
UNIT - I

Overview of Graphics System

Video Display Devices

The Primary output device in Computer Graphics is a Monitor

which operates on the standard cathode-ray tube(CRT) design and

a few more technological hardware have also come into the

concept. Computer graphics is a complex and diversified

technology.

Refresh Cathode-Ray Tubes

The following figure illustrates the basic operation of how does

a CRT work. An electron beam comes from the electron gun, passes

through focus and deflection systems that send the beam towards

directed positions on the phosphor-coated screen. The phosphor

in return emits a small spot of light at each position where

ever the electron beam makes contact. As the light which is

emitted by the phosphor fades very easily, some mechanism is

required for managing the picture on the screen. One method to

make the phosphor glowing is to keep on redrawing the picture in

a repeated manner by quickly projecting the electron beam over

the same points again and again.

The heated metal cathode and a control grid are the key

components of an electron gun in a CRT. Through the coil of

wire, called the filament, inside the cylindrical cathode

structure, heat is supplied to the cathode by directing a

current which makes electrons to be 'boiled off" the hot cathode

surface. The free, negatively charged electrons are then

accelerated toward the phosphor coating by a high positive

voltage, in the vacuum inside the CRT envelope. The accelerating

voltage can be generated with a positively charged metal coating

on the inside of the CRT envelope near the phosphor screen, or

an accelerating anode can be used, as in Figure. Most of the

times the electron gun is meant to contain the accelerating

anode and focusing system within the same unit. Intensity of the

electron beam is maintained by keeping voltage levels on the

control grid, which is a metallic cylinder and that fits over

the shape of the cathode. A high negative voltage applied to the

control grid shuts off the beam as it repels electrons and stops

them from passing through the small hole at the end of the

control grid structure. A smaller negative voltage on the

control grid all-together decreases the total number of

electrons passing through it. Since the amount of light emitted

by the phosphor coating depends on the number of electrons which

strike the screen, the brightness of a display can be controlled

by changing the voltage on the control grid. In the electron

beam, electrons spread all over the screen as a result of

repulsion among them. To make the electron beam strike at one

point, focusing anode is present in the CRT. Hence our focusing

mechanism makes the electron beam to strike the phosphor screen

at a small spot and focusing is following by usage of magnetic

and electric field. Magnetic deflected is carried out by using 2

pairs of magnetic coils within the CRT. One pair is on the top

and down position and the other one pair is on the opposite

sides of CRT as it is shown in the Figure Magnetics field thus

produced by each pair creates a transverse deflection force,

perpendicular to the way of magnetic field and to the direction

in which the electron bean is travelling. Moreover Horizontal

deflection of electron bean is accomplished by one pair of coils

and vertical deflection is carried out by the others.

Electric deflection is carried out by using two pairs of

deflecting plates inside CRT, the two pairs are mounted

vertically and horizontally.

Horizontal deflecting plates provide vertical deflection to the

electron beam and vertical deflecting plates provide horizontal

deflection to the electron beam. Important terminologies in CRT

are as follows:

Refresh rate: It denotes the number of images which are

displayed every second, or we can say that it is the number of

times the images is remapped per second. And It is also known as

vertical scan rate and is expressed in Hertz (Hz).

Resolution : It denotes the number of pixels per surface unit

and can be abbreviated as DPI or dots per inches and is

calculated both vertically and horizontally. A resolution of

200dpi means that 200 columns and 200 rows of pixels per square

Size : It is calculated by taking the dimension of the diagonal

of the screen and is expressed

Aspect Ratio : It is termed as the ratio of vertical points to

horizontal points.

Raster scan Displays

Our home television sets use Raster scan technologies. In this

sort of Display Mechanism, an electron beam scans every row of

the screen display row by row starting from top to the bottom.

Each screen point represents the intensity value either 0 or 1

and the intensity value is kept in refresh buffer or frame

buffer. Thus, each pixel value or screen point keeps on changing

from 0 to 1 or from 1 to 0 depending on its intensity value in

refresh buffer. And this is the way the screen is painted one

row at a time. And this is shown in the Figure.

The range of the intensity depends upon the system capabilities.

We can plot only two different colors or intensities if it is a

black and white system. In this case one bit per pixel is

enough, 1 for white intensity and bit value 0 for black

intensity. More bits can be used to display color and intensity

for colors. So, bitmap is the term used for frame buffer for

black and white systems and Pixmap is the term which is used for

Frame buffer which stores multiple bits per pixel.

For raster system the refresh rate is generally 60 to 80 frames

per second, it can be higher for some systems. After it scans

one row and it returns to the left of the screen for scanning

next row, it is called horizontal retrace. After it has

refreshed each scan line, it moves to the top left corner of the

display and again starts the refreshing process and this is

called vertical retrace.

Raster scan systems are much more capable than the random

systems. As it stores the intensity values for each screen

position, it is capable of displaying the color variations and

shade which is not possible with random systems. But raster

system has lower resolution as compared to random system. This

is because, random system follows the line path to be drawn and

line drawing commands are stored in refresh buffer. For raster

system, intensity values are stored for each screen.

Random Scan Displays

The arrangement of a simple random scan system is shown in the

following figure. System stores and application program in the

system memory along with a graphics package. With the help of

graphics package the Graphics command in the application program

are converted into a display file stored in the system memory.

And this file helps the system to refresh the screen. When

operated as a random-scan display unit, a CRT has the electron

beam directed only to the parts of the screen where a picture is

to be drawn. Random-scan monitor draw a picture one line at a

time and for this reason are also referred to as vector displays

(or stroke-writing of calligraphic displays).

The component lines of a picture can be drawn and refreshed by a

random-scan system in any specified order Figure. A pen plotter

in a similar way and is an example of a random-scan, hard-copy

device.

Refresh rate on a random-scan system depends on the number of

lines to be displayed. Picture definition is now stored as a set

of line-drawing commands in an area of memory referred to as the

refresh display file. Sometimes the refresh display file is

called the display list, display program,

or simply the refresh buffer. To display a specified picture,

the system cycles through the set of commands in the display

file, drawing each component line in turn. After all line

drawing commands have been processed, the system cycle back to

the first line command in the list. Random-scan displays are

designed to draw all the component lines of a picture 30 to 60

times each second.

High-quality vector systems are capable of handling

approximately 100,000 “short” lines at this refresh rate. When a

small set of lines is to be displayed, each refresh cycle is

delayed to avoid refresh rates greater than 60 frames per

second. Otherwise, faster refreshing of the set of lines could

burn out the phosphor. Random-scan systems are designed for

line-drawing applications and can-not display realistic shaded

scenes.

Since picture definition is stored as a set of line-drawing

instruction and not as a set of intensity values for all screen

points, vector displays generally have higher resolution then

raster system. Also, vector displays produce smooth line

drawings because the CRT beam directly follows the line path. A

raster system, in contrast, produces jagged lines that are

plotted as discrete point sets.

COLOR CRT

A CRT monitor displays color picture by using a combination of

phosphor that emit different-colored light. By combining the

emitted light from the different phosphor, a range of colors can

be generated. The two basic techniques for producing color

displays with a CRT are the beam-penetration method and the

shadow-mask method.

The beam-penetration method for displaying color pictures has

been used with random-scan monitors. Two layers of phosphor,

usually red and green, are coated onto the inside of the CRT

screen, and the displayed color depends on how far the electron

beam penetrates into the phosphor layers. A beam of slow

electrons excites only the outer red layer. A beam of very fast

electron penetrates through the red layer and excites the inner

green layer. At intermediate beam speeds, combinations of red

and green light are emitted to show two additional colors,

orange and yellow. The speed of the electrons, and hence the

screen color at any point, is controlled by the beam-

acceleration voltage. Beam penetration has been an inexpensive

way to produce color in random-scan monitor, but only four

colors are possible, and the quality of picture is not as good

as with other methods.

Shadow-mask methods are commonly used in raster-scan system

(including color TV) because they produce a much wider range of

colors than the beam penetration method. A shadow-mask CRT has

three phosphor color dots at each pixel position. One phosphor

dot emits a red light, another emits a green light, and the

third emits a blue light. This type ofCRT has three electron

guns, one for each color dot, and a shadow-mask grid just behind

the phosphor-coated screen. Figure 2-10 illustrates the delta-

delta shadow-mask method, commonly used in color CRT system. The

three beams are deflected and focused as a group onto the shadow

mask, which contains a series of holes aligned with the

phosphor-dot patterns. When the three beams pass through a hole

in the shadow mask, they activate a dot triangle, which appears

as a small color spot on the screen. The phosphor dots in the

triangles are arranged so that each electron beam can activate

only its corresponding color dot when it passes through the

shadow mask. Another configuration for the three electron guns

is an in-line arrangement in which the three electron guns, and

the corresponding red-green-blue color dots on the screen, are

aligned along one scan line instead of in a triangular pattern.

This in-line arrangement of electron guns is easier to keep in

alignment and is commonly used in high-resolution color CRTs.

We obtain color variations in a shadow-mask CRT by varying the

intensity levels of the three electron beams. By turning off the

red and green guns, we get only the color coming from the blue

phosphor. Other combinations of beam intensities produce a small

light spot for each pixel position, since our eyes tend to merge

the three colors into one composite. The color we see depends on

the amount of excitation of the red, green, and blue phosphors.

 A white (or gray) area is the result of activating all three

dots with equal intensity. Yellow is produced with the green and

red dots only, magenta is produced with the blue and red dots,

any cyan shows up when blue and green are activated equally. In

some low-cost systems, the electron beam can only be set to on

or off, limiting displays to eight colors. More sophisticated

systems can set intermediate intensity level for the electron

beam, allowing several million different colors to be generated.

Color graphics systems can be designed to be used with several

types of CRT display devices. Some inexpensive home-computer

system and video games are designed for use with a color TV set

and an RF (radio-frequency) modulator. The purpose of the RF

modulator is to simulate the signal from a broad-cast TV

station. This means that the color and intensity information of

the picture must be combined and superimposed on the broadcast-

frequency carrier signal that the TV needs to have as input.

Then the circuitry in the TV takes this signal from the RF

modulator, extracts the picture information, and paints it on

the screen. As we might expect, this extra handling of the

picture information by the RF modulator and TV circuitry

decreased the quality of displayed images.

RASTER-SCAN SYSTEMS

Interactive raster-graphics systems typically employ several

processing units. In addition to the central processing unit, or

CPU, a special-purpose processor, called the video controller or

display controller, is used to control the operation of the

display device. Organization of a simple raster system is shown

in Figure. Here, the frame buffer can be anywhere in the system

memory, and the video controller accesses the frame buffer to

refresh the screen. In addition to the video controller, more

sophisticated raster systems employ other processors as

coprocessors and accelerators to implement various graphics

operations.

Video Controller

Figure shows a commonly used organization for raster systems. A

fixed area of the system memory is reserved for the frame

buffer, and the video controller is given direct access to the

frame-buffer memory.

Frame-buffer locations, and the corresponding screen positions,

are referenced in Cartesian coordinates.

The basic refresh operations of the video controller are

diagrammed. Two registers are used to store the coordinate

values for the screen pixels. Initially, the x register is set

to 0 and the y register is set to the value for the top scan

line. The contents of the frame buffer at this pixel position

are then retrieved and used to set the intensity of the CRT

beam. Then the x register is incremented by 1, and the process

is repeated for the next pixel on the top scan line. This

procedure continues for each pixel along the top scan line.

After the last pixel on the top scan line has been processed,

the x register is reset to 0 and the y register is set to the

value for the next scan line down from the top of the screen.

Pixels along this scan line are then processed in turn, and the

procedure is repeated for each successive scan line. After

cycling through all pixels along the bottom scan line, the video

controller resets the registers to the first pixel position on

the top scan line and the refresh process starts over. Since the

screen must be refreshed at a rate of at least 60 frames per

second, the simple procedure illustrated in Figure may not be

accommodated by typical RAM chips if the cycle time is too slow.

To speed up pixel processing, video controllers can retrieve

multiple pixel values from the refresh buffer on each pass.

The multiple pixel intensities are then stored in a separate

register and used to control the CRT beam intensity for a group

of adjacent pixels. When that group of pixels has been

processed, the next block of pixel values is retrieved from the

frame buffer.

Raster-Scan Display Processor

Figure shows one way to organize the components of a raster

system that contains a separate display processor, sometimes

referred to as a graphics controller or a display coprocessor.

The purpose of the display processor is to free the CPU from the

graphics chores. In addition to the system memory, a separate

display-processor memory area can be provided.

A major task of the display processor is digitizing a picture

definition given in an application program into a set of pixel

values for storage in the frame buffer.

This digitization process is called scan conversion. Graphics

commands specifying straight lines and other geometric objects

are scan converted into a set of discrete points, corresponding

to screen pixel positions. Scan converting a straight-line

segment, for example, means that we have to locate the pixel

positions closest to the line path and store the color for each

position in the frame buffer. Similar methods are used for scan

converting other objects in a picture definition. Characters can

be defined with rectangular pixel grids, as in Figure. or they

can be defined with outline shapes, as in Figure. The array size

for character grids can vary from about 5 by 7 to 9 by 12 or

more for higher-quality displays. A character grid is displayed

by superimposing the rectangular grid pattern into the frame

buffer at a specified coordinate position. For characters that

are defined as outlines, the shapes are scan converted into the

frame buffer by locating the pixel positions closest to the

outline.

Display processors are also designed to perform a number of

additional operations. These functions include generating

various line styles (dashed, dotted, or solid), displaying color

areas, and applying transformations to the objects in a scene.

Also, display processors are typically designed to interface

with interactive input devices, such as a mouse.

RANDOM-SCAN SYSTEMS

The organization of a simple random-scan (vector) system is

shown in Figure. An application program is input and stored in

the system memory along with a graphics package. Graphics

commands in the application program are translated by the

graphics package into a display file stored in the system

memory. This display file is then accessed by the display

processor to refresh the screen. The display processor cycles

through each command in the display file program once during

every refresh cycle. Sometimes the display processor in a

random-scan system is referred to as a display processing unit

or a graphics controller.

Graphics patterns are drawn on a random-scan system by directing

the electron beam along the component lines of the picture.

Lines are defined by the values for their coordinate endpoints,

and these input coordinate values are converted to x and y

deflection voltages. A scene is then drawn one line at a time by

positioning the beam to fill in the line between specified

endpoints.

INTERACTIVE INPUT DEVICES

Introduction

As hardware cost is plummeting, which is considered as the major

bottleneck for the progress; now communication devices is more

listened for better development. For that reason, techniques for

developing high-quality user interfaces are moving to the

forefront in computer science and are becoming the "last

frontier" in providing computing to a wide variety of users—as

other aspects of technology continue to improve, but the human

users remain the same. Interest in the quality of user-computer

interfaces is a recent part of the formal study of computers.

The emphasis until the early 1980s was on optimizing two scarce

hardware resources, computer time and memory. Program efficiency

was the highest goal. With today’s plummeting hardware costs and

powerful graphics-oriented personal computing environments the

focus turns to optimizing user efficiency rather than computer

efficiency. Thus, although many of the ideas presented in this

chapter require additional CPU cycles and memory space, the

potential rewards in user productivity and satisfaction well

outweigh the modest additional cost of these resources.

The quality of the user interface often determines whether users

enjoy or despise a system, whether the designers of the system

are praised or damned, whether a system succeeds or fails in the

market. Actually, a poor user interface such as in air traffic

control or in nuclear power plant monitoring can lead to

catastrophic consequences.

The desktop user-interface metaphor, with its windows, icons,

and pull-down menus, all making heavy use of raster graphics, is

popular because it is easy to learn and requires little typing

skill. Most users of such systems are not computer programmers

and have little sympathy for the old-style difficult-to-learn

keyboard-oriented command-language interfaces that many

programmers take for granted. The designer of an interactive

graphics application must be sensitive to users’ desire for

easy-to-learn yet powerful interfaces. In this chapter, we

discuss the three basic low-level elements of user interfaces:

input devices, interaction techniques, and interaction tasks.

Interaction techniques are the primitive building blocks from

which a user interface is crafted.

We focus in this chapter on input devices—those pieces of

hardware by which a user enters information into a computer

system. Input devices for the earliest computers were

switches and knobs, jumper wires placed in patch boards, and

punched cards. These were followed by the teletype, the text-

only forerunner of today’s interactive terminals. The mouse and

keyboard now predominate, but a wide variety of input devices

can be used.

An interaction task is the entry of a unit of information by the

user. Basic interaction tasks are position, text, select, and

quantify. The unit of information that is input in a position

interaction task is of course a position; the text task yields a

text string; the select task yields an object identification;

and the quantify task yields a numeric value. A designer begins

with the interaction tasks necessary for a particular

application.

For each such task, the designer chooses an appropriate

interaction device and interaction technique. Many different

interaction techniques can be used for a given interaction task,

and there may be several different ways of using the same device

to perform the same task. For instance, a selection task can be

carried out by using a mouse to select items from a menu, using

a keyboard to enter the name of the selection, pressing a

function key, circling the desired command with the mouse, or

even writing the name of the command with the mouse. Similarly,

a single device can be used for different tasks: A mouse is

often used for both positioning and selecting.

Interaction tasks are defined by what the user accomplishes,

whereas logical input devices categorize how that task is

accomplished by the application program and the graphics system.

Interaction tasks are user-centered, whereas logical input

devices are a programmer and graphics-system concept. By analogy

with a natural language, single actions with input devices are

similar to the individual letters of the alphabet from which

words are formed. The sequence of input-device actions that

makes up an interaction technique is analogous to the sequence

of letters that makes up a word. A word is a unit of meaning;

just as several interaction techniques can be used to carry out

the same interaction task, so too words that are synonyms convey

the same meaning. An interactive dialogue is made up of

interaction-task sequences, just as a sentence is constructed

from word sequences.

Concept of Positioning and Pointing

Most display terminals provide the user with an alphanumeric

keyboard with which to type commands and enter data for the

program. For some applications, however, the keyboard is

inconvenient or inadequate. For example, the user may wish to

indicate one of a number of symbols on the screen, in order to

erase the symbol. If each symbol is labeled, he can do so by

typing the symbol’s name; by pointing at the symbol, however,

he may be able to erase more rapidly, and the extra clutter of

labels can be avoided.

Another problem arises if the user has to add lines or symbols

to the picture on the screen. Although he can identify an

items’s position by typing coordinates he can do so

even better by pointing at the screen, particularly if what

matters most is the items’s position relative to the rest of the

picture.

These two examples illustrate the two basic types of graphical

interaction: pointing at items already on the screen and

positioning new items. The need to interact in these ways

has stimulated the developed of a number of different types of

graphical input device,some of which are described in this

chapter.

Ideally a graphical input device should lend itself both to

pointing and to positioning. In reality there are no devices

with this versatility. Most devices are much better at

positioning than at pointing; one device, the light pen, is the

exact opposite. Fortunately, however we can supplement the

deficiencies of these devices by software and in this way

produce hardware-software system that has both capabilities.

Nevertheless the distinction between pointing and positioning

capability is extremely important.

Another important distinction is between devices that can be

used directly on the screen surface and devices that cannot. The

latter might appear to be less useful, but this is far from

true. Radar operators and air-traffic controllers have for years

used devices like the joystick and the tracker ball neither of

which can be pointed at the screen. The effectiveness of these

input devices depends on the use of visual feedback: the x and y

outputs of the device control the movement of a small cross, or

cursor, displayed on the screen. The user of the device steers

the cursor around the screen as if it were a toy boat

on the surface of a pond. Although this operation sounds as if

it requires a lot of skill, it is in fact very easy.

The use of visual feedback has an additional advantage: just as

in any control system, it compensates for any lack of linearity

in the device. A linear input device is one that faithfully

increases or decreases the input coordinate value in exact

proportion to the user’s hand movement. If the device is being

used to trace a graph or a map. Linearity is important. A

cursor, however, can be controlled quite easily even if the

device behaves in a fairly nonlinear fashion. For example, the

device may be much less sensitive near the left – hand region of

its travel: a 1 – inch hand movement may change the x value by

only 50 units, whereas the same movement elsewhere may change x

by 60 units. The user will simply change his hand movement to

compensate, often without even noticing the no linearity. This

phenomenon has allowed simple, inexpensive devices like the

mouse to be used very successfully for graphical input.

Interactive Graphic Devices

Various devices are available for data input on graphics

workstations. Most systems have a keyboard and one or more

additional devices specially designed for interactive input.

These include a mouse, trackball, spaceball, joystick,

digitizers, dials, and button boxes.

Some other input devices used in particular applications are

data gloves, touch panels,image scanners, and voice systems.

Keyboards

The well-known QWERTY keyboard has been with us for many years.

It is ironic that this keyboard was originally designed to slow

down typists, so that the typewriter hammers would not be so

likely to jam. Studies have shown that the newer Dvorak

keyboard , which places vowels and other high-frequency

characters under the home positions of the fingers, is somewhat

faster than is the QWERTY design. It has not been widely

accepted. Alphabetically organized keyboards are sometimes used

when many of the users are non typists. But more and more people

are being exposed to QWERTY keyboards, and experiments have

shown no advantage of alphabetic over QWERTY keyboards .In

recent years, the chief force serving to displace the keyboard

has been the shrinking size of computers, with laptops,

notebooks, palmtops, and personal digital assistants. The

typewriter keyboard is becoming the largest component of such

pocketsized devices, and often the main component standing in

the way of reducing its overall size. The chord keyboard has

five keys similar to piano keys, and is operated with one

hand, by pressing one or more keys simultaneously to "play a

chord." With five keys, 31 different chords can be played.

Learning to use a chord keyboard (and other similar stenographer

style keyboards) takes longer than learning the QWERTY keyboard,

but skilled users can type quite rapidly, leaving the second

hand free for other tasks. This increased training time means,

however, that such keyboards are not suitable substitutes

for general use of the standard alphanumeric keyboard. Again, as

computers become smaller, the benefit of a keyboard that allows

touch typing with only five keys may come to outweigh the

additional difficulty of learning the chords. Other keyboard-

oriented considerations, involving not hardware but software

design, are arranging for a user to enter frequently used

punctuation or correction characters without needing

simultaneously to press the control or shift keys, and assigning

dangerous actions (such as delete) to keys that are distant from

other frequently used keys.

Touch Panels

As the name implies, touch panels allow displayed objects or

screen positions to be selected with the touch of a finger. A

typical application of touch panels is for the selection of

processing options that are represented with graphical icons.

Other systems can be adapted for touch input by fitting a

transparent device with a touch-sensing mechanism over the video

monitor screen. Touch input can be recorded using optical,

electrical, or acoustical methods.

Optical touch panels employ a line of infrared light-emitting

diodes (LEDs) along one vertical edge and along one horizontal

edge of the frame. The opposite vertical and horizontal edges

contain light detectors. These detectors are used to record

which beams are interrupted when the panel is touched. The two

crossing beams that are interrupted identify the horizontal and

vertical coordinates of the screen position selected. Positions

can be selected with an accuracy of about inch. With closely

spaced LEDs, it is possible to break two horizontal or two

vertical beams simultaneously. In this case, an average position

between the two interrupted beams is recorded. The LEDs operate

at infrared frequencies, so that the light is not visible to a

user. An electrical touch panel is constructed with two

transparent plates separated by a small distance. One of the

plates is coated with a conducting material, and the other plate

is coated with a resistive material.

When the outer plate is touched, it is forced into contact with

the inner plate. This contact creates a voltage drop across the

resistive plate that is converted to the coordinate values of

the selected screen position.

In acoustical touch panels, high-frequency sound waves are

generated in the horizontal and vertical directions across a

glass plate. Touching the screen causes part of each wave

to be reflected from the finger to the emitters. The screen

position at the point of contact is calculated from a

measurement of the time interval between the transmission of

each wave and its reflection to the emitter.

Light pens

The pencil-shaped devices 's are used to select screen positions

by detecting the light coming from point on the CRT screen. They

are sensitive to the short burst of light emitted from the

phosphor coating at the instant the electron beam strikes a

particular point. Other light sources, such as the background

light in the room, are usually not detected by a light pen. An

activated light pen, pointed at a spot on the screen as the

electron beam lights up that spot, generates an electrical pulse

that causes the coordinate position of the electron beam to be

recorded. As with cursor-positioning devices,recorded light-pen

coordinates can be used to position an object or to select a

processing option. Although light pens are still with us, they

are not as popular as they once were since they have several

disadvantages compared to other input devices that have been

developed. For one, when a light pen is pointed at the screen,

part of the screen image is obscured by the hand and pen. And

prolonged use of the light pen can cause arm fatigue.

Also, light pens require special implementation for some

applications because they cannot detect positions within black

areas. To be able to select positions in any screen area with a

light pen, we must have some nonzero intensity assigned to each

screen pixel.

In addition, light pens sometime give false readings due to

background lighting in a room.

Graphics Tablets

One type of digitizer is the graphics tablet (also referred to

as a data tablet), which is used to input two-dimensional

coordinates by activating a hand cursor or stylus at selected

positions on a flat surface. A hand cursor contains cross hairs

for sighting positions, while a stylus is a pencil-shaped device

that is pointed at positions on the tablet. This allows an

artist to produce different brush strokes with different

pressures on the tablet surface.

Tablet size varies from 12 by 12 inches for desktop models to 4

by 60 inches or larger for floor models. Graphics tablets

provide a highly accurate method for selecting coordinate

positions, with an accuracy that varies from about 0.2 mm on

desktop models to about 0.05 mm or less on larger models. Many

graphics tablets are constructed with a rectangular grid of wire

embedded in the tablet surface. Electromagnetic pulses are

generated in sequence along the wires, and an electric signal is

induced in a wire coil in an activated stylus or hand cursor to

record a tablet position. Depending on the technology, a their

signal strength, coded pulses, or phase shifts can be used to

determine the position on the tablet.

Joysticks

A joystick consists of a small, vertical lever (called the

stick) mounted on a base that is used to steer the screen cursor

around. Most joysticks select screen positions with actual

stick movement; others respond to pressure on the stick. The

distance that the stick is moved in any direction from its

center position corresponds to screen-cursor movement in that

direction. Potentiometers mounted at the base of the joystick

measure the amount of movement, and springs return the stick to

the center position when it is released. One or more buttons can

be programmed to act as input switchs to signal certain actions

once a screen position has been selected.

Mouse

A mouse is small hand-held box used to position the screen

cursor. Wheels or rollers on the bottom of the mouse can be used

to record the amount and direction of movement.

Another method for detecting mouse motion is with an optical

sensor. For these systems, the mouse is moved over a special

mouse pad that has a grid of horizontal and vertical lines. The

optical sensor detects movement across the lines in the grid.

Since a mouse can be picked up and put down at another position

without change in cursor movement, it is used for making

relative changes in the position of the screen cursor. One, two,

or three buttons are usually included on the top of the mouse

for signaling the execution of some operation, such as recording

cursor position or invoking a function. Most general-purpose

graphics systems now include a mouse and a keyboard as the major

input devices.

Voice Systems

Speech recognizers are used in some graphics workstations as

input devices to accept voice commands. The voice-system input

can be used to initiate graphics operations or to enter data.

These systems operate by matching an input against a predefined

dictionary of words and phrases.

A dictionary is set up for a particular operator by having the

operator speak the command words to be used into the system.

Each word is spoken several times, and the system analyzes the

word and establishes a frequency pattern for that word in the

dictionary along with the corresponding function to be

performed. Later, when a voice command is given, the system

searches the dictionary for a frequency-pattern match. Voice

input is typically spoken into a microphone mounted on a

headset. The microphone is designed to minimize input of other

background sounds. If a different operator is to use the system,

the dictionary must be reestablished with that operator's voice

patterns. Voice systems have some advantage over other input

devices, since the attention of the operator does not have to be

switched from one device to another to enter a command.

Logical Input Devices

Some APIs (PHIGS, GKS, Direct xx) supports 6 classes of logical

input devices – OpenGL does not take this approach

Two older APIs (GKS, PHIGS) defined six types of logical input

Locator: return a position:

Pick: return ID of an object:

Keyboard: return strings of characters:

Stroke: return array of positions:

Valuator: return floating point number:

Choice: return one of n items

String – logical device providing ASCII strings – keyboard

Locator – provides a position in world coordinates – usually

implemented via pointing device– mouse, trackball. OpenGL

provides similar but conversion from screen coordinates to world

coordinates must be made by a user

Pick – returns identifier of an object – in OpenGL process

called selection can be used to accomplish picking

Choice – allows the user to select on of a discrete number of

options – in OpenGL various widgets provided by the window

system can be used; widget is a graphical interactive device

provided by window system or a toolkit (menu with n selections

etc.)

Dial – provides analog input to the user program – slide bars

etc.

Stroke – device returns an array of locations – different

implementations – usually: mouse button down, transfer data to

an array with different positions, release button – ends the

transfer

Input Modes

Input devices contain a trigger which can be used to send a

signal to the operating system Button on mouse Pressing or

releasing a key

When triggered, input devices return information (their measure)

to the system)Mouse returns position information Keyboard

returns ASCII code

Request Mode

Input provided to program only when user triggers the device

Typical of keyboard input Can erase (backspace), edit, correct

until enter (return) key (the trigger) is depressed

Event Mode

Most systems have more than one input device, each of which can

be triggered at an arbitrary time by a user

Each trigger generates an event whose measure is put in an event

queue which can be examined by the user program

Event Types

Window: resize, expose, iconify

Mouse: click one or more buttons

Motion: move mouse

Keyboard: press or release a key

Idle: nonevent

Define what should be done if no other event is in queue

OUTPUT PRIMITIVES

Output primitives are the geometric structures such as straight

line segments (pixel array) and polygon color areas, used to

describe the shapes and colors of the objects. Points and

straight line segments are the simplest geometric components of

pictures. Additional output primitive includes: circles and

other conic sections, quadric surfaces, spline curves and

surfaces, polygon color areas and character strings. Here, we

discuss picture generation algorithm by examining device-level

algorithms for displaying two-dimensional output primitives,

with emphasis on scan-conversion methods for raster graphics

system.

Points and Lines

Point plotting is done in CRT monitor by turning on the electron

beam to illuminate at the screen phosphor at the selected

location.

Random-scan systems: stores point plotting instructions in the

display list and co-ordinate values in these instructions are

converted into deflection voltages that position the electron

beam at selected location.

B/W raster system: Within frame buffer, bit value is set to 1

for specified screen position. Electron beam then sweeps across

each horizontal scan line, it emits a burst of electrons (plots

a point) whenever value of 1 is encountered in the frame buffer.

RGB raster system: Frame buffer is loaded with the color codes

for the intensities that are to be displayed at the screen pixel

positions.

Line drawing is accomplished by calculating intermediate

positions along the line path between two specified endpoint

positions. An output device is then directed to fill in these

positions between the endpoints.

For analog devices (vector-pen plotter and random-scan display),

a straight line can be drawn smoothly between two points.

Reason: linearly varying horizontal and vertical deflection

voltages are generated that are proportional to the required

changes in the x and y directions.

Digital devices display a straight line segment by plotting

discrete points between two end-points. Discrete integer

coordinates are calculated from the equation of the line. Since

rounding of coordinate values occur [(4.48, 48.51) would be

converted to (4, 49)], line is displayed with stair step

appearance.

SOFTWARE STANDARDS

Primary goal of standardized graphics software is portability.

When packages are designed with standard graphics functions,

software can he moved easily from one hardware system to another

and used in different implementations and applications.

International and national standards planning organizations in

many countries have cooperated in an effort to develop a

generally accepted standard for computer graphics.

After considerable effort, this work led to following standards:

GKS (Graphical Kernel System):This system was adopted as the

first graphics software standardby the International Standards

Organization (ISO) and American National Standards Institute

(ANSI). Although GKS was originally designed as a two-

dimensional graphics package, a three-dimensional GKS extension

was subsequently developed.

PHIGS (Programmer’s Hierarchical Interactive Graphics

Standard):Extension to GKS, Increased Capabilities for object

modeling, color specifications, surface rendering and picture

manipulations are provided. Subsequently, an extension of PHIGS,

called PHIGS+, was developed to provide three-dimensional

surface-shading capabilities not available in PHIGS.

Although PHIGS presents a specification for basic graphics

functions, it does not provide a standard methodology for a

graphics interface to output devices (i.e. still machine

dependent). Nor does it specify methods for storing and

transmitting pictures. Separate standards have been developed

for these areas:

CGI (Computer Graphics interface):Standardization for device

interface

CGM (Computer Graphics Metafile):Standards for archiving and

transporting pictures

GRAPHICS SOFTWARE

There are two general categories of graphics software

General programming packages:

Provides extensive set of graphics functions for high level

languages (FORTRAN, C etc).

Basic functions include those for generating picture

components (straight lines, polygons, circles, and other

figures), setting color and intensity values, selecting

views, and applying transformations.

Example: GL(Graphics Library)

Special-purpose application packages: Designed for

nonprogrammers, so that users can generate displays

without worrying about how graphics operations work.

The interface to the graphics routines in such packages

allows users to communicate with the programs in their own

terms.

Example: artist's painting programs and various business,

medical, and CAD systems.

CONCEPTUAL FRAMEWORK FOR INTERACTIVE GRAPHICS SYSTEM

The high-level conceptual framework shown here can be used to

describe almost any interactive graphics system.

The three major parts of the framework are:

Application Modeling

Calculating what is to be displayed

Displaying the Model

Calling the graphics API routines

Interaction Handling

Handling user interaction, which will change the model, and

therefore the display.

typically an event driven loop

- Graphics Library - Between application and display hardware

there is graphics library / API.

- Application Program - An application program maps all

application objects to images by invoking graphics.

- Graphics System – An interface that interacts between Graphics

library and Hardware.

- Modifications to images are the result of user interaction.

UNIT I

Line Drawing Algorithms

1) Digital Differential Analyzer (DDA) Algorithm:

 Straight Line Equation in the form of Slope intercept is as follows:

y = m x + b ------------1

where m represents the slope of the line and b as the y intercept which it
makes with the Y axis. The two end point of a line segment are denoted by
the positions (x1, y1) and (x2, y2) as shown in the following diagram. Using
this Equation we can determine values for the slope m and y intercept b
using the following calculations.

M =

y2 - y1

----2 y2

x2 - x1

b = y1 – mx1 -----3 y1

Value of y is calculated

∆y – m . ∆x _ _ _ (4) x1 x2

Similarly we can obtain ∆ x interval Figure. (1) Line Path between

endpoint

∆ x =

 y

position (x1, y1) & (x2, y2)

m

For lines with slope magnitude m >1, ∆y can be set proportional to a

small deflection voltage with the corresponding horizontal deflection
voltage set proportional to ∆x.

For lines with m = 1 ∆x = ∆y.

DDA Algorithm : Also Called as Digital Differential Analyzer (DDA)
performs scan. It is a Scan conversion line algorithm. It is also called an
incremental algorithm, as it increments the value of x or y by 1 depending
on the slope value. It tries to decrease the computation burden and
increase the sped of computing. Conversion line Algorithm based on
calculating either ∆y or ∆x using equation (4) & (5).

We sample the line at unit intervals in one coordinate and determine
corresponding integer values nearest. The line paths for the other

coordinate. Now consider first a line with positive slope, as shown in
Figure.(1). If the slope is less than one or equal to 1. We sample at unit x
intervals (∆x = 1) compute each successive y values as :

yk+1 = yk + m _ _ _ (6)

Value k takes integer values starting form 1, for the first point & gets
incremented by 1 until the final end point is reached.

For lines with positive slope greater than 1, we reverse the role of x and y.
That is we sample at unit y intervals (∆y = 1) and calculate each
succeeding x value as :

xk+1 = xk +
1 _ _ _ (7)
m

Equation (6) and (7) are based on assumption that lines are to be
processed form left end point to the right end point.

If this processing is reversed the sign is changed

∆x = - 1 & ∆y = - 1

yk+1 = yk – m _ _ _ (8)

xk+1 = xk –
1 _ _ _(9)

m

Equations (6) to (9) are used to calculate pixel position along a line with
negative slope.

When the start endpoint is at the right we set ∆x = -1 and obtain y position
from equation (7) similarly when Absolute value of Negative slope is
greater than 1, we use ∆y = -1 & eq.(9) or we use ∆y = 1 & eq.(7).

DDA Example:

(0, 0) to (8, 5)

 x1 = 0 y1 = 0

 x2 = 8 y2 = 4

m = 5 − 0 / 8 − 0 = 5/8 = 0.6 < 1

so, x = 0+1 y=0+0.6 (Round off y values)

i x y (x,y)

 0 0

1 1.0 0.6 (1,1)

2 2.0 1.2 (2,1)

3 3.0 1.8 (3,2)

4 4.0 2.4 (4,2)

5 5.0 3.0 (5,3)

6 6.0 3.6 (6,4)

7 7.0 4.2 (7,4)

8 8.0 4.8 (8,5)
 Plot the graph with these (x,y) points.

2) Bresenham’s Line Drawing Algorithm :

This is very efficient and faster line drawing algorithm. It scan converts
lines and uses only incremental integer calculations. Thus we can use this
algorithm for drawing circles and similar other curves also. An accurate
and efficient raster line generating Algorithm, developed by Bresenham,
scan concerts line using only incremental integer calculations that can be
adapted to display circles and other curves. The vertical axes show scan-
line position, & the horizontal axes identify pixel columns as shown in
Figure. (5) & (6) . This algorithm follows the closeness theory to
implement line plotting.

As we did for DDA algorithm, here also we start with I octant where slope ,

m<1. Since m<1, we move in x-direction by sampling at unit x intervals.

Thus we start plotting from initial, say(x0-y0) and take steps in success x-
columns an plot the point whose y-values is closest to the ideal line path.

13
Specified Line

12 Path

 50

Specified Line

11 49 Path

10 48

 10 11 12 13 50 51 52 53 53

 Figure.5 Figure.6

We first consider the scan conversion process for lines with positive slope

less than 1 to illustrate Bresenham’s approach. Pixel position along a line

path are then determined by sampling at unit x intervals starting form left

and point (x0 , y0) of a given line, we step at each successive column (x

position) & plot the pixel whose scan line y is closest to the line path. Now

assuming we have to determine that the pixel at (xk , yk) is to be

displayed, we next need to divide which pixel to plot in column xk+1.

Preference would be at the position (xk+1 , yk) and (xk+1 , yk+1). At sampling

position xk+1, we label vertical pixel separations from the mathematical

line path as d1 and d2. Figure.(8).

The y coordinate on the mathematical line at pixel column position xk+1 is

calculated as :

y = m(xk + 1) +b

_ _ _(10)

Then

d1 = y – yk = m (xk + 1) +b - yk

d2 = (yk + 1) –y = yk + 1 – m (xk + 1) – b

The difference can be define between these two separations as

d1 - d2 = 2m (xk+1) - 2yk + 2b - 1 _ _ _ (11)

The deciding Parameter Pk for the Kth step in the line algorithm can be
obtained by making some rearrangements in eq.(11) so that it involves
sort of integer calculation. We accomplish this by substituting m = ∆y/∆x.
where ∆y & ∆x are the vertical & horizontal separation of the endpoint
positions & defining. The sign of Pk remains same as that of the sign of d1 -
d2.

Pk = ∆x (d1 – d2) = 2∆y. xk - 2∆x yk + c _ _ _ (12)

Since ∆x > 0 for our example Parameter C is constant & has the value 2∆y

+ ∆x (2b -1), which is independent of pixel position.

If the pixel position at yk is closer to line path than the pixel at yk+1 (that is

d1 < d2), then decision Parameter Pk is Negative. In that case we plot the

lower pixel otherwise we plot the upper pixel. Coordinate changes along

the line owner in unit steps in either the x or directions. Therefore we can

obtain the values of successive decision Parameter using incremental

integer calculations. At step k = 1, the decision Parameter is evaluated

form eq.(12) as :

Pk+1 = 2∆y . xk+1 - 2∆x . yk+1 + C

yk+1

•

y •

yk •

d2

d1

xk+1 Figure.8

 xk

Subtracting eq.(12) from the preceding equation we have

Pk+1 – Pk = 2∆y (xk+1 – xk) - 2∆x (yk+1 – yk)

But xk+1 = xk + 1

So that, Pk+1 = Pk + 2∆y - 2∆x (yk+1 – yk) _ _ _ (13)

The term yk+1 - yk either results into 0 or 1, depending on sign of

Parameter Pk.This recursive calculation of decision Parameter is

performed each integer x position, starting at left coordinate endpoint of

the line. The first parameter P0 is evaluated from equation (12) at starting

pixel position (x0, y0) and with m evaluated as ∆y/∆x.

P0 = 2∆y - ∆x _ _ _ (14)

The following lines express how does Bresenham’s Line Drawing

Algorithm work for m <1 :

Take input for two endpoints of a line & store the left end point in (x0 , y0).

Load (x0 , y0) into frame buffer that is plot the first point. Calculate

constants ∆x, ∆y, 2∆y and 2∆y - 2∆x and obtain the starting value for the

decision parameter as : P0 = 2∆y - ∆x. At each xk along the line starting at k

= 0, perform the following test if Pk < 0 the next point to plot is (xk+1 , yk)

and Pk+1 = Pk + 2∆y otherwise the next point to plot is (xk+1 , yk+1) and Pk+1
= Pk +2∆y - 2∆x. Repeat step 4 ∆x times.

Example :

Digitize the line with end points (20, 10) & (30, 18) using Bresenham’s Line
Drawing Algorithm.

 slope of line, m = y2 - y1 = 18 - 10 = 8 = 0.8

 x2 - x1 30 - 20 10

∆x = 10 , ∆y = 8

Initial decision parameter has the value

P0 = 2∆y - ∆x = 2x8 – 10 = 6

 Since P0 > 0, so next point is (xk + 1, yk + 1) (21, 11)

Now k = 0, Pk+1 = Pk + 2∆y - 2∆x

 P1 = P0 + 2∆y - 2∆x

 = 6 + (-4)

 = 2

 Since P1 > 0, Next point is (22, 12)

Now k = 1, Pk+1 = Pk + 2∆y - 2∆x

 P2 = 2 + (- 4)

 = - 2

 Since P2 < 0, Next point is (23, 12)

Now k = 2 Pk+1 = Pk + 2∆y

 P2 = - 2 + 16

 = 14

Since P3 > 0, Next point is (24, 13)

Now k = 6 Pk+1 = Pk + 2∆y - 2∆x

 P7 = 2 + (- 4)

 = - 2

 Since P7 < 0, Next point is (28, 16)

Now k = 7 Pk+1 = Pk + 2∆y

 P8 = - 2 + 16

 = 14

 Since P8 > 0, Next point is (29, 17)

Now k = 8 Pk+1 = Pk + 2∆y - 2∆x

 P9 = 14 – 4

 = 10

 Since P9 > 0, Next point is (30, 18)

 K Pk (xk+1, yk+1)

 0 6 (21, 11)

 1 2 (22, 12)

Now k = 3 Pk+1 = Pk + 2∆y - 2∆x

 P4 = 14 – 4

 = 10

 Since P4 > 0, Next point is (25, 14)

Now k = 4 Pk+1 = Pk + 2∆y - 2∆x

 P5 = 10 – 4

 = 6

 Since P5 > 0, Next point is (26, 15)

Now k = 5 Pk+1 = Pk + 2∆y - 2∆x

 P6 = 6 – 4

 = 2

 Since P6 > 0, Next point is (27, 16)

 2 -2 (23, 12)

 3 14 (24, 13)

 4 10 (25, 14)

 5 6 (26, 15)

 6 2 (27, 16)

 7 -2 (28, 16)

 8 14 (29, 17)

 9 10 (30, 18)

 Plot the graph with these points.

Circle Drawing Algorithms

1) Mid Point Circle Algorithm

 The equation of a circle can be given as follows, where (xc,yc) represents
the centre coordinates.

(x – xc)2 + (y – yc)2 – r2 = 0

In the following way the calculation is made for the position of points
along the circlular path by moving in the x direction from (xc - r) to (xc + r)
and determining the corresponding y values as :

y = yc (xc - x)2 - r2

As it requires heavy computation this method is not the best method to
calculate the circle point coordinates. Moreover spacing between the

points is not uniform. Another method that can be used by calculating the
polar coordinates r and θ where

x = xc + r cos θ

y = yc + r sin θ

It requires heavy computation but this method results in equal spacing

between the points. The efficient method is incremental calculation of

decision parameter.

Mid Point Algorithm :

We assume that we are working in II octant of the circle .The concept

behind Mid point circle is that, a midpoint M lies between two points and

we have to decide if M lies between two points and we have to decide if M

lies inside or outside the circle. This would tell the next point to be plotted

along the circumference of the circle. We move in unit steps in the x-

direction and calculate the closed pixel position along the circle path at

each step.

For a given radius r & screen center position (xc, yc). We first set our

Algorithm to calculate the position of points along the coordinate position

(x0, y0). These calculated positions are then placed at this proper screen

position by adding xc to x and yc to y. For a circle from x = 0 to x = y in

first quadrant, the slope varies from 0 to 1.

We move in the positive x direction and determine the decision parameter

to find out the possible two y values along the circle path. And the Points

calculation in other 7 octants is done using the symmetry pattern.

 y (x = y)

(y, x)

(y, x)

(-x, y) (x, y)

45º

x (x = 0)

(-x, -y) (x, -y)

 (-y, -x)

(y, -y)

The following function is used for the implementation of this method :

fcircle(x, y) = x2 + y2 - r2 _ _ _ (1)

Any point (x, y) on the boundary of the circle with radius r satisfies the
equation of fcircle(x, y) = 0. The relative position of any point (x, y) can be
determined by checking the sign of circle function.

fcircle(x, y)

< 0 if (x, y) denotes it inside circle boundary.

= 0 if (x, y) denotes it on circle boundary._ _> (2)

0 if (x, y) denotes it outside circle boundary.

yk

yk -1

xk xk+1 xk+2

Taking an assumption that we have just plotted a pixel at (xk, yk). We next
need to determine whether the pixel (xk+1, yk) or (xk+1, yk-1) is closer. Our
decision parameter is the circle function evaluated at the mid point
between these two pixels.

Pk = fcircle (xk + 1, yk - ½)

Or Pk = (xk + 1)2 +(yk - ½)2 – r2 _ _ _ (3)

This denotes that If Pk < 0, Mid point is inside the circle boundary and the

pixel on the scan line yk is closer to the circle boundary. Otherwise, Mid

point is on or outside the circle boundary and the point on the scan line

yk - 1 is closer. Successive decision parameters are obtained by

incremental calculations. Again the next deciding parameter is calculate

the position at next sampling position by taking the next position.

xk+1 + 1 = xk + 2

 Pk+1 = fcircle(xk+1 + 1, yk+1 - ½)

Or Pk+1 = [(xk + 1) + 1]2 + (yk+1 - ½)2 – r2

Or Pk+1 = Pk + 2(xk + 1) + (yk+1
2 – yk

2) – (yk + 1 – yk) + 1 _ _ _ (4)

Successive increment for Pk is 2xk+1 +1(If Pk < 0) otherwise (2xk+1 +1 - 2yk+1)
where

2xk+1 = 2xk + 2 & 2yk+1 = 2yk – 2

Initial decision parameter P0 is obtained as (0, r) = (x0, y0)

 P0 = fcircle(x, y) = fcircle (1, r - ½) = 1 + (r - ½)2 – r2

Or P0 =
5 - r

4

If r is a integer then P0 = 1 – r

Algorithm for this can be defined in the following steps for calculating

the Mid Point:

(1) Input radius r and circle center (xc, yc) and obtain the first point on

circumference of a circle centered on origin (x0, y0) = (0, r)

(2) Calculate the initial value of the decision parameter as : P0 =
5/

4 - r

(3) At each xk position, starting at k = 0 if Pk < 0 the next point along

the circle is (xk+1, yk) and Pk+1 = Pk + 2xk+1 + 1, otherwise the next

point along the circle is (xk + 1, yk - 1) and Pk+1 = Pk + 2xk+1 + 1 –

2yk+1 where 2xk+1 = 2xk + 2 & 2yk+1 = 2yk – 2.

(1) Determine symmetry points in other seven octants.

(2) Move each calculated pixel position (x, y) onto the circular path

centered on (xc, yc) & plot coordinate values x = x + xc & y = y + yc.

(3) Repeat step (3) through (5) until x ≥ y.

Example: Demonstrate the Mid Point Circle Algorithm with circle
radius, r = 10.

 P0 = 1 – r =1 - 10 = - 9

Now the initial point (x0, y0) = (0, 10) and initial calculating terms for
calculating decision parameter are

2x0 = 0 , 2y0 = 20

Since Pk < 0, Next point is
(1, 10)

P1 = - 9 +3 = - 6 Now P1 < 0,
Next point is
(2, 10)

P2 = - 6 + 5 = - 1 Now P2 < 0,
Next point is
(3, 10)

P3 = -1+ 7 = 6 Now P3 > 0,
Next point is
(4, 9)

P4 = 6 + 9 - 18 = - 3 Now P4 < 0,
Next point is
(5, 9)

P5 = - 3 + 11 = 8 Now P5 > 0,
Next point is
(6, 8)

P6 = 8 +13 - 16 = 5 Now P6 > 0,
Next point is
(7, 7)

 K (xk+1, yk+1) 2xk+1 2yk+1

 0 (1, 10) 2 20

 1 (2, 10) 4 20

2 (3, 10) 6 20

3 (4, 9) 8 18

4 (5, 9) 10 18

5 (6, 8) 12 16

6 (7, 7) 14 14

Plot the graph with these points.

2) Bresenham’s Circle Drawing Algorithm:

A continuous arc cannot be displayed in the raster. Hence nearest pixel position is
chosen for completing the arc.

It is observed from the following illustration that the pixel is put at (X, Y) location
and to decide where to put the next pixel at N (X+1, Y) or at S (X+1, Y-1).

This can be decided by the decision parameter d.

• If d <= 0, then N(X+1, Y) is to be chosen as next pixel.
• If d > 0, then S(X+1, Y-1) is to be chosen as the next pixel.

Let's say our circle is at some random pixel P whose coordinates are (xk, yk).
Now we need to find out our next pixel.

Note- This is octet 2 so here x can never be decremented as per properties of a
circle but y either needs to decremented or to be kept same. y is needed to be
decided.

Here it needs to decide whether go with N or S.

For this bresenham's circle drawing algorithm will help us to decide by

calculating the difference between radius and the coordinates of the next pixels.

The shortest of d1 and d2 will help us Decide our next pixel.

note- xk+1 = xk +1
 As xk+1 is the next consecutive pixel of xk
similarly
 yk-1 = yk -1

Equation of Circle with Radius r

(x– h)2 + (y – k)2 = r2

When coordinates of centre are at Origin i.e., (h=0, k=0)

 x2 + y2 = r2 (Pythagoras theorem)

Function of Circle Equation

F(C) = x2 + y2 - r2

Function of Circle at N

 F(N) = (xk+1)2 + (yk)2 – r2 (Positive)

Here the value of F(N) will be positive because N is out-side the circle
that makes (xk+1)2 + (yk)2 Greater than r2

Function of Circle at S

 F(S) = (xk+1)2 + (yk-1)2 – r2 (Negative)

Here the value of F(S) will be Negative because S is in-side the circle that makes
(xk+1)2 + (yk-1)2 Less than r2

Now we need a decision parameter which help us decide the next pixel
 Say Dk
 And , Dk = F(N)+F(S)
Here either we will get the positive or negative value of Dk

So if Dk < 0
 that means the negative F(S) is bigger then the positive F(N), that implies
Point N is closer to the circle than point S. So we will select pixel N as our next
pixel.

and if Dk > 0
 that means positive F(N) is bigger and S is more closer as F(S) is smaller.
So we will Select S as our next pixel.

Now lets find Dk

 Dk = (xk+1)2 + (yk)2 – r2 + (xk+1)2 + (yk-1)2 – r2
 (replacing xk+1 with xk + 1 and yk-1 with yk -1)

 = (xk + 1)2 + (yk)2 – r2 + (xk + 1)2 + (yk -1)2 – r2

 = 2(xk + 1)2 + (yk)2 + (yk -1)2 – 2r2 ----- (i)

Now lets find Dk+1

(Replacing every k with k+1)

 Dk+1 = 2(xk+1 + 1)2 +(yk+1)2 + (yk+1 -1)2 – 2r2

 = 2(xk+1 + 1)2 + (yk+1)2 + (yk+1 -1)2 – 2r2
(Replacing xk+1 with xk + 1 but now we can’t replace yk+1 because we don’t
know the exact value of yk)

 = 2(xk+1+ 1)2 + (yk+1)2 + (yk+1 -1)2 – 2r2

 = 2(xk+2)2 + (yk+1)2 + (yk+1 -1)2 – 2r2 ----- (ii)

Now to find out the decision parameter of next pixel i.e. Dk+1
We need to find
 Dk+1 - Dk = (ii) - (i)

 = 2(xk+2)2 + (yk+1)2 + (yk+1 -1)2 – 2r2

 - [2(xk + 1)2 + (yk)2 + (yk -1)2 – 2r2]

 = 2(xk)2

 + 8xk + 8 + (yk+1)2 + (yk+1)2 - 2yk+1 + 1 - 2r2

 - 2xk - 4xk
 – 2 - (yk)2 - (yk)2 + 2yk

 - 1 + 2r2

 = 4xk + 2(yk+1)2 - 2yk+1 - 2(yk)2 - 2yk + 6

Dk+1 = Dk + 4xk + 2(yk+1)2 - 2yk+1 - 2(yk)2 - 2yk + 6 ----- (iii)

If (Dk < 0) then we will choose N point as discussed.
i.e. (xk+1, yk)
that means our next x coordinate is xk+1 and next y coordinate is yk i.e. yk+1 =

yk, putting yk in (iii) in replace of yk+1
now,
 Dk+1 = Dk + 4xk + 2(yk)2 - 2yk - 2(yk)2 - 2yk + 6

= Dk + 4xk + 6

If (Dk > 0) then we will choose S point.
i.e. (xk+1, yk-1)

that means our next x coordinate is xk+1 and next y coordinate is yk i.e. yk+1 = yk-1

putting yk-1 in (iii) in replace of yk+1
now,
 Dk+1 = Dk + 4xk + 2(yk-1)2 - 2yk-1 - 2(yk)2 - 2yk + 6
Now we know

yk-1 = yk – 1
therefore,

Dk+1 = Dk + 4xk + 2(yk -1)2 - 2(yk -1) - 2(yk)2 - 2yk + 6

 = Dk + 4xk + 2(yk)

2 + 2 - 4yk
 - 2yk +2 - 2(yk)2 - 2yk + 6

 = Dk + 4xk - 4yk + 10

 = Dk + 4(xk - yk) + 10

Now to find initial decision parameter means starting point that is (0,r)

,value of y is r
Putting (0,r) in (i)

Dk = 2(xk + 1)2 + (yk)2 + (yk -1)2 – 2r2

D0 = 2(0 + 1)2 + r2 + (r -1)2 – 2r2

 = 2 + r2 +r2 + 1 – 2r – 2r2

 = 3-2r

A circle is made up of 8 Equal Octets so we need to find only coordinates of any
one octet rest we can conclude using that coordinates.

We took octet-2. Where X and Y will represent the pixel
Let us make a function Circle() with parameters coordinates of Centre (Xc,Yc) and
pixel point (X,Y) that will plot the pixel on screen.

We will find pixels assuming that Centre is at Origin (0,0) then we will add the
coordinates of centre to corresponding X and Y while drawing circle on screen.

Circle (Xc,Yc,X,Y) {

Plot (Y+Xc , X+Yc) ……Octet-1
Plot (X+Xc , Y+Yc) ……Octet-2
Plot (-X+Xc , Y+Yc) ……Octet-3
Plot (-Y+Xc , X+Yc) …..Octet-4
Plot (-Y+Xc , -X+Yc) ……Octet-5
Plot (-X+Xc , -Y+Yc) ……Octet-6
Plot (X+Xc , -Y+Yc) ……Octet-7
Plot (Y+Xc , -X+Yc) ……Octet-8
}

Now,
Each plot function is for different octet and will construct the circle while in loop.

Step 1: Get the Radius of Circle R
 And Coordinates of centre of circle (Xc,Yc).

Step 2: X and Y are going to be plotted points
 Set X=0 and Y=R

Step 3: D = 3-2R (Initial decision Parameter)

Step 4: Plot Circle (Xc,Yc,X,Y)

Step 5: if D < 0 Then
 D = D + 4X + 6
 X=X+1
 Y=Y
 Else
 D=D+4(X-Y)+10
 X=X+1
 Y=Y-1

Step 6: Check, if X=Y
 Goto Step 7
 Else
 Goto Step 4

Step 7: Stop/Exit.

Example: Demonstrate the Circle Algorithm with circle radius, r = 8 and
mid point (xc,yc)=(30,40).

 P0 = 3 – 2r =3 - 16 = - 13

Now the initial point (x0, y0) = (0,8) and initial calculating terms for
calculating decision parameter are

P1= -13 +4*1+6 = −3 Now P1 < 0,

P2 = - 3 + 4*2+6 = 11 Now P2 < 0,

P3 = 11+4*(3−7)+10 =5 Now P3 > 0,

P4 = 5 + 4*(4−6) + 10 = 7 Now P4 > 0.

X+30 Y+40 P (X+Xc, Y+Yc)

0 8 −13 (30,48)

1 8 −3 (31,48)

2 8 11 (32,48)

3 7 5 (33,47)

4 6 7 (34,46)

5 5 (X=Y) (35,45)

Plot the graph with these points.

MID POINT ELLIPSE ALGORITHM

The midpoint ellipse drawing algorithm uses the four way symmetry of the ellipse to generate it. The
figure(a) shows the four-way symmetry of ellipse. This approach is similar to that used in displaying a

raster circle. Here, the quadrant of the ellipse is divided into two regions. The figure(b) shows the

division of the first quadrant according to the slope of an ellipse with rx < ry. As ellipse is drawn
from 90 to 0 degrees ,the x moves in the Positive direction and y moves in the negative direction, and

ellipse passes through two regions. It is important to note that while processing first quadrant we have

to take steps in the x direction where the slope of the curve has a magnitude less than 1(for region 1)
and to take steps in the y direction where the slope has a magnitude greater than 1 (for region 2).

Like circle function, the ellipse function,

serves as the decision parameter in the midpoint algorithm. At each sampling position, the

next pixel along the ellipse Path is selected according to the sign of the ellipse function

evaluated at midpoint between the two candidate pixels (xi + 1 , yi or xi + 1, yi -1 for region

1 and xi, yi - 1 or xi + l, yi - l for region2).

Starting at (0, ry) we have to take unit steps in the x direction until we reach the boundary

between region 1 and region 2. Then we have to switch to unit steps in the y direction over

the remainder of the curve in the first quadrant. To check for boundary point between region

1 and region 2 we have to test the value of the slope of the curve at each step. The slope of

the ellipse at each step is given as

we have to switch to unit steps in the y direction over the remainder of the curve in the first

quadrant. The figure(c) shows the midpoint between the two candidate pixels at sampling

position xi + 1 in the first region. The next position along the ellipse path can be evaluated by

decision parameter at this midpoint.

If d1i < 0, the midpoint is inside the ellipse and the pixel on scan line yi is closer to the

ellipse boundary.

If d1i ≥ 0, the midpoint is outside or on the ellipse boundary and the pixel on the scan line

yi - 1 is closer to the ellipse boundary.

The incremental calculation of decision parameter of region 1 can be given as

In region 1, the initial value of the decision parameter can be obtained by evaluating the

ellipse function at the start position (x0, y0) = (0, ry).

For region 2, we sample at unit steps in the negative y direction, and the midpoint is now

taken between horizontal pixels, at each step, as shown in the figure(c). For this region, the

decision Parameter is evaluated as

If d2i > 0, the midpoint is outside the ellipse boundary, and we select the pixel at xi.

If d2i ≤ 0, the midpoint is inside or on the ellipse boundary, and we select pixel Position

xi +1 . The incremental decision parameters for region 2 can be given as

where x i +1 set either to xi or to xi + 1 depending on the sign of d2i

In region 2, the initial value of the decision parameter can be obtained by evaluating the

ellipse function at the last position in the region 1.

ALGORITHM

Calculating the Initial Decision Parameter

In region 1 the initial value of a decision parameter is obtained by giving starting position =

(0,ry).

i.e. p10=ry
2+1/4rx

2-rx
2ry

When we enter into a region 2 the initial position is taken as the last position selected in

region 1 and the initial decision parameter in region 2 is then:

p20=ry
2(x0+1/2)2+rx

2(y0-1)2-rx
2ry

2

1. Take the input and ellipse centre and obtain the first point on an ellipse centered on

the origin as a (x,y0)= (0,ry).

2. Now calculate the initial decision parameter in region 1 as:

p10=ry
2+1/4rx

2-rx
2ry

3. At each xk position in region 1 perform the following task. If p1k<0 then the next

point along the ellipse centered on (0,0) is (xk+1,yk).

i.e. p1k+1=p1k+2ry
2xk+1+ry

2

Otherwise the next point along the circle is (xk+1,yk -1)

i.e. p1k+1=p1k+2ry
2xk+1 – 2rx

2yk+1+ry
2

4. Now, again calculate the initial value in region 2 using the last point (x0,y0) calculated

in a region 1 as : p20=ry
2(x0+1/2)2+rx

2(y0-1)2-rx
2ry

2

5. At each yk position in region 2 starting at k =0 perform the following task. If p2k<0

the next point along the ellipse centered on (0,0) is (xk , yk-1)

i.e. p2k+1=p2k-2rx
2yk+1+rx

2

Otherwise the next point along the circle will be (xk+1,yk -1)

i.e. p2k+1 =p2k+2ry
2xk+1 -2rx

2yk+1+rx
2

6. Now determine the symmetric points in another three quadrants.

7. Plot the coordinate value as: x=x+xc , y=y+yc

8. Repeat the steps for region 1 until 2ry
2x>=2rx

2y.

If P1k >= 0 (Xk+1,Yk−1), If P1k < 0 (Xk+1,Yk)

If P2k >= 0 (Xk,Yk−1), If P2k < 0 (Xk+1,Yk−1)

Initial decision parameter for Region 2 is, P20 = −23 < 0

K (Xk,Yk) P2k (Xk+1,YK+1)

7 (7,3) −23 (8,2)

P2k+1 = 361 > 0

8 (8,2) 361 (8,1)

P2k+1 = 297 > 0

9 (8,1) 297 (8,0)

UNIT II

Scan Converting Lines

Scan converting a line means to draw pixels on an integer coordinate system in such a way

that these pixels are as close to the actual line as possible. To draw a line we need two points,

the starting point (x1,y1) of the line and the ending point (x2,y2). x1, y1,x2,y2 represents the

coordinates of the points. Mathematically a line can be represented by the following slope

intercept form: y = m x + c

This equation is used to find any point on the line and is true for all the points on the line.

Here

x is the x coordinate of the point.

y is the y coordinate of the point.

m is the slope of the line.

c is the y intercept.

• m which is the slope of the line represents the angle, the line forms with the

horizontal axis. If the angle of incidence is 45 degree then the slope (m) is 1. All lines

parallel to x-axis have the m =0, whereas the lines parallel to y-axis have m as infinity

(∞).

m = dy / dx = (y2-y1) / (x2-x1)

Lines whose starting point is to the left of ending point have a positive (+ve) slope i.e. m > 0.

And the lines with starting point to the right of ending point have –ve slope i.e. m<0

c which is the y intercept is the point on the y-axis where the line will intersect with this

axis. c can be calculated as : c = y1 – m x1. The c of the following line is 2.

Polynomial method (Direct method)

This method makes the use of the equation of the line (y = mx +c) to draw a line segment

whose end points are A and B. Coordinates of A are (x1,y1) and coordinates of B are (x2,y2).

For this line:

Slope m = (y2-y1) / (x2-x1).

y-interept c = y1 – m*x1

For the lines with the value of m as 0 <= m <= 1 (Angle of incidence between 0 and 45), we

step the value of x by 1 and calculate the corresponding value of y.

 xi+1 = xi + 1

 yi+1 = (m * xi+1) + c

 The pixel (xi+1 , round(yi+1)) is turned on. This is done while the value of x is <= x2.

For the lines with the value of m as 1 < m < ∞ (Angle of incidence between 46 and 90), we

step the value of y by 1 and calculate the corresponding value of x.

yi+1 = yi + 1

 xi+1 = (yi+1 - c) / m

 The pixel (round(xi+1) , yi+1)) is turned on. This is done while the value of y is <= y2.

Disadvantages

This method involves floating point multiplications and division, this takes

considerably more time then addition. This makes the method slow.

Accumulation of the round off errors may make the line drift away from the actual

line. Thus accurate lines may not be produced. In the following picture Blue is the

actual line, whereas the line in Red colour is the line drawn with the polynomial

method.

Scan Converting a circle

A circle is a geometric figure which is round, and can be divided into 360 degrees. A circle is

a symmetrical figure which follows 8-way symmetry.

8-Way symmetry: Any circle follows 8-way symmetry. This means that for every point (x,y)

8 points can be plotted. These (x,y), (y,x), (-y,x), (-x,y), (-x,-y), (-y,-x), (y,-x), (x,-y).

For any point (x+a, y+b), points (x ± a, y ± b) and (y ± a, x ± b) also lie on the same circle. So

it is sufficient to compute only 1/8 of a circle, and all the other points can be computed from

it.

Drawing a circle: To draw a circle we need two things, the coordinates of the centre and the

radius of the circle.
Radius: The radius of a circle is the length of the line from the centre to any point on its edge.

Equation of the circle: For any point on the circle (x,y) and the centre at point (xc,yc), the

equation of the circle is

(x-xc)2+ (y-yc) 2- r2 = 0

Here r is the radius of the circle. If the circle has origin (0,0) as its centre then the above

equation can be reduced to

x2 + y2 = r2

Using polar coordinate system the point on the circle can be represented as:

x = r * cos θ

y = r * sin θ

θ is the angle which the point makes With x-axis.

Direct Method (Polynomial method) of Scan converting a circle :

From equation of the circle x2 + y2 = r2 we can derive that the value of y.

If we increment the value of x from 0 to r, and find the corresponding value of y for

each x, we can draw a circle very easily, by plotting the pixels (x,y), (-x,y), (-x,-y), (x,-y).

Advantages :

• This method is easy to understand.

• Fairly easy to implement.

Disadvantages:

• Inefficient method as time required for calculation of square and square root is very

large.

• Does not take full advantage of 8-way symmetry.

• Value of y needs to be converted to integer every time.

• The resulting circle has large gaps where the slope approaches the vertical. i.e.

Increase in x direction is uniform but the gap in y is not uniform, it increases as the

circle approaches the x-axis.

Polar Equations method :

 The polar equations of the circle are x = r * cos θ y = r * sin θ

In this method we increment the value of θ from 0 to 2π , and we find the corresponding

values of x and y. For every value of (x,y) thus calculated we can plot 7 other points taking

advantage of 8-way symmetry.

Disadvantages:

• The main issue with this method is that calculation of cos and sin at each step take

a lot of time.

• This method is also inefficient, as it takes a lot of time.

Scan Converting Ellipse

AREA FILLING ALGORITHMS

1) FLOOD FILL ALGORITHM

2) BOUNDARY FILL ALGORITHM

1) Flood fill algorithm

Flood fill algorithm helps in visiting each and every point in a given area. It determines the

area connected to a given cell in a multi-dimensional array.

Implementation of flood fill algorithm: Bucket Fill in Paint

Flood fill algorithm fills new color until the old color match.

Flood fill algorithm:-

// A recursive function to replace previous

// color 'oldcolor' at '(x, y)' and all

// surrounding pixels of (x, y) with new

// color 'newcolor' and

floodfill(x, y, newcolor, oldcolor)

1) If x or y is outside the screen, then

 return.

2) If color of getpixel(x, y) is same as

 oldcolor, then

3) Recur for top, bottom, right and left.

 floodFill(x+1, y, newcolor, oldcolor);

 floodFill(x-1, y, newcolor, oldcolor);

 floodFill(x, y+1, newcolor, oldcolor);

 floodFill(x, y-1, newcolor, oldcolor);

2) Boundary Fill Algorithm

Introduction : Boundary Fill Algorithm starts at a pixel inside the polygon to be filled and

paints the interior proceeding outwards towards the boundary. This algorithm works only if

the color with which the region has to be filled and the color of the boundary of the region are

different. If the boundary is of one single color, this approach proceeds outwards pixel by

pixel until it hits the boundary of the region.

Boundary Fill Algorithm is recursive in nature. It takes an interior point(x, y), a fill color,

and a boundary color as the input. The algorithm starts by checking the color of (x, y). If it’s

color is not equal to the fill color and the boundary color, then it is painted with the fill color

and the function is called for all the neighbours of (x, y). If a point is found to be of fill color

or of boundary color, the function does not call its neighbours and returns. This process

continues until all points up to the boundary color for the region have been tested.

The boundary fill algorithm can be implemented by 4-connected pixels or 8-connected pixels.

4-connected pixels : After painting a pixel, the function is called for four neighboring points.

These are the pixel positions that are right, left, above and below the current pixel. Areas

filled by this method are called 4-connected. Below given is the algorithm :

void boundaryFill4(int x, int y, int fill_color,int boundary_color)

{

 if(getpixel(x, y) != boundary_color &&

 getpixel(x, y) != fill_color)

 {

 putpixel(x, y, fill_color);

 boundaryFill4(x + 1, y, fill_color, boundary_color);

 boundaryFill4(x, y + 1, fill_color, boundary_color);

 boundaryFill4(x - 1, y, fill_color, boundary_color);

 boundaryFill4(x, y - 1, fill_color, boundary_color);

 }

}

8-connected pixels : More complex figures are filled using this approach. The pixels to be

tested are the 8 neighboring pixels, the pixel on the right, left, above, below and the 4

diagonal pixels. Areas filled by this method are called 8-connected. Below given is the

algorithm :

void boundaryFill8(int x, int y, int fill_color,int boundary_color)

{

 if(getpixel(x, y) != boundary_color &&

 getpixel(x, y) != fill_color)

 {

 putpixel(x, y, fill_color);

 boundaryFill8(x + 1, y, fill_color, boundary_color);

 boundaryFill8(x, y + 1, fill_color, boundary_color);

 boundaryFill8(x - 1, y, fill_color, boundary_color);

 boundaryFill8(x, y - 1, fill_color, boundary_color);

 boundaryFill8(x - 1, y - 1, fill_color, boundary_color);

 boundaryFill8(x - 1, y + 1, fill_color, boundary_color);

 boundaryFill8(x + 1, y - 1, fill_color, boundary_color);

 boundaryFill8(x + 1, y + 1, fill_color, boundary_color);

 }

}

4-connected pixels Vs 8-connected pixels :

Let us take a figure with the boundary color as GREEN and the fill color as RED. The 4-

connected method fails to fill this figure completely. This figure will be efficiently filled

using the 8-connected technique.

Flood fill Vs Boundary fill :

Though both Flood fill and Boundary fill algorithms color a given figure with a chosen color,

they differ in one aspect. In Flood fill, all the connected pixels of a selected color get replaced

by a fill color. On the other hand, in Boundary fill, the program stops when a given color

boundary is found.

CHARACTER GENERATION

There are three basic methods to generate characters on a computer screen:

(1) hardware-based (2) vector-based and (3) bit map-based methods.

In the hardware-based method, the logic for generating character is built into the graphics

terminal. Though the generation time is less the typefaces* are limited due to hardware

restrictions.

In the vector-based method the characters are developed using a set of polylines and splines

that approximates the character outline. This form of character representation is completely

device-independent; memory requirement is less as boldface, italics or different size can be

produced by manipulating the curves outlining the character shapes – it doesn’t require

separate memory blocks for each variation.

https://www.geeksforgeeks.org/flood-fill-algorithm-implement-fill-paint/
https://www.geeksforgeeks.org/flood-fill-algorithm-implement-fill-paint/

In the bitmap based method small rectangular bitmap called character mask (containing

binary values 1 and 0) is used to store pixel representation of each character in a framebuffer

area known as font cache. Relative pixel locations corresponding to a character bitmap are

marked depending on the size, face and style (font) of character. Size of each character masks

range from 5 × 7 to 10 × 12. A single font in 10 different font sizes and 4 faces (normal, bold,

italic, bold italic) would require 40 font caches. Characters are actually generated on display

by copying the appropriate bitmaps from the frame buffer to the desired screen positions. A

mask is referenced by the coordinate of the origin (lower left corner) of the mask w.r.t frame

buffer addressing system.

Bitmapped Font

In bit map based method a bold face character is obtained by writing the corresponding

‘normal’ character mask in consecutive frame buffer x-locations. Italics character is produced

by necessary skewing of ‘normal’ character mask while being written in the frame buffer. In

fact a typeface designer can create from scratch new fonts using a program like Windows

Paint. The overall design style (font and face) for a set of characters is called a typeface.

2D Transformations

Introduction

Transformations are fundamental part of computer graphics. In order to manipulate object

in two dimensional space, we must apply various transformation functions to object. This

allows us to change the position, size, and orientation of the objects. Transformations are

used to position objects, to shape objects, to change viewing positions, and even to

change how something is viewed.

There are two complementary points of view for describing object movement. The first

is that the object itself is moved relative to a stationary coordinate system or background.

The mathematical statement of this viewpoint is described by geometric transformations

applied to each point of the object. The second point of view holds that the object is held

stationary while the coordinate system is moved relative to the object. This effect is

attained through the application of coordinate transformations. An example involves the

motion of an automobile against a scenic background. We can also keep the automobile

fixed while moving the backdrop fixed (a geometric transformation). We can also keep

the automobile fixed while moving the backdrop scenery (a coordinate transformation).

In some situations, both methods are employed.

Coordinate transformations play an important role in the instancing of an object – the

placement of objects, each of which is defined in its own coordinate system, into an

overall picture or design defined with respect to a master coordinate system.

Geometric Transformations

An object in the plane is represented as a set of points (vertices). Let us impose a

coordinate system on a plane. An object Obj in the plane can be considered as a set of

points. Every object point P has coordinates (x, y), and so the object is the sum total of

all its coordinate points. If the object is moved to a new position, it can be regarded as a

new object Obj' , all of whose coordinate point P’ can be obtained from the original

points P by the application of a geometric transformation.

Figure 4.1

Points in 2-dimensional space will be represented as column vectors:

We are interested in three types of transformation:

• Translation

• Scaling

• Rotation

• Mirror Reflection

4.2.1 Translation

In translation, an object is displaced a given and direction from its original position. If

the displacement is given by the vector v t I t J x y = + , the new object point P'(x' ,y') can be

found by applying the transformation Tv to P(x, y) (see Fig. 4.1).

P' T (P) v = where x x'= x + t and y y'= y + t .

4.2.2 Rotation about the origin

In rotation, the object is rotated θ° about the origin. The convention is that the direction

of rotation is counterclockwise if θ is a positive angle and clockwise if θ is a negative

angle (see Fig. 4.2). The transformation of rotation θ R is

P' R (P) θ =

where x'= xcos(θ) − ysin(θ) and y'= xsin(θ) + y cos(θ)

Figure 4.2

4.2.3 Scaling with Respect to the origin

Scaling is the process of expanding or compressing the dimension of an object. Positive

scaling constants x S and y S , are used to describe changes in length with respect to the x

direction and y direction, respectively. A scaling constant greater than one indicates an

expansion of length, and less than one, compression of length. The scaling

transformation sx sy S is given by P' S (P) sx s y = where x' s .x x = and y' s .y x = . Notice that

after a scaling transformation is performed, the new object is located at a different

position relative to the origin. In fact, in a scaling transformation the only point that

remains fixed is the origin (Figure 4.3).

Figure 4.3

If both scaling constants have the same value s, the scaling transformation is said to be

homogeneous. Furthermore, if s > 1, it is a magnification and for s < 1, a reduction

4.2.4 Mirror Reflection about an Axis

If either the x and y axis is treated as a mirror, the object has a mirror image or reflection.

Since the reflection P' of an object point P is located the same distance from the mirror as

P (Fig. 4.4), the mirror reflection transformation x M about the x-axis is given by

P' M (P) x =

where x'= x and y'= −y .

Similarly, the mirror reflection about the y-axis is

P' M (P) y =

where x'= −x and y'= y .

Figure 4.4

4.2.5 Inverse Geometric Transformation

Each geometric transformation has an inverse, which is described by the opposite

operation performed by the transformation.

4.3 Coordinate Transformations

Suppose that we have two coordinate systems in the plane. The first system is located at

origin O and has coordinate axes xy figure 4.6. The second coordinate system is located

at origin O' and has coordinate axes x' y' Now each point in the plane has two coordinate

descriptions: (x, y) or (x', y') , depending on which coordinate system is used. If we

think of the second system x'y' as arising from a transformation applied to the first

system xy, we say that a coordinate transformation has been applied. We can describe

this transformation by determining how the (x' ,y') coordinates of a point P are related to

the (x, y) coordinates of the same point.

Figure 4.5

4.3.1 Translation

If the xy coordinate system is displaced to a new position, where the direction and

distance of the displacement is given by the vector v I J x y = t + t , the coordinates of a point

in both systems are related by the translation transformation Tv :

(x' ,y') = Tv (x,y)

where x x'= x − t and y y'= y − t

4.3.2 Rotation about the Origin

The xy system is rotated by θ ° about the origin figure 4.6. Then the coordinates of a

point in both systems are related by the rotation transformation Rθ :

(x' ,y') = Rθ(x,y)

where x'= xcos(θ) + y'sin(θ) and y'= −xsin(θ) + y cos(θ) .

Figure 4.6

4.3.3 Scaling with Respect to the Origin

Suppose that a new coordinate system is formed by leaving the origin and coordinate

axes unchanged, but introducing different units of measurement along the x and y axes.

If the new units are obtained from the old units by a scaling of y s units along the y-axis,

the coordinates in the new system are related to coordinates in the old system through the

scaling transformation Ss x ,sy :

(x' ,y') S , (x,y) = s x sy

where x ' = 1/ s x . x and y' 1/ sy .y = . Figure 4.7 shows coordinate scaling transformation

using scaling factors sx = 2 and sy =1/2 .

Figure 4.7

4.3.4 Mirror Reflection about an Axis

If the new coordinate system is obtained by reflecting the old system about either x or y

axis, the relationship between coordinates is given by the coordinate transformations

M x and M y : For reflection about the x axis (figure 4.8 (a))

(x' ,y') = Mx (x,y)

where x'= x and y'= −y . For reflection about the y axis [figure 4.8(b)]

(x' ,y') = My (x,y)

where x'= −x and y'= y .

Figure 4.8

Notice that the reflected coordinate system is left-handed; thus reflection changes the

orientation of the coordinate system.

4.3.5 Inverse Coordinate Transformation

Each coordinate transformation has an inverse which can be found by applying the

opposite transformation:

4.4 Composite Transformations

More complex geometric and coordinate transformations can be built from the basic

transformations described above by using the process of composition of functions. For

example, such operations as rotation about a point other than the origin or reflection

about lines other than the axes can be constructed from the basic transformations.

Matrix Description of the Basic Transformations

The transformations of rotation, scaling, and reflection can be represented as matrix

functions:

The translation transformation cannot be expressed as a 2 x 2 matrix function. However,

a certain artifice allows us to introduce a 3 x 3 matrix function, which performs the

translation transformation.

We represent the coordinate pair (x, y) of a point P by the triple (x, y, 1). This is simply

the homogeneous representation of P. Then translation in the direction v I J x y = t + t can

be expressed by the matrix function.

Then

From this we extract the coordinate pair (x + t x, y + t y).

4.5 Shear Transformation

The shear transformation distorts an object by scaling one coordinate using the other. If

distorts the shape of an object in such a way as if the object were composed of internal

layers that has been caused to slide over each other is called shear. Two common

shearing transformations are those that shift coordinate x values and those that shift y

values.

2D Shear along X-direction

Shear in X direction is represented by the following set of equations.

where h is the negative or positive fraction of Y coordinate of P to be added to the X

coordinate. can be any real number.

The matrix of form of shear in x-direction is given by

(0.1)

2D Shear along Y Direction

Similarly, shear along y-direction is given by

(0.2)

Combining the shear in X and Y directions,

where g is a non-zero fraction of to be added to the Y coordinate

General matrix form of shear
The general matrix form of shear is

(0.3)

Shear will reduce to a pure shear in the y-direction, when h=0.

The inverse of Shear is given by

(0.4)

For Example,

If h=0,5 g=0.8, then shear along X direction of the point P : (8,9) is obtained by

substituting these values in (0.3).

Shear in Y direction is

2 Consider a square of side = 2. Show the effect of shear when (1)

4.6 Summary

􀁺 Transformation is a process carried out by means of transformation to

these object or changing the orientation of the object or may be

combination of these.

􀁺 In translation, an object is displaced a given and direction from its

original position

􀁺 If the new coordinate system is obtained by reflecting the old system

about either x or y axis, the relationship between coordinates is given by

the coordinate transformations

􀁺 Scaling is the process of expanding or compressing the dimension of an

object

􀁺 Multiplying the basic matrix transformations can do complex

transformations

􀁺 Shear transformation distorts an object by scaling one coordinate using

the other in such a way as if the object were composed of internal layers

that has been caused to slide over each other.

WINDOW VIEWPORT TRANSFORMATIONS

5.1 Introduction

In very basic two dimensional graphics usually use device coordinates. If any graphics

primitive lies partially or completely outside the window then the portion outside will not

be drawn. It is clipped out of the image. In many situations we have to draw objects

whose dimensions are given in units completely incompatible with the screen coordinates

system. Programming in device coordinates is not very convenient since the programmer

has to do any required scaling from the coordinates natural to the application to device

coordinates. This has led to two dimensional packages being developed which allow the

application programmer to work directly in the coordiate system which is natural to the

application. These user coordinates are usually called World Coordinates (WC). The

packages then coverts the coordinates to Device Coordinates (DC) automatically. The

transformation form the WC to DC is often carried out in tow steps. First using the

Normalisation Transformation and then the Workstation Transformation. The

Viewing Transformation is the process of going form a window in World coordinates to

viewport in Physical Device Coordinates (PDC).

5.2 Window-to-Viewport Mapping

A window is specified by four world coordinates : wxmin, wxmax, wymin,and wymax (see

Fig. 5.1) Similarly, a viewport is described by four normalized device coordinates:

vxmin,vxmax,vymin, and vy max. The objective of window – to – viewport mapping is to

convert the world coordinates (wx, wy) of an arbitrary point to its corresponding

normalized device coordinates (vx,vy). In order to maintain the same relative placement

of the point in the viewport as in the window, we require:

Since the eight coordinate values that define the window and the viewport are just

constants, we can express these two formulas for computing (vx, vy) from (wx, wy) in

terms of a translate-scale-translate transformation N

 Fig. 5.1: Window-to-viewport mapping

Note that geometric distortions occur (e.g. squares in the window become rectangles in

the viewport) whenever the two scaling constants differ.

5.3 Two – Dimensional Viewing and Clipping

Much like what we see in real life through a small window on the wall or the viewfinder

of a camera, a Computer-generated image often depicts a partial view of a large scene.

Objects are placed into the scene by modeling transformations to a master coordinate

system, commonly referred to as the world coordinate system (WCS). A rectangular

window with its edge parallel to the axes of the WCS is used to select the portion of the

scene for which an image is to be generated (see Fig. 5.2). Sometimes an additional

coordinate system called the viewing coordinate system is introduced to simulate the

effect of moving and / or tilting the camera.

On the other hand, an image representing a view often becomes part of a larger image,

like a photo on an album page, which models a computer monitor’s display area. Since

album pages vary and monitor sizes differ from one system to another, we want to

introduce a device-independent tool to describe the display area. This tool is called the

normalized device coordinate system (NDCS) in which a unit (1 x 1) square whose lower

left corner is at the origin of the coordinate system defines the display area of a virtual

display device. A rectangular viewport with its edges parallel to the axes of the NDCS is

used to specify a sub-region of the display area that embodies the image.

Fig. 5.2: Viewing transformation

The process that converts object coordinates in WCS to normalized device coordinate is

called window–to– viewport mapping or normalization transformation. The process that

maps normalized device coordinates to Physical Device Co-ordinates (PDC) / image

coordinates is called work, station transformation, which is essentially a second windowto-

viewport mapping., with a workstation window in the normalized device coordinate

system and a workstation viewport in the device coordinate window in the normalized

device coordinate system and a workstation viewport in the device coordinate system.

Collectively, these two coordinate mapping operations are referred to as viewing

transformation.

Workstation transformation is dependent on the resolution of the display device/frame

buffer. When the whole display area of the virtual device is mapped to a physical device

that does not have a 1/1 aspect ratio, it may be mapped to a square sub-region (see fig.

5.2) so as to avoid introducing unwanted geometric distortion.

Along with the convenience and flexibility of using a window to specify a localized view

comes the need for clipping, since objects in the scene may be completely inside the

window, completely outside the window, or partially visible through the window. The

clipping operation eliminates objects or portions of objects that are not visible through

the window to ensure the proper construction of the corresponding image.

Note that clipping may occur in the world coordinate or viewing coordinate space, where

the window is used to clip the objects; it may also occur in the normalized device

coordinate space, where the viewport/workstation window is used to clip. In either case

we refer to the window or the viewport/workstation window as the clipping window.

5.8 Window-To-Viewport Coordinate Transformation

Once object descriptions have been transferred to the viewing reference frame, we choose

the window extents in viewing coordinates and select the viewport limits in normalized

coordinates. Object descriptions are then transferred to normalized device coordinates.

We do this using a transformation that maintains the same relative placement of objects

in normalized space as they had in viewing coordinates. If a coordinate position is at the

center of the viewing window, for instance, it will be displayed at the center of the

viewport.

Figure 5.12 illustrates the window-to-viewport mapping. A point at position (xw, yw) in

the window is mapped into position (xv, yv) in the associated view-port. To maintain the

same relative placement in the viewport as in the window, we require that

Above equations can also be derived with a set of transformations that converts the

window area into the viewport area. This conversion is performed with the following

sequence of transformations:

1. Perform a scaling transformation using a fixed-point position of (xwmin, ywmin) that

scales the window area to the size of the viewport.

2. Translate the scaled window area to the position of the viewport.

Relative proportions of objects are maintained if the scaling factors are the same (sx =

sy). Otherwise, world objects will be stretched or contracted in either x or y direction

when displayed on the output device.

Character strings can be handled in two ways when they are mapped to a viewport. The

simplest mapping maintains a constant character size, even though the viewport area may

be enlarged or reduced relative to the window. This method would be employed when

text is formed with standard character fonts that cannot be changed. In systems that allow

.for changes in character size, string definitions can be windowed the same as other

primitives. For characters formed with line segments, the mapping to the viewport can be

carried out as a sequence of line transformations.

From normalized coordinates, object descriptions are mapped to the viewport display

devices. Any number of output devices can be open in a particular application, and

another window-to-viewport transformation can be performed for each open output

device. This mapping, called the workstation transformation, is accomplished by

selecting a window area in normalized space and a viewport area in the coordinates of the

display device. With the workstation transformation, we gain some additional control

over the positioning of parts of a scene on individual output devices. As illustrated in Fig.

5.13, we can use work station transformations to partition a view so that different parts of

normalized space can be displayed on different output devices.

Two Dimensional Concepts

Clipping Algorithms

Clipping:

 Clipping is defined as the identification of the objects of the view which

are outside the clipping region and which can be removed or clipped from
the viewing window. Any procedure that identifies those portion of a
picture that are either inside or outside of a specified region of space is
referred to as a clipping Algorithm or clipping.

The region against which the object needs to be clipped is known as clip
window. We will assume here that clip window is a rectangular window
but it might be a polygon shaped as well and can have boundaries in the
curved form as well. Hence the objects which are not inside and are
outside the rectangular clip window are hence discarded. The various
clipping algorithms which are involved in the process of clipping are as
follows:

Point Clipping

Line Clipping

Polygon clipping

Text Clipping

Curve Clipping

Here are a few examples of the application of the clipping concepts which
are as follows:

(1) Creating objects using solid-modeling procedures.

(2) Drawing and painting operations.

(3) Identifying visible surface in three dimensional views.

(4) Antialising line segments or object boundaries.

(5) Extracting parts of defined scene for viewing.

(6) Displaying multi window environment.

 1) Point Clipping.

 Assuming that a point P(x,y) is to be displayed on the screen we need to

 determine if this point lies within the clip window or not. Assuring that

 clip window is a rectangle in standard Position, we save a point P = (x, y)

 for display if following inequalities are satisfied. And we have to compare

 the point coordinates with window coordinates.

 xwmin ≤ x ≤ xwmax

 ywmin ≤ y ≤ ywmax

 then the point (x,y) lies within the view window and can be displayed,
 otherwise it needs to be discarded. Where the edges of clip window

 (xwmin, xwmax, ywmin, ywmax) can be either coordinate window boundaries

 or view port boundaries. If any one of these inequalities is not satisfied the

 point is clipped.

 Application of Point Clipping: Point clipping can be applied to scenes

 involving explosions or sea foam that are modeled with particles (points)

 distributed in some region of the scene.

 2) Line Clipping:

 A line consists of a sequence of number of points arranged between the

 two end points. Here we just have to consider only the endpoints for

 clipping purpose, and we would not consider the points between the

 endpoints. A line clipping procedure involves several parts First, we can

 test a given line segment to determine whether it lies completely inside

 the clipping window.

 If the two endpoints of a line fall within the clip window, it is accepted.
 And if in case one of the line end point falls inside and the other end point

 goes out of the clip window, we need to make calculation of the

 intersection of the line with the edges of the rectangular window. If

i
t

 does not, we try to determine whether it lies completely outside the

 window.

Finally if we can not identify a line as completely inside or completely
outside we must perform intersection calculation with one or more
clipping boundaries. We process lines through inside-outside tests by
checking the line end points.

P9

P4 P2

P1

P10

P8

P5 P6

P3 P7

A line with both end points outside any one of the clip boundaries
(line P3, P4 in Figure.) is outside the window.

A line with both end points inside all clipping boundaries such as
line form P1 to P2 is saved.

And all the other lines that cross one or more clipping boundaries
and may require calculation of multiple intersection point.

For a line segment with end points (x1, y1) and (x2, y2) and one or
both end points outside clipping rectangle, the parametric
representation.Could be used to determine values of parameter u
for intersections with the clipping boundary coordinates.

x = x1 + u(x2 – x1)

y = y1 + u(y2 – y1), 0 ≤ u ≤ 1

If the value of u for an intersection with a rectangle boundary edge
is outside the range 0 to 1, the line does not enter the interior of the
window at that boundary. If the value of u is within the range from
0 to 1, the line segment does indeed cross into the clipping area.

Cohen Sutherland Line Clipping:

This algorithm also reduces calculations by the identification of the

lines which can be trivially discarded or accepted. And this can be

done by making comparison with the endpoints with the window

coordinates (Xmin, Ymin) and (Xmax, Ymax). This is one of the

oldest and most popular line clipping procedures. Generally, the

method speeds up the processing of line segments by performing

initial test that reduces the number of intersections that must be

calculated.

Every line end point in a picture is assigned a four digit binary

code called, a region code, that identifies the location of the points

relative to the boundaries of the clipping rectangle. For this

purpose we assign 4-digit binary code to each endpoint of the line.

As shown in the following diagram, we have extended the window

to get a plane of nine regions.

Xmin Xmax

1001 1000 1010

0000

0001 WINDOW 0010

0101 0100 0110

Code for inside the window region is 0000. Each regions is defined or
represented by 1 bit. First bit from left i.e., MSB is for the region above the
top edge. If this bit is 1, it means point is above the top edge or y>ymax.
Each bit position in the region code is used to indicate one of the four
relative coordinate positions of the point with respect to the clip window:
to the left, right, top and bottom.

Second bit from left is for the region below the bottom

By numbering the bit position in the region code as 1 through 4 right to
left, the coordinate regions can be correlated with the bit positions as :

bit 1 : left ; bit 2 : right ; bit 3 : below ; bit 4 : above

A value of 1 in any bit position indicates that point is in that relative
position otherwise the bit position is set to 0.

Now here bit values in the region are determined by comparing
end point coordinate values (x, y) to the clip boundaries.

Bit 1 is set to 1 if x < xwmin

Bit 2 is set to 1 it xwmax < x

Now

Bit 1 sign bit of x – xwmin

Bit 2 sign bit of xwmax – x

Bit 3 sign bit of y – ywmin

Bit 4 sing bit of ywmax – y

(1) Any lines that are completely inside the clip window have a region

code 0000 for both end points few points to be kept in mind while

checking.

(2) Any lines that have 1 in same bit position for both end points are

considered to be completely outside.

(3) Now here we use AND operation with both region codes and if result

is not 0000 then line is completely outside.

Now for lines that cannot be identified as completely inside or completely

outside the window by this test are checked by intersection with window

boundaries.

F
o
r
e
g
.

P2

 P2’

 P2’’

P3

P3’
P1’ P1

 P4

We check P1 against left right we find it is below window. We find

intersection point P1’ and then discard line section P1 to P1’ & Now we have
P1 to P2. Now we take P2 we find it in left position outside window then we

take an intersection point P2’’. But we find it outside window then we again

calculate final intersection point P2’’. Now we discard line P2 to P2’’. We

finally get a line P2’’ to P1’ inside window similarly check for line P3 to P4.

For end points (x1, y1) (x2, y2) y–coordinate with vertical boundary can be
calculated as

y = y1 + m(x – x1) where x is set to xwmin to xwmax

Liang-Barsky Line Clipping

Express line segment in parametric form:

x = x1 + (x2 - x1) * m = x1 + dx * m 0.0 < m < 1.0

y = y1 + (y2 - y1) * m = y1 + dy * m

when m = 0.0 => x1, y1

when m = 1.0 => x2, y2

Any point P(x, y) on line segment which is inside window satisfies:

Xwmin <= x <=xwmax and Ywmin <= y <= ywmax

(Note that if Xwmin = x implies an intersection of the line with left
boundary)

or in Parametric form

(1) Xwmin <= x1 + dx*m <= xwmax

(2) Ywmin <= y1 + dy*m <= ywmax

Now (1) can be rewritten as

-dx * m <= x1 xwmin left boundary

dx * m < xwmax x1 right boundary

similarly (2) can be written as

-dy * m < y1 ywmin bottom boundary

dy * m < ywmax y1 top boundary

Above are all of the form:

Pi * m <qi i="1," 2, 3, 4

where:

P1 = -dx q1 = x1 - Xwmin -- Left

P2 = dx q2 = Xwmax - x1 -- Right

P3 = -dy q3 = y1 - Ywmin -- Bottom

P4 = dy q4 = Ywmax - y1 -- Top

ASIDE

Now note that if a line is parallel to Left / Right boundary then

dx = 0 -> P1 = P2 = 0

Similarly if a line is parallel to Top / Bottom then

dy = 0 -> P3 = P4 = 0

Now if P1 = 0

if (q1 = x1 - Xwmin) <0 then x1 < xwmin and line is outside of window

then reject

Similarly:

if P2 = 0 and (q2 = Xwmax - x1) < 0 then x1> Xwmax -> reject.

if P3 = 0 and (q3 = y1 - Ywmin) < 0 then y1 <& ywmin> reject.

if P4 = 0 and (q4 = Ywmax - y1) < 0 then y1> Ywmax -> reject.

So as a general rule: if Pi = 0 and qi < 0 reject the lines, else retain lines for
further consideration.

Look at case

P1 = -dx < 0

-dx = - (x2 - x1) < 0

x1 - x2 < 0 x1 < x2

so if extend line segment it goes from Left to Right or from outside of Left
boundary to inside (see figure)

Now if P1 < 0 then p2> 0, so extended line segment goes from inside of
Right boundary to outside. Similarly if P3 = -dy = -(y2 - y1) = (y1 - y2) <0
then y1 < y2 and line goes from outside of bottom boundary to inside and
if P4 > 0, line goes from inside of top boundary to outside.

Another way of looking at above.

General inequality :

Pi * m < qi> mi < qi / pi

if Pi < 0 (outside> inside) -> mi > qi / |Pi|

so point of intersection (mi = qi / Pi) is the minimum value for which the
line is on the visible side of the boundary. Since m increases along line, the

direction of the line is from the OUTSIDE (invisible) to the INSIDE
(visible).

Similarly if Pi > 0 -> mi <* qi / pi or point of intersection is maximum
value of mi. then the direction of line is from inside to outside.

Now remember that for our line segment: 0.0 < m < 1.0

Now look at lines proceeding from outside to inside

Compute intersection at XL, YT

The visible part of line starts at largest such value of m.

same is true, visible portion starts at largest value of m

Remember: m > 0.0 so can express as (for cases of Pi < 0 i.e.
outside>inside)

m1 = MAX ({qi / Pi | Pi < 0, i="1," 2, 3, 4} U {0})

Reverse above endpoints for Pi > 0 and get

m2 = MIN ({qi / Pi | Pi > 0, i = 1, 2, 3, 4} U {1})

Now if there is a visible segment it corresponds to the parametric interval

m1 <= m <= m2 and m1 <= m2

So if m1 > m2 reject line else compute visible endpoints from m1, m2.

EXAMPLE :

Let P1 (-1, -2), P2 (2, 4)

XL = 0, XR = 1, YB = 0, YT
= 1

dx = 2 - (-1) = 3 dy = 4 - (-
2) = 6

P1 = -dx = -3 q1 = x1 - XL
= -1 - 0 = -1 q1 / P1 = 1/3

P2 = dx = 3 q2 = XR - x1 =
1 - (-1) = 2 q2 / P2 = 2/3

P3 = -dy = -6 q3 = y1 - YR
= -2 q3 / P3 = 1/3

P4 = dy = 6 q4 = YT - y1 =
3 q4 / P4 = 1/2

for (Pi < 0) t1="MAX" (1 /
3, 1 / 3, 0)="1" / 3

for (Pi > 0) t2 = MIN (2 /
3, 1 / 2, 1) = 1 / 2

Since t1 < t2 there is a
visible section

compute new endpoints
t1 = 1 / 3 x1' = x1 + dx . t1
= -1 + (3 . 1 / 3) = 0
y1' = y1 + dy . t1 = -2 + (6 .
1 / 3) = 0
t2 = 1 / 2 x2' = x1 + dx . t2
= -1 + (3 . 1 / 2) = 1 / 2
y2' = y1 + dy . t2 = -1 + (6 .
1 / 2) = 1

Polygon-Clipping Algorithms

Sutherland-Hodgman Polygon Clipping

One of the earliest polygon-clipping algorithms is the Sutherland-Hodgman algorithm.
It is based on clipping the entire subject polygon against an edge of the window (more
precisely, the half plane determined by that edge which contains the clip polygon), then
clipping the new polygon against the next edge of the window, and so on, until the
polygon has been clipped against all of the four edges. An important aspect of their
algorithm is that one can avoid generating a lot of intermediate data.

Representing a polygon as a sequence of vertices P1, P2, . . ., Pn, suppose that we want
to clip against a single edge e. The algorithm considers the input vertices Pi one at a
time and generates a new sequence Q1, Q2, . . ., Qm. Each Pi generates 0, 1, or 2 of the
Qj, depending on the position of the input vertices with respect to e. If we consider each
input vertex P, except the first, to be the terminal vertex of an edge, namely the edge
defined by P and the immediately preceding input vertex, call it S, then the Q’s
generated by P depend on the relationship between the edge [S,P] and the line L
determined by e. There are four possible cases. See Figure a) . The window side of the
line is marked as “inside.” The circled vertices are those that are output. Figure 3.10
shows an example of how the clipping works. Clipping the polygon with vertices
labeled Pi against edge e1 produces the polygon with vertices Qi. Clipping the new
polygon against edge e2 produces the polygon with vertices Ri.
Note that we may end up with some bogus edges. For example, the edge R5R6 in
Figure b) is not a part of the mathematical intersection of the subject polygon with the
clip polygon.

Figure a). The four cases in Sutherland- Hodgman polygon clipping.

http://what-when-how.com/wp-content/uploads/2012/06/tmpc646363_thumb2221.png

Figure b). A Sutherland-Hodgman polygon-clipping example.
Eliminating such edges from the final result would be a nontrivial effort, but normally
they do not cause any problems. We run into this bogus edge problem with other
clipping algorithms also.

Weiler Artherton Polygon Clipping

Weiler and Atherton needed a new algorithm because the Sutherland-Hodgman
algorithm would have created too many auxiliary polygons.
Here is a very brief description of the algorithm:
The boundaries of polygons are assumed to be oriented so that the inside of the
polygon is always to the right as one traverses the boundary. Note that intersections of
the subject and clip polygon, if any, occur in pairs: one where the subject enters the
inside of the clip polygon and one where it leaves.
Step 1: Compare the borders of the two polygons for intersections. Insert vertices into
the polygons at the intersections.
Step 2: Process the nonintersecting polygon borders, separating those contours that are

outside the clip polygon and those that are inside.

Step 3: Separate the intersection vertices found on all subject polygons into two lists.
One is the entering list, consisting of those vertices where the polygon edge enters the
clip polygon. The other is the leaving list, consisting of those vertices where the polygon
edge leaves the clip polygon. Step 4: Now clip.

Figure 3.11. Weiler polygon clipping.
(a) Remove an intersection vertex from the entering list. If there is none, then we are
done.
(b) Follow the subject polygon vertices to the next intersection.
(c) Jump to the clip polygon vertex list.
(d) Follow the clip polygon vertices to the next intersection.
(e) Jump back to the subject polygon vertex list.
(f) Repeat (b)-(e) until we are back to the starting point.
This process creates the polygons inside the clip polygon. To get those that are outside,
one repeats the same steps, except that one starts with a vertex from the leaving list and
the clip polygon vertex list is followed in the reverse direction. Finally, all holes are
attached to their associated exterior contours.

http://what-when-how.com/wp-content/uploads/2012/06/tmpc646365_thumb2221.png

Example. Consider the polygons in Figure 3.11. The subject polygon vertices are labeled
Si, those of the clip polygon are labeled Ci, and the intersections are labeled Ii. The
entering list consists of I2, I4, I6, and I8. The leaving list consists of I1, I3, I5, and I7.
Starting Step 4(a) with the vertex I2 will generate the inside contour

Starting Step 4(a) with vertices will
generate the outside contours

Curve Clipping
Curve-clipping procedures will involve nonlinear equations and this requires more
processing than for objects with linear boundaries. The bounding rectangle for a circle or
other curved object can be used first to test for overlap with a rectangular clip window.

If the bounding rectangle for the object is completely inside the window, we save the
object.

If the rectangle is determined to be completely outside window, we discard the object. In
either case, there is no further computation necessary. But if the bounding rectangle test fails,
we can look for other computation-saving approaches.

For a circle, we can use the coordinate extents of individual quadrants and then octants for
preliminary testing before calculating curve-window intersections.

http://what-when-how.com/wp-content/uploads/2012/06/tmpc646366_thumb222.png
http://what-when-how.com/wp-content/uploads/2012/06/tmpc646367_thumb222.png
http://what-when-how.com/wp-content/uploads/2012/06/tmpc646369_thumb222.png

Text Clipping

Various techniques are used to provide text clipping in a computer graphics. It depends

on the methods used to generate characters and the requirements of a particular

application. There are three methods for text clipping which are listed below :

• All or none string clipping

• All or none character clipping

• Text clipping

The following figure shows all or none string clipping −

In all or none string clipping method, either we keep the entire string or we reject entire

string based on the clipping window. As shown in the above figure, STRING2 is

entirely inside the clipping window so we keep it and STRING1 being only partially

inside the window, we reject.

The following figure shows all or none character clipping −

This clipping method is based on characters rather than entire string. In this method if

the string is entirely inside the clipping window, then we keep it. If it is partially

outside the window, then −

• You reject only the portion of the string being outside

• If the character is on the boundary of the clipping window, then we discard that entire

character and keep the rest string.

The following figure shows text clipping −

This clipping method is based on characters rather than the entire string. In this method

if the string is entirely inside the clipping window, then we keep it. If it is partially

outside the window, then

• You reject only the portion of string being outside.

• If the character is on the boundary of the clipping window, then we discard only that

portion of character that is outside of the clipping window.

UNIT ̶ III

3D TRANSFORMATIONS

Three-Dimensional Viewing

Viewing in 3D involves the following considerations:

- We can view an object from any spatial position, eg. In front of an object, Behind the object, In

the middle of a group of objects, Inside an object, etc.
- 3D descriptions of objects must be projected onto the flat viewing surface of the output device.
- The clipping boundaries enclose a volume of space

Modelling Transformation and Viewing Transformation can be done by 3D transformations.

The viewing-coordinate system is used in graphics packages as a reference for specifying the

observer viewing position and the position of the projection plane. Projection operations convert

the viewing-coordinate description (3D) to coordinate positions on the projection plane (2D).

(Usually combined with clipping, visual-surface identification, and surface-

rendering)Workstation transformation maps the coordinate positions on the projection plane to

the output device

Viewing Transformation

Conversion of objection descriptions from world to viewing coordinates is equivalent to a

transformation that superimposes the viewing reference frame onto the world frame using

the basic
geometric translate-rotate operations:
1. Translate the view reference point to the origin of the world-coordinate system.
2. Apply rotations to align the xv, yv, and zv axes (viewing coordinate system) with the world

xw, yw,
zw axes, respectively.

Projections

Projection operations convert the viewing-coordinate description (3D) to coordinate positions on

the
projection plane (2D). There are 2 basic projection methods:
1. Parallel Projection transforms object positions to the view plane along parallel lines.

A parallel projection preserves relative proportions of objects. Accurate views of the

various sides of
an object are obtained with a parallel projection. But not a realistic representation

- Perspective Projection transforms object positions to the view plane while converging to

a center
point of projection. Perspective projection produces realistic views but does not preserve relative

proportions. Projections of distant objects are smaller than the projections of objects of the same

size that are closer to the
projection plane.

Parallel Projection

Classification:
Orthographic Parallel Projection and Oblique Projection:

Orthographic parallel projections are done by projecting points along parallel lines that

are perpendicular to the projection plane.
Oblique projections are obtained by projecting along parallel lines that are NOT perpendicular

to the

projection plane. Some special Orthographic Parallel Projections involve Plan View

(Top projection), Side Elevations, and Isometric Projection:

The following results can be obtained from oblique projections of a cube:

Perspective Projection

Perspective projection is done in 2 steps: Perspective transformation and Parallel projection.

These
steps are described in the following section.
Perspective Transformation and Perspective Projection To produce perspective viewing effect,

after Modelling Transformation, Viewing Transformation is carried out to transform objects

from the world coordinate system to the viewing coordinate system. Afterwards, objects in the

scene are further processed with Perspective Transformation: the view volume in the shape of a

frustum becomes a regular parallelepiped. The transformation equations are shown as follows
and are applied to every vertex of each object:
x' = x * (d/z),
y' = y * (d/z),
z' = z

Where (x,y,z) is the original position of a vertex, (x',y',z') is the transformed position of

the vertex,
and d is the distance of image plane from the center of projection.
Note that:

Perspective transformation is different from perspective projection: Perspective

projection projects a

3D object onto a 2D plane perspectively. Perspective transformation converts a 3D object into

a deformed 3D object. After the transformation, the depth value of an object remains

unchanged. Before the perspective transformation, all the projection lines converge to the

center of projection.

After the transformation, all the projection lines are parallel to each other. Finally we can apply

parallel projection to project the object onto a 2D image plane. Perspective Projection =

Perspective Transformation + Parallel Projection

View Volumes

View window - A rectangular area in the view plane which controls how much of the scene

is viewed.
The edges of the view window are parallel to the xv and yv viewing axes. View volume -

formed by the view window and the type of projection to be used. Only those objects within the

view volume will appear in the generated display. So we can exclude objects that are beyond the

view volume when we render the objects in the scene. A finite view volume is obtained by

bounding with front plane and back plane (or the near plane and the far plane). Hence a view

volume is bounded by 6 planes => rectangular parallelepiped or a frustum, for parallel projection

and perspective projection respectively. Some

Some facts:
Perspective effects depend on the positioning of the center point of projection. If it is close to

the view plane, perspective effects are emphasized, ie. closer objects will appear larger than

more distant

objects of the same size. The projected size of an object is also affected by the relative position

of the object and the view plane.
'Viewing' a static view:
The view plane is usually placed at the viewing-coordinate origin and the center of projection

is positioned to obtain the amount of perspective desired.
'Viewing' an animation sequence:
Usually the center of projection point is placed at the viewing-coordinate origin and the view

plane is

placed in front of the scene. The size of the view window is adjusted to obtain the amount

of scene

desired. We move through the scene by moving the viewing reference frame (ie. the

viewing coordinate system).
Some facts:
Perspective effects depend on the positioning of the center point of projection. If it is close to

the view plane, perspective effects are emphasized, ie. closer objects will appear larger than

more distant
objects of the same size. The projected size of an object is also affected by the relative position
of the object and the view
plane.
'Viewing' a static view:
The view plane is usually placed at the viewing-coordinate origin and the center of projection

is positioned to obtain the amount of perspective desired.
'Viewing' an animation sequence:

Usually the center of projection point is placed at the viewing-coordinate origin and the view

plane is

placed in front of the scene. The size of the view window is adjusted to obtain the amount

of scene

desired. We move through the scene by moving the viewing reference frame (ie. the

viewing coordinate system).

Depth Cueing
With few exceptions, depth information is important so that we can easily identify, for a particular viewing

direction, which is the front and which is the back of displayed objects. Figure 9-5 illustrates the ambiguity

that can result when a wireframe object is displayed without depth information. There are several ways in

which we can include depth information in the two-dimensional representation of solid objects.

A simple method for indicating depth with wireframe displays is to vary the intensity of objects according to

their distance from the viewing position. Figure 9-6 shows a wireframe object displayed with depth cueing.

The lines closest to

the viewing position are displayed with the highest intensities, and lines farther away are displayed with

decreasing intensities. Depth cueing is applied by choosing maximum and minimum intensity (or color)

values and a range of distances over which the intensities are to vary.

Another application of depth cueing is modeling the effect of the atmosphere on the perceived intensity of

objects. More distant objects appear dimmer to us than nearer objects due to light scattering by dust

particles, haze, and smoke. Some atmospheric effects can change the perceived color of an object, and we

can model these effects with depth cueing.

Visible Line and Surface Identification
We can also clarify depth lat ti on ships in a wireframe display by identifying visible lines in some way. The

simplest method is to highlight the visible lines or to display them in a different color. Another technique,

commonly used for engineering drawings, is to display the nonvisible lines as dashed lines. Another

approach is to simply remove the nonvisible lines, as in Figs. 9-5(b) and 9-5(c). But removing the hidden

lines also removes information about the shape of the back surfaces of an object. These visible-line methods

also identify the visible surfaces

of objects.

When objects are to be displayed with color or shaded surfaces, we apply surface-rendering procedures to

the visible surfaces so that the hidden surfaces are obscured. Some visible surface algorithms establish

visibility pixel by pixel across the viewing plane; other algorithms determine visibility for object surfaces as

a whole.

Surface Rendering
Added realism is attained in displays by setting the surface intensity of objects according to the lighting

conditions in the scene and according to assigned surface characteristics. Lighting specifications include the

intensity and positions of light sources and the general background illumination required for a scene.

Surface properties of objects include degree of transparency and how rough or smooth the surfaces are to be.

Procedures can then be applied to generate the correct illumination and shadow regions for the scene. In Fig.

9-7, surface-rendering methods are combined with perspective and visible-surface identification to generate

a degree of realism in a displayed scene.

Exploded and Cutaway Views
Many graphics packages allow objects to be defined as hierarchical structures, so that internal details can

be stored. Exploded and cutaway views of such objects can then be used to show the internal structure and

relationship of the object parts. Figure 9-8 shows several kinds of exploded displays for a mechanical

design.

An alternative to exploding an objects into its component parts is the cutaway view (Fig. 9-9, which

removes part of the visible surfaces to show internal structure.

Visible-Surface Detection Methods

More information about Modelling and Perspective Viewing:

Before going to visible surface detection, we first review and discuss the followings:

Modeling Transformation:

In this stage, we transform objects in their local modelling coordinate

systems into a common coordinate system called the world coordinates.

Perspective Transformation (in a perspective viewing system):

After Modelling Transformation, Viewing Transformation is carried out to

transform objects from the world coordinate system to the viewing

coordinate system. Afterwards, objects in the scene are further perspectively transformed. The

effect of such an operation is that after the transformation, the view volume in the shape of a

frustum becomes a regular parallelepiped. The transformation equations are shown as follows

and are applied to every vertex of each object:

x' = x * (d/z),

y' = y * (d/z),

z' = z

Where (x,y,z) is the original position of a vertex, (x',y',z') is the transformed position of

the vertex, and d is the distance of image plane

from the center of projection.

Note that:

Perspective transformation is different from perspective projection:

Perspective projection projects a 3D object onto a 2D plane perspectively.

Perspective transformation converts a 3D object into a deformed 3D object.

After the transformation, the depth value of an object remains unchanged.

Before the perspective transformation, all the projection lines converge to

the center of projection. After the transformation, all the projection lines

are parallel to each others.

Perspective Projection = Perspective Transformation + Parallel Projection

In 3D clipping, we remove all objects and parts of objects which are

outside of the view volume. Since we have done perspective transformation, the 6 clipping

planes,

which form the parallelepiped, are parallel to the 3 axes and hence clipping is straight forward.

Hence the clipping operation can be performed in 2D. For example, we may first perform the

clipping operations on the x-y plane and then on the x-z plane.

Problem definition of Visible-Surface Detection Methods:

To identify those parts of a scene that are visible from a chosen viewing position.

Surfaces which are obscured by other opaque surfaces along the line of sign (projection) are

invisible to the viewer.

Characteristics of approaches:

- Require large memory size?

- Require long processing time?

- Applicable to which types of objects?

Considerations:

- Complexity of the scene

- Type of objects in the scene

- Available equipment

- Static or animated?

Classification of Visible-Surface Detection Algorithms:

Object-space Methods

Compare objects and parts of objects to each other within the scene definition to

determine which

surfaces, as a whole, we should label as visible:

For each object in the scene do

Begin

3. Determine those part of the object whose view is unobstructed by other parts of it

or any other object with respect to the viewing specification.

4. Draw those parts in the object color.

- Compare each object with all other objects to determine the visibility of the object parts.

- If there are n objects in the scene, complexity = O(n2)

- Calculations are performed at the resolution in which the objects are defined (only limited

by the

computation hardware).

- Process is unrelated to display resolution or the individual pixel in the image and the result

of the

process is applicable to different display resolutions.

- Display is more accurate but computationally more expensive as compared to image space

methods because step 1 is typically more complex, eg. Due to the possibility of intersection

between surfaces.

- Suitable for scene with small number of objects and objects with simple relationship with

each other.

 Image-space Methods (Mostly used)

Visibility is determined point by point at each pixel position on the projection plane.

For each pixel in the image do

Begin

1. Determine the object closest to the viewer that is pierced by the projector through

the pixel

2. Draw the pixel in the object colour.

- For each pixel, examine all n objects to determine the one closest to the viewer.

- If there are p pixels in the image, complexity depends on n and p (O(np)).

- Accuarcy of the calculation is bounded by the display resolution.

- A change of display resolution requires re-calculation

Application of Coherence in Visible Surface Detection Methods:

- Making use of the results calculated for one part of the scene or image for other nearby parts.

- Coherence is the result of local similarity

- As objects have continuous spatial extent, object properties vary smoothly within a small local

region in the scene. Calculations can then be made incremental.

Types of coherence:

1. Object Coherence:

Visibility of an object can often be decided by examining a circumscribing solid (which may

be of

simple form, eg. A sphere or a polyhedron.)

2. Face Coherence:

Surface properties computed for one part of a face can be applied to adjacent parts after small

incremental modification. (eg. If the face is small, we sometimes can assume if one part of

the face is

invisible to the viewer, the entire face is also invisible).

3. Edge Coherence:

The Visibility of an edge changes only when it crosses another edge, so if one segment of an

nonintersecting edge is visible, the entire edge is also visible.

4. Scan line Coherence:

Line or surface segments visible in one scan line are also likely to be visible in adjacent scan

lines.

Consequently, the image of a scan line is similar to the image of adjacent scan lines.

5. Area and Span Coherence:

A group of adjacent pixels in an image is often covered by the same visible object. This

coherence is

based on the assumption that a small enough region of pixels will most likely lie within a single

polygon. This reduces computation effort in searching for those polygons which contain a given

screen area (region of pixels) as in some subdivision algorithms.

6. Depth Coherence:

The depths of adjacent parts of the same surface are similar.

7. Frame Coherence:

Pictures of the same scene at successive points in time are likely to be similar, despite small

changes

in objects and viewpoint, except near the edges of moving objects. Most visible surface

detection methods make use of one or more of these coherence properties of a scene. To take

advantage of regularities in a scene, eg. Constant relationships often can be established between

objects and surfaces in a scene.

Back-Face Detection

In a solid object, there are surfaces which are facing the viewer (front faces) and there

are surfaces

which are opposite to the viewer (back faces). These back faces contribute to approximately half

of the total number of surfaces. Since we cannot see these surfaces anyway, to save processing

time, we can remove them before the clipping process with a simple test. Each surface has a

normal vector. If this vector is pointing in the direction of the center of projection, it is a front

face and can be seen by the viewer. If it is pointing away from the center of projection, it is a

back face and cannot be seen by the viewer. The test is very simple, if the z component of the

normal vector is positive, then, it is a back face. If the z component of the vector is negative, it

is a front face. Note that this technique only caters well for non overlapping convex polyhedral.

For other cases where there are concave polyhedra or

overlapping objects, we still need to apply other methods to further determine where

the obscured faces are partially or completely

hidden by other objects (eg.Using Depth-Buffer Method or Depth-sort Method).

Depth-Buffer Method (Z-Buffer Method)

This approach compare surfac

e depths at each pixel

position on the projection plane.

Object depth is usually measured from the view plane

along the z axis of a viewing system. This method requires 2 buffers: one is the image buffer and

the other is called the z-buffer (or the depth buffer). Each of these buffers has the same resolution

as the image to be

captured. As surfaces are processed, the image buffer is used to store the color values of each

pixel position and the z-buffer is used to store the depth values for each (x,y) position.

Algorithm:

1. Initially each pixel of the z-buffer is set to the maximum depth value (the depth of the

back clipping plane).

2. The image buffer is set to the background color.

3. Surfaces are rendered one at a time.

4. For the first surface, the depth value of each pixel is calculated.

5. If this depth value is smaller than the corresponding depth value in the z-buffer (ie. it is closer to

the view point), both the depth value in the z-buffer and the color value in the image buffer are

replaced by the depth value and the color value of this surface calculated at the pixel position.

6. Repeat step 4 and 5 for the remaining surfaces.

7. After all the surfaces have been processed, each pixel of the image buffer represents the color

of a visible surface at that pixel. This method requires an additional buffer (if compared with the

Depth-Sort Method) and the overheads involved in updating the buffer. So this method is less

attractive in the cases where only a few objects in the scene are to be rendered.

- Simple and does not require additional data structures.

- The z-value of a polygon can be calculated incrementally.

- No pre-sorting of polygons is needed.
- No object-object comparison is required.

- Can be applied to non-polygonal objects.

- Hardware implementations of the algorithm are available in some graphics workstation.

- For large images, the algorithm could be applied to, eg., the 4 quadrants of the

image separately, so as to reduce the requirement of a large additional buffer

Scan-Line Method

In this method, as each scan line is processed, all polygon surfaces intersecting that line are

examined to determine which are visible. Across each scan line, depth calculations are made for each

overlapping surface to determine which is nearest to the view plane. When the visible surface has

been determined, the intensity value for that position is entered into the image buffer.

For each scan line do

Begin

For each pixel (x,y) along the scan line do ------------ Step 1

Begin

z_buffer(x,y) = 0

Image_buffer(x,y) = background_color

End

For each polygon in the scene do ----------- Step 2

Begin

For each pixel (x,y) along the scan line that is covered by the polygon do

2a. Compute the depth or z of the polygon at pixel location (x,y).

2b. If z < z_buffer(x,y) then

Set z_buffer(x,y) = z

Set Image_buffer(x,y) = polygon's colour

End

End

End

- Step 2 is not efficient because not all polygons necessarily intersect with the scan line.

- Depth calculation in 2a is not needed if only 1 polygon in the scene is mapped onto a

segment of

the scan line.

- To speed up the process:

Recall the basic idea of polygon filling: For each scan line crossing a polygon, this algorithm

locates the intersection points of the scan line with the polygon edges. These intersection points

are sorted from left to right. Then, we fill the pixels between each intersection pair.

With similar idea, we fill every scan line span by span. When polygon overlaps on a scan line,

we perform depth calculations at their edges to determine which polygon should be visible at

which span. Any number of overlapping polygon surfaces can be processed with this method.

Depth calculations are performed only when there are polygons overlapping. We can take

advantage of coherence along the scan lines as we pass from one scan line to the next. If no

changes in the pattern of the intersection of polygon edges with the successive scan lines, it is not

necessary to do depth calculations. This works only if surfaces do not cut through or otherwise

cyclically overlap each other. If cyclic overlap happens, we can divide the surfaces to eliminate

the overlaps.

- The algorithm is applicable to non-polygonal surfaces (use of surface and active surface table,

zvalue

is computed from surface representation).

- Memory requirement is less than that for depth-buffer method.

- Lot of sortings are done on x-y coordinates and on depths.

Depth-Sort Method

1. Sort all surfaces according to their distances from the view point.

2. Render the surfaces to the image buffer one at a time starting from the farthest surface.

3. Surfaces close to the view point will replace those which are far away.

4. After all surfaces have been processed, the image buffer stores the final image.

The basic idea of this method is simple. When there are only a few objects in the scene, this

method can be very fast. However, as the number of objects increases, the sorting process

can become very complex and time consuming.

Example: Assuming we are viewing along the z axis. Surface S with the greatest depth is then

compared to other surfaces in the list to determine whether there are any overlaps in depth. If no

depth

overlaps occur, S can be scan converted. This process is repeated for the next surface in the

list. However, if depth overlap is detected, we need to make some additional comparisons to

determine whether any of the surfaces should be reordered.

Binary Space Partitioning

- suitable for a static group of 3D polygon to be viewed from a number of view points

- based on the observation that hidden surface elimination of a polygon is guaranteed if all

polygons on the other side of it as the viewer is painted first, then itself, then all polygons on

the same side of it as the viewer

1.The algorithm first build the BSP tree:

- a root polygon is chosen (arbitrarily) which divides the region into 2 half-spaces (2 nodes =>

front and back)

- a polygon in the front half-space is chosen which divides the half-space into another

2 halfspaces

- the subdivision is repeated until the half-space contains a single polygon (leaf node of the tree)

- the same is done for the back space of the polygon.

2.To display a BSP tree:

- see whether the viewer is in the front or the back

half-space of the root polygon.

- if front half-space then first display back child (subtree) then itself, followed by its front child

/ subtree

- the algorithm is applied recursively to the BSP tree.

BSP Algorithm

Procedure DisplayBSP(tree: BSP_tree)

Begin

If tree is not empty then

If viewer is in front of the root then

Begin

DisplayBSP(tree.back_child)

displayPolygon(tree.root)

DisplayBSP(tree.front_child)

End

Else

Begin

DisplayBSP(tree.front_child)

displayPolygon(tree.root)

DisplayBSP(tree.back_child)

End

End

Discussion:

- Back face removal is achieved by not displaying a polygon if the viewer is located in its

back half-space

- It is an object space algorithm (sorting and intersection calculations are done in object

space precision)

- If the view point changes, the BSP needs only minor re-arrangement.

- A new BSP tree is built if the scene changes

- The algorithm displays polygon back to front (cf. Depth-sort)

Area Subdivision Algorithms

The area-subdivision method takes advantage of area coherence in a scene by

locating those view areas that represent part of a single surface. The total viewing

area is successively divided into smaller and smaller rectangles until each small

area is simple, ie. it is a single pixel, or is covered wholly by a part of a single

visible surface or no surface at all.

The procedure to determine whether we should subdivide an area into smaller rectangle

is:
1. We first classify each of the surfaces, according to their relations with the area:

Surrounding surface - a single surface completely encloses the area Overlapping

surface - a single surface that is partly inside and partly outside the area Inside

surface - a single surface that is completely inside the area Outside surface - a single

surface that is completely outside the area. To improve the speed of classification, we

can make use of the bounding rectangles of surfaces for early confirmation or

rejection that the surfaces should be belong to that type.
2. Check the result from 1., that, if any of the following condition is true, then, no

subdivision of this area is needed.
a. All surfaces are outside the area.
b. Only one surface is inside, overlapping or surrounding surface is in

the area. c. A surrounding surface obscures all other surfaces within

the area boundaries. For cases b and c, the color of the area can be

determined from that single surface.

Octree Methods

In these methods, octree nodes are projected onto the viewing surface in a front-to-

back order. Any surfaces toward the rear of the front octants (0,1,2,3) or in the back

octants (4,5,6,7) may be hidden by the front surfaces.

With the numbering method

(0,1,2,3,4,5,6,7), nodes representing octants 0,1,2,3 for the entire region are visited

before the nodes representing octants 4,5,6,7. Similarly the nodes for the front four

suboctants of octant 0 are visited before the nodes

for the four back suboctants.When a colour is encountered in an octree node, the

corresponding

pixel in the frame buffer is painted only if no previous color has been

loaded into the same pixel position. In most cases, both a front and a back

octant must be considered in determining the correct color values for a

quadrant. But
- If the front octant is homogeneously filled with some color, we do not process the back

octant.
- If the front is empty, it is necessary only to process the rear octant.
- If the front octant has heterogeneous regions, it has to be subdivided and the

sub-octants are handled recursively.

ILLUMINATION MODELS:
- The important components are:

– Diffuse reflection

– Specular reflection

– Ambient light

- The total reflected light from a surface is the sum of
the contributions from light sources and reflected light

- Ambient light

� Also called background light

� Not created by any light
source

� A constant lighting from all
directions

� Contributed by scattered
light in a surrounding

� When used alone, does not
produce very interesting

Pictures

� incorporate background light we simply set a

general brightness level Ia for a scene

� surfaces may reflect different amount of ambient
light, based on their reflectance properties. We
model this by a constant factor for each surface:

ka × Ia

Reflection

• Light scattered with equal intensity in all
directions (ideal diffuse reflection)

• Light from a point is independent on viewing

direction (equally bright in all directions)

� angle between the incoming light direction and a surface

normal is referred to as the angle of incidence, denoted θ.

L = unit vector

to light source

N = unit vector
normal to surface

� Law of reflection: the angle of incidence equals the angle of
reflection, and L, N and R(eflection) directions are co‐planar.

� If surface has brightness Ι when facing light, it

has brightness Ι*cos(θ) when tilted at angle θ.

N

 N∙L = cos θ

L θ (N, L are unit vectors)

� You will see the brightness written as I(N∙L)

� A parameter kd set for each surface determines

the fraction of incident light scattered as diffuse

reflections from that surface

� This parameter is known as the diffuse reflection
coefficient or the diffuse reflectivity

� kd is assigned a value between 0.0 and 1.0

– 0.0 for dull surface that absorbs almost all light

– 1.0 for shiny surface that reflects almost all light

� Diffuse reflections:

�

�

� depends on where the viewer is!

White

specular

highlight

� The white specular highlight is the reflection of white
light from the source in the direction of the viewer

� The bright spot that we see on a shiny surface is
the result of incident light reflected in a
concentrated region around the specular
reflection angle

� The specular reflection angle equals the angle of
the incident light

L = vector to light source
N = vector normal to surface
R = direction of reflected light

V = vector to viewer

� perfect mirror reflects light only in the
specular‐reflection direction

� Other objects exhibit specular reflections over a

finite range of viewing positions around vector R

Phong Specular Reflection Model

� Phong model sets the intensity of specular
reflection as proportional to the angle φ
between the viewing

vector and the specular
reflection vector:

I s = I × ks × cos α φ

α = shineness exponent

ks = specular reflectivity of material

I s = I × ks × cos α φ

α = shininess

ks = reflectivity

� The shineness α is determined by the type of surface
we want to display

– Shiny surfaces have a very large value (>100)

– Rough surfaces would have a value near 1

� The larger the α, the more concentrated the light is
around R. For mirrors, α  infinity.

I s = I × ks × cos α φ

α = shininess

ks = reflectivity

� Recall that R∙V = cos φ

ks I (V ⋅ R)α

Is =0.0

Polygonal Shading

� to render solid surfaces

� Determines how surfaces will be filled

� Process for computing the color intensity value
for each pixel contained in a polygon

� The most common shading techniques are:

– Flat Shading

– Gauraud Shading

– Phong Shading

Flat Shading

� Simplest, Cheapest, Fastest Shading Method

– Works well for objects really made of flat faces.

– Appearance depends on number of polygons for

curved surface objects.

� Fills an entire polygon with one color intensity

� This model is only valid (realistic) if:

– The light source is imagined to be at infinity

– The viewer is at infinity

– The polygon is not an approximation to a curved surface

� Flat shading suffers from “mach band effect”

– human eyes accentuate the discontinuity at the
boundary

� Fix the mach band effect – remove edge discontinuity

� Compute lighting for more points on each face

� Two popular methods:

– Gauraud shading (used by OpenGL)

– Phong shading (better specular highlight, not in OpenGL)

Gaurad Shading

� Per‐vertex lighting calculation

� Normal is needed for each vertex

� Per‐vertex normal can be computed by averaging the
adjacent face normals:

n = n1 + n2 + n3 +

n4 4

� Requires knowledge about

adjacent faces

Phong Shading
� Instead of interpolation, we calculate lighting for each

pixel inside the polygon (per pixel lighting)

� Need normals for all the pixels – not provided by user

� Phong shading algorithm interpolates the normals and
compute lighting for each pixel

� Over Normal Vector, NOT Vertex Color:

FLAT, GOURAUD AND PHONG SHADING example

UNIT IV

Polygon Surfaces

Objects are represented as a collection of surfaces. 3D object representation is divided into two

categories.

• Boundary Representations (B-reps) − It describes a 3D object as a set of surfaces that

separates the object interior from the environment.

• Space–partitioning representations − It is used to describe interior properties, by

partitioning the spatial region containing an object into a set of small, non-overlapping,

contiguous solids (usually cubes).

The most commonly used boundary representation for a 3D graphics object is a set of surface

polygons that enclose the object interior. Many graphics system use this method. Set of polygons

are stored for object description. This simplifies and speeds up the surface rendering and display

of object since all surfaces can be described with linear equations.

The polygon surfaces are common in design and solid-modeling applications, since their

wireframe display can be done quickly to give general indication of surface structure. Then

realistic scenes are produced by interpolating shading patterns across polygon surface to

illuminate.

Polygon Tables

In this method, the surface is specified by the set of vertex coordinates and associated attributes.

As shown in the following figure, there are five vertices, from v1 to v5v5.

• Each vertex stores x, y, and z coordinate information which is represented in the table as

v1: x1, y1, z1.

• The Edge table is used to store the edge information of polygon. In the following figure,

edge E1 lies between vertex v1 and v2 which is represented in the table as E1: v1, v2.

• Polygon surface table stores the number of surfaces present in the polygon. From the

following figure, surface S1 is covered by edges E1, E2 and E3 which can be represented

in the polygon surface table as S1: E1, E2, and E3.

Plane Equations

The equation for plane surface can be expressed as −

Ax + By + Cz + D = 0

Where (x, y, z) is any point on the plane, and the coefficients A, B, C, and D are constants

describing the spatial properties of the plane. We can obtain the values of A, B, C, and D by

solving a set of three plane equations using the coordinate values for three non collinear points in

the plane. Let us assume that three vertices of the plane are (x1, y1, z1), (x2, y2, z2) and (x3, y3, z3).

Let us solve the following simultaneous equations for ratios A/D, B/D, and C/D. You get the

values of A, B, C, and D.

(A/D) x1 + (B/D) y1 + (C/D) z1 = -1

(A/D) x2 + (B/D) y2 + (C/D) z2 = -1

(A/D) x3 + (B/D) y3 + (C/D) z3 = -1

To obtain the above equations in determinant form, apply Cramer’s rule to the above equations.

For any point (x, y, z) with parameters A, B, C, and D, we can say that −

• Ax + By + Cz + D ≠ 0 means the point is not on the plane.

• Ax + By + Cz + D < 0 means the point is inside the surface.

• Ax + By + Cz + D > 0 means the point is outside the surface.

Polygon Meshes

3D surfaces and solids can be approximated by a set of polygonal and line elements. Such

surfaces are called polygonal meshes. In polygon mesh, each edge is shared by at most two

polygons. The set of polygons or faces, together form the “skin” of the object.

This method can be used to represent a broad class of solids/surfaces in graphics. A polygonal

mesh can be rendered using hidden surface removal algorithms. The polygon mesh can be

represented by three ways −

• Explicit representation

• Pointers to a vertex list

• Pointers to an edge list

Advantages

• It can be used to model almost any object.

• They are easy to represent as a collection of vertices.

• They are easy to transform.

• They are easy to draw on computer screen.

Disadvantages

• Curved surfaces can only be approximately described.

• It is difficult to simulate some type of objects like hair or liquid.

In computer graphics, we often need to draw different types of objects onto the screen. Objects

are not flat all the time and we need to draw curves many times to draw an object.

Types of Curves

A curve is an infinitely large set of points. Each point has two neighbors except endpoints.

Curves can be broadly classified into three categories − explicit, implicit, and parametric

curves.

Implicit Curves

Implicit curve representations define the set of points on a curve by employing a procedure that

can test to see if a point in on the curve. Usually, an implicit curve is defined by an implicit

function of the form −

f(x, y) = 0

It can represent multivalued curves (multiple y values for an x value). A common example is the

circle, whose implicit representation is

x2 + y2 - R2 = 0

Explicit Curves

A mathematical function y = f(x) can be plotted as a curve. Such a function is the explicit

representation of the curve. The explicit representation is not general, since it cannot represent

vertical lines and is also single-valued. For each value of x, only a single value of y is normally

computed by the function.

Parametric Curves

Curves having parametric form are called parametric curves. The explicit and implicit curve

representations can be used only when the function is known. In practice the parametric curves

are used. A two-dimensional parametric curve has the following form −

P(t) = f(t), g(t) or P(t) = x(t), y(t)

The functions f and g become the (x, y) coordinates of any point on the curve, and the points are

obtained when the parameter t is varied over a certain interval [a, b], normally [0, 1].

Bezier Curves

Bezier curve is discovered by the French engineer Pierre Bézier. These curves can be generated

under the control of other points. Approximate tangents by using control points are used to

generate curve. The Bezier curve can be represented mathematically as −

∑k=0nPiBni(t)

Where pi

is the set of points and Bni(t)

represents the Bernstein polynomials which are given by −

Bni(t)=(ni)(1−t)n−iti

Where n is the polynomial degree, i is the index, and t is the variable.

The simplest Bézier curve is the straight line from the point P0

to P1

. A quadratic Bezier curve is determined by three control points. A cubic Bezier curve is

determined by four control points.

Properties of Bezier Curves

Bezier curves have the following properties −

• They generally follow the shape of the control polygon, which consists of the segments

joining the control points.

• They always pass through the first and last control points.

• They are contained in the convex hull of their defining control points.

• The degree of the polynomial defining the curve segment is one less that the number of

defining polygon point. Therefore, for 4 control points, the degree of the polynomial is 3,

i.e. cubic polynomial.

• A Bezier curve generally follows the shape of the defining polygon.

• The direction of the tangent vector at the end points is same as that of the vector

determined by first and last segments.

• The convex hull property for a Bezier curve ensures that the polynomial smoothly

follows the control points.

• No straight line intersects a Bezier curve more times than it intersects its control polygon.

• They are invariant under an affine transformation.

• Bezier curves exhibit global control means moving a control point alters the shape of the

whole curve.

• A given Bezier curve can be subdivided at a point t=t0 into two Bezier segments which

join together at the point corresponding to the parameter value t=t0.

B-Spline Curves

The Bezier-curve produced by the Bernstein basis function has limited flexibility.

• First, the number of specified polygon vertices fixes the order of the resulting polynomial

which defines the curve.

• The second limiting characteristic is that the value of the blending function is nonzero for

all parameter values over the entire curve.

The B-spline basis contains the Bernstein basis as the special case. The B-spline basis is non-

global.

A B-spline curve is defined as a linear combination of control points Pi and B-spline basis

function Ni,

k (t) given by

C(t)=∑ni=0PiNi,k(t),

n≥k−1, tϵ[tk−1,tn+1]

Where,

• {pi : i=0, 1, 2….n} are the control points

• k is the order of the polynomial segments of the B-spline curve. Order k means that the curve

is made up of piecewise polynomial segments of degree k - 1,

• the Ni,k(t)

• are the “normalized B-spline blending functions”. They are described by the order k and

by a non-decreasing sequence of real numbers normally called the “knot sequence”.

ti:i=0,...n+K

The Ni, k functions are described as follows −

Ni,1(t)={1,0,ifuϵ[ti,ti+1)Otherwise

and if k > 1,

Ni,k(t)=t−titi+k−1Ni,k−1(t)+ti+k−tti+k−ti+1Ni+1,k−1(t)

and

tϵ[tk−1,tn+1)

Properties of B-spline Curve

B-spline curves have the following properties −

• The sum of the B-spline basis functions for any parameter value is 1.

• Each basis function is positive or zero for all parameter values.

• Each basis function has precisely one maximum value, except for k=1.

• The maximum order of the curve is equal to the number of vertices of defining polygon.

• The degree of B-spline polynomial is independent on the number of vertices of defining

polygon.

• B-spline allows the local control over the curve surface because each vertex affects the

shape of a curve only over a range of parameter values where its associated basis function

is nonzero.

• The curve exhibits the variation diminishing property.

• The curve generally follows the shape of defining polygon.

• Any affine transformation can be applied to the curve by applying it to the vertices of

defining polygon.

• The curve line within the convex hull of its defining polygon.

SOLID MODELING

Solid modeling is the most advanced method of geometric modeling in three dimensions. Solid

modeling is the representation of the solid parts of the object on your computer. The typical

geometric model is made up of wire frames that show the object in the form of wires. This wire

frame structure can be two dimensional, two and half dimensional or three dimensional.

Providing surface representation to the wire three dimensional views of geometric models makes

the object appear solid on the computer screen and this is what is called as solid modeling.

Polygon Meshes

•A polygon meshis a collection of polygons, along with a normal vector associated to each

polygon vertex :– An edge connects two vertices– A polygon is a closed sequence of edges– An

edge can be shared by two adjacent polygons– A vertex is shared by at least two edges– A

normal vector pointing “outside” is associated with each polygon vertex

Properties:

•Connectedness:A mesh is connectedif thereis an path of edges between any two vertices

•Simplicity:A mesh is simpleif the mesh has noholes in it•Planarity:A mesh is planarif every face

of it is a planar polygon•Convexity:The mesh is convexif the line connecting any two points in

the mesh belongs to the mesh

ADVANTAGES

Solid modeling is one of the most important applications of the CAD software and it has been

becoming increasingly popular of late. The solid modeling CAD software helps the designer to

see the designed object as if it were the real manufactured product. It can be seen from various

directions and in various views. This helps the designer to be sure that the object looks exactly as

they wanted it to be. It also gives additional vision to the designer as to what more changes can

be done in the object.

COLOR MODELS

The purpose of a color model is to facilitate the specification of colors in some standard generally

accepted way. In essence, a color model is a specification of a 3-D coordinate system and a subspace

within that system where each color is represented by a single point.

RGB Color Model

In the RGB model, each color appears as a combination of red, green, and blue. This model is called

additive, and the colors are called primary colors. The primary colors can be added to produce the

secondary colors of light (see Figure "Primary and Secondary Colors for RGB and CMYK Models")

- magenta (red plus blue), cyan (green plus blue), and yellow (red plus green). The combination of

red, green, and blue at full intensities makes white.

The color subspace of interest is a cube, in which RGB values are at three corners; cyan, magenta,

and yellow are the three other corners, black is at their origin; and white is at the corner farthest from

the origin.

The gray scale extends from black to white along the diagonal joining these two points. The colors

are the points on or inside the cube, defined by vectors extending from the origin.

Thus, images in the RGB color model consist of three independent image planes, one for each

primary color.

The importance of the RGB color model is that it relates very closely to the way that the human eye

perceives color. RGB is a basic color model for computer graphics because color displays use red,

green, and blue to create the desired color. Therefore, the choice of the RGB color space simplifies

the architecture and design of the system. Besides, a system that is designed using the RGB color

space can take advantage of a large number of existing software routines, because this color space

has been around for a number of years.

HSV Color Model

The HLS (hue, lightness, saturation) and HSV (hue, saturation, value) color models were developed

to be more “intuitive” in manipulating with color and were designed to approximate the way humans

perceive and interpret color. Hue defines the color itself.

The values for the hue axis vary from 0 to 360 beginning and ending with red and running through

green, blue and all intermediary colors. Saturation indicates the degree to which the hue differs from

a neutral gray. The values run from 0, which means no color saturation, to 1, which is the fullest

saturation of a given hue at a given illumination. Intensity component - lightness (HLS) or value

(HSV), indicates the illumination level.

Both vary from 0 (black, no light) to 1 (white, full illumination). The difference between the two is

that maximum saturation of hue (S=1) is at value V=1 (full illumination) in the HSV color model,

and at lightness L=0.5 in the HLS color model.

HLS COLOR MODEL

This model, Hue, Lightness, and Saturation, was popularized by Tektronix who used it to define

the color effects on its monitors. It uses a double cone, as shown below:

The hues are specifies by angles, as they were for HSV, but in this model Blue is at 0°, Magenta

is at 60°, Red is at 120°, Yellow is at 180°, Green is at 240°, and Cyan is at 300°. So the order on

which the colors appear is the same as before, and complementary colors are still on opposite

sides of the circle, separated by 180°, but the color sequence begins with blue instead of red. The

angle is measured from above, as before, beginning at the line shown from medium gray to blue.

The hue definitions now lie on a circle, as compared to the hexagon that was used for HSV. This

is much easier to deal with since full saturation of any hue will now have an S value of 1.0, as

compared to, for example, the √3/2 that we had to use for the S value for orange using HSV.

Once again, gray scales appear on the center line of symmetry, with L= 0 at the bottom and L= 1

at the top. In this mode l the line is twice as long as in HSV.

Pure colors have an L value of 0.5. So, for example, pure orange is at an HLS triple of (150°, 0.5,

1.0).

Overall HSV seems to be the preferred method for interactive selection of colors.

CMYK Color Model

The CMYK color model is a subset of the RGB model and is primarily used in color print

production. CMYK is an acronym for cyan, magenta, and yellow along with black (noted as K). The

CMYK color space is subtractive, meaning that cyan, magenta yellow, and black pigments or inks

are applied to a white surface to subtract some color from white surface to create the final color.

Cyan is white minus red, magenta is white minus green, and yellow is white minus blue. Subtracting

all colors by combining the CMY at full saturation should, in theory, render black. However,

impurities in the existing CMY inks make full and equal saturation impossible, and some RGB light

does filter through, rendering a muddy brown color. Therefore, the black ink is added to CMY.

CIE XYZ Color Model

The XYZ color space is an international standard developed by the CIE (Commission Internationale

de l’Eclairage). This model is based on three hypothetical primaries, XYZ,and all visible colors can

be represented by using only positive values of X, Y, and Z. The CIE XYZ primaries are

hypothetical because they do not correspond to any real light wavelengths. The Y primary is

intentionally defined to match closely to luminance, while X and Z primaries give color information.

The main advantage of the CIE XYZ space (and any color space based on it) is that this space is

completely device-independent.

Intel IPP functions use the following basic equations, to convert between gamma corrected

R’G’B’ and CIE XYZ models:

X = 0.412453*R’ + 0.35758 *G’ + 0.180423*B’

Y = 0.212671*R’ + 0.71516 *G’ + 0.072169*B’

Z = 0.019334*R’ + 0.119193*G’ + 0.950227*B’

The equations for X,Y,Z calculation are given on the assumption that R’,G’, and B’

values are normalized to the range [0..1].

R’ = 3.240479 * X - 1.53715 * Y - 0.498535 * Z

G’ = -0.969256 * X + 1.875991 * Y + 0.041556 * Z

B’ = 0.055648 * X - 0.204043 * Y + 1.057311 * Z

The equations for R’,G’, and B’ calculation are given on the assumption that X,Y, and Z

values are in the range [0..1].

YIQ Color Model

YIQ is the system used for US TV broadcast (PAL is the most common system used in other

countries). The primary goals of the system were to provide a signal that could be directly

displayed by black and white TVs, while also providing easy coding and decoding of RGB

signals.

The conversions from RGB to YIQ and back are given by the matrices:

where obviously the two matrices are inverses. The Y component, which is the same as the Y

value in the CIE system, is the signal that is used directly by black and white TVs.

Y is said to convey the luminance information and is transmitted on a separate carrier signal

from the chromaticity components, I and Q.

.

This encoding is of far more importance for film & TV people than it is for computer graphics

people.

Common Image File Formats

There are numerous image file types out there so it can be hard to know which file type best suits your image

needs. Some image types such a TIFF are great for printing while others, like JPG or PNG, are best for web

graphics.

The list below outlines some of the more common file types and provides a brief description, how the file is best

used, and any special attributes the file may have.

TIFF (.tif, .tiff)

TIFF or Tagged Image File Format are lossless images files meaning that they do not need to compress or lose any

image quality or information (although there are options for compression), allowing for very high-quality images but

also larger file sizes.

Compression: Lossless - no compression. Very high-quality images.
Best For: High quality prints, professional publications, archival copies

Special Attributes: Can save transparencies

Bitmap (.bmp)

BMP or Bitmap Image File is a format developed by Microsoft for Windows. There is no compression or

information loss with BMP files which allow images to have very high quality, but also very large file sizes. Due to

BMP being a proprietary format, it is generally recommended to use TIFF files.

Compression: None
Best For: High quality scans, archival copies

JPEG (.jpg, .jpeg)

JPEG, which stands for Joint Photographic Experts Groups is a “lossy” format meaning that the

image is compressed to make a smaller file. The compression does create a loss in quality but this
loss is generally not noticeable. JPEG files are very common on the Internet and JPEG is a popular

format for digital cameras - making it ideal for web use and non-professional prints.

Compression: Lossy - some file information is compressed or lost

Best For: Web Images, Non-Professional Printing, E-Mail, Powerpoint

Special Attributes: Can choose amount of compression when saving in image editing programs

like Adobe Photoshop or GIMP.

GIF (.gif)

GIF or Graphics Interchange Format files are widely used for web graphics, because they are limited to only 256

colors, can allow for transparency, and can be animated. GIF files are typically small is size and are very portable.

Compression: Lossless - compression without loss of quality

Best For: Web Images

Special Attributes: Can be Animated, Can Save Transparency

PNG (.png)

PNG or Portable Network Graphics files are a lossless image format originally designed to improve upon and

replace the gif format. PNG files are able to handle up to 16 million colors, unlike the 256 colors supported by GIF.

Compression: Lossless - compression without loss of quality

Best For: Web Images

Special Attributes: Save Transparency

EPS (.eps)

An EPS or Encapsulated PostScript file is a common vector file type. EPS files can be opened in many illustration

applications such as Adobe Illustrator or CorelDRAW.

Compression: None - uses vector information

Best For: Vector artwork, illustrations

Special Attributes: Saves vector information

 RAW Image Files (.raw, .cr2, .nef, .orf, .sr2, and more)

RAW images are images that are unprocessed that have been created by a camera or scanner. Many digital SLR

cameras can shoot in RAW, whether it be a .raw, .cr2, or .nef. These RAW images are the equivalent of a digital

negative, meaning that they hold a lot of image information, but still need to be processed in an editor such as Adobe

Photoshop or Lightroom.

Compression: None

Best For: Photography

Special Attributes: Saves metadata, unprocessed, lots of information

UNIT V

USER INTERFACE DESIGN

6.1 Introduction

As hardware cost is plummeting, which is considered as the major bottleneck for the

progress; now communication devices is more listened for better development. For that

reason, techniques for developing high-quality user interfaces are moving to the

forefront in computer science and are becoming the "last frontier" in providing

computing to a wide variety of users—as other aspects of technology continue to

improve, but the human users remain the same. Interest in the quality of user-computer

interfaces is a recent part of the formal study of computers. The emphasis until the early

1980s was on optimizing two scarce hardware resources, computer time and memory.

Program efficiency was the highest goal. With today’s plummeting hardware costs and

powerful graphics-oriented personal computing environments the focus turns to

optimizing user efficiency rather than computer efficiency. Thus, although many of the

ideas presented in this chapter require additional CPU cycles and memory space, the

potential rewards in user productivity and satisfaction well outweigh the modest

additional cost of these resources. The quality of the user interface often determines

whether users enjoy or despise a system, whether the designers of the system are

praised or damned, whether a system succeeds or fails in the market. Actually, a poor

user interface such as in air traffic control or in nuclear power plant monitoring can lead

to catastrophic consequences.

The desktop user-interface metaphor, with its windows, icons, and pull-down menus,

all making heavy use of raster graphics, is popular because it is easy to learn and

requires little typing skill. Most users of such systems are not computer programmers

and have little sympathy for the old-style difficult-to-learn keyboard-oriented

command-language interfaces that many programmers take for granted. The designer of

an interactive graphics application must be sensitive to users’ desire for easy-to-learn

yet powerful interfaces. In this chapter, we discuss the three basic low-level elements of

user interfaces: input devices, interaction techniques, and interaction tasks. Interaction

techniques are the primitive building blocks from which a user interface is crafted.

We focus in this chapter on input devices—those pieces of hardware by which a user

enters information into a computer system. Input devices for the earliest computers

were switches and knobs, jumper wires placed in patch boards, and punched cards.

These were followed by the teletype, the text-only forerunner of today’s interactive

terminals. The mouse and keyboard now predominate, but a wide variety of input

devices can be used. An interaction task is the entry of a unit of information by the

user. Basic interaction tasks are position, text, select, and quantify. The unit of

information that is input in a position interaction task is of course a position; the text

task yields a text string; the select task yields an object identification; and the quantify

task yields a numeric value. A designer begins with the interaction tasks necessary for a

particular application. For each such task, the designer chooses an appropriate

interaction device and interaction technique. Many different interaction techniques can

be used for a given interaction task, and there may be several different ways of using

the same device to perform the same task. For instance, a selection task can be carried

out by using a mouse to select items from a menu, using a keyboard to enter the name

of the selection, pressing a function key, circling the desired command with the mouse,

or even writing the name of the command with the mouse. Similarly, a single device

can be used for different tasks: A mouse is often used for both positioning and

selecting.

Interaction tasks are defined by what the user accomplishes, whereas logical input

devices categorize how that task is accomplished by the application program and the

graphics system. Interaction tasks are user-centered, whereas logical input devices are a

programmer and graphics-system concept. By analogy with a natural language, single

actions with input devices are similar to the individual letters of the alphabet from

which words are formed. The sequence of input-device actions that makes up an

interaction technique is analogous to the sequence of letters that makes up a word. A

word is a unit of meaning; just as several interaction techniques can be used to carry out

the same interaction task, so too words that are synonyms convey the same meaning.

An interactive dialogue is made up of interaction-task sequences, just as a sentence is

constructed from word sequences.

6.2 Concept of Positioning and Pointing

Most display terminals provide the user with an alphanumeric keyboard with which to

type commands and enter data for the program. For some applications, however, the

keyboard is inconvenient or inadequate. For example, the user may wish to indicate one

of a number of symbols on the screen, in order to erase the symbol. If each symbol is

labeled, he can do so by typing the symbol’s name; by pointing at the

symbol, however, he may be able to erase more rapidly, and the extra clutter of labels

can be avoided.

Another problem arises if the user has to add lines or symbols to the picture on the

screen. Although he can identify an items’s position by typing coordinates he can do so

even better by pointing at the screen, particularly if what matters most is the items’s

position relative to the rest of the picture.

These two examples illustrate the two basic types of graphical interaction: pointing at

items already on the screen and positioning new items. The need to interact in these

ways has stimulated the developed of a number of different types of graphical input

device, some of which are described in this chapter.

Ideally a graphical input device should lend itself both to pointing and to positioning. In

reality there are no devices with this versatility. Most devices are much better at

positioning than at pointing; one device, the light pen, is the exact opposite.

Fortunately, however we can supplement the deficiencies of these devices by software

and in this way produce hardware-software system that has both capabilities.

Nevertheless the distinction between pointing and positioning capability is extremely

important.

Another important distinction is between devices that can be used directly on the screen

surface and devices that cannot. The latter might appear to be less useful, but this is far

from true. Radar operators and air-traffic controllers have for years used devices like

the joystick and the tracker ball neither of which can be pointed at the screen. The

effectiveness of these input devices depends on the use of visual feedback: the x and y

outputs of the device control the movement of a small cross, or cursor, displayed on the

screen. The user of the device steers the cursor around the screen as if it were a toy boat

on the surface of a pond. Although this operation sounds as if it requires a lot of skill, it

is in fact very easy.

The use of visual feedback has an additional advantage: just as in any control system, it

compensates for any lack of linearity in the device. A linear input device is one that

faithfully increases or decreases the input coordinate value in exact proportion to the

user’s hand movement. If the device is being used to trace a graph or a map. Linearity

is important. A cursor, however, can be controlled quite easily even if the device

behaves in a fairly nonlinear fashion. For example, the device may be much less

sensitive near the left – hand region of its travel: a 1 – inch hand movement may change

the x value by only 50 units, whereas the same movement elsewhere may change x by

60 units. The user will simply change his hand movement to compensate, often without

even noticing the no linearity. This phenomenon has allowed simple, inexpensive

devices like the mouse to be used very successfully for graphical input.

6.3 Interactive Graphic Devices

Various devices are available for data input on graphics workstations. Most systems

have a keyboard and one or more additional devices specially designed for interactive

input. These include a mouse, trackball, spaceball, joystick, digitizers, dials, and button

boxes. Some other input devices used in particular applications are data gloves, touch

panels, image scanners, and voice systems.

6.3.1 Keyboards

The well-known QWERTY keyboard has been with us for many years. It is ironic that

this keyboard was originally designed to slow down typists, so that the typewriter

hammers would not be so likely to jam. Studies have shown that the newer Dvorak

keyboard , which places vowels and other high-frequency characters under the home

positions of the fingers, is somewhat faster than is the QWERTY design. It has not been

widely accepted. Alphabetically organized keyboards are sometimes used when many

of the users are non typists. But more and more people are being exposed to QWERTY

keyboards, and experiments have shown no advantage of alphabetic over QWERTY

keyboards .In recent years, the chief force serving to displace the keyboard has been the

shrinking size of computers, with laptops, notebooks, palmtops, and personal digital

assistants. The typewriter keyboard is becoming the largest component of such pocket-

sized devices, and often the main component standing in the way of reducing its overall

size. The chord keyboard has five keys similar to piano keys, and is operated with one

hand, by pressing one or more keys simultaneously to "play a chord." With five keys,

31 different chords can be played. Learning to use a chord keyboard (and other similar

stenographer style keyboards) takes longer than learning the QWERTY keyboard, but

skilled users can type quite rapidly, leaving the second hand free for other tasks. This

increased training time means, however, that such keyboards are not suitable substitutes

for general use of the standard alphanumeric keyboard. Again, as computers become

smaller, the benefit of a

keyboard that allows touch typing with only five keys may come to outweigh the

additional difficulty of learning the chords. Other keyboard-oriented considerations,

involving not hardware but software design, are arranging for a user to enter frequently

used punctuation or correction characters without needing simultaneously to press the

control or shift keys, and assigning dangerous actions (such as delete) to keys that are

distant from other frequently used keys.

6.3.2 Touch Panels

As the name implies, touch panels allow displayed objects or screen positions to be

selected with the touch of a finger. A typical application of touch panels is for the

selection of processing options that are represented with graphical icons. Other systems

can be adapted for touch input by fitting a transparent device with a touch-sensing

mechanism over the video monitor screen. Touch input can be recorded using optical,

electrical, or acoustical methods.

Optical touch panels employ a line of infrared light-emitting diodes (LEDs) along one

vertical edge and along one horizontal edge of the frame. The opposite vertical and

horizontal edges contain light detectors. These detectors are used to record which

beams are interrupted when the panel is touched. The two crossing beams that are

interrupted identify the horizontal and vertical coordinates of the screen position

selected. Positions can be selected with an accuracy of about inch. With closely spaced

LEDs, it is possible to break two horizontal or two vertical beams simultaneously. In

this case, an average position between the two interrupted beams is recorded. The LEDs

operate at infrared frequencies, so that the light is not visible to a user. An electrical

touch panel is constructed with two transparent plates separated by a small distance.

One of the plates is coated with a conducting material, and the other plate is coated with

a resistive material. When the outer plate is touched, it is forced into contact with the

inner plate. This contact creates a voltage drop across the resistive plate that is

converted to the coordinate values of the selected screen position.

In acoustical touch panels, high-frequency sound waves are generated in the horizontal

and vertical directions across a glass plate. Touching the screen causes part of each

wave to be reflected from the finger to the emitters. The screen position at the

point of contact is calculated from a measurement of the time interval between the

transmission of each wave and its reflection to the emitter.

6.3.3 Light pens

The pencil-shaped devices 's are used to select screen positions by detecting the light

coming from point on the CRT screen. They are sensitive to the short burst of light

emitted from the phosphor coating at the instant the electron beam strikes a particular

point. Other light sources, such as the background light in the room, are usually not

detected by a light pen. An activated light pen, pointed at a spot on the screen as the

electron beam lights up that spot, generates an electrical pulse that causes the

coordinate position of the electron beam to be recorded. As with cursor-positioning

devices, recorded light-pen coordinates can be used to position an object or to select a

processing option. Although light pens are still with us, they are not as popular as they

once were since they have several disadvantages compared to other input devices that

have been developed. For one, when a light pen is pointed at the screen, part of the

screen image is obscured by the hand and pen. And prolonged use of the light pen can

cause arm fatigue. Also, light pens require special implementation for some

applications because they cannot detect positions within black areas. To be able to

select positions in any screen area with a light pen, we must have some nonzero

intensity assigned to each screen pixel. In addition, light pens sometime give false

readings due to background lighting in a room.

6.3.4 Graphics Tablets

One type of digitizer is the graphics tablet (also referred to as a data tablet), which is

used to input two-dimensional coordinates by activating a hand cursor or stylus at

selected positions on a flat surface. A hand cursor contains cross hairs for sighting

positions, while a stylus is a pencil-shaped device that is pointed at positions on the

tablet. This allows an artist to produce different brush strokes with different pressures

on the tablet surface. Tablet size varies from 12 by 12 inches for desktop models to 4 by

60 inches or larger for floor models. Graphics tablets provide a highly accurate method

for selecting coordinate positions, with an accuracy that varies from about 0.2 mm on

desktop models to about 0.05 mm or less on larger models. Many graphics

tablets are constructed with a rectangular grid of wire embedded in the tablet surface.

Electromagnetic pulses are generated in sequence along the wires, and an electric signal

is induced in a wire coil in an activated stylus or hand cursor to record a tablet position.

Depending on the technology, a their signal strength, coded pulses, or phase shifts can

be used to determine the position on the tablet.

6.3.5 Joysticks

A joystick consists of a small, vertical lever (called the stick) mounted on a base that is

used to steer the screen cursor around. Most joysticks select screen positions with actual

stick movement; others respond to pressure on the stick. The distance that the stick is

moved in any direction from its center position corresponds to screen-cursor movement

in that direction. Potentiometers mounted at the base of the joystick measure the

amount of movement, and springs return the stick to the center position when it is

released. One or more buttons can be programmed to act as input switchs to signal

certain actions once a screen position has been selected.

6.3.6 Mouse

A mouse is small hand-held box used to position the screen cursor. Wheels or rollers on

the bottom of the mouse can be used to record the amount and direction of movement.

Another method for detecting mouse motion is with an optical sensor. For these

systems, the mouse is moved over a special mouse pad that has a grid of horizontal and

vertical lines. The optical sensor detects movement across the lines in the grid.

Since a mouse can be picked up and put down at another position without change in

cursor movement, it is used for making relative changes in the position of the screen

cursor. One, two, or three buttons are usually included on the top of the mouse for

signaling the execution of some operation, such as recording cursor position or

invoking a function. Most general-purpose graphics systems now include a mouse and a

keyboard as the major input devices.

6.3.7 Voice Systems

Speech recognizers are used in some graphics workstations as input devices to accept

voice commands. The voice-system input can be used to initiate graphics operations

or to enter data. These systems operate by matching an input against a predefined

dictionary of words and phrases.

A dictionary is set up for a particular operator by having the operator speak the

command words to be used into the system. Each word is spoken several times, and the

system analyzes the word and establishes a frequency pattern for that word in the

dictionary along with the corresponding function to be performed. Later, when a voice

command is given, the system searches the dictionary for a frequency-pattern match.

Voice input is typically spoken into a microphone mounted on a headset. The

microphone is designed to minimize input of other background sounds. If a different

operator is to use the system, the dictionary must be reestablished with that operator's

voice patterns. Voice systems have some advantage over other input devices, since the

attention of the operator does not have to be switched from one device to another to

enter a command.

6.3.8 Other Devices

Here we discuss some of the less common, and in some cases experimental, 2D

interaction devices. Voice recognizers, which are useful because they free the user’s

hands for other uses, apply a pattern-recognition approach to the waveforms created

when we speak a word. The waveform is typically separated into a number of different

frequency bands, and the variation over time of the magnitude of the waveform. in each

band forms the basis for the pattern matching. However, mistakes can occur in the

pattern matching, so it is especially important that an application using a recognizer

provide convenient correction capabilities. Voice recognizers differ in whether or not

they must be trained to recognize the waveforms of a particular speaker, and whether

they can recognize connected speech as opposed to single words or phrases. Speaker-

independent recognizers have very limited vocabularies—typically, they include only

the ten digits and 50 to 100 words. Some discrete word recognizers can recognize

vocabularies of thousands of different words after appropriate training. But if the user

has a cold, the recognizer must be retrained. The user of a discrete word recognizer

must pause for a fraction of a second after each word to cue the system that a word end

has occurred. The more difficult task of recognizing connected speech from a limited

vocabulary can now be performed by off-the-shelf hardware and software, but with

somewhat less accuracy. As the vocabulary becomes larger, however, artificial-

intelligence techniques are needed to

exploit the context and meaning of a sequence of sentences to remove ambiguity. A few

systems with vocabularies of 20,000 or more words can recognize sentences such as

"Write Mrs. Wright a letter right now!" Voice synthesizers create waveforms that

approximate, with varying degrees of realism, spoken words. The simplest synthesizers

use phonemes, the basic sound units that form words. This approach creates an

artificial-sounding, inflection-free voice. More sophisticated phoneme-based systems

add inflections. Other systems actually play back digitized spoken words or phrases.

They sound realistic, but require more memory to store the digitized speech. Speech is

best used to augment rather than to replace visual feedback, and is most effective when

used sparingly. For instance, a training application could show a student a graphic

animation of some process, along with a voice narration describing what is being seen.

See for additional guidelines for the effective application of speech recognition and

generation in user-computer interfaces, and for an introduction to speech interfaces, and

for speech recognition technology. The data tablet has been extended in several ways.

Many years ago, Herot and Negroponte used an experimental pressure-sensitive stylus :

High pressure and a slow drawing speed implied that the user was drawing a line with

deliberation, in which case the line was recorded exactly as drawn; low pressure and

fast speed implied that the line was being drawn quickly, in which case a straight line

connecting the endpoints was recorded. Some commercially available tablets sense not

only stylus pressure but orientation as well. The resulting 5 degrees of freedom reported

by the tablet can be used in various creative ways. For example, Bleser, Sibert, and

McGee implemented the GWPaint system to simulate various artist’s tools, such as an

italic pen, that are sensitive to pressure and orientation. An experimental touch tablet,

developed by Buxton and colleagues, can sense multiple finger positions

simultaneously, and can also sense the area covered at each point of contact The device

is essentially a type of touch panel, but is used as a tablet on the work surface, not as a

touch panel mounted over the screen. The device can be used in a rich variety of ways .

Different finger pressures correlate with the area covered at a point of contact, and are

used to signal user commands: a light pressure causes a cursor to appear and to track

finger movement; increased pressure is used, like a button-push on a mouse or puck, to

begin feedback such as dragging of an object; decreased pressure causes the dragging to

stop.

6.4 Interactive Graphical Techniques

There are several techniques that are incorporated into graphics packages to aid the

interactive construction of pictures. Various input options can be provided, so that

coordinate information entered with locator and stroke devices can be adjusted or

interpreted according to a selected option. For example, we can restrict all lines to be

either horizontal or vertical. Input coordinates can establish the position or boundaries

for objects to be drawn, or they can be used to rearrange previously displayed objects.

6.4.1 Basic Positioning Methods

Coordinate values supplied by locator input are often used with positioning methods to

specify a location for displaying an object or a character string. We interactively select

coordinate positions with a pointing device, usually by positioning the screen cursor.

Just how the object or text-string positioning is performed depends on the selected

options. With a text string, for example, the screen point could be taken as the center

string position, or the start or end position of the string, or any of the other string-

positioning options. For lines, straight line segments can be displayed between two

selected screen positions:

As an aid in positioning objects, numeric values for selected positions can be echoed on

the screen. Using the echoed coordinate values as a guide, we can make adjustments in

the selected location to obtain accurate positioning.

6.4.2 Constraints

With some applications, certain types of prescribed orientations or object alignments

are useful. A constraint is a rule for altering input-coordinate values to produce a

specified orientation or alignment of the displayed coordinates. There are many kinds

of constraint functions that can be specified, but the most common constraint is a

horizontal and vertical alignment of straight lines. This type of constraint, shown in

Figs. 6.1 and 6.2, is useful in forming network layouts. With this constraint, we can

create horizontal and vertical lines without worrying a-bout precise specification of

endpoint coordinates.

A horizontal or vertical constraint is implemented by determining whether any two

input coordinate endpoints are more nearly horizontal or more near vertical. If the

difference in the y values of the two endpoints is smaller than the difference in x values,

a horizontal line is displayed. Otherwise, a vertical line is drawn. Other kinds of

constraints can be applied to input coordinates to produce a variety of alignments. Lines

could be constrained to have a particular slant, such as 45°, and input coordinates could

be constrained to lie along predefined paths, such as circular arcs.

6.4.3 Grids

Another kind of constraint is a grid of rectangular lines displayed in some part of the

screen area. When a grid is used, any input coordinate position is rounded to the nearest

intersection of two grid lines. Figure 6.3 illustrates line drawing with grid. Each of the

two cursor positions is shifted to the nearest grid intersection point, and the line is

drawn between these grid points. Grids facilitate object constructions,

because a new line can be joined easily to a previously drawn line by selecting any

position near the endpoint grid intersection of one end of the displayed line.

Figure 6.3: Line drawing using a grid

Spacing between grid lines is often an option that can be set by the user. Similarly,

grids can be turned on and off, and it is sometimes possible to use partial grids and

grids of different sizes in different screen areas.

6.4.4 Gravity Field

In the construction of figures, we sometimes need to connect lines at positions between

endpoints. Since exact positioning of the screen cursor at the connecting point can be

difficult, graphics packages can be designed to convert any input position near a line to

a position on the line.

This conversion of input position is accomplished by creating a gravity field area

around the line. Any selected position within the gravity field of a line is moved

("gravitated") to the nearest position on the line. A gravity field area around a line is

illustrated with the shaded boundary shown in Fig. 6.4. Areas around the endpoints are

enlarged to make it easier for us to connect lines at their endpoints. Selected positions

in one of the circular areas of the gravity field are attracted to the endpoint in that area.

The size of gravity fields is chosen large enough to aid positioning, but small enough to

reduce chances of overlap with other lines. If many lines are displayed, gravity areas

can overlap, and it may be difficult to specify points correctly. Normally, the boundary

for the gravity field is not displayed.

Figure 6.4: Gravity field around a line. Any selected point in the shaded area is

shifted to a position on the line

6.4.5 Rubber-Band Methods

Straight lines can be constructed and positioned using rubber-band method which

stretch out a line from a starting position as the screen cursor is move Figure 6.5

demonstrates the rubber-band method. We first select a screen position for one endpoint

of the line. Then, as the cursor moves around, the line displayed from the start position

to the current position of the cursor. When we finally select a second screen position,

the other line endpoint is set.

Figure 6.5: Rubber-band method for drawing and positioning a straight line

segment

Rubber-band methods are used to construct and position other objects besides straight

lines. Figure 6.6 demonstrates rubber-band construction of a rectangle, and Fig. 6.7

shows a rubber-band circle construction.

Figure 6.6: Rubber-band method for constructing a rectangle

Figure 6.7: Constructing a circle using a rubber-band method

6.4.6 Sketching

Options for sketching, drawing, and painting come in a variety of forms. Straight lines,

polygons, and circles can be generated with methods discussed in the previous sections.

Curve-drawing options can be provided using standard curve shapes, such as circular

arcs and splines, or with freehand sketching procedures. Splines are interactively

constructed by specifying a set of discrete screen points that give the general shape of

the curve. Then the system fits the set of points with a polynomial curve. In freehand

drawing, curves are generated by following the path of a stylus on a graphics tablet or

the path of the screen cursor on a video monitor. Once a curve is displayed, the designer

can alter the curve shape by adjusting the positions of selected points along the curve

path.

Figure 6.8 Uses rubber band methods to create objects consisting of connected line

segments

Line widths, line styles, and other attribute options are also commonly found in

painting and drawing packages. Various brush styles, brush patterns, color

combinations, object shapes, and surface-texture patterns are also available on many

systems, particularly those designed as artist's workstations. Some paint systems vary

the line width and brush strokes according to the pressure of the artist's hand on the

stylus.

6.4.7 Dragging

A technique that is often used in interactive picture construction is to move objects into

position by dragging them with the screen cursor. We first select an object, then move

the cursor in the direction we want the object to move, and the selected object follows

the cursor path. Dragging objects to various positions in scene is useful in applications

where we might want to explore different possibilities before selecting a final location.

6.4.8 Inking and Painting

If we sample the position of a graphical input device at regular intervals and display a

dot at each sampled position, a trail will be displayed of the movement of the device.

This technique, which closely simulates the effect of drawing on paper, is called inking.

For many years the main use of inking has been in conjunction with on-line character-

recognition programs. With the advent of high-quality raster displays the technique has

found wider use for painting purposes.

6.4.9 Painting

A raster display incorporating a random-access frame buffer, can be treated as a

painting surface for interactive purposes. As the user moves the cursor around, a trace

of its path can be left on the screen. The user can build up freehand drawings of

surprisingly good quality.

It is possible to provide a range of tools for painting on a raster display: these tools take

the form of brushes that lay down trails of different thick nesses and colors. For

example, instead of depositing a single dot at each sampled input position, the program

can insert a group of dots so as to fill in a square or circle: the result will be a much

thicker trace. On a "black-and-white display the user needs brushes that paint in both

black and white, so that information can be both added and removed (Figure 6.9).

When a color display is used for painting, a menu of different colors can be provided.

Figure 6.9: Erasing with a white brush

6.5 Summary

• An interaction technique is a way of using a physical input/output device to perform a

generic interaction task in a human-computer dialogue. It represents an abstraction

of some common class of interactive task, for example, choosing one of several

objects shown on a display screen, so it is not bound to a single application.

• The basic interaction tasks for interactive graphics are positioning, selecting, entering

text, and entering numeric quantities.

• Input functions available in a graphics package can be defined in three input modes.

Request mode places input under the control of the application program. Sample

mode allows the input devices and program to operate concurrently. Event mode

allows input devices to initiate data entry and control processing of data. Once a

mode has been chosen for a logical device class and the particular physical device

to be used to enter this class of data, input functions the program are used to enter

data values into the program. An application program can make simultaneous use of

several physical input devices operating in different modes.

• Interactive picture-construction methods are commonly used in a variety applications,

including design and painting packages. These methods provide users with the

capability to position objects, to constrain figures to predefine orientations or

alignments, to sketch figures, and to drag objects around the screen. Grids, gravity

fields, and rubber-band methods are used to aid in positioning and other picture-

construction operations.

INPUT AND OUTPUT HANDLING IN WINDOWS SYSTEM :

Input Handling:

The GS is also responsible for handling input from the user, since it sits

between the application and the devices.
Again, think of this as a mapping/transformation - we’re taking the

physical input and mapping it to logical devices (remember that?) so that

applications can make sense of it.
How does the GS know what to do with an input? Applications usually

have to explicitly express interest in something (e.g. a right mouse button

click) - then the GS will pass it on to that app (assuming that other

conditions are met - such as window was in focus, etc.)
This leads to a model of programming called event-driven programming

(anyone have any experience with this?) -different from normal sequential

program -structure: init, run event loop, quit -the GS basically renders the
scene, waits for an event, passes it on, and re-renders the scene Any

problems with this setup (e.g. for animation/VR - can’t wait on events)

Output Handling:

Once the application has specified primitives and attributes, the GS is

responsible for realizing those primitives in terms of output on the screen.
Again, you can think of this as a mapping or transformation - from the

more abstract primitive descriptions to actual pixel values. Called rendering

of primitives
The idea of different spaces also comes up here - we’re mapping from

model/world space into screen space (different coordinate systems!)

A final way to think of this job is providing the user a certain view into the
model (a window on the internal world of the application) - that is often the

point of computer graphics - visualization of something that otherwise is

only present in bits.

Window management:

Window managers/window systems are usually separate entities from the
graphics package.

Their job is to manage the available screen space and mediate this space

between multiple applications

This is where logical output devices come in - each application only sees
its canvas(es) and doesn’t need to worry about everyone else.

The window manager takes care of saving portions of windows that get

covered up, dividing the space among windows, deciding the size and
position of windows, etc. (GS-Graphics System)

