside of the 
polygon is always to the right as one traverses the boundary. Note that intersections of 
the subject and clip polygon, if any, occur in pairs: one where the subject enters the 
inside of the clip polygon and one where it leaves. 
Step 1: Compare the borders of the two polygons for intersections. Insert vertices into 
the polygons at the intersections. 
Step 2: Process the nonintersecting polygon borders, separating those contours that are 

outside the clip polygon and those that are inside. 



Step 3: Separate the intersection vertices found on all subject polygons into two lists. 
One is the entering list, consisting of those vertices where the polygon edge enters the 
clip polygon. The other is the leaving list, consisting of those vertices where the polygon 
edge leaves the clip polygon. Step 4: Now clip. 

 
Figure 3.11. Weiler polygon clipping. 
(a)    Remove an intersection vertex from the entering list. If there is none, then we are 
done. 
(b)    Follow the subject polygon vertices to the next intersection. 
(c)    Jump to the clip polygon vertex list. 
(d)    Follow the clip polygon vertices to the next intersection. 
(e)    Jump back to the subject polygon vertex list. 
(f)    Repeat (b)-(e) until we are back to the starting point. 
This process creates the polygons inside the clip polygon. To get those that are outside, 
one repeats the same steps, except that one starts with a vertex from the leaving list and 
the clip polygon vertex list is followed in the reverse direction. Finally, all holes are 
attached to their associated exterior contours. 

 

http://what-when-how.com/wp-content/uploads/2012/06/tmpc646365_thumb2221.png


Example. Consider the polygons in Figure 3.11. The subject polygon vertices are labeled 
Si, those of the clip polygon are labeled Ci, and the intersections are labeled Ii. The 
entering list consists of I2, I4, I6, and I8. The leaving list consists of I1, I3, I5, and I7. 
Starting Step 4(a) with the vertex I2 will generate the inside contour 

 

Starting Step 4(a) with vertices will    
generate    the    outside    contours 

 
 
 
 

Curve Clipping 
Curve-clipping procedures will involve nonlinear equations and this requires more 
processing than for objects with linear boundaries. The bounding rectangle for a circle or 
other curved object can be used first to test for overlap with a rectangular clip window.  
 
If the bounding rectangle for the object is completely inside the window, we save the 
object.  
 
If the rectangle is determined to be completely outside window, we discard the object. In 
either case, there is no further computation necessary. But if the bounding rectangle test fails, 
we can look for other computation-saving approaches.  
 
For a circle, we can use the coordinate extents of individual quadrants and then octants for 
preliminary testing before calculating curve-window intersections. 
 

http://what-when-how.com/wp-content/uploads/2012/06/tmpc646366_thumb222.png
http://what-when-how.com/wp-content/uploads/2012/06/tmpc646367_thumb222.png
http://what-when-how.com/wp-content/uploads/2012/06/tmpc646369_thumb222.png


 
 
 
 
 

Text Clipping 

Various techniques are used to provide text clipping in a computer graphics. It depends 

on the methods used to generate characters and the requirements of a particular 

application. There are three methods for text clipping which are listed below : 

• All or none string clipping 

• All or none character clipping 

• Text clipping 

The following figure shows all or none string clipping − 

 



In all or none string clipping method, either we keep the entire string or we reject entire 

string based on the clipping window. As shown in the above figure, STRING2 is 

entirely inside the clipping window so we keep it and STRING1 being only partially 

inside the window, we reject. 

The following figure shows all or none character clipping − 

 
This clipping method is based on characters rather than entire string. In this method if 

the string is entirely inside the clipping window, then we keep it. If it is partially 

outside the window, then − 

• You reject only the portion of the string being outside 

• If the character is on the boundary of the clipping window, then we discard that entire 

character and keep the rest string. 

The following figure shows text clipping − 

 



This clipping method is based on characters rather than the entire string. In this method 

if the string is entirely inside the clipping window, then we keep it. If it is partially 

outside the window, then 

• You reject only the portion of string being outside. 

• If the character is on the boundary of the clipping window, then we discard only that 

portion of character that is outside of the clipping window. 

 

 

 

 

 

 

 

 

 

 

 



 
 
 
 

UNIT ̶ III 

3D TRANSFORMATIONS 

Three-Dimensional Viewing 
 

Viewing in 3D involves the following considerations: 
 

- We can view an object from any spatial position, eg. In front of an object, Behind the object, In 

the middle of a group of objects, Inside an object, etc.  
- 3D descriptions of objects must be projected onto the flat viewing surface of the output device.  
- The clipping boundaries enclose a volume of space 

 

 

Modelling Transformation and Viewing Transformation can be done by 3D transformations. 

The viewing-coordinate system is used in graphics packages as a reference for specifying the 

observer viewing position and the position of the projection plane. Projection operations convert 

the viewing-coordinate description (3D) to coordinate positions on the projection plane (2D). 

(Usually combined with clipping, visual-surface identification, and surface-

rendering)Workstation transformation maps the coordinate positions on the projection plane to 

the output device 

 

Viewing Transformation 
 

Conversion of objection descriptions from world to viewing coordinates is equivalent to a 

transformation that superimposes the viewing reference frame onto the world frame using 

the basic  
geometric translate-rotate operations:  
1. Translate the view reference point to the origin of the world-coordinate system.  
2. Apply rotations to align the xv, yv, and zv axes (viewing coordinate system) with the world 

xw, yw,  
zw axes, respectively.  

 
 
 
 
 
 
 
 
 
 
 
 

 

Projections 
 

Projection operations convert the viewing-coordinate description (3D) to coordinate positions on 

the  
projection plane (2D). There are 2 basic projection methods:  
1. Parallel Projection transforms object positions to the view plane along parallel lines. 

 
A parallel projection preserves relative proportions of objects. Accurate views of the 

various sides of  
an object are obtained with a parallel projection. But not a realistic representation  

 
 
 
 
 
 
 
 
 
 



 

- Perspective Projection transforms object positions to the view plane while converging to 

a center  
point of projection. Perspective projection produces realistic views but does not preserve relative 

proportions. Projections of distant objects are smaller than the projections of objects of the same 

size that are closer to the  
projection plane. 

 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Parallel Projection 
 

Classification:  
Orthographic Parallel Projection and Oblique Projection:  

 
 
 
 
 

Orthographic parallel projections are done by projecting points along parallel lines that 

are perpendicular to the projection plane.  
Oblique projections are obtained by projecting along parallel lines that are NOT perpendicular 

to the 
 

projection plane. Some special Orthographic Parallel Projections involve Plan View 

(Top projection), Side Elevations, and Isometric Projection:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The following results can be obtained from oblique projections of a cube:  
 
 
 
 
 
 
 

 

 

 

 

 



 

Perspective Projection 
 

Perspective projection is done in 2 steps: Perspective transformation and Parallel projection. 

These  
steps are described in the following section.  
Perspective Transformation and Perspective Projection To produce perspective viewing effect, 

after Modelling Transformation, Viewing Transformation is carried out to transform objects 

from the world coordinate system to the viewing coordinate system. Afterwards, objects in the 

scene are further processed with Perspective Transformation: the view volume in the shape of a 

frustum becomes a regular parallelepiped. The transformation equations are shown as follows  
and are applied to every vertex of each object:  
x' = x * (d/z),  
y' = y * (d/z),  
z' = z 

 

Where (x,y,z) is the original position of a vertex, (x',y',z') is the transformed position of 

the vertex,  
and d is the distance of image plane from the center of projection.  
Note that: 

 
Perspective transformation is different from perspective projection: Perspective 

projection projects a 
 

3D object onto a 2D plane perspectively. Perspective transformation converts a 3D object into 

a deformed 3D object. After the transformation, the depth value of an object remains 

unchanged. Before the perspective transformation, all the projection lines converge to the 

center of projection. 
 

After the transformation, all the projection lines are parallel to each other. Finally we can apply 

parallel projection to project the object onto a 2D image plane. Perspective Projection = 

Perspective Transformation + Parallel Projection 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 



 

 

View Volumes 
 

View window - A rectangular area in the view plane which controls how much of the scene 

is viewed.  
The edges of the view window are parallel to the xv and yv viewing axes. View volume - 

formed by the view window and the type of projection to be used. Only those objects within the 

view volume will appear in the generated display. So we can exclude objects that are beyond the 

view volume when we render the objects in the scene. A finite view volume is obtained by 

bounding with front plane and back plane (or the near plane and the far plane). Hence a view 

volume is bounded by 6 planes => rectangular parallelepiped or a frustum, for parallel projection 

and perspective projection respectively. Some 
 

                                                         
 
 
 
 
 
 
 
 
 

 

Some facts:  
Perspective effects depend on the positioning of the center point of projection. If it is close to 

the view plane, perspective effects are emphasized, ie. closer objects will appear larger than 

more distant 
 

objects of the same size. The projected size of an object is also affected by the relative position 

of the object and the view plane.  
'Viewing' a static view:  
The view plane is usually placed at the viewing-coordinate origin and the center of projection 

is positioned to obtain the amount of perspective desired.  
'Viewing' an animation sequence:  
Usually the center of projection point is placed at the viewing-coordinate origin and the view 

plane is 
 

placed in front of the scene. The size of the view window is adjusted to obtain the amount 

of scene 
 

desired. We move through the scene by moving the viewing reference frame (ie. the 

viewing coordinate system).  
Some facts:  
Perspective effects depend on the positioning of the center point of projection. If it is close to 

the view plane, perspective effects are emphasized, ie. closer objects will appear larger than 

more distant  
objects of the same size. The projected size of an object is also affected by the relative position  
of the object and the view  
plane.  
'Viewing' a static view:  
The view plane is usually placed at the viewing-coordinate origin and the center of projection 

is positioned to obtain the amount of perspective desired.  
'Viewing' an animation sequence:  



Usually the center of projection point is placed at the viewing-coordinate origin and the view 

plane is 
 

placed in front of the scene. The size of the view window is adjusted to obtain the amount 

of scene 
 

desired. We move through the scene by moving the viewing reference frame (ie. the 

viewing coordinate system). 

 

Depth Cueing 
With few exceptions, depth information is important so that we can easily identify, for a particular viewing 

direction, which is the front and which is the back of displayed objects. Figure 9-5 illustrates the ambiguity 

that can result when a wireframe object is displayed without depth information. There are several ways in 

which we can include depth information in the two-dimensional representation of solid objects. 

A simple method for indicating depth with wireframe displays is to vary the intensity of objects according to 

their distance from the viewing position. Figure 9-6 shows a wireframe object displayed with depth cueing. 

The lines closest to 

 
 

the viewing position are displayed with the highest intensities, and lines farther away are displayed with 

decreasing intensities. Depth cueing is applied by choosing maximum and minimum intensity (or color) 

values and a range of distances over which the intensities are to vary. 

Another application of depth cueing is modeling the effect of the atmosphere on the perceived intensity of 

objects. More distant objects appear dimmer to us than nearer objects due to light scattering by dust 

particles, haze, and smoke. Some atmospheric effects can change the perceived color of an object, and we 

can model these effects with depth cueing. 



 
 

Visible Line and Surface Identification 
We can also clarify depth lat ti on ships in a wireframe display by identifying visible lines in some way. The 

simplest method is to highlight the visible lines or to display them in a different color. Another technique, 

commonly used for engineering drawings, is to display the nonvisible lines as dashed lines. Another 

approach is to simply remove the nonvisible lines, as in Figs. 9-5(b) and 9-5(c). But removing the hidden 

lines also removes information about the shape of the back surfaces of an object. These visible-line methods 

also identify the visible surfaces 

of objects. 

When objects are to be displayed with color or shaded surfaces, we apply surface-rendering procedures to 

the visible surfaces so that the hidden surfaces are obscured. Some visible surface algorithms establish 

visibility pixel by pixel across the viewing plane; other algorithms determine visibility for object surfaces as 

a whole. 

 

Surface Rendering 
Added realism is attained in displays by setting the surface intensity of objects according to the lighting 

conditions in the scene and according to assigned surface characteristics. Lighting specifications include the 

intensity and positions of light sources and the general background illumination required for a scene. 

Surface properties of objects include degree of transparency and how rough or smooth the surfaces are to be. 

Procedures can then be applied to generate the correct illumination and shadow regions for the scene. In Fig. 

9-7, surface-rendering methods are combined with perspective and visible-surface identification to generate 

a degree of realism in a displayed scene. 

 
Exploded and Cutaway Views 
Many graphics packages allow objects to be defined as hierarchical structures, so that internal details can 

be stored. Exploded and cutaway views of such objects can then be used to show the internal structure and 

relationship of the object parts. Figure 9-8 shows several kinds of exploded displays for a mechanical 

design.  

An alternative to exploding an objects into its component parts is the cutaway view (Fig. 9-9, which 

removes part of the visible surfaces to show internal structure. 

  

 
 



 

Visible-Surface Detection Methods 
 

More information about Modelling and Perspective Viewing: 
 

Before going to visible surface detection, we first review and discuss the  followings: 
 

Modeling Transformation: 
 

In this stage, we transform objects in their local modelling coordinate  
 
 
 
 
 
 
 
 
 
 

systems into a common coordinate system called the world coordinates. 
 

Perspective Transformation (in a perspective viewing system): 
 

After Modelling Transformation, Viewing Transformation is carried out to 

transform objects from the world coordinate system to the viewing 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

coordinate system. Afterwards, objects in the scene are further perspectively transformed. The 
 

effect of such an operation is that after the transformation, the view volume in the shape of a 
 

frustum becomes a regular parallelepiped. The transformation equations are shown as follows 
 

and are applied to every vertex of each object: 
 

x' = x * (d/z), 
 

y' = y * (d/z), 
 

z' = z   
 

 

 

 

 



Where (x,y,z) is the original position of a vertex, (x',y',z') is the transformed position of 

the vertex, and d is the distance of image plane 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

from the center of projection. 
 

Note that: 
 

Perspective transformation is different from perspective projection: 

Perspective projection projects a 3D object onto a 2D plane perspectively. 

Perspective transformation converts a 3D object into a deformed 3D object. 

After the transformation, the depth value of an object remains unchanged. 

Before the perspective transformation, all the projection lines converge to 

the center of projection. After the transformation, all the projection lines 

are parallel to each others. 
 

Perspective Projection = Perspective Transformation + Parallel Projection 
 
 

In 3D clipping, we remove all objects and parts of objects which are 
 

outside of the view volume. Since we have done perspective transformation, the 6 clipping 

planes, 
 

which form the parallelepiped, are parallel to the 3 axes and hence clipping is straight forward. 

Hence the clipping operation can be performed in 2D. For example, we may first perform the 

clipping operations on the x-y plane and then on the x-z plane. 
 

Problem definition of Visible-Surface Detection Methods: 
 

To identify those parts of a scene that are visible from a chosen viewing position. 
 

Surfaces which are obscured by other opaque surfaces along the line of sign (projection) are 

invisible to the viewer. 

 
 

 
 
 
 
 
 
 
 



Characteristics of approaches: 
 

- Require large memory size? 
 

- Require long processing time? 
 

- Applicable to which types of objects? 

Considerations: 
 

- Complexity of the scene 
 

- Type of objects in the scene 
 

- Available equipment 
 

- Static or animated? 
 

Classification of Visible-Surface Detection Algorithms: 
 

Object-space Methods 
 

Compare objects and parts of objects to each other within the scene definition to 

determine which 
 

surfaces, as a whole, we should label as visible: 
 

For each object in the scene do 
 

Begin 
 

3. Determine those part of the object whose view is unobstructed by other parts of it 

or any other object with respect to the viewing specification. 
 

4. Draw those parts in the object color. 
 

- Compare each object with all other objects to determine the visibility of the object parts. 
 

- If there are n objects in the scene, complexity = O(n2) 
 

- Calculations are performed at the resolution in which the objects are defined (only limited 

by the  
 

computation hardware). 
 

- Process is unrelated to display resolution or the individual pixel in the image and the result 

of the 
 

process is applicable to different display resolutions. 
 

- Display is more accurate but computationally more expensive as compared to image space 

methods because step 1 is typically more complex, eg. Due to the possibility of intersection 

between surfaces. 
 

- Suitable for scene with small number of objects and objects with simple relationship with 

each other. 
 

 Image-space Methods (Mostly used) 
 

Visibility is determined point by point at each pixel position on the projection plane. 
 

For each pixel in the image do  

 

Begin 
 

1. Determine the object closest to the viewer that is pierced by the projector through 

the pixel 
 

2. Draw the pixel in the object colour. 



 

 

- For each pixel, examine all n objects to determine the one closest to the viewer. 
 

- If there are p pixels in the image, complexity depends on n and p ( O(np) ). 
 

- Accuarcy of the calculation is bounded by the display resolution. 
 

- A change of display resolution requires re-calculation 

 

Application of Coherence in Visible Surface Detection Methods: 
 

- Making use of the results calculated for one part of the scene or image for other nearby parts. 
 

- Coherence is the result of local similarity 
 

- As objects have continuous spatial extent, object properties vary smoothly within a small local 

region in the scene. Calculations can then be made incremental. 
 

Types of coherence: 
 

1. Object Coherence: 
 

Visibility of an object can often be decided by examining a circumscribing solid (which may 

be of 
 

simple form, eg. A sphere or a polyhedron.) 
 

2. Face Coherence: 
 

Surface properties computed for one part of a face can be applied to adjacent parts after small 

incremental modification. (eg. If the face is small, we sometimes can assume if one part of 

the face is 
 

invisible to the viewer, the entire face is also invisible). 
 

 

3. Edge Coherence: 
 

The Visibility of an edge changes only when it crosses another edge, so if one segment of an 

nonintersecting edge is visible, the entire edge is also visible. 
 

4. Scan line Coherence: 
 

Line or surface segments visible in one scan line are also likely to be visible in adjacent scan 

lines. 
 

Consequently, the image of a scan line is similar to the image of adjacent scan lines. 
 

5. Area and Span Coherence: 
 

A group of adjacent pixels in an image is often covered by the same visible object. This 

coherence is 
 

based on the assumption that a small enough region of pixels will most likely lie within a single 

polygon. This reduces computation effort in searching for those polygons which contain a given 
 

 

screen area (region of pixels) as in some subdivision algorithms. 
 

6. Depth Coherence: 
 

The depths of adjacent parts of the same surface are similar. 
 

7. Frame Coherence: 
 

Pictures of the same scene at successive points in time are likely to be similar, despite small 

changes 



 
in objects and viewpoint, except near the edges of moving objects. Most visible surface 

detection methods make use of one or more of these coherence properties of a scene. To take 

advantage of regularities in a scene, eg. Constant relationships often can be established between 

objects and surfaces in a scene. 
 

Back-Face Detection 
 

In a solid object, there are surfaces which are facing the viewer (front faces) and there 

are surfaces 
 

which are opposite to the viewer (back faces). These back faces contribute to approximately half 

of the total number of surfaces. Since we cannot see these surfaces anyway, to save processing 

time, we can remove them before the clipping process with a simple test. Each surface has a 

normal vector. If this vector is pointing in the direction of the center of projection, it is a front 

face and can be seen by the viewer. If it is pointing away from the center of projection, it is a 

back face and cannot be seen by the viewer. The test is very simple, if the z component of the 

normal vector is positive, then, it is a back face. If the z component of the vector is negative, it 

is a front face. Note that this technique only caters well for non overlapping convex polyhedral. 

For other cases where there are concave polyhedra or 
 

overlapping objects, we still need to apply other methods to further determine where 

the obscured faces are partially or completely 
 
 
 
 
 
 
 
 
 

 

hidden by other objects (eg.Using Depth-Buffer Method or Depth-sort Method). 
 

 

Depth-Buffer Method (Z-Buffer Method) 
 

This approach compare surfac 

e depths at each pixel 



 
 
 
 
 

position on the projection plane. 
 

Object depth is usually measured from the view plane 
 

along the z axis of a viewing system. This method requires 2 buffers: one is the image buffer and 

the other is called the z-buffer (or the depth buffer). Each of these buffers has the same resolution 

as the image to be 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

captured. As surfaces are processed, the image buffer is used to store the color values of each 

pixel position and the z-buffer is used to store the depth values for each (x,y) position. 

 
 
 

Algorithm: 
 

1. Initially each pixel of the z-buffer is set to the maximum depth value (the depth of the 

back clipping plane). 
 

2. The image buffer is set to the background color. 
 

3. Surfaces are rendered one at a time. 
 

4. For the first surface, the depth value of each pixel is calculated. 
 

5. If this depth value is smaller than the corresponding depth value in the z-buffer (ie. it is closer to 

the view point), both the depth value in the z-buffer and the color value in the image buffer are 

replaced by the depth value and the color value of this surface calculated at the pixel position. 

6. Repeat step 4 and 5 for the remaining surfaces. 
 

7. After all the surfaces have been processed, each pixel of the image buffer represents the color 

of a visible surface at that pixel. This method requires an additional buffer (if compared with the 

Depth-Sort Method) and the overheads involved in updating the buffer. So this method is less 

attractive in the cases where only a few objects in the scene are to be rendered. 
 

- Simple and does not require additional data structures. 
 

- The z-value of a polygon can be calculated incrementally. 
 

- No pre-sorting of polygons is needed.   
- No object-object comparison is required. 

 
- Can be applied to non-polygonal objects. 

 
- Hardware implementations of the algorithm are available in some graphics workstation. 

 
- For large images, the algorithm could be applied to, eg., the 4 quadrants of the 

image separately, so as to reduce the requirement of a large additional buffer 
 

 



 

Scan-Line Method 
 

In this method, as each scan line is processed, all polygon surfaces intersecting that line are 

examined to determine which are visible. Across each scan line, depth calculations are made for each 

overlapping surface to determine which is nearest to the view plane. When the visible surface has 

been determined, the intensity value for that position is entered into the image buffer. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

For each scan line do 
 

Begin 
 

For each pixel (x,y) along the scan line do ------------ Step 1 
 

Begin 
 

z_buffer(x,y) = 0 
 

Image_buffer(x,y) = background_color 
 

End 
 

For each polygon in the scene do ----------- Step 2 
 

Begin 
 

For each pixel (x,y) along the scan line that is covered by the polygon do 
 

 

2a. Compute the depth or z of the polygon at pixel location (x,y). 
 

2b. If z < z_buffer(x,y) then 
 

Set z_buffer(x,y) = z 
 

Set Image_buffer(x,y) = polygon's colour 



 

 

End 
 

End 
 

End 

 

- Step 2 is not efficient because not all polygons necessarily intersect with the scan line. 
 

- Depth calculation in 2a is not needed if only 1 polygon in the scene is mapped onto a 

segment of 
 

the scan line. 
 

- To speed up the process: 

 

Recall the basic idea of polygon filling: For each scan line crossing a polygon, this algorithm 

locates the intersection points of the scan line with the polygon edges. These intersection points 

are sorted from left to right. Then, we fill the pixels between each intersection pair. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

With similar idea, we fill every scan line span by span. When polygon overlaps on a scan line, 

we perform depth calculations at their edges to determine which polygon should be visible at 

which span. Any number of overlapping polygon surfaces can be processed with this method. 

Depth calculations are performed only when there are polygons overlapping. We can take 

advantage of coherence along the scan lines as we pass from one scan line to the next. If no 

changes in the pattern of the intersection of polygon edges with the successive scan lines, it is not 

necessary to do depth calculations. This works only if surfaces do not cut through or otherwise 

cyclically overlap each other. If cyclic overlap happens, we can divide the surfaces to eliminate 

the overlaps. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



- The algorithm is applicable to non-polygonal surfaces (use of surface and active surface table, 

zvalue 
 

is computed from surface representation). 
 

- Memory requirement is less than that for depth-buffer method. 
 

- Lot of sortings are done on x-y coordinates and on depths. 

 

Depth-Sort Method 
 

1. Sort all surfaces according to their distances from the view point. 
 

2. Render the surfaces to the image buffer one at a time starting from the farthest surface. 
 

3. Surfaces close to the view point will replace those which are far away. 
 

4. After all surfaces have been processed, the image buffer stores the final image. 
 

The basic idea of this method is simple. When there are only a few objects in the scene, this 

method can be very fast. However, as the number of objects increases, the sorting process 

can become very complex and time consuming. 
 

Example: Assuming we are viewing along the z axis. Surface S with the greatest depth is then 

compared to other surfaces in the list to determine whether there are any overlaps in depth. If no 

depth 
 
 
 
 
 
 
 
 
 
 
 
 

 

overlaps occur, S can be scan converted. This process is repeated for the next surface in the 

list. However, if depth overlap is detected, we need to make some additional comparisons to 

determine whether any of the surfaces should be reordered. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 



 
 
 
 
 

Binary Space Partitioning 
 

- suitable for a static group of 3D polygon to be viewed from a number of view points 
 

- based on the observation that hidden surface elimination of a polygon is guaranteed if all 

polygons on the other side of it as the viewer is painted first, then itself, then all polygons on 

the same side of it as the viewer 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1.The algorithm first build the BSP tree: 
 

- a root polygon is chosen (arbitrarily) which divides the region into 2 half-spaces (2 nodes => 

front and back) 
 

- a polygon in the front half-space is chosen which divides the half-space into another 

2 halfspaces 

  

 

- the subdivision is repeated until the half-space contains a single polygon (leaf node of the tree) 
 

- the same is done for the back space of the polygon. 
 

2.To display a BSP tree: 
 

- see whether the viewer is in the front or the back 

half-space of the root polygon. 
 

- if front half-space then first display back child (subtree) then itself, followed by its front child 

/ subtree 
 

- the algorithm is applied recursively to the BSP tree. 
 



BSP Algorithm 
 

Procedure DisplayBSP(tree: BSP_tree) 
 

Begin 
 

If tree is not empty then 
 

If viewer is in front of the root then 
 

Begin 
 

DisplayBSP(tree.back_child) 
 

displayPolygon(tree.root) 
 

DisplayBSP(tree.front_child) 
 

End 
 

Else 
 

Begin 
 

DisplayBSP(tree.front_child) 
 

displayPolygon(tree.root) 
 

DisplayBSP(tree.back_child) 
 

End 
 

End 
 
 
 

 

Discussion: 
 

- Back face removal is achieved by not displaying a polygon if the viewer is located in its 

back half-space 
 

- It is an object space algorithm (sorting and intersection calculations are done in object 

space precision) 
 

- If the view point changes, the BSP needs only minor re-arrangement. 
 

- A new BSP tree is built if the scene changes 
 

- The algorithm displays polygon back to front (cf. Depth-sort) 



Area Subdivision Algorithms 
 

The area-subdivision method takes advantage of area coherence in a scene by 

locating those view areas that represent part of a single surface. The total viewing 

area is successively divided into smaller and smaller rectangles until each small 

area is simple, ie. it is a single pixel, or is covered wholly by a part of a single 

visible surface or no surface at all. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The procedure to determine whether we should subdivide an area into smaller rectangle 

is:  
1. We first classify each of the surfaces, according to their relations with the area: 

Surrounding surface - a single surface completely encloses the area Overlapping 

surface - a single surface that is partly inside and partly outside the area Inside 

surface - a single surface that is completely inside the area Outside surface - a single 

surface that is completely outside the area. To improve the speed of classification, we 

can make use of the bounding rectangles of surfaces for early confirmation or 

rejection that the surfaces should be belong to that type.  
2. Check the result from 1., that, if any of the following condition is true, then, no 

subdivision of this area is needed.  
a. All surfaces are outside the area.  
b. Only one surface is inside, overlapping or surrounding surface is in 

the area. c. A surrounding surface obscures all other surfaces within 

the area boundaries. For cases b and c, the color of the area can be 

determined from that single surface. 
 

 

 

 

 



Octree Methods 
 

In these methods, octree nodes are projected onto the viewing surface in a front-to-

back order. Any surfaces toward the rear of the front octants (0,1,2,3) or in the back 

octants (4,5,6,7) may be hidden by the front surfaces. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

With the numbering method 

(0,1,2,3,4,5,6,7), nodes representing octants 0,1,2,3 for the entire region are visited 

before the nodes representing octants 4,5,6,7. Similarly the nodes for the front four 

suboctants of octant 0 are visited before the nodes 
  

 

for the four back suboctants.When a colour is encountered in an octree node, the 

corresponding  
 
 
 
 
 
 
 
 
 
 

pixel in the frame buffer is painted only if no previous color has been 
 

loaded into the same pixel position. In most cases, both a front and a back 

octant must be considered in determining the correct color values for a 

quadrant. But  
- If the front octant is homogeneously filled with some color, we do not process the back 

octant.  
- If the front is empty, it is necessary only to process the rear octant.  
- If the front octant has heterogeneous regions, it has to be subdivided and the 

sub-octants are handled recursively. 

 

 

 

 



ILLUMINATION MODELS: 
- The important components are: 

 
– Diffuse reflection 

 
– Specular reflection 

 
– Ambient light 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 

 

- The total reflected light from a surface is the sum of 
the contributions from light sources and reflected light 

- Ambient light 

 

� Also called background light  
 

� Not created by any light 
source  

 

� A constant lighting from all 
directions 

 

� Contributed by scattered 
light in a surrounding 

 

� When used alone, does not 
produce very interesting  

 

Pictures 
 



� incorporate background light we simply set a 

general brightness level Ia for a scene 

 

� surfaces may reflect different amount of ambient 
light, based on their reflectance properties. We 
model this by a constant factor for each surface: 

 
 

ka × Ia 
 

 
Reflection 

 

• Light scattered with equal intensity in all 
directions (ideal diffuse reflection) 

 
• Light from a point is independent on viewing 

direction (equally bright in all directions) 
 

 
 
 
 
 
 

 
 

� angle between the incoming light direction and a surface 

normal is referred to as the angle of incidence, denoted θ. 
 

L = unit vector  

to light source 
 

N = unit vector 
normal to surface 

 



 

 

� Law of reflection: the angle of incidence equals the angle of 
reflection, and L, N and R(eflection) directions are co‐planar. 

 

 

� If surface has brightness Ι when facing light, it 

has brightness Ι*cos(θ) when tilted at angle θ. 
 

N 
  

   N∙L = cos θ  

L θ (N, L are unit vectors) 
  

     
 
 
 
 

� You will see the brightness written as I(N∙L) 

 

� A parameter kd set for each surface determines 

the fraction of incident light scattered as diffuse 

reflections from that surface 
 

� This parameter is known as the diffuse reflection 
coefficient or the diffuse reflectivity  

� kd is assigned a value between 0.0 and 1.0 
 

– 0.0 for dull surface that absorbs almost all light 
 

– 1.0 for shiny surface that reflects almost all light 
  
 
 
 

 

� Diffuse reflections: 
 
 
 

�  

�  



� depends on where the viewer is! 
 
 
 

 

White 
 

specular  

highlight 
 
 
 
 
 

 

� The white specular highlight is the reflection of white 
light from the source in the direction of the viewer 

� The bright spot that we see on a shiny surface is 
the result of incident light reflected in a 
concentrated region around the specular 
reflection angle 

 

� The specular reflection angle equals the angle of 
the incident light 

 

L = vector to light source 
N = vector normal to surface 
R = direction of reflected light 

 

V = vector to viewer 
 
 
 

� perfect mirror reflects light only in the 
specular‐reflection direction 

 

� Other objects exhibit specular reflections over a 

finite range of viewing positions around vector R 
   
 
 

 

 



Phong Specular Reflection Model 

�  Phong model sets the intensity of specular 
reflection as proportional to the angle φ 
between the viewing 

 

vector and the specular 
reflection vector: 

 
 

I s  = I × ks × cos α φ 
 

α = shineness exponent 

ks = specular reflectivity of material 
 
 

  

 

I s  = I × ks × cos α φ 
 

α = shininess 

ks = reflectivity 

 

� The shineness α is determined by the type of surface 
we want to display 

– Shiny surfaces have a very large value (>100)  

– Rough surfaces would have a value near 1 
 

� The larger the α, the more concentrated the light is 
around R. For mirrors, α  infinity. 

 
 

I s  = I × ks × cos α φ 
 



α = shininess 

ks = reflectivity 
 
 
 

� Recall that R∙V = cos φ 
 

ks I (V ⋅ R)α 
 

Is =0.0 

 

 

 

Polygonal Shading 

� to render solid surfaces 
 

� Determines how surfaces will be filled 
 

� Process for computing the color intensity value 
for each pixel contained in a polygon 

 

� The most common shading techniques are: 
 

– Flat Shading 
 

– Gauraud Shading 
 

– Phong Shading 
 

Flat Shading 
 

 

� Simplest, Cheapest, Fastest Shading Method 
 

– Works well for objects really made of flat faces. 
 

– Appearance depends on number of polygons for 

curved surface objects. 
 

� Fills an entire polygon with one color intensity 



 

� This model is only valid (realistic) if: 
 

– The light source is imagined to be at infinity 
 

– The viewer is at infinity 
 

– The polygon is not an approximation to a curved surface 
 

� Flat shading suffers from “mach band effect” 
 

– human eyes accentuate the discontinuity at the 
boundary 

 

 

 



  

 
 
 

� Fix the mach band effect – remove edge discontinuity 
 

� Compute lighting for more points on each face 
 

� Two popular methods: 
 

– Gauraud shading (used by OpenGL) 
 

– Phong shading (better specular highlight, not in OpenGL)  
 
 
 
 
 
 
 
 
 
 
 
 

Gaurad Shading 
 

� Per‐vertex lighting calculation 
 

� Normal is needed for each vertex 
 

� Per‐vertex normal can be computed by averaging the 
adjacent face normals: 

 
 

n = n1 + n2 + n3 + 

n4 4 
 

� Requires knowledge about 

adjacent faces 



Phong Shading 
� Instead of interpolation, we calculate lighting for each 

pixel inside the polygon (per pixel lighting) 
 

� Need normals for all the pixels – not provided by user 
 

� Phong shading algorithm interpolates the normals and 
compute lighting for each pixel 

 

� Over Normal Vector, NOT Vertex Color: 
  
 

 

 

 
 

 

 
 

 

 
 

  

 

 
 

FLAT, GOURAUD AND PHONG SHADING example 
 

 
 



 

 

 



UNIT IV 

Polygon Surfaces 

Objects are represented as a collection of surfaces. 3D object representation is divided into two 

categories. 

• Boundary Representations (B-reps) − It describes a 3D object as a set of surfaces that 

separates the object interior from the environment. 

• Space–partitioning representations − It is used to describe interior properties, by 

partitioning the spatial region containing an object into a set of small, non-overlapping, 

contiguous solids (usually cubes). 

The most commonly used boundary representation for a 3D graphics object is a set of surface 

polygons that enclose the object interior. Many graphics system use this method. Set of polygons 

are stored for object description. This simplifies and speeds up the surface rendering and display 

of object since all surfaces can be described with linear equations. 

The polygon surfaces are common in design and solid-modeling applications, since their 

wireframe display can be done quickly to give general indication of surface structure. Then 

realistic scenes are produced by interpolating shading patterns across polygon surface to 

illuminate. 

  

Polygon Tables 

In this method, the surface is specified by the set of vertex coordinates and associated attributes. 

As shown in the following figure, there are five vertices, from v1 to v5v5.  

• Each vertex stores x, y, and z coordinate information which is represented in the table as 

v1: x1, y1, z1. 



• The Edge table is used to store the edge information of polygon. In the following figure, 

edge E1 lies between vertex v1 and v2 which is represented in the table as E1: v1, v2. 

• Polygon surface table stores the number of surfaces present in the polygon. From the 

following figure, surface S1 is covered by edges E1, E2 and E3 which can be represented 

in the polygon surface table as S1: E1, E2, and E3. 

 

 

Plane Equations 

The equation for plane surface can be expressed as − 

Ax + By + Cz + D = 0 



Where (x, y, z) is any point on the plane, and the coefficients A, B, C, and D are constants 

describing the spatial properties of the plane. We can obtain the values of A, B, C, and D by 

solving a set of three plane equations using the coordinate values for three non collinear points in 

the plane. Let us assume that three vertices of the plane are (x1, y1, z1), (x2, y2, z2) and (x3, y3, z3). 

Let us solve the following simultaneous equations for ratios A/D, B/D, and C/D. You get the 

values of A, B, C, and D. 

(A/D) x1 + (B/D) y1 + (C/D) z1 = -1 

(A/D) x2 + (B/D) y2 + (C/D) z2 = -1 

(A/D) x3 + (B/D) y3 + (C/D) z3 = -1 

To obtain the above equations in determinant form, apply Cramer’s rule to the above equations. 

 

For any point (x, y, z) with parameters A, B, C, and D, we can say that − 

• Ax + By + Cz + D ≠ 0 means the point is not on the plane. 

• Ax + By + Cz + D < 0 means the point is inside the surface. 

• Ax + By + Cz + D > 0 means the point is outside the surface. 

Polygon Meshes 

3D surfaces and solids can be approximated by a set of polygonal and line elements. Such 

surfaces are called polygonal meshes. In polygon mesh, each edge is shared by at most two 

polygons. The set of polygons or faces, together form the “skin” of the object. 

This method can be used to represent a broad class of solids/surfaces in graphics. A polygonal 

mesh can be rendered using hidden surface removal algorithms. The polygon mesh can be 

represented by three ways − 

• Explicit representation 

• Pointers to a vertex list 

• Pointers to an edge list 



 

 

Advantages 

• It can be used to model almost any object. 

• They are easy to represent as a collection of vertices. 

• They are easy to transform. 

• They are easy to draw on computer screen. 

Disadvantages 

• Curved surfaces can only be approximately described. 

• It is difficult to simulate some type of objects like hair or liquid. 

 

In computer graphics, we often need to draw different types of objects onto the screen. Objects 

are not flat all the time and we need to draw curves many times to draw an object. 

 

Types of Curves 

A curve is an infinitely large set of points. Each point has two neighbors except endpoints. 

Curves can be broadly classified into three categories − explicit, implicit, and parametric 

curves. 

Implicit Curves 



Implicit curve representations define the set of points on a curve by employing a procedure that 

can test to see if a point in on the curve. Usually, an implicit curve is defined by an implicit 

function of the form − 

f(x, y) = 0 

It can represent multivalued curves (multiple y values for an x value). A common example is the 

circle, whose implicit representation is 

x2 + y2 - R2 = 0 

Explicit Curves 

A mathematical function y = f(x) can be plotted as a curve. Such a function is the explicit 

representation of the curve. The explicit representation is not general, since it cannot represent 

vertical lines and is also single-valued. For each value of x, only a single value of y is normally 

computed by the function. 

Parametric Curves 

Curves having parametric form are called parametric curves. The explicit and implicit curve 

representations can be used only when the function is known. In practice the parametric curves 

are used. A two-dimensional parametric curve has the following form − 

P(t) = f(t), g(t) or P(t) = x(t), y(t) 

The functions f and g become the (x, y) coordinates of any point on the curve, and the points are 

obtained when the parameter t is varied over a certain interval [a, b], normally [0, 1]. 

Bezier Curves 

Bezier curve is discovered by the French engineer Pierre Bézier. These curves can be generated 

under the control of other points. Approximate tangents by using control points are used to 

generate curve. The Bezier curve can be represented mathematically as − 

∑k=0nPiBni(t) 

Where pi 

is the set of points and Bni(t) 

represents the Bernstein polynomials which are given by − 

Bni(t)=(ni)(1−t)n−iti 



Where n is the polynomial degree, i is the index, and t is the variable. 

The simplest Bézier curve is the straight line from the point P0 

to P1 

. A quadratic Bezier curve is determined by three control points. A cubic Bezier curve is 

determined by four control points. 

 

 

Properties of Bezier Curves 

Bezier curves have the following properties − 

• They generally follow the shape of the control polygon, which consists of the segments 

joining the control points. 

• They always pass through the first and last control points. 

• They are contained in the convex hull of their defining control points. 

• The degree of the polynomial defining the curve segment is one less that the number of 

defining polygon point. Therefore, for 4 control points, the degree of the polynomial is 3, 

i.e. cubic polynomial. 

• A Bezier curve generally follows the shape of the defining polygon. 

• The direction of the tangent vector at the end points is same as that of the vector 

determined by first and last segments. 

• The convex hull property for a Bezier curve ensures that the polynomial smoothly 

follows the control points. 

• No straight line intersects a Bezier curve more times than it intersects its control polygon. 

• They are invariant under an affine transformation. 

• Bezier curves exhibit global control means moving a control point alters the shape of the 

whole curve. 

• A given Bezier curve can be subdivided at a point t=t0 into two Bezier segments which 

join together at the point corresponding to the parameter value t=t0. 



 

 

B-Spline Curves 

The Bezier-curve produced by the Bernstein basis function has limited flexibility. 

• First, the number of specified polygon vertices fixes the order of the resulting polynomial 

which defines the curve. 

• The second limiting characteristic is that the value of the blending function is nonzero for 

all parameter values over the entire curve. 

The B-spline basis contains the Bernstein basis as the special case. The B-spline basis is non-

global. 

 

A B-spline curve is defined as a linear combination of control points Pi and B-spline basis 

function Ni, 

k (t) given by 

C(t)=∑ni=0PiNi,k(t), 

n≥k−1, tϵ[tk−1,tn+1] 

Where, 

• {pi  : i=0, 1, 2….n} are the control points 



•  k is the order of the polynomial segments of the B-spline curve. Order k means that the curve 

is made up of piecewise polynomial segments of degree k - 1, 

•  the Ni,k(t) 

• are the “normalized B-spline blending functions”. They are described by the order k and 

by a non-decreasing sequence of real numbers normally called the “knot sequence”. 

ti:i=0,...n+K 

The Ni, k functions are described as follows − 

Ni,1(t)={1,0,ifuϵ[ti,ti+1)Otherwise 

and if k > 1, 

Ni,k(t)=t−titi+k−1Ni,k−1(t)+ti+k−tti+k−ti+1Ni+1,k−1(t) 

and 

tϵ[tk−1,tn+1) 

Properties of B-spline Curve 

B-spline curves have the following properties − 

• The sum of the B-spline basis functions for any parameter value is 1. 

• Each basis function is positive or zero for all parameter values. 

• Each basis function has precisely one maximum value, except for k=1. 

• The maximum order of the curve is equal to the number of vertices of defining polygon. 

• The degree of B-spline polynomial is independent on the number of vertices of defining 

polygon. 

• B-spline allows the local control over the curve surface because each vertex affects the 

shape of a curve only over a range of parameter values where its associated basis function 

is nonzero. 

• The curve exhibits the variation diminishing property. 

• The curve generally follows the shape of defining polygon. 

• Any affine transformation can be applied to the curve by applying it to the vertices of 

defining polygon. 

• The curve line within the convex hull of its defining polygon. 

 
 

 



SOLID MODELING 

Solid modeling is the most advanced method of geometric modeling in three dimensions. Solid 

modeling is the representation of the solid parts of the object on your computer. The typical 

geometric model is made up of wire frames that show the object in the form of wires. This wire 

frame structure can be two dimensional, two and half dimensional or three dimensional. 

Providing surface representation to the wire three dimensional views of geometric models makes 

the object appear solid on the computer screen and this is what is called as solid modeling. 

 

Polygon Meshes 

•A polygon meshis a collection of polygons, along with a normal vector associated to each 

polygon vertex :– An edge connects two vertices– A polygon is a closed sequence of edges– An 

edge can be shared by two adjacent polygons– A vertex is shared by at least two edges– A 

normal vector pointing “outside” is associated with each polygon vertex 

 

 
Properties: 

•Connectedness:A mesh is connectedif thereis an path of edges between any two vertices 

•Simplicity:A mesh is simpleif the mesh has noholes in it•Planarity:A mesh is planarif every face 

of it is a planar polygon•Convexity:The mesh is convexif the line connecting any two points in 

the mesh belongs to the mesh 

 

 

ADVANTAGES 

Solid modeling is one of the most important applications of the CAD software and it has been 

becoming increasingly popular of late. The solid modeling CAD software helps the designer to 

see the designed object as if it were the real manufactured product. It can be seen from various 

directions and in various views. This helps the designer to be sure that the object looks exactly as 

they wanted it to be. It also gives additional vision to the designer as to what more changes can 

be done in the object. 
 

 

COLOR MODELS 
 

The purpose of a color model is to facilitate the specification of colors in some standard generally 

accepted way. In essence, a color model is a specification of a 3-D coordinate system and a subspace 

within that system where each color is represented by a single point. 

 

RGB Color Model 

In the RGB model, each color appears as a combination of red, green, and blue. This model is called 

additive, and the colors are called primary colors. The primary colors can be added to produce the 



secondary colors of light (see Figure "Primary and Secondary Colors for RGB and CMYK Models") 

- magenta (red plus blue), cyan (green plus blue), and yellow (red plus green). The combination of 

red, green, and blue at full intensities makes white. 

 
 

 

 

The color subspace of interest is a cube, in which RGB values are at three corners; cyan, magenta, 

and yellow are the three other corners, black is at their origin; and white is at the corner farthest from 

the origin. 

The gray scale extends from black to white along the diagonal joining these two points. The colors 

are the points on or inside the cube, defined by vectors extending from the origin. 

Thus, images in the RGB color model consist of three independent image planes, one for each 

primary color. 
 

The importance of the RGB color model is that it relates very closely to the way that the human eye 

perceives color. RGB is a basic color model for computer graphics because color displays use red, 

green, and blue to create the desired color. Therefore, the choice of the RGB color space simplifies 

the architecture and design of the system. Besides, a system that is designed using the RGB color 

space can take advantage of a large number of existing software routines, because this color space 

has been around for a number of years. 

 

HSV Color Model 

The HLS (hue, lightness, saturation) and HSV (hue, saturation, value) color models were developed 

to be more “intuitive” in manipulating with color and were designed to approximate the way humans 

perceive and interpret color. Hue defines the color itself. 

The values for the hue axis vary from 0 to 360 beginning and ending with red and running through 

green, blue and all intermediary colors. Saturation indicates the degree to which the hue differs from 

a neutral gray. The values run from 0, which means no color saturation, to 1, which is the fullest 

saturation of a given hue at a given illumination. Intensity component - lightness (HLS) or value 

(HSV), indicates the illumination level. 

Both vary from 0 (black, no light) to 1 (white, full illumination). The difference between the two is 

that maximum saturation of hue (S=1) is at value V=1 (full illumination) in the HSV color model, 

and at lightness L=0.5 in the HLS color model. 

 



 

HLS COLOR MODEL 

This model, Hue, Lightness, and Saturation, was popularized by Tektronix who used it to define 

the color effects on its monitors. It uses a double cone, as shown below:  

 

 
The hues are specifies by angles, as they were for HSV, but in this model Blue is at 0°, Magenta 

is at 60°, Red is at 120°, Yellow is at 180°, Green is at 240°, and Cyan is at 300°. So the order on 

which the colors appear is the same as before, and complementary colors are still on opposite 

sides of the circle, separated by 180°, but the color sequence begins with blue instead of red. The 

angle is measured from above, as before, beginning at the line shown from medium gray to blue.  

The hue definitions now lie on a circle, as compared to the hexagon that was used for HSV. This 

is much easier to deal with since full saturation of any hue will now have an S value of 1.0, as 

compared to, for example, the √3/2 that we had to use for the S value for orange using HSV.  

Once again, gray scales appear on the center line of symmetry, with L= 0 at the bottom and L= 1 

at the top. In this mode l the line is twice as long as in HSV.  



Pure colors have an L value of 0.5. So, for example, pure orange is at an HLS triple of (150°, 0.5, 

1.0).  

Overall HSV seems to be the preferred method for interactive selection of colors.  
 

CMYK Color Model 

The CMYK color model is a subset of the RGB model and is primarily used in color print 

production. CMYK is an acronym for cyan, magenta, and yellow along with black (noted as K). The 

CMYK color space is subtractive, meaning that cyan, magenta yellow, and black pigments or inks 

are applied to a white surface to subtract some color from white surface to create the final color. 

Cyan is white minus red, magenta is white minus green, and yellow is white minus blue. Subtracting 

all colors by combining the CMY at full saturation should, in theory, render black. However, 

impurities in the existing CMY inks make full and equal saturation impossible, and some RGB light 

does filter through, rendering a muddy brown color. Therefore, the black ink is added to CMY. 

 

 

 

 

CIE XYZ Color Model 

The XYZ color space is an international standard developed by the CIE (Commission Internationale 

de l’Eclairage). This model is based on three hypothetical primaries, XYZ,and all visible colors can 

be represented by using only positive values of X, Y, and Z. The CIE XYZ primaries are 

hypothetical because they do not correspond to any real light wavelengths. The Y primary is 

intentionally defined to match closely to luminance, while X and Z primaries give color information. 

The main advantage of the CIE XYZ space (and any color space based on it) is that this space is 

completely device-independent. 

 

Intel IPP functions use the following basic equations, to convert between gamma corrected 



R’G’B’ and CIE XYZ models: 

X = 0.412453*R’ + 0.35758 *G’ + 0.180423*B’ 

Y = 0.212671*R’ + 0.71516 *G’ + 0.072169*B’ 

Z = 0.019334*R’ + 0.119193*G’ + 0.950227*B’ 

 

The equations for X,Y,Z calculation are given on the assumption that R’,G’, and B’ 

values are normalized to the range [0..1]. 

R’ = 3.240479 * X - 1.53715 * Y - 0.498535 * Z 

G’ = -0.969256 * X + 1.875991 * Y + 0.041556 * Z 

B’ = 0.055648 * X - 0.204043 * Y + 1.057311 * Z 

 

The equations for R’,G’, and B’ calculation are given on the assumption that X,Y, and Z 

values are in the range [0..1]. 

YIQ Color Model 

YIQ is the system used for US TV broadcast (PAL is the most common system used in other 

countries). The primary goals of the system were to provide a signal that could be directly 

displayed by black and white TVs, while also providing easy coding and decoding of RGB 

signals.  

 

The conversions from RGB to YIQ and back are given by the matrices:  

 

 
where obviously the two matrices are inverses. The Y component, which is the same as the Y 

value in the CIE system, is the signal that is used directly by black and white TVs.  

 

Y is said to convey the luminance information and is transmitted on a separate carrier signal 

from the chromaticity components, I and Q. 

.  

This encoding is of far more importance for film & TV people than it is for computer graphics 

people.  
 
 



 

 
 
 
 
 
 



 
 



 

 
 
 
 
 



 



 

 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Common Image File Formats 

There are numerous image file types out there so it can be hard to know which file type best suits your image 

needs. Some image types such a TIFF are great for printing while others, like JPG or PNG, are best for web 

graphics. 

The list below outlines some of the more common file types and provides a brief description, how the file is best 

used, and any special attributes the file may have.  

  

TIFF (.tif, .tiff) 

TIFF or Tagged Image File Format are lossless images files meaning that they do not need to compress or lose any 

image quality or information (although there are options for compression), allowing for very high-quality images but 

also larger file sizes. 

Compression: Lossless - no compression. Very high-quality images. 
Best For: High quality prints, professional publications, archival copies 

Special Attributes: Can save transparencies 
 

  

Bitmap (.bmp) 

BMP or Bitmap Image File is a format developed by Microsoft for Windows. There is no compression or 

information loss with BMP files which allow images to have very high quality, but also very large file sizes. Due to 

BMP being a proprietary format, it is generally recommended to use TIFF files. 

Compression: None 
Best For: High quality scans, archival copies 

 

  

JPEG (.jpg, .jpeg) 

JPEG, which stands for Joint Photographic Experts Groups is a “lossy” format meaning that the 

image is compressed to make a smaller file. The compression does create a loss in quality but this 
loss is generally not noticeable. JPEG files are very common on the Internet and JPEG is a popular 

format for digital cameras - making it ideal for web use and non-professional prints. 

 

Compression: Lossy - some file information is compressed or lost 

Best For: Web Images, Non-Professional Printing, E-Mail, Powerpoint 

Special Attributes: Can choose amount of compression when saving in image editing programs 

like Adobe Photoshop or GIMP. 

 



  

GIF (.gif) 

GIF or Graphics Interchange Format files are widely used for web graphics, because they are limited to only 256 

colors, can allow for transparency, and can be animated. GIF files are typically small is size and are very portable.  

Compression: Lossless - compression without loss of quality 

Best For: Web Images 

Special Attributes: Can be Animated, Can Save Transparency 
 

  

PNG (.png) 

PNG or Portable Network Graphics files are a lossless image format originally designed to improve upon and 

replace the gif format. PNG files are able to handle up to 16 million colors, unlike the 256 colors supported by GIF. 

Compression:  Lossless - compression without loss of quality 

Best For: Web Images 

Special Attributes: Save Transparency   

  

EPS (.eps) 

An EPS or Encapsulated PostScript file is a common vector file type. EPS files can be opened in many illustration 

applications such as Adobe Illustrator or CorelDRAW. 

Compression: None - uses vector information 

Best For: Vector artwork, illustrations 

Special Attributes: Saves vector information 
 

 RAW Image Files (.raw, .cr2, .nef, .orf, .sr2, and more) 

RAW images are images that are unprocessed that have been created by a camera or scanner. Many digital SLR 

cameras can shoot in RAW, whether it be a .raw, .cr2, or .nef. These RAW images are the equivalent of a digital 

negative, meaning that they hold a lot of image information, but still need to be processed in an editor such as Adobe 

Photoshop or Lightroom.  

Compression: None  

Best For: Photography 

Special Attributes: Saves metadata, unprocessed, lots of information 
 



UNIT V 

USER INTERFACE DESIGN 

6.1 Introduction  

As hardware cost is plummeting, which is considered as the major bottleneck for the 

progress; now communication devices is more listened for better development. For that 

reason, techniques for developing high-quality user interfaces are moving to the 

forefront in computer science and are becoming the "last frontier" in providing 

computing to a wide variety of users—as other aspects of technology continue to 

improve, but the human users remain the same. Interest in the quality of user-computer 

interfaces is a recent part of the formal study of computers. The emphasis until the early 

1980s was on optimizing two scarce hardware resources, computer time and memory. 

Program efficiency was the highest goal. With today’s plummeting hardware costs and 

powerful graphics-oriented personal computing environments the focus turns to 

optimizing user efficiency rather than computer efficiency. Thus, although many of the 

ideas presented in this chapter require additional CPU cycles and memory space, the 

potential rewards in user productivity and satisfaction well outweigh the modest 

additional cost of these resources. The quality of the user interface often determines 

whether users enjoy or despise a system, whether the designers of the system are 

praised or damned, whether a system succeeds or fails in the market. Actually, a poor 

user interface such as in air traffic control or in nuclear power plant monitoring can lead 

to catastrophic consequences.  

 

The desktop user-interface metaphor, with its windows, icons, and pull-down menus, 

all making heavy use of raster graphics, is popular because it is easy to learn and 

requires little typing skill. Most users of such systems are not computer programmers 

and have little sympathy for the old-style difficult-to-learn keyboard-oriented 

command-language interfaces that many programmers take for granted. The designer of 

an interactive graphics application must be sensitive to users’ desire for easy-to-learn 

yet powerful interfaces. In this chapter, we discuss the three basic low-level elements of 

user interfaces: input devices, interaction techniques, and interaction tasks. Interaction 

techniques are the primitive building blocks from which a user interface is crafted.  

 

We focus in this chapter on input devices—those pieces of hardware by which a user 

enters information into a computer system. Input devices for the earliest computers 

were switches and knobs, jumper wires placed in patch boards, and punched cards. 

These were followed by the teletype, the text-only forerunner of today’s interactive  



terminals. The mouse and keyboard now predominate, but a wide variety of input 

devices can be used. An interaction task is the entry of a unit of information by the 

user. Basic interaction tasks are position, text, select, and quantify. The unit of 

information that is input in a position interaction task is of course a position; the text 

task yields a text string; the select task yields an object identification; and the quantify 

task yields a numeric value. A designer begins with the interaction tasks necessary for a 

particular application. For each such task, the designer chooses an appropriate 

interaction device and interaction technique. Many different interaction techniques can 

be used for a given interaction task, and there may be several different ways of using 

the same device to perform the same task. For instance, a selection task can be carried 

out by using a mouse to select items from a menu, using a keyboard to enter the name 

of the selection, pressing a function key, circling the desired command with the mouse, 

or even writing the name of the command with the mouse. Similarly, a single device 

can be used for different tasks: A mouse is often used for both positioning and 

selecting.  

Interaction tasks are defined by what the user accomplishes, whereas logical input 

devices categorize how that task is accomplished by the application program and the 

graphics system. Interaction tasks are user-centered, whereas logical input devices are a 

programmer and graphics-system concept. By analogy with a natural language, single 

actions with input devices are similar to the individual letters of the alphabet from 

which words are formed. The sequence of input-device actions that makes up an 

interaction technique is analogous to the sequence of letters that makes up a word. A 

word is a unit of meaning; just as several interaction techniques can be used to carry out 

the same interaction task, so too words that are synonyms convey the same meaning. 

An interactive dialogue is made up of interaction-task sequences, just as a sentence is 

constructed from word sequences.  

6.2 Concept of Positioning and Pointing  

Most display terminals provide the user with an alphanumeric keyboard with which to 

type commands and enter data for the program. For some applications, however, the 

keyboard is inconvenient or inadequate. For example, the user may wish to indicate one 

of a number of symbols on the screen, in order to erase the symbol. If each symbol is 

labeled, he can do so by typing the symbol’s name; by pointing at the  



symbol, however, he may be able to erase more rapidly, and the extra clutter of labels 

can be avoided.  

Another problem arises if the user has to add lines or symbols to the picture on the 

screen. Although he can identify an items’s position by typing coordinates he can do so 

even better by pointing at the screen, particularly if what matters most is the items’s 

position relative to the rest of the picture.  

These two examples illustrate the two basic types of graphical interaction: pointing at 

items already on the screen and positioning new items. The need to interact in these 

ways has stimulated the developed of a number of different types of graphical input 

device, some of which are described in this chapter.  

Ideally a graphical input device should lend itself both to pointing and to positioning. In 

reality there are no devices with this versatility. Most devices are much better at 

positioning than at pointing; one device, the light pen, is the exact opposite. 

Fortunately, however we can supplement the deficiencies of these devices by software 

and in this way produce hardware-software system that has both capabilities. 

Nevertheless the distinction between pointing and positioning capability is extremely 

important.  

Another important distinction is between devices that can be used directly on the screen 

surface and devices that cannot. The latter might appear to be less useful, but this is far 

from true. Radar operators and air-traffic controllers have for years used devices like 

the joystick and the tracker ball neither of which can be pointed at the screen. The 

effectiveness of these input devices depends on the use of visual feedback: the x and y 

outputs of the device control the movement of a small cross, or cursor, displayed on the 

screen. The user of the device steers the cursor around the screen as if it were a toy boat 

on the surface of a pond. Although this operation sounds as if it requires a lot of skill, it 

is in fact very easy.  

The use of visual feedback has an additional advantage: just as in any control system, it 

compensates for any lack of linearity in the device. A linear input device is one that 

faithfully increases or decreases the input coordinate value in exact proportion to the 

user’s hand movement. If the device is being used to trace a graph or a map. Linearity 

is important. A cursor, however, can be controlled quite easily even if the device 

behaves in a fairly nonlinear fashion. For example, the device may be much less  



sensitive near the left – hand region of its travel: a 1 – inch hand movement may change 

the x value by only 50 units, whereas the same movement elsewhere may change x by 

60 units. The user will simply change his hand movement to compensate, often without 

even noticing the no linearity. This phenomenon has allowed simple, inexpensive 

devices like the mouse to be used very successfully for graphical input.  

6.3 Interactive Graphic Devices  

Various devices are available for data input on graphics workstations. Most systems 

have a keyboard and one or more additional devices specially designed for interactive 

input. These include a mouse, trackball, spaceball, joystick, digitizers, dials, and button 

boxes. Some other input devices used in particular applications are data gloves, touch 

panels, image scanners, and voice systems.  

6.3.1 Keyboards  

The well-known QWERTY keyboard has been with us for many years. It is ironic that 

this keyboard was originally designed to slow down typists, so that the typewriter 

hammers would not be so likely to jam. Studies have shown that the newer Dvorak 

keyboard , which places vowels and other high-frequency characters under the home 

positions of the fingers, is somewhat faster than is the QWERTY design. It has not been 

widely accepted. Alphabetically organized keyboards are sometimes used when many 

of the users are non typists. But more and more people are being exposed to QWERTY 

keyboards, and experiments have shown no advantage of alphabetic over QWERTY 

keyboards .In recent years, the chief force serving to displace the keyboard has been the 

shrinking size of computers, with laptops, notebooks, palmtops, and personal digital 

assistants. The typewriter keyboard is becoming the largest component of such pocket-

sized devices, and often the main component standing in the way of reducing its overall 

size. The chord keyboard has five keys similar to piano keys, and is operated with one 

hand, by pressing one or more keys simultaneously to "play a chord." With five keys, 

31 different chords can be played. Learning to use a chord keyboard (and other similar 

stenographer style keyboards) takes longer than learning the QWERTY keyboard, but 

skilled users can type quite rapidly, leaving the second hand free for other tasks. This 

increased training time means, however, that such keyboards are not suitable substitutes 

for general use of the standard alphanumeric keyboard. Again, as computers become 

smaller, the benefit of a  



keyboard that allows touch typing with only five keys may come to outweigh the 

additional difficulty of learning the chords. Other keyboard-oriented considerations, 

involving not hardware but software design, are arranging for a user to enter frequently 

used punctuation or correction characters without needing simultaneously to press the 

control or shift keys, and assigning dangerous actions (such as delete) to keys that are 

distant from other frequently used keys.  

6.3.2 Touch Panels  

As the name implies, touch panels allow displayed objects or screen positions to be 

selected with the touch of a finger. A typical application of touch panels is for the 

selection of processing options that are represented with graphical icons. Other systems 

can be adapted for touch input by fitting a transparent device with a touch-sensing 

mechanism over the video monitor screen. Touch input can be recorded using optical, 

electrical, or acoustical methods.  

Optical touch panels employ a line of infrared light-emitting diodes (LEDs) along one 

vertical edge and along one horizontal edge of the frame. The opposite vertical and 

horizontal edges contain light detectors. These detectors are used to record which 

beams are interrupted when the panel is touched. The two crossing beams that are 

interrupted identify the horizontal and vertical coordinates of the screen position 

selected. Positions can be selected with an accuracy of about inch. With closely spaced 

LEDs, it is possible to break two horizontal or two vertical beams simultaneously. In 

this case, an average position between the two interrupted beams is recorded. The LEDs 

operate at infrared frequencies, so that the light is not visible to a user. An electrical 

touch panel is constructed with two transparent plates separated by a small distance. 

One of the plates is coated with a conducting material, and the other plate is coated with 

a resistive material. When the outer plate is touched, it is forced into contact with the 

inner plate. This contact creates a voltage drop across the resistive plate that is 

converted to the coordinate values of the selected screen position.  

In acoustical touch panels, high-frequency sound waves are generated in the horizontal 

and vertical directions across a glass plate. Touching the screen causes part of each 

wave to be reflected from the finger to the emitters. The screen position at the  



point of contact is calculated from a measurement of the time interval between the 

transmission of each wave and its reflection to the emitter.  

6.3.3 Light pens  

The pencil-shaped devices 's are used to select screen positions by detecting the light 

coming from point on the CRT screen. They are sensitive to the short burst of light 

emitted from the phosphor coating at the instant the electron beam strikes a particular 

point. Other light sources, such as the background light in the room, are usually not 

detected by a light pen. An activated light pen, pointed at a spot on the screen as the 

electron beam lights up that spot, generates an electrical pulse that causes the 

coordinate position of the electron beam to be recorded. As with cursor-positioning 

devices, recorded light-pen coordinates can be used to position an object or to select a 

processing option. Although light pens are still with us, they are not as popular as they 

once were since they have several disadvantages compared to other input devices that 

have been developed. For one, when a light pen is pointed at the screen, part of the 

screen image is obscured by the hand and pen. And prolonged use of the light pen can 

cause arm fatigue. Also, light pens require special implementation for some 

applications because they cannot detect positions within black areas. To be able to 

select positions in any screen area with a light pen, we must have some nonzero 

intensity assigned to each screen pixel. In addition, light pens sometime give false 

readings due to background lighting in a room.  

6.3.4 Graphics Tablets  

One type of digitizer is the graphics tablet (also referred to as a data tablet), which is 

used to input two-dimensional coordinates by activating a hand cursor or stylus at 

selected positions on a flat surface. A hand cursor contains cross hairs for sighting 

positions, while a stylus is a pencil-shaped device that is pointed at positions on the 

tablet. This allows an artist to produce different brush strokes with different pressures 

on the tablet surface. Tablet size varies from 12 by 12 inches for desktop models to 4 by 

60 inches or larger for floor models. Graphics tablets provide a highly accurate method 

for selecting coordinate positions, with an accuracy that varies from about 0.2 mm on 

desktop models to about 0.05 mm or less on larger models. Many graphics  



tablets are constructed with a rectangular grid of wire embedded in the tablet surface. 

Electromagnetic pulses are generated in sequence along the wires, and an electric signal 

is induced in a wire coil in an activated stylus or hand cursor to record a tablet position. 

Depending on the technology, a their signal strength, coded pulses, or phase shifts can 

be used to determine the position on the tablet.  

6.3.5 Joysticks  

A joystick consists of a small, vertical lever (called the stick) mounted on a base that is 

used to steer the screen cursor around. Most joysticks select screen positions with actual 

stick movement; others respond to pressure on the stick. The distance that the stick is 

moved in any direction from its center position corresponds to screen-cursor movement 

in that direction. Potentiometers mounted at the base of the joystick measure the 

amount of movement, and springs return the stick to the center position when it is 

released. One or more buttons can be programmed to act as input switchs to signal 

certain actions once a screen position has been selected.  

6.3.6 Mouse  

A mouse is small hand-held box used to position the screen cursor. Wheels or rollers on 

the bottom of the mouse can be used to record the amount and direction of movement. 

Another method for detecting mouse motion is with an optical sensor. For these 

systems, the mouse is moved over a special mouse pad that has a grid of horizontal and 

vertical lines. The optical sensor detects movement across the lines in the grid.  

Since a mouse can be picked up and put down at another position without change in 

cursor movement, it is used for making relative changes in the position of the screen 

cursor. One, two, or three buttons are usually included on the top of the mouse for 

signaling the execution of some operation, such as recording cursor position or 

invoking a function. Most general-purpose graphics systems now include a mouse and a 

keyboard as the major input devices.  

6.3.7 Voice Systems  

Speech recognizers are used in some graphics workstations as input devices to accept 

voice commands. The voice-system input can be used to initiate graphics operations  



or to enter data. These systems operate by matching an input against a predefined 

dictionary of words and phrases.  

A dictionary is set up for a particular operator by having the operator speak the 

command words to be used into the system. Each word is spoken several times, and the 

system analyzes the word and establishes a frequency pattern for that word in the 

dictionary along with the corresponding function to be performed. Later, when a voice 

command is given, the system searches the dictionary for a frequency-pattern match. 

Voice input is typically spoken into a microphone mounted on a headset. The 

microphone is designed to minimize input of other background sounds. If a different 

operator is to use the system, the dictionary must be reestablished with that operator's 

voice patterns. Voice systems have some advantage over other input devices, since the 

attention of the operator does not have to be switched from one device to another to 

enter a command.  

6.3.8 Other Devices  

Here we discuss some of the less common, and in some cases experimental, 2D 

interaction devices. Voice recognizers, which are useful because they free the user’s 

hands for other uses, apply a pattern-recognition approach to the waveforms created 

when we speak a word. The waveform is typically separated into a number of different 

frequency bands, and the variation over time of the magnitude of the waveform. in each 

band forms the basis for the pattern matching. However, mistakes can occur in the 

pattern matching, so it is especially important that an application using a recognizer 

provide convenient correction capabilities. Voice recognizers differ in whether or not 

they must be trained to recognize the waveforms of a particular speaker, and whether 

they can recognize connected speech as opposed to single words or phrases. Speaker-

independent recognizers have very limited vocabularies—typically, they include only 

the ten digits and 50 to 100 words. Some discrete word recognizers can recognize 

vocabularies of thousands of different words after appropriate training. But if the user 

has a cold, the recognizer must be retrained. The user of a discrete word recognizer 

must pause for a fraction of a second after each word to cue the system that a word end 

has occurred. The more difficult task of recognizing connected speech from a limited 

vocabulary can now be performed by off-the-shelf hardware and software, but with 

somewhat less accuracy. As the vocabulary becomes larger, however, artificial-

intelligence techniques are needed to  



exploit the context and meaning of a sequence of sentences to remove ambiguity. A few 

systems with vocabularies of 20,000 or more words can recognize sentences such as 

"Write Mrs. Wright a letter right now!" Voice synthesizers create waveforms that 

approximate, with varying degrees of realism, spoken words. The simplest synthesizers 

use phonemes, the basic sound units that form words. This approach creates an 

artificial-sounding, inflection-free voice. More sophisticated phoneme-based systems 

add inflections. Other systems actually play back digitized spoken words or phrases. 

They sound realistic, but require more memory to store the digitized speech. Speech is 

best used to augment rather than to replace visual feedback, and is most effective when 

used sparingly. For instance, a training application could show a student a graphic 

animation of some process, along with a voice narration describing what is being seen. 

See for additional guidelines for the effective application of speech recognition and 

generation in user-computer interfaces, and for an introduction to speech interfaces, and 

for speech recognition technology. The data tablet has been extended in several ways. 

Many years ago, Herot and Negroponte used an experimental pressure-sensitive stylus : 

High pressure and a slow drawing speed implied that the user was drawing a line with 

deliberation, in which case the line was recorded exactly as drawn; low pressure and 

fast speed implied that the line was being drawn quickly, in which case a straight line 

connecting the endpoints was recorded. Some commercially available tablets sense not 

only stylus pressure but orientation as well. The resulting 5 degrees of freedom reported 

by the tablet can be used in various creative ways. For example, Bleser, Sibert, and 

McGee implemented the GWPaint system to simulate various artist’s tools, such as an 

italic pen, that are sensitive to pressure and orientation. An experimental touch tablet, 

developed by Buxton and colleagues, can sense multiple finger positions 

simultaneously, and can also sense the area covered at each point of contact The device 

is essentially a type of touch panel, but is used as a tablet on the work surface, not as a 

touch panel mounted over the screen. The device can be used in a rich variety of ways . 

Different finger pressures correlate with the area covered at a point of contact, and are 

used to signal user commands: a light pressure causes a cursor to appear and to track 

finger movement; increased pressure is used, like a button-push on a mouse or puck, to 

begin feedback such as dragging of an object; decreased pressure causes the dragging to 

stop.  



6.4 Interactive Graphical Techniques  

There are several techniques that are incorporated into graphics packages to aid the 

interactive construction of pictures. Various input options can be provided, so that 

coordinate information entered with locator and stroke devices can be adjusted or 

interpreted according to a selected option. For example, we can restrict all lines to be 

either horizontal or vertical. Input coordinates can establish the position or boundaries 

for objects to be drawn, or they can be used to rearrange previously displayed objects.  

6.4.1 Basic Positioning Methods  

Coordinate values supplied by locator input are often used with positioning methods to 

specify a location for displaying an object or a character string. We interactively select 

coordinate positions with a pointing device, usually by positioning the screen cursor. 

Just how the object or text-string positioning is performed depends on the selected 

options. With a text string, for example, the screen point could be taken as the center 

string position, or the start or end position of the string, or any of the other string-

positioning options. For lines, straight line segments can be displayed between two 

selected screen positions:  

As an aid in positioning objects, numeric values for selected positions can be echoed on 

the screen. Using the echoed coordinate values as a guide, we can make adjustments in 

the selected location to obtain accurate positioning.  

6.4.2 Constraints  

With some applications, certain types of prescribed orientations or object alignments 

are useful. A constraint is a rule for altering input-coordinate values to produce a 

specified orientation or alignment of the displayed coordinates. There are many kinds 

of constraint functions that can be specified, but the most common constraint is a 

horizontal and vertical alignment of straight lines. This type of constraint, shown in 

Figs. 6.1 and 6.2, is useful in forming network layouts. With this constraint, we can 

create horizontal and vertical lines without worrying a-bout precise specification of 

endpoint coordinates.  



 

 

A horizontal or vertical constraint is implemented by determining whether any two 

input coordinate endpoints are more nearly horizontal or more near vertical. If the 

difference in the y values of the two endpoints is smaller than the difference in x values, 

a horizontal line is displayed. Otherwise, a vertical line is drawn. Other kinds of 

constraints can be applied to input coordinates to produce a variety of alignments. Lines 

could be constrained to have a particular slant, such as 45°, and input coordinates could 

be constrained to lie along predefined paths, such as circular arcs.  

6.4.3 Grids  

Another kind of constraint is a grid of rectangular lines displayed in some part of the 

screen area. When a grid is used, any input coordinate position is rounded to the nearest 

intersection of two grid lines. Figure 6.3 illustrates line drawing with grid. Each of the 

two cursor positions is shifted to the nearest grid intersection point, and the line is 

drawn between these grid points. Grids facilitate object constructions,  



because a new line can be joined easily to a previously drawn line by selecting any 

position near the endpoint grid intersection of one end of the displayed line.  

Figure 6.3: Line drawing using a grid  

Spacing between grid lines is often an option that can be set by the user. Similarly, 

grids can be turned on and off, and it is sometimes possible to use partial grids and 

grids of different sizes in different screen areas.  

6.4.4 Gravity Field  

In the construction of figures, we sometimes need to connect lines at positions between 

endpoints. Since exact positioning of the screen cursor at the connecting point can be 

difficult, graphics packages can be designed to convert any input position near a line to 

a position on the line.  

This conversion of input position is accomplished by creating a gravity field area 

around the line. Any selected position within the gravity field of a line is moved 

("gravitated") to the nearest position on the line. A gravity field area around a line is 

illustrated with the shaded boundary shown in Fig. 6.4. Areas around the endpoints are 

enlarged to make it easier for us to connect lines at their endpoints. Selected positions 

in one of the circular areas of the gravity field are attracted to the endpoint in that area. 

The size of gravity fields is chosen large enough to aid positioning, but small enough to 

reduce chances of overlap with other lines. If many lines are displayed, gravity areas 

can overlap, and it may be difficult to specify points correctly. Normally, the boundary 

for the gravity field is not displayed.  



 

Figure 6.4: Gravity field around a line. Any selected point in the shaded area is 

shifted to a position on the line  

6.4.5 Rubber-Band Methods  

Straight lines can be constructed and positioned using rubber-band method which 

stretch out a line from a starting position as the screen cursor is move Figure 6.5 

demonstrates the rubber-band method. We first select a screen position for one endpoint 

of the line. Then, as the cursor moves around, the line displayed from the start position 

to the current position of the cursor. When we finally select a second screen position, 

the other line endpoint is set.  

 

Figure 6.5: Rubber-band method for drawing and positioning a straight line 

segment  



Rubber-band methods are used to construct and position other objects besides straight 

lines. Figure 6.6 demonstrates rubber-band construction of a rectangle, and Fig. 6.7 

shows a rubber-band circle construction. 

 

Figure 6.6: Rubber-band method for constructing a rectangle  

 

Figure 6.7: Constructing a circle using a rubber-band method  

6.4.6 Sketching  

Options for sketching, drawing, and painting come in a variety of forms. Straight lines, 

polygons, and circles can be generated with methods discussed in the previous sections. 

Curve-drawing options can be provided using standard curve shapes, such as circular 

arcs and splines, or with freehand sketching procedures. Splines are interactively 

constructed by specifying a set of discrete screen points that give the general shape of 

the curve. Then the system fits the set of points with a polynomial curve. In freehand 

drawing, curves are generated by following the path of a stylus on a graphics tablet or 

the path of the screen cursor on a video monitor. Once a curve is displayed, the designer 

can alter the curve shape by adjusting the positions of selected points along the curve 

path.  



Figure 6.8 Uses rubber band methods to create objects consisting of connected line 

segments  

Line widths, line styles, and other attribute options are also commonly found in 

painting and drawing packages. Various brush styles, brush patterns, color 

combinations, object shapes, and surface-texture patterns are also available on many 

systems, particularly those designed as artist's workstations. Some paint systems vary 

the line width and brush strokes according to the pressure of the artist's hand on the 

stylus.  

6.4.7 Dragging  

A technique that is often used in interactive picture construction is to move objects into 

position by dragging them with the screen cursor. We first select an object, then move 

the cursor in the direction we want the object to move, and the selected object follows 

the cursor path. Dragging objects to various positions in scene is useful in applications 

where we might want to explore different possibilities before selecting a final location.  

6.4.8 Inking and Painting  

If we sample the position of a graphical input device at regular intervals and display a 

dot at each sampled position, a trail will be displayed of the movement of the device. 

This technique, which closely simulates the effect of drawing on paper, is called inking. 

For many years the main use of inking has been in conjunction with on-line character-

recognition programs. With the advent of high-quality raster displays the technique has 

found wider use for painting purposes.  

 

6.4.9 Painting  

A raster display incorporating a random-access frame buffer, can be treated as a 

painting surface for interactive purposes. As the user moves the cursor around, a trace 

of its path can be left on the screen. The user can build up freehand drawings of 

surprisingly good quality.  

It is possible to provide a range of tools for painting on a raster display: these tools take 

the form of brushes that lay down trails of different thick nesses and colors. For 

example, instead of depositing a single dot at each sampled input position, the program 

can insert a group of dots so as to fill in a square or circle: the result will be a much 

thicker trace. On a "black-and-white display the user needs brushes that paint in both 

black and white, so that information can be both added and removed (Figure 6.9). 

When a color display is used for painting, a menu of different colors can be provided.  



 

Figure 6.9: Erasing with a white brush  

6.5 Summary  

• An interaction technique is a way of using a physical input/output device to perform a 

generic interaction task in a human-computer dialogue. It represents an abstraction 

of some common class of interactive task, for example, choosing one of several 

objects shown on a display screen, so it is not bound to a single application.  

 

• The basic interaction tasks for interactive graphics are positioning, selecting, entering 

text, and entering numeric quantities.  

• Input functions available in a graphics package can be defined in three input modes. 

Request mode places input under the control of the application program. Sample 

mode allows the input devices and program to operate concurrently. Event mode 

allows input devices to initiate data entry and control processing of data. Once a 

mode has been chosen for a logical device class and the particular physical device 

to be used to enter this class of data, input functions the program are used to enter 

data values into the program. An application program can make simultaneous use of 

several physical input devices operating in different modes.  

• Interactive picture-construction methods are commonly used in a variety applications, 

including design and painting packages. These methods provide users with the 

capability to position objects, to constrain figures to predefine orientations or 

alignments, to sketch figures, and to drag objects around the screen. Grids, gravity 

fields, and rubber-band methods are used to aid in positioning and other picture-

construction operations.  

 

 

 

 

 

 

 

 



INPUT AND OUTPUT HANDLING IN WINDOWS SYSTEM : 

 

Input Handling: 

 

The GS is also responsible for handling input from the user, since it sits 

between the application and the devices. 
Again, think of this as a mapping/transformation - we’re taking the 

physical input and mapping it to logical devices (remember that?) so that 

applications can make sense of it. 
How does the GS know what to do with an input? Applications usually 

have to explicitly express interest in something (e.g. a right mouse button 

click) - then the GS will pass it on to that app (assuming that other 

conditions are met - such as window was in focus, etc.) 
This leads to a model of programming called event-driven programming 

(anyone have any experience with this?)  -different from normal sequential 

program  -structure: init, run event loop, quit  -the GS basically renders the 
scene, waits for an event, passes it on, and re-renders the scene Any 

problems with this setup (e.g. for animation/VR - can’t wait on events) 

 

Output Handling: 

 

Once the application has specified primitives and attributes, the GS is 

responsible for realizing those primitives in terms of output on the screen. 
Again, you can think of this as a mapping or transformation - from the 

more abstract primitive descriptions to actual pixel values. Called rendering 

of primitives 
The idea of different spaces also comes up here - we’re mapping from 

model/world space into screen space (different coordinate systems!) 

A final way to think of this job is providing the user a certain view into the 
model (a window on the internal world of the application) - that is often the 

point of computer graphics - visualization of something that otherwise is 

only present in bits. 

 

Window management: 

 

Window managers/window systems are usually separate entities from the 
graphics package. 

Their job is to manage the available screen space and mediate this space 

between multiple applications 

This is where logical output devices come in - each application only sees 
its canvas(es) and doesn’t need to worry about everyone else. 

The window manager takes care of saving portions of windows that get 

covered up, dividing the space among windows, deciding the size and 
position of windows, etc.    (GS-Graphics System) 

 

 


