
Fundamentals of Neural Networks

Fundamentals of Neural Networks

Soft Computing

Neural network, topics : Introduction, biological neuron model, artificial

neuron model, neuron equation. Artificial neuron : basic elements,

activation and threshold function, piecewise linear and sigmoidal

function. Neural network architectures : single layer feed- forward

network, multi layer feed-forward network, recurrent networks. Learning

methods in neural networks : unsupervised Learning - Hebbian learning,

competitive learning; Supervised learning - stochastic learning, gradient

descent learning; Reinforced learning. Taxonomy of neural network

systems : popular neural network systems, classification of neural

network systems as per learning methods and architecture. Single-layer

NN system : single layer perceptron, learning algorithm for training

perceptron, linearly separable task, XOR problem, ADAptive LINear

Element (ADALINE) - architecture, and training. Applications of neural

networks: clustering, classification, pattern recognition, function

approximation, prediction systems.

Fundamentals of Neural Networks

Soft Computing

Topics

1. Introduction

Why neural network ?, Research History, Biological Neuron model, Artificial

Neuron model, Notations, Neuron equation.

2. Model of Artificial Neuron

Artificial neuron - basic elements, Activation functions – Threshold function,

Piecewise linear function, Sigmoidal function, Example.

3. Neural Network Architectures

Single layer Feed-forward network, Multi layer Feed-forward network, Recurrent

networks.

4. Learning Methods in Neural Networks

Learning algorithms: Unsupervised Learning - Hebbian Learning, Competitive

learning; Supervised Learning : Stochastic learning, Grant descent learning;

Reinforced Learning;

24-29

5. Taxonomy Of Neural Network Systems

Popular neural network systems; Classification of neural network

systems with respect to learning methods and architecture types.

6. Single-Layer NN System

Single layer perceptron : Learning algorithm for training Perceptron, Linearly

separable task, XOR Problem; ADAptive LINear Element (ADALINE) :

Architecture, Training.

SC - Neural Network – Introduction

.

What is Neural Net ?

• A neural net is an artificial representation of the human brain that tries to

simulate its learning process. An artificial neural network

(ANN) is often called a "Neural Network" or simply Neural Net (NN).

• Traditionally, the word neural network is referred to a network of biological neurons

in the nervous system that process and transmit information.

• Artificial neural network is an interconnected group of artificial neurons

that uses a mathematical model or computational model for information processing

based on a connectionist approach to computation.

• The artificial neural networks are made of interconnecting artificial

neurons which may share some properties of biological neural networks.

• Artificial Neural network is a network of simple processing elements

(neurons) which can exhibit complex global behavior, determined by the

connections between the processing elements and element parameters.

1. Introduction

Neural Computers mimic certain processing capabilities of the human brain.

- Neural Computing is an information processing paradigm, inspired by biological

system, composed of a large number of highly interconnected processing elements

(neurons) working in unison to solve specific problems.

- Artificial Neural Networks (ANNs), like people, learn by example.

- An ANN is configured for a specific application, such as pattern recognition or data

classification, through a learning process.

- Learning in biological systems involves adjustments to the synaptic connections that

exist between the neurons. This is true of ANNs as well.

SC - Neural Network – Introduction

 Why Neural Network

Neural Networks follow a different paradigm for computing.

■ The conventional computers are good for - fast arithmetic and does what

programmer programs, ask them to do.

■ The conventional computers are not so good for - interacting with noisy data or

data from the environment, massive parallelism, fault tolerance, and adapting to

circumstances.

■ The neural network systems help where we can not formulate an algorithmic

solution or where we can get lots of examples of the behavior we require.

■ Neural Networks follow different paradigm for computing.

The von Neumann machines are based on the processing/memory abstraction of

human information processing.

The neural networks are based on the parallel architecture of

biological brains.

■ Neural networks are a form of multiprocessor computer system, with

- simple processing elements ,

- a high degree of interconnection,

- simple scalar messages, and

- adaptive interaction between elements.

 Research History

The history is relevant because for nearly two decades the future of Neural network

remained uncertain.

McCulloch and Pitts (1943) are generally recognized as the designers of the first neural

network. They combined many simple processing units together that could lead to an

overall increase in computational power. They suggested many ideas like : a neuron

has a threshold level and once that level is reached the neuron fires. It is still the

fundamental way in which ANNs operate. The McCulloch and Pitts's network had a

fixed set of weights.

Hebb (1949) developed the first learning rule, that is if two neurons are active at the

same time then the strength between them should be increased.

SC - Neural Network – Introduction

In the 1950 and 60's, many researchers (Block, Minsky, Papert, and Rosenblatt

worked on perceptron. The neural network model could be proved to converge to the

correct weights, that will solve the problem. The weight adjustment (learning

algorithm) used in the perceptron was found more powerful than the learning rules

used by Hebb. The perceptron caused great excitement. It was thought to produce

programs that could think.

Minsky & Papert (1969) showed that perceptron could not learn those functions

which are not linearly separable.

The neural networks research declined throughout the 1970 and until mid 80's

because the perceptron could not learn certain important functions.

Neural network regained importance in 1985-86. The researchers, Parker and LeCun

discovered a learning algorithm for multi-layer networks called back propagation that

could solve problems that were not linearly separable.

 Biological Neuron Model

The human brain consists of a large number, more than a billion of neural cells that

process information. Each cell works like a simple processor. The massive interaction

between all cells and their parallel processing only makes the brain's abilities possible.

Dendrites are branching fibers that

extend from the cell body or soma.

Soma or cell body of a neuron contains

the nucleus and other structures, support

chemical processing and production of

neurotransmitters.

Axon is a singular fiber carries

information away from the soma to the

synaptic sites of other neurons (dendrites

and somas), muscles, or glands.

Axon hillock is the site of summation

for incoming information. At any

moment, the collective influence of all

neurons that conduct impulses to a given

neuron will determine whether or not an

SC - Neural Network – Introduction

Fig. Structure of Neuron

axon hillock and propagated along the axon.

action potential will be initiated at the

Myelin Sheath consists of fat-containing cells that insulate the axon from electrical

activity. This insulation acts to increase the rate of transmission of signals. A gap

exists between each myelin sheath cell along the axon. Since fat inhibits the

propagation of electricity, the signals jump from one gap to the next.

Nodes of Ranvier are the gaps (about 1 m) between myelin sheath cells long axons

are Since fat serves as a good insulator, the myelin sheaths speed the rate of

transmission of an electrical impulse along the axon.

Synapse is the point of connection between two neurons or a neuron and a muscle or

a gland. Electrochemical communication between neurons takes place at these

junctions.

Terminal Buttons of a neuron are the small knobs at the end of an axon that release

chemicals called neurotransmitters.

SC - Neural Network – Introduction

• Information flow in a Neural Cell

The input /output and the propagation of information are shown below.

Fig. Structure of a neural cell in the human brain

■ Dendrites receive activation from other neurons.

■ Soma processes the incoming activations and converts them into output

activations.

■ Axons act as transmission lines to send activation to other neurons.

■ Synapses the junctions allow signal transmission between the

axons and dendrites.

■ The process of transmission is by diffusion of chemicals called

neuro-transmitters.

McCulloch-Pitts introduced a simplified model of this real neurons. Artificial

Neuron Model

• The McCulloch-Pitts Neuron

This is a simplified model of real neurons, known as a Threshold Logic Unit.

Input1

Input 2

Input n

 

SC - Neural Network – Introduction

O

u

t

p

u

t

SC - Neural Network – Introduction

■ A set of input connections brings in activations from other neurons.

■ A processing unit sums the inputs, and then applies a non-linear activation

function (i.e. squashing / transfer / threshold function).

■ An output line transmits the result to other neurons.

In other words ,

- The input to a neuron arrives in the form of signals.

- The signals build up in the cell.

- Finally the cell discharges (cell fires) through the output .

- The cell can start building up signals again.

Notations

Recaps : Scalar, Vectors, Matrices and Functions

Scalar : The number xi can be added up to give a scalar number.
n

s = x1 + x2 + x3 + + xn = xi
i=1

Vectors : An ordered sets of related numbers. Row Vectors (1 x n)

X = (x1 , x2 , x3 , . . ., xn) , Y = (y1 , y2 , y3 , . . ., yn)

Add : Two vectors of same length added to give another vector.

Z = X + Y = (x1 + y1 , x2 + y2 , , xn + yn)

Multiply: Two vectors of same length multiplied to give a scalar.

n

p = X . Y = x1 y1 + x2 y2 + + xnyn =

i=1

xi yi

SC - Neural Network – Introduction

Matrices : m x n matrix , row no = m , column no = n

w11 w11 w1n

w21 w21 w21

W =

.

wm1 w11 wmn

Add or Subtract : Matrices of the same size are added or subtracted

component by component. A + B = C , cij = aij + bij

a11 a12 b11 b12 c11 = a11+b11 c12 = a12+b12

a21 a22
+

b21 b22
=

C21 = a21+b21 C22 = a22 +b22

Multiply : matrix A multiplied by matrix B gives matrix C.

(m x n) (n x p) (m x p)

n
elements cij =

k=1
aik bkj

a11 a12 b11 b12 c11 c12

a21 a22
x

b21 b22
=
 c21 c22

SC - Neural Network – Introduction

c11 = (a11 x b11) + (a12 x B21) c12 =

(a11 x b12) + (a12 x B22) C21 = (a21 x

b11) + (a22 x B21) C22 = (a21 x b12) + (a22 x

B22)

 Functions

The Function y= f(x) describes a relationship, an input-output mapping,

from x to y.

■ Threshold or Sign function : sgn(x) defined as

sgn (x) =

1 if x 0

0 if x 0

Sign(x)

1

.8

.6

.4

.2

0

-4 -3 -2 -1 0 1 2 3 4 I/P

■ Threshold or Sign function : sigmoid(x) defined as a smoothed

(differentiable) form of the threshold function

sigmoid (x) =

1

1 + e -x

Sign(x)

1

.8

.6

.2

0

O/P

O/P

SC - Neural Network –Artificial Neuron Model

-4 -3 -2 -1 0 1 2 3 4 I/P

2. Model of Artificial Neuron

A very simplified model of real neurons is known as a Threshold Logic Unit

(TLU). The model is said to have :

- A set of synapses (connections) brings in activations from other neurons.

- A processing unit sums the inputs, and then applies a non-linear activation function (i.e.

squashing / transfer / threshold function).

- An output line transmits the result to other neurons.

 McCulloch-Pitts (M-P) Neuron Equation

McCulloch-Pitts neuron is a simplified model of real biological neuron.

Input 1

Input 2

Input n

Simplified Model of Real Neuron

(Threshold Logic Unit)

Output

The equation for the output of a McCulloch-Pitts neuron as a function of 1 to n

inputs is written as

n

Output = sgn (
i=1

Input i -)

where is the neuron’s activation threshold.
n

If
i=1
n

If
i=1

Input i then Output = 1

Input i then Output = 0

In this McCulloch-Pitts neuron model, the missing features are :

- Non-binary input and output,

- Non-linear summation,

- Smooth thresholding,

- Stochastic, and

- Temporal information processing.

 

SC - Neural Network –Artificial Neuron Model

 Artificial Neuron - Basic Elements

Neuron consists of three basic components - weights, thresholds, and a single activation

function.

x1

x2

y

xn

Fig Basic Elements of an Artificial Linear Neuron

■ Weighting Factors w

The values w1 , w2 , . . . wn are weights to determine the strength of input vector

X = [x1 , x2 , . . . , xn]T. Each input is multiplied by the associated weight of the

neuron connection XT W. The +ve weight

excites and the -ve weight inhibits the node output.

I = XT.W = x1 w1 + x2 w2 + + xnwn =

n

i=1
xi wi

■ Threshold

The node’s internal threshold is the magnitude offset. It affects the activation of

the node output y as:
n

Y = f (I) = f {
i=1

xi wi - k }

W1 Activation
Function

W2



i=1

Wn

Synaptic Weights


Threshold

SC - Neural Network –Artificial Neuron Model

To generate the final output Y , the sum is passed on to a non-linear filter f called

Activation Function or Transfer function or Squash function which releases the

output Y.

■ Threshold for a Neuron

In practice, neurons generally do not fire (produce an output) unless their total

input goes above a threshold value.

The total input for each neuron is the sum of the weighted inputs to the neuron

minus its threshold value. This is then passed through the sigmoid function. The

equation for the transition in a neuron is :

a = 1/(1 + exp(- x)) where

x =
i

ai wi - Q

a is the activation for the neuron ai is

the activation for neuron i wi is the

weight

Q is the threshold subtracted

■ Activation Function

An activation function f performs a mathematical operation on the signal output.

The most common activation functions are:

- Linear Function,

- Piecewise Linear Function,

- Tangent hyperbolic function

- Threshold Function,

- Sigmoidal (S shaped) function,

The activation functions are chosen depending upon the type of problem to be

solved by the network.

SC - Neural Network –Artificial Neuron Model

 Activation Functions f - Types

Over the years, researches tried several functions to convert the input into an outputs.

The most commonly used functions are described below.

- I/P Horizontal axis shows sum of inputs .

- O/P Vertical axis shows the value the function produces ie output.

- All functions f are designed to produce values between 0 and 1.

• Threshold Function

A threshold (hard-limiter) activation function is either a binary type or a

bipolar type as shown below.

binary threshold

O/p

I/P

Output of a binary threshold function produces :

1 if the weighted sum of the inputs is +ve,

0 if the weighted sum of the inputs is -ve.

1 if I 0

Y = f (I) =

0 if I 0

bipolar threshold

O/p

I/P

Output of a bipolar threshold function produces :

1 if the weighted sum of the inputs is +ve,

-1 if the weighted sum of the inputs is -ve.

1 if I 0

Y = f (I) =
-1

1

1

SC - Neural Network –Artificial Neuron Model

Neuron with hard limiter activation function is called McCulloch-Pitts model.

• Piecewise Linear Function

This activation function is also called saturating linear function and can have either a

binary or bipolar range for the saturation limits of the output. The mathematical model

for a symmetric saturation function is described below.

Piecewise Linear

O/p

I/P

This is a sloping function that produces :

-1 for a -ve weighted sum of inputs,

1 for a +ve weighted sum of inputs.

 I proportional to input for values between +1

and -1 weighted sum,

1 if I 0

Y = f (I) = I if -1 I 1

-1 if I 0

+1

-1

SC - Neural Network –Artificial Neuron Model

• Sigmoidal Function (S-shape function)

The nonlinear curved S-shape function is called the sigmoid function. This is most

common type of activation used to construct the neural networks. It is mathematically

well behaved, differentiable and strictly increasing function.

Sigmoidal function A sigmoidal transfer function can be

written in the form:

1

Y = f (I) =

1 + e

-

I

, 0 f(I) 1

The sigmoidal

function is

= 1/(1 + exp(- I)) , 0 f(I) 1

This is explained as

 0 for large -ve input values,

1 for large +ve values, with

a smooth transition between the two.

 is slope parameter also called shape

parameter; symbol the is also used to

represented this parameter.

achieved using exponential equation.

1 O/P

 = 2.0

0.5

-4 -2 0 1 2

I/P

 = 1.0

 = 0.5

SC - Neural Network –Artificial Neuron Model

By varying different shapes of the function can be obtained which adjusts the

abruptness of the function as it changes between the two asymptotic values.

• Example :

The neuron shown consists of four inputs with the weights.

x1=1

x2=2

X3=5

xn=8

+1

+1

-1

+2

Synaptic

Weights

I

Summing

Junction

Activation

Function

y

 = 0

Threshold

Fig Neuron Structure of Example

The output I of the network, prior to the activation function stage, is

+1

+1
I = XT. W = 1 2 5 8 = 14

-1

+2

= (1 x 1) + (2 x 1) + (5 x -1) + (8 x 2) = 14

With a binary activation function the outputs of the neuron is:

y (threshold) = 1;

SC - Neural Network – Architecture

3. Neural Network Architectures

An Artificial Neural Network (ANN) is a data processing system, consisting large number

of simple highly interconnected processing elements as artificial neuron in a network

structure that can be represented using a directed graph G, an ordered 2-tuple (V, E) ,

consisting a set V of vertices and a set E of edges.

- The vertices may represent neurons (input/output) and

- The edges may represent synaptic links labeled by the weights attached. Example :

Fig. Directed Graph

Vertices V = { v1 , v2 , v3 , v4, v5 } Edges

 E = { e1 , e2 , e3 , e4, e5 }

 Single Layer Feed-forward Network

The Single Layer Feed-forward Network consists of a single layer of weights , where

the inputs are directly connected to the outputs, via a series of weights. The synaptic

links carrying weights connect every input to every output , but not other way. This

way it is considered a network of feed-forward type. The sum of the products of the

weights and the inputs is calculated in each neuron node, and if the value is above

some threshold (typically 0) the neuron fires and takes the activated value (typically

1); otherwise it takes the deactivated value (typically -1).

V1
e5

V3

V5

 e2
e4

 e5

V2
e3

V4

SC - Neural Network – Architecture

w11

w12
w21

w22

w2m

wn1
w1m

wn2

wnm

input xi weights wij

x1

x2

output yj

y1

y2

xn ym

Single layer Neurons

Fig. Single Layer Feed-forward Network

SC - Neural Network – Architecture

x 1

Input

hidden layer

weights vij

v11

Output

hidden layer

weights wjk
w11

y 1

v21 y1

x2
v1m

w12

w11

y2

v2m y3

vn1 w1m

Vℓm
ym

xℓ

Input Layer

neurons xi

Hidden Layer

neurons yj
y n

Output Layer

neurons zk

 Multi Layer Feed-forward Network

The name suggests, it consists of multiple layers. The architecture of this class of

network, besides having the input and the output layers, also have one or more

intermediary layers called hidden layers. The computational units of the hidden layer

are known as hidden neurons.

Fig. Multilayer feed-forward network in (ℓ – m – n) configuration.

- The hidden layer does intermediate computation before directing the input to

output layer.

- The input layer neurons are linked to the hidden layer neurons; the weights on

these links are referred to as input-hidden layer weights.

- The hidden layer neurons and the corresponding weights are referred to as output-

hidden layer weights.

- A multi-layer feed-forward network with ℓ input neurons, m1 neurons in the first

hidden layers, m2 neurons in the second hidden layers, and n output neurons in the

output layers is written as (ℓ - m1 - m2 – n).

The Fig. above illustrates a multilayer feed-forward network with a configuration (ℓ -

m – n).

SC - Neural Network –Learning methods

 Recurrent Networks

The Recurrent Networks differ from feed-forward architecture. A Recurrent network

has at least one feed back loop.

Example :

Feedback

links

Fig Recurrent Neural Network

There could be neurons with self-feedback links; that is the output of a

neuron is fed back into it self as input.

4. Learning Methods in Neural Networks

The learning methods in neural networks are classified into three basic types :

- Supervised Learning,

- Unsupervised Learning and

- Reinforced Learning

These three types are classified based on :

- presence or absence of teacher and

- the information provided for the system to learn.

These are further categorized, based on the rules used, as

- Hebbian,

y1

x1

y1
y2

x2

ym
Yn

Xℓ

Input Layer

neurons xi

Hidden Layer

neurons yj
Output Layer

neurons zk

SC - Neural Network –Learning methods

- Gradient descent,

- Competitive and

- Stochastic learning.

SC - Neural Network –Learning methods

Error Correction

Gradient descent

Supervised Learning

(Error based)

Stochastic

Reinforced Learning

(Output based)

Unsupervised Learning

Competitive Hebbian

• Classification of Learning Algorithms

Fig. below indicate the hierarchical representation of the algorithms mentioned in the

previous slide. These algorithms are explained in subsequent slides.

Fig. Classification of learning algorithms

• Supervised Learning

- A teacher is present during learning process and presents expected output.

- Every input pattern is used to train the network.

- Learning process is based on comparison, between network's computed output and

the correct expected output, generating "error".

- The "error" generated is used to change network parameters that result improved

performance.

• Unsupervised Learning

- No teacher is present.

- The expected or desired output is not presented to the network.

- The system learns of it own by discovering and adapting to the structural features in

the input patterns.

• Reinforced learning

- A teacher is present but does not present the expected or desired output but only

indicated if the computed output is correct or incorrect.

- The information provided helps the network in its learning process.

- A reward is given for correct answer computed and a penalty for a wrong answer.

Neural Network

Learning algorithms

Back

Propagation

Least Mean
Square

SC - Neural Network –Learning methods

Note : The Supervised and Unsupervised learning methods are most popular forms of

learning compared to Reinforced learning.

• Hebbian Learning

Hebb proposed a rule based on correlative weight adjustment.

In this rule, the input-output pattern pairs (Xi , Yi) are associated by

the weight matrix W, known as correlation matrix computed as

n
W =

i=1

Xi YiT

SC - Neural Network –Systems

where YiT is the transpose of the associated output vector Yi

There are many variations of this rule proposed by the other

researchers (Kosko, Anderson, Lippman) .

• Gradient descent Learning

This is based on the minimization of errors E defined in terms of weights and the

activation function of the network.

- Here, the activation function of the network is required to be differentiable,

because the updates of weight is dependent on the gradient of the error E.

- If Wij is the weight update of the link connecting the i th and the j th

neuron of the two neighboring layers, then Wij is defined as

 Wij = (E / Wij)

where is the learning rate parameters and (E / Wij) is error gradient

 with reference to the weight Wij .

Note : The Hoffs Delta rule and Back-propagation learning rule are the examples

of Gradient descent learning.

• Competitive Learning

- In this method, those neurons which respond strongly to the input stimuli have

their weights updated.

- When an input pattern is presented, all neurons in the layer compete, and the

winning neuron undergoes weight adjustment .

- This strategy is called "winner-takes-all".

• Stochastic Learning

- In this method the weights are adjusted in a probabilistic fashion.

- Example : Simulated annealing which is a learning mechanism

employed by Boltzmann and Cauchy machines.

5. Taxonomy Of Neural Network Systems

In the previous sections, the Neural Network Architectures and the Learning methods

SC - Neural Network –Systems

have been discussed. Here the popular neural network systems are listed. The grouping of

these systems in terms of architectures and the learning methods are presented in the next

slide.

• Neural Network Systems

– ADALINE (Adaptive Linear Neural Element)

– ART (Adaptive Resonance Theory)

– AM (Associative Memory)

– BAM (Bidirectional Associative Memory)

– Boltzmann machines

– BSB (Brain-State-in-a-Box)

– Cauchy machines

– Hopfield Network

– LVQ (Learning Vector Quantization)

– Neoconition

– Perceptron

– RBF (Radial Basis Function)

– RNN (Recurrent Neural Network)

– SOFM (Self-organizing Feature Map)

• Classification of Neural Network

A taxonomy of neural network systems based on Architectural types

and the Learning methods is illustrated below.

 Learning Methods

Gradient

descent

Hebbian Competitive Stochastic

Single-layer

feed-forward

ADALINE,

Hopfield,

Percepton,

AM,
Hopfield,

LVQ,

SOFM

-

SC - Neural Network –Systems

Multi-layer

feed- forward

CC

M,

MLF

F,

RBF

Neocognition

Recurrent

Networks

RNN BAM

,

BSB,
Hopfield,

ART Boltzmann and

Cauchy

machines

Table : Classification of Neural Network Systems with respect to learning

methods and Architecture types

SC - Neural Network –Single Layer learning

w11

w12
w21

w22

w2m

wn1
w1m

wn2

wnm

6. Single-Layer NN Systems

Here, a simple Perceptron Model and an ADALINE Network Model is presented.

 Single layer Perceptron

Definition : An arrangement of one input layer of neurons feed forward to one

output layer of neurons is known as Single Layer Perceptron.

input xi weights wij

x1

x2

output yj

y1

y2

xn ym

Single layer

Perceptron

Fig. Simple Perceptron Model

1 if net j 0

y j = f (net j) = where net j =

0 if net j 0

n

i=1

xi wij

SC - Neural Network –Single Layer learning

• Learning Algorithm : Training Perceptron

The training of Perceptron is a supervised learning algorithm where weights are

adjusted to minimize error when ever the output does not match the desired

output.

− If the output is correct then no adjustment of weights is done.

i.e.
K+1

W
i j

=

K

W
i j

− If the output is 1 but should have been 0 then the weights are decreased

on the active input link

i.e.
K+1

W
i j

=

K

W
i j

− . xi

− If the output is 0 but should have been 1 then the weights are increased on

the active input link

i.e.

Where

K+1
W

i j
=

K+1

K

W
i j

+ . xi

K

W
i j

is the new adjusted weight, W
i j

is the old weight

SC - Neural Network –Single Layer learning

 •
(1, 1)

• 

S2 S1 S1

S2

• Perceptron and Linearly Separable Task

Perceptron can not handle tasks which are not separable.

- Definition : Sets of points in 2-D space are linearly separable if the sets can be

separated by a straight line.

- Generalizing, a set of points in n-dimensional space are linearly separable if there

is a hyper plane of (n-1) dimensions separates the sets.

Example

(a) Linearly separable patterns (b) Not Linearly separable patterns

Note : Perceptron cannot find weights for classification problems that are not

linearly separable.

• XOR Problem :

Exclusive OR operation

X2

XOR

truth table

 Even parity

Odd parity

(0, 1)

(0, 0) X1

(0, 1)

Fig. Output of XOR in

X1 , x2 plane

Input x1 Input x2 Output

0 0 0

1 1 0

0 1 1

1 0 1

SC - Neural Network –Single Layer learning

Even parity is, even number of 1 bits in the input Odd parity

is, odd number of 1 bits in the input

- There is no way to draw a single straight line so that the circles are on one side of

the line and the dots on the other side.

- Perceptron is unable to find a line separating even parity input

patterns from odd parity input patterns.

• Perceptron Learning Algorithm

The algorithm is illustrated step-by-step.

■ Step 1 :

Create a peceptron with (n+1) input neurons x0 , x1 , , . xn ,

where x0 = 1 is the bias input. Let

O be the output neuron.

■ Step 2 :

Initialize weight W = (w0 , w1 , , . wn) to random weights.

■ Step 3 :

Iterate through the input patterns Xj of the training set using the
n

weight set; ie compute the weighted sum of inputs net j =

for each input pattern j .

■ Step 4 :

Compute the output y j using the step function

i=1

xi wi

1 if net j 0

y j = f (net j) = where net j =

0 if net j 0

n

 xi wij
i=1

SC - Neural Network –ADALINE

W1

W2



Neuron

Output

Wn

–
Error



+

■ Step 5 :

Compare the computed output yj with the target output yj for

each input pattern j .

If all the input patterns have been classified correctly, then output (read) the

weights and exit.

■ Step 6 :

Otherwise, update the weights as given below :

If the computed outputs yj is 1 but should have been 0,

Then wi = wi - xi , i= 0, 1, 2, , n

If the computed outputs yj is 0 but should have been 1,

Then wi = wi + xi , i= 0, 1, 2, , n

where is the learning parameter and is constant.

■ Step 7 :

goto step 3

■ END

 ADAptive LINear Element (ADALINE)

An ADALINE consists of a single neuron of the McCulloch-Pitts type, where its

weights are determined by the normalized least mean square (LMS) training law.

The LMS learning rule is also referred to as delta rule. It is a well-established

supervised training method that has been used over a wide range of diverse

applications.

• Architecture of a simple ADALINE

x1

x2

xn

SC - Neural Network –ADALINE

Desired Output

The basic structure of an ADALINE is similar to a neuron with a linear

activation function and a feedback loop. During the training phase of ADALINE,

the input vector as well as the desired output are presented to the network.

[The complete training mechanism has been explained in the next slide.]

• ADALINE Training Mechanism

(Ref. Fig. in the previous slide - Architecture of a simple ADALINE)

■ The basic structure of an ADALINE is similar to a linear neuron

with an extra feedback loop.

■ During the training phase of ADALINE, the input vector

X = [x1 , x2 , . . . , xn]T as well as desired output are presented to the

network.

■ The weights are adaptively adjusted based on delta rule.

■ After the ADALINE is trained, an input vector presented to the network with

fixed weights will result in a scalar output.

■ Thus, the network performs an n dimensional mapping to a scalar value.

■ The activation function is not used during the training phase. Once the

weights are properly adjusted, the response of the trained unit can be tested by

applying various inputs, which are not in the training set. If the network

produces consistent responses to a high degree with the test inputs, it is

said that the network could generalize. The process of training and

generalization are two important attributes of this network.

Usage of ADLINE :

In practice, an ADALINE is used to

- Make binary decisions; the output is sent through a binary threshold.

- Realizations of logic gates such as AND, NOT and OR .

- Realize only those logic functions that are linearly separable.

SC - Neural Network –ADALINE

Applications of Neural Network

Neural Network Applications can be grouped in following categories:

■ Clustering:

A clustering algorithm explores the similarity between patterns and places similar

patterns in a cluster. Best known applications include data compression and data

mining.

■ Classification/Pattern recognition:

The task of pattern recognition is to assign an input pattern (like handwritten

symbol) to one of many classes. This category includes algorithmic

implementations such as associative memory.

■ Function approximation :

The tasks of function approximation is to find an estimate of the unknown function

subject to noise. Various engineering and scientific disciplines require function

approximation.

■ Prediction Systems:

The task is to forecast some future values of a time-sequenced data. Prediction

has a significant impact on decision support systems. Prediction differs from function

approximation by considering time factor. System may be dynamic and may produce

different results for the same input data based on system state (time).

Back Propagation Network

Soft Computing

Back-Propagation Network, topics : Background, what is back-prop

network ? learning AND function, simple learning machines - Error

measure , Perceptron learning rule, Hidden Layer, XOR problem. Back-

Propagation Learning : learning by example, multi-layer feed-forward

back-propagation network, computation in input, hidden and output

layers, error calculation. Back-propagation algorithm for training

network - basic loop structure, step-by-step procedure, numerical

example.

SC - Neural Network –ADALINE

1. Back-Propagation Learning - learning by example

Multi-layer Feed-forward Back-propagation network; Computation of Input, Hidden and

Output layers ; Calculation of Error.

2. Back-Propagation Algorithm

Algorithm for training Network - Basic loop structure, Step-by-step procedure; Example:

Training Back-prop network, Numerical example.

Back-Propagation Network

What is BPN ?

• A single-layer neural network has many restrictions. This network can

accomplish very limited classes of tasks.

Minsky and Papert (1969) showed that a two layer feed-forward network can

overcome many restrictions, but they did not present a solution to the problem

as "how to adjust the weights from input to hidden layer" ?

• An answer to this question was presented by Rumelhart, Hinton and Williams

in 1986. The central idea behind this solution is that the errors for the units of the

hidden layer are determined by back-propagating the errors of the units of the

output layer.

This method is often called the Back-propagation learning rule.

Back-propagation can also be considered as a generalization of the delta rule for

non-linear activation functions and multi-layer networks.

• Back-propagation is a systematic method of training multi-layer artificial neural

networks.

SC - NN - BPN – Background

1. Back-Propagation Network – Background

Real world is faced with a situations where data is incomplete or noisy. To make

reasonable predictions about what is missing from the information available is a difficult

task when there is no a good theory available that may to help reconstruct the missing

data. It is in such situations the Back-propagation (Back-Prop) networks may provide some

answers.

• A BackProp network consists of at least three layers of units :

- an input layer,

- at least one intermediate hidden layer, and

- an output layer.

• Typically, units are connected in a feed-forward fashion with input units fully

connected to units in the hidden layer and hidden units fully connected to units in

the output layer.

• When a BackProp network is cycled, an input pattern is propagated forward to the

output units through the intervening input-to-hidden and hidden-to-output

weights.

• The output of a BackProp network is interpreted as a classification decision.

• With BackProp networks, learning occurs during a training phase. The steps

followed during learning are :

− each input pattern in a training set is applied to the input units and then propagated

forward.

− the pattern of activation arriving at the output layer is compared with the correct

(associated) output pattern to calculate an error signal.

− the error signal for each such target output pattern is then back-propagated from

the outputs to the inputs in order to appropriately adjust the weights in each layer

of the network.

− after a BackProp network has learned the correct classification for a set of

inputs, it can be tested on a second set of inputs to see how well it classifies

SC - NN - BPN – Background

untrained patterns.

• An important consideration in applying BackProp learning is how

well the network generalizes.

 Learning :

AND function

Implementation of AND function in the neural network.

W1

Input I1
A

W2

Input I2 B

Output O

C

AND

X1 X2 Y

0 0 0

0 1 0

1 0 0

1 1 1

SC - NN - BPN – Background

AND function implementation

− there are 4 inequalities in the AND function and they must be satisfied.

w10 + w2 0 < θ , w1 0 + w2 1 < θ ,

w11 + w2 0 < θ , w1 1 + w2 1 > θ

− one possible solution :

if both weights are set to 1 and the threshold is set to 1.5, then

(1)(0) + (1)(0) < 1.5 assign 0 , (1)(0) + (1)(1) < 1.5 assign 0

(1)(1) + (1)(0) < 1.5 assign 0 , (1)(1) + (1)(1) > 1.5 assign 1

Although it is straightforward to explicitly calculate a solution to the AND function

problem, but the question is "how the network can learn such a solution". That

is, given random values for the weights can we define an incremental procedure

which will cover a set of weights which implements AND function.

• Example 1

AND Problem

Consider a simple neural network made up of two inputs connected to a single

output unit.

Input I1

Input I2

W1

A

W2 C

B

Output O

AND

X1 X2 Y

0 0 0

0 1 0

1 0 0

1 1 1

SC - NN - BPN – Background

Fig A simple two-layer network applied to the AND problem

 the output of the network is determined by calculating a weighted sum of its two

inputs and comparing this value with a threshold θ.

 if the net input (net) is greater than the threshold, then the output is 1, else it is

0.

 mathematically, the computation performed by the output unit is

net = w1 I1 + w2 I2 if net > θ then O = 1, otherwise O = 0.

• Example 2

Marital status and occupation

In the above example 1

 the input characteristics may be : marital Status (single or married)

and their occupation (pusher or bookie).

 this information is presented to the network as a 2-D binary input vector where 1st

element indicates marital status (single = 0, married = 1) and 2nd element

indicates occupation (pusher = 0, bookie = 1).

 the output, comprise "class 0" and "class 1".

 by applying the AND operator to the inputs, we classify an individual as a

member of the "class 0" only if they are both married and a bookie; that is the

output is 1 only when both of the inputs are 1.

 Simple Learning Machines

Rosenblatt (late 1950's) proposed learning networks called Perceptron. The task

was to discover a set of connection weights which correctly classified a set of binary

input vectors. The basic architecture of the perceptron is similar to the simple AND

network in the previous example.

A perceptron consists of a set of input units and a single output unit.

As in the AND network, the output of the perceptron is calculated
n

by comparing the net input net =
i=1

wi Ii and a threshold θ.

SC - NN - BPN – Background

If the net input is greater than the threshold θ , then the output unit is turned on ,

otherwise it is turned off.

To address the learning question, Rosenblatt solved two problems.

− first, defined a cost function which measured error.

− second, defined a procedure or a rule which reduced that error by appropriately

adjusting each of the weights in the network.

However, the procedure (or learning rule) required to assesses the relative

contribution of each weight to the total error.

The learning rule that Roseblatt developed, is based on determining the difference

between the actual output of the network with the target output (0 or 1), called

"error measure" which is explained in the next slide.

• Error Measure (learning rule)

Mentioned in the previous slide, the error measure is the difference between actual

output of the network with the target output (0 or 1).

― If the input vector is correctly classified (i.e., zero error), then the

weights are left unchanged, and

the next input vector is presented.

― If the input vector is incorrectly classified (i.e., not zero error), then

there are two cases to consider :

Case 1 : If the output unit is 1 but need to be 0 then

◊ the threshold is incremented by 1 (to make it less likely that the output unit

would be turned on if the same input vector was presented again).

◊ If the input Ii is 0, then the corresponding weight Wi is left unchanged.

◊ If the input Ii is 1, then the corresponding weight Wi is

decreased by 1.

Case 2 : If output unit is 0 but need to be 1 then the opposite changes are made.

SC - NN - BPN – Background

―
―
―

+ +
+ + +

― + + +

― + +
―

―
― ― ― ―
― ― ― ―

―

The perceptron learning rules are govern by two equations,

− one that defines the change in the threshold and

− the other that defines change in the weights, The

change in the threshold is given by

 θ = - (tp - op) = - dp

where p specifies the presented input pattern,

op actual output of the input pattern Ipi

tp specifies the correct classification of the input pattern ie target,

dp is the difference between the target and actual outputs.

The change in the weights are given by

 wi = (tp - op) Ipi = - dp Ipi

 Hidden Layer

Back-propagation is simply a way to determine the error values in hidden layers.

This needs be done in order to update the weights.

The best example to explain where back-propagation can be used is the XOR

problem.

Consider a simple graph shown below.

− all points on the right side of the line are +ve, therefore the output of the neuron

should be +ve.

− all points on the left side of the line are –ve, therefore the output of

the neuron should be –ve.

With this graph, one can make a simple table of
X2

inputs and outputs as shown below.

AND
X1 X2 Y

X1 1 1 1

― 1 0 0
0 1 0
0 0 0

Training a network to operate as

an AND switch can be done

easily through only one neuron

(see previous slides)

SC - NN - BPN – Background

But a XOR problem can't be solved using only one neuron.

If we want to train an XOR, we need 3 neurons, fully-connected in a feed-forward

network as shown below.

XOR
X1 X2 Y
1 1 0
1 0 1
0 1 1
0 0 0

X1
A

X2

X2 B

X1

 C Y

SC - NN – Back Propagation Network

II1 1
OI1

V11 IH1 1
OH1 W11 IO1

1
OO1

V21 W21

II2 2
OI2 IH2 2

OH2 IO2 2
OO2

Vl1 Wm1

IIℓ ℓ
OIℓ IHm

m
OHm IOn n

OOn

Vij Wij

2. Back Propagation Network

Learning By Example

Consider the Multi-layer feed-forward back-propagation network below. The

subscripts I, H, O denotes input, hidden and output neurons.

The weight of the arc between i th input neuron to j th hidden layer is Vij .

The weight of the arc between i th hidden neuron to j th out layer is Wij

Input Layer

i - nodes
Hidden

Layer m-

nodes

Output Layer

n - nodes

Fig Multi-layer feed-forward back-propagation network

The table below indicates an 'nset' of input and out put data. It shows ℓ

inputs and the corresponding n output data.

Table : 'nset' of input and output data

No Input Ouput

I1 I2 Iℓ O1 O2 On

1 0.3 0.4 0.8 0.1 0.56 0.82

2

:

nset

In this section, over a three layer network the computation in the input, hidden and output

layers are explained while the step-by-step implementation of the BPN algorithm by solving

an example is illustrated in the next section.

SC - NN – Back Propagation Network

 Computation of Input, Hidden and Output Layers

(Ref.Previous slide, Fig. Multi-layer feed-forward back-propagation network)

• Input Layer Computation

Consider linear activation function.

If the output of the input layer is the input of the input layer and the transfer

function is 1, then

{ O }I = { I }I

ℓ x 1 ℓ x 1 (denotes matrix row, column size)

The hidden neurons are connected by synapses to the input neurons.

- Let Vij be the weight of the arc between i th input neuron to

j th hidden layer.

- The input to the hidden neuron is the weighted sum of the outputs of the input

 neurons. Thus the equation

IHp = V1p OI1 + V2p OI2 + + V1p OIℓ where (p =1, 2, 3 . . , m)

denotes weight matrix or connectivity matrix between input neurons and a hidden

neurons as [V].

we can get an input to the hidden neuron as ℓ x m

{ I }H = [V] T { O }I

m x 1 m x ℓ ℓ x 1 (denotes matrix row, column size)

Hidden Layer Computation

Shown below the pth neuron of the hidden layer. It has input from the output of the

input neurons layers. If we consider transfer function as

sigmoidal function then the output of the pth hidden neuron is given by

1

OHp =
(1 + e - (IHP – θHP))

where OHp is the output of the pth hidden neuron, IHp

 is the input of the pth hidden neuron, and θHP is the

threshold of the pth neuron;

SC - NN – Back Propagation Network

Note : a non zero threshold neuron, is computationally equivalent to an input that is

always held at -1 and the non-zero threshold becomes the connecting weight value as

shown in Fig. below.

IIO = -1

O
OIO = -1

Note : the threshold is not treated as

shown in the Fig (left); the outputs of the

hidden neuron are given by the

Fig. Example of Treating threshold in

hidden layer

above equation.

Treating each component of the input of the hidden neuron separately, we get the

outputs of the hidden neuron as given by above equation .

The input to the output neuron is the weighted sum of the outputs of the hidden

neurons. Accordingly, Ioq the input to the qth output neuron is given by the equation

Ioq = W1q OH1 + W2q OH2 + + Wmq OHm , where (q =1, 2, 3 . . , n)

It denotes weight matrix or connectivity matrix between hidden neurons and output

neurons as [W], we can get input to output neuron as

{ I }O = [W] T { O }H

n x 1 n x m m x 1 (denotes matrix row, column size)

{ O }H =

p

–
–

1

(1 + e - (IHP – θHP))

–
–

II1 1
OI1

II2 2
OI2

II3
3

OI3

IIℓ
ℓ

OIℓ θHP

V3p

Vℓp

V1p V2p

SC - NN – Back Propagation Network

• Output Layer Computation

Shown below the qth neuron of the output layer. It has input from the output of

the hidden neurons layers.

If we consider transfer function as sigmoidal function then the output of the qth

output neuron is given by

1

OOq =
(1 + e - (IOq – θOq))

where OOq is the output of the qth output neuron,

IOq is the input to the qth output neuron, and

θOq is the threshold of the qth neuron;

Note : A non zero threshold neuron, is computationally equivalent to an input that

is always held at -1 and the non-zero threshold becomes the connecting weight value

as shown in Fig. below.

Note : Here again the threshold may be tackled by considering extra Oth neuron

in the hidden layer with output of -1 and the threshold value θOq becomes the

connecting weight value as shown in Fig. below.

IHO = -1

O
OHO = -1

Note : here again the threshold is not

treated as shown in the Fig (left); the

Outputs of the output neurons given by

Fig. Example of Treating threshold

in output layer
the above equation.

{ O }O =

q
OOq

–
–

1

(1 + e - (IOq – θOq))

–
–

IH1 1
OH1

IH2 2 OH2

IH3
3

OH3

IHm m
OHm

θOq

W3q

Wmq

W1q w2q

SC - NN – Back Propagation Network

 Calculation of Error

(refer the earlier slides - Fig. "Multi-layer feed-forward back-propagation network"

and a table indicating an 'nset' of input and out put data for the purpose of training)

Consider any r th output neuron. For the target out value T, mentioned in the table-

'nset' of input and output data" for the purpose of training, calculate output O .

The error norm in output for the r th output neuron is

E1r = (1/2) e2r = (1/2) (T –O)2

where E1r is 1/2 of the second norm of the error er in the r th neuron for the given

training pattern.

e2r is the square of the error, considered to make it independent of sign +ve

or –ve , ie consider only the absolute value.

The Euclidean norm of error E1 for the first training pattern is given by

E1 = (1/2)

n

r=1
(Tor - Oor)2

This error function is for one training pattern. If we use the same technique for all

the training pattern, we get

nset

E (V, W) =
r=1

E j (V, W, I)

SC - NN - BPN – Algorithm

where E is error function depends on m (1 + n) weights of [W] and [V].

All that is stated is an optimization problem solving, where the objective or cost

function is usually defined to be maximized or minimized with respect to a set of

parameters. In this case, the network parameters that optimize the error function E

over the 'nset' of pattern sets [I nset , t nset] are synaptic weight values [V]

and [W] whose sizes are

[V] and [W]

ℓ x m m x n

16Back-Propagation Algorithm

The benefits of hidden layer neurons have been explained. The hidden layer allows ANN to

develop its own internal representation of input-output mapping. The complex internal

representation capability allows the hierarchical network to learn any mapping and not

just the linearly separable ones.

The step-by-step algorithm for the training of Back-propagation network is presented

in next few slides. The network is the same , illustrated before, has a three layer. The input

layer is with ℓ nodes, the hidden layer with m nodes and the output layer with n nodes.

An example for training a BPN with five training set have been shown for better

understanding.

SC - NN - BPN – Algorithm

 Algorithm for Training Network

The basic algorithm loop structure, and the step by step procedure of Back-

propagation algorithm are illustrated in next few slides.

• Basic algorithm loop structure

Initialize the weights Repeat

For each training pattern

"Train on that pattern"

End

Until the error is acceptably low.

SC - NN - BPN – Algorithm

• Back-Propagation Algorithm - Step-by-step procedure

■ Step 1 :

Normalize the I/P and O/P with respect to their maximum values.

For each training pair, assume that in normalized form there are

ℓ inputs given by { I }I and

ℓ x 1

n outputs given by { O}O

n x 1

■ Step 2 :

Assume that the number of neurons in the hidden layers lie

between 1 < m < 21

SC - NN - BPN – Algorithm

Step 3 : ■

Let [V] represents the weights of synapses connecting input

neuron and hidden neuron

Let [W] represents the weights of synapses connecting hidden

neuron and output neuron

Initialize the weights to small random values usually from -1 to +1;

[V] 0 = [random weights] [W

] 0 = [random weights] [V] 0

= [W] 0 = [0]

For general problems can be assumed as 1 and threshold value as 0.

SC - NN - BPN – Algorithm

Step 4 : ■

For training data, we need to present one set of inputs and outputs. Present the pattern

as inputs to the input layer { I }I .

then by using linear activation function, the output of the input layer may be

evaluated as

{ O }I = { I }I

ℓ x 1 ℓ x 1

■ Step 5 :

Compute the inputs to the hidden layers by multiplying corresponding weights of

synapses as

{ I }H = [V] T { O }I

m x 1 m x ℓ ℓ x 1

■ Step 6 :

Let the hidden layer units, evaluate the output using the

sigmoidal function as

{ O }H =

m x 1

–
–

1

(1 + e - (IHi))

–
–

SC - NN - BPN – Algorithm

Step 9 : ■

Compute the inputs to the output layers by multiplying corresponding weights of

synapses as

{ I }O = [W] T { O }H

n x 1 n x m m x 1

■ Step 8 :

Let the output layer units, evaluate the output using sigmoidal

function as

{ O }O =

Note : This output is the network output

Calculate the error using the difference between the network output and the

desired output as for the j th training set as

EP =

 (Tj - Ooj)2

n

■ Step 10 :

Find a term { d } as

–

–

{ d } = (Tk – OOk) OOk (1 – OOk)

–

–
n x 1

–
–

1

(1 + e - (IOj))

–
–

SC - NN - BPN – Algorithm

Step 11 : ■

Find [Y] matrix as

[Y] = { O }H d

m x n m x 1 1 x n

■ Step 12 :

Find [W]
t +1

= [W]
t

+ [Y]

m x n m x n m x n

■ Step 13 :

Find { e } = [W] { d }

m x 1 m x n n x 1

–

–

{ d* } =
(OHi) (1 – OHi)

ei

–

–

m x 1 m x 1

Find [X] matrix as

[X] = { O }I d* = { I }I d*

1 x m ℓ x 1 1 x m ℓ x 1 1 x m

SC - NN - BPN – Algorithm

■ Step 14 :

Find [V]
t +1

= [V]
t

+ [X]

1 x m 1 x m 1 x m

■ Step 15 :

Find [V]
t +1

= [V]
t

+ [V]
t +1

[W]
t +1

= [W]
t

+ [W]
t +1

■ Step 16 :

Find error rate as

error rate =

Ep

nset

■ Step 17 :

Repeat steps 4 to 16 until the convergence in the error rate is less than the

tolerance value

■ End of Algorithm

Note : The implementation of this algorithm, step-by-step 1 to 17, assuming one

example for training BackProp Network is illustrated in the next section.

SC - NN - BPN – Algorithm

0.4 0.1

0.2

0.4 -0.2 TO = 0.1

-0.7 -0.5

0.2

 Example : Training Back-Prop Network

• Problem :

Consider a typical problem where there are 5 training sets.

Table : Training sets

S. No. Input Output

 I1 I2 O

1 0.4 -0.7 0.1

2 0.3 -0.5 0.05

3 0.6 0.1 0.3

4 0.2 0.4 0.25

5 0.1 -0.2 0.12

In this problem,

- there are two inputs and one output.

- the values lie between -1 and +1 i.e., no need to normalize the values.

- assume two neurons in the hidden layers.

- the NN architecture is shown in the Fig. below.

Input

layer

Hidden

layer

Output

layer

Fig. Multi layer feed forward neural network (MFNN) architecture with

data of the first training set

The solution to problem are stated step-by-step in the subsequent

slides.

SC - NN - BPN – Algorithm

■ Step 1 : Input the first training set data (ref eq. of step 1)

0.4

{ O }I =

ℓ x 1

{ I }I =

ℓ x 1

-0.7

2 x 1

from training set s.no 1

■ Step 2 : Initialize the weights as (ref eq. of step 3 & Fig)

0.1

[V] 0 =
-0.2

0.4

0.2

2x2

;

0.2
[W] 0 =

-0.5
2
x1

from fig initialization from fig initialization

■ Step 3 : Find { I }H = [V] T { O }I as (ref eq. of step 5)

{ I }H
0.1 -0.2

=
-0.4 0.2

0.4

-0.7

0.18

=
0.02

SC - NN - BPN – Algorithm

(ref eq. of step 6) Step 4 : ■

Values from step

1 & 2

{ O }H =

1

(1 + e - (0.18))

1

(1 + e - (0.02))

0.5448

=
0.505

SC - NN - BPN – Algorithm

(ref eq. of step 7) Step 5 : ■

Values from step 3 values

{ I }O = [W] T { O }H = (0.2 - 0.5)
0.5448

0.505

= - 0.14354

Values from step 2 , from step 4

■ Step 6 : (ref eq. of step 8)

{ O }O =
1

(1 + e - (0.14354))

= 0.4642

Values from step 5

■ Step 7 : (ref eq. of step 9)

Error = (TO – OO1)2 = (0.1 – 0.4642)2 = 0.13264

table first training set o/p from step 6

SC - NN - BPN – Algorithm

(ref eq. of step 10) Step 8 : ■

–0.02958

–0.02742

–0.018116

–0.04529

d = (TO – OO1) (OO1) (1 – OO1)

= (0.1 – 0.4642) (0.4642) (0.5358) = – 0.09058

Training o/p all from step 6

[Y] = { O }H (d) =

0.5448

0.505

(ref eq. of step 11)

(– 0.09058) =

from values at step 4 from values at step 8 above

■ Step 9 : (ref eq. of step 12)

[W]
1

= [W]
0

+ [Y] assume =0.6

=

from values at step 2 & step 8 above

■ Step 10 : (ref eq. of step 13)

0.2
{ e } = [W] { d } = (– 0.09058) =

-0.5

from values at step 8 above
from values at step 2

–0.0493

–0.0457

SC - NN - BPN – Algorithm

(ref eq. of step 13) Step 11 : ■

(–0.018116) (0.5448) (1- 0.5448)
{ d* } = =

(0.04529) (0.505) (1 – 0.505)

–0.00449

–0.01132

from values at step 10 at step 4 at step 8

■ Step 12 : (ref eq. of step 13)

[X] = { O }I (d*) =
0.4

-0.7

(– 0.00449 0.01132)

from values at step 1 from values at step 11 above

– 0.001796 0.004528

= 0.003143 –0.007924

■ Step 13 : (ref eq. of step 14)

[V]
1

= [V]
0

+ [X] =

– 0.001077 0.002716

0.001885 –0.004754

from values at step 2 & step 8 above

SC - NN - BPN – Algorithm

(ref eq. of step 15) ■ Step 14 :

0.1 0.4

[V]
1

= +
-0.2 0.2

– 0.001077 0.002716

0.001885 –0.004754

from values at step 2 from values at step 13

– 0.0989 0.04027

=
0.1981 –0.19524

0.2 –0.02958 0.17042
[W]

1
= + =

-0.5

–0.02742 –0.52742

SC - NN - BPN – Algorithm

(ref eq. of step 15) ■ Step 14 :

from values at step 2, from values at step 9

■ Step 15 :

With the updated weights [V] and [W] , error is calculated again and

next training set is taken and the error will then get adjusted.

■ Step 16 :

Iterations are carried out till we get the error less than the tolerance.

■ Step 17 :

Once the weights are adjusted the network is ready

 for inferencing new objects .

Fuzzy Set Theory

Soft Computing

Introduction to fuzzy set, topics : classical set theory, fuzzy set theory,

crisp and non-crisp Sets representation, capturing uncertainty, examples.

Fuzzy membership and graphic interpretation of fuzzy sets - small, prime

numbers, universal, finite, infinite, empty space; Fuzzy Operations -

inclusion, comparability, equality, complement, union, intersection,

difference; Fuzzy properties related to union, intersection, distributivity,

law of excluded middle, law of contradiction, and cartesian product.

Fuzzy relations : definition, examples, forming fuzzy relations,

projections of fuzzy relations, max-min and min-max compositions.

Fuzzy Set Theory

Soft Computing

Topics

1. Introduction to fuzzy Set

What is Fuzzy set? Classical set theory; Fuzzy set theory; Crisp and

Non-crisp Sets : Representation; Capturing uncertainty, Examples

2. Fuzzy set

Fuzzy Membership; Graphic interpretation of fuzzy sets : small, prime numbers, universal,

finite, infinite, empty space;

Fuzzy Operations : Inclusion, Comparability, Equality, Complement, Union,

Intersection, Difference;

Fuzzy Properties : Related to union – Identity, Idempotence, Associativity,

Commutativity ; Related to Intersection – Absorption, Identity, Idempotence,

Commutativity, Associativity; Additional properties - Distributivity, Law of excluded

middle, Law of contradiction; Cartesian product .

3. Fuzzy Relations

Definition of Fuzzy Relation, examples;

Forming Fuzzy Relations – Membership matrix, Graphical form; Projections of

Fuzzy Relations – first, second and global; Max-Min and Min-Max compositions.

Fuzzy Set Theory

What is Fuzzy Set ?

• The word "fuzzy" means "vagueness". Fuzziness occurs when the boundary of a piece

of information is not clear-cut.

• Fuzzy sets have been introduced by Lotfi A. Zadeh (1965) as an extension of the

classical notion of set.

• Classical set theory allows the membership of the elements in the set in binary

terms, a bivalent condition - an element either belongs or does not belong to the

set.

Fuzzy set theory permits the gradual assessment of the membership of elements in

a set, described with the aid of a membership function valued in the real unit interval

[0, 1].

• Example:

Words like young, tall, good, or high are fuzzy.

− There is no single quantitative value which defines the term young.

− For some people, age 25 is young, and for others, age 35 is young.

− The concept young has no clean boundary.

− Age 1 is definitely young and age 100 is definitely not young;

− Age 35 has some possibility of being young and usually depends on the

context in which it is being considered.

SC - Fuzzy set theory - Introduction

1. Introduction

In real world, there exists much fuzzy knowledge;

Knowledge that is vague, imprecise, uncertain, ambiguous, inexact, or probabilistic in

nature.

Human thinking and reasoning frequently involve fuzzy information, originating from

inherently inexact human concepts. Humans, can give satisfactory answers, which are

probably true.

However, our systems are unable to answer many questions. The reason is, most

systems are designed based upon classical set theory and two-valued logic which is

unable to cope with unreliable and incomplete information and give expert opinions.

We want, our systems should also be able to cope with unreliable and incomplete

information and give expert opinions. Fuzzy sets have been able provide solutions to

many real world problems.

Fuzzy Set theory is an extension of classical set theory where elements have degrees of

membership.

• Classical Set Theory

A Set is any well defined collection of objects. An object in a set is called an

element or member of that set.

− Sets are defined by a simple statement describing whether a particular element

having a certain property belongs to that particular set.

− Classical set theory enumerates all its elements using

A = { a1 , a2 , a3 , a4 , an }

If the elements ai (i = 1, 2, 3, . . . n) of a set A are subset of universal set X,

then set A can be represented for all elements x X by its characteristic

function

1 if x X

A (x) =

0 otherwise

SC - Fuzzy set theory – Fuzzy Operation

− A set A is well described by a function called characteristic

function.

This function, defined on the universal space X, assumes :

a value of 1 for those elements x that belong to set A, and

a value of 0 for those elements x that do not belong to set A.

The notations used to express these mathematically are

Α : Χ [0, 1]

A(x) = 1 , x is a member of A Eq.(1)

A(x) = 0 , x is not a member of A

Alternatively, the set A can be represented for all elements x X

by its characteristic function A (x) defined as

1 if x X

A (x) = Eq.(2)

0 otherwise

− Thus in classical set theory A (x) has only the values 0 ('false')

and 1 ('true''). Such sets are called crisp sets.

• Fuzzy Set Theory

Fuzzy set theory is an extension of classical set theory where elements have

varying degrees of membership. A logic based on the two truth values, True and

False, is sometimes inadequate when describing human reasoning. Fuzzy logic uses

the whole interval between 0 (false) and 1 (true) to describe human reasoning.

− A Fuzzy Set is any set that allows its members to have different degree of

membership, called membership function, in the interval [0 , 1].

− The degree of membership or truth is not same as probability;

 fuzzy truth is not likelihood of some event or condition.

 fuzzy truth represents membership in vaguely defined sets;

− Fuzzy logic is derived from fuzzy set theory dealing with reasoning that is

approximate rather than precisely deduced from classical predicate logic.

− Fuzzy logic is capable of handling inherently imprecise concepts.

SC - Fuzzy set theory – Fuzzy Operation

Degree or grade of truth

Not Tall Tall

1

0
1.8 m Height x

Degree or grade of truth

Not Tall Tall

1

0
1.8 m Height x

− Fuzzy logic allows in linguistic form the set membership values to imprecise

concepts like "slightly", "quite" and "very".

− Fuzzy set theory defines Fuzzy Operators on Fuzzy Sets.

• Crisp and Non-Crisp Set

− As said before, in classical set theory, the characteristic function

A(x) of Eq.(2) has only values 0 ('false') and 1 ('true''). Such sets

are crisp sets.

− For Non-crisp sets the characteristic function A(x) can be defined.

 The characteristic function A(x) of Eq. (2) for the crisp set is

generalized for the Non-crisp sets.

 This generalized characteristic function A(x) of Eq.(2) is called

membership function.

Such Non-crisp sets are called Fuzzy Sets.

− Crisp set theory is not capable of representing descriptions and classifications in

many cases; In fact, Crisp set does not provide adequate representation for most

cases.

− The proposition of Fuzzy Sets are motivated by the need to capture and represent

real world data with uncertainty due to imprecise measurement.

− The uncertainties are also caused by vagueness in the language.

• Representation of Crisp and Non-Crisp Set Example :

Classify students for a basketball team This example

explains the grade of truth value.

- tall students qualify and not tall students do not qualify

- if students 1.8 m tall are to be qualified, then should we

exclude a student who is 1/10" less? or should we exclude

a student who is 1" shorter?

■ Non-Crisp Representation to represent the notion of a tall person.

SC - Fuzzy set theory – Fuzzy Operation



1

c (x)

C

F (x)

F
0.5

0 x

Crisp logic Non-crisp logic

Fig. 1 Set Representation – Degree or grade of truth

A student of height 1.79m would belong to both tall and not tall sets with a

particular degree of membership.

As the height increases the membership grade within the tall set would increase

whilst the membership grade within the not-tall set would decrease.

• Capturing Uncertainty

Instead of avoiding or ignoring uncertainty, Lotfi Zadeh introduced Fuzzy Set theory

that captures uncertainty.

■ A fuzzy set is described by a membership function A (x) of A.

This membership function associates to each element x X a

number as A (x) in the closed unit interval [0, 1].

The number A (x) represents the degree of membership of x in A.

■ The notation used for membership function A (x) of a fuzzy set A is

Α : Χ [0, 1]

■ Each membership function maps elements of a given universal base set X , which

is itself a crisp set, into real numbers in [0, 1] .

■ Example

Fig. 2 Membership function of a Crisp set C and Fuzzy set F

■ In the case of Crisp Sets the members of a set are :

either out of the set, with membership of degree " 0 ", or in the

set, with membership of degree " 1 ",

SC - Fuzzy set theory – Fuzzy Operation

Therefore, Crisp Sets ⊆ Fuzzy Sets

In other words, Crisp Sets are Special cases of Fuzzy Sets.

• Examples of Crisp and Non-Crisp Set

Example 1: Set of prime numbers (a crisp set)

If we consider space X consisting of natural numbers 12

ie X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

Then, the set of prime numbers could be described as follows.

PRIME = {x contained in X | x is a prime number} = {2, 3, 5, 6, 7, 11}

Example 2: Set of SMALL (as non-crisp set)

A Set X that consists of SMALL cannot be described;

for example 1 is a member of SMALL and 12 is not a member of SMALL.

Set A, as SMALL, has un-sharp boundaries, can be characterized by a function that

assigns a real number from the closed interval from 0 to 1 to each element x in the set

X.

A Fuzzy Set is any set that allows its members to have different degree of

membership, called membership function, in the interval [0 , 1].

• Definition of Fuzzy set

A fuzzy set A, defined in the universal space X, is a function defined in

X which assumes values in the range [0, 1].

A fuzzy set A is written as a set of pairs {x, A(x)} as

A = {{x , A(x)}} , x in the set X

where x is an element of the universal space X, and

A(x) is the value of the function A for this element.

The value A(x) is the membership grade of the element x in a

fuzzy set A.

Example : Set SMALL in set X consisting of natural numbers to 12. Assume:

SMALL(1) = 1, SMALL(2) = 1, SMALL(3) = 0.9, SMALL(4) = 0.6,

SMALL(5) = 0.4, SMALL(6) = 0.3, SMALL(7) = 0.2, SMALL(8) =

0.1, SMALL(u) = 0 for u >= 9.

SC - Fuzzy set theory – Fuzzy Operation

Then, following the notations described in the definition above :

Set SMALL = {{1, 1 }, {2, 1 }, {3, 0.9}, {4, 0.6}, {5, 0.4}, {6, 0.3}, {7, 0.2},

{8, 0.1}, {9, 0 }, {10, 0 }, {11, 0}, {12, 0}}

Note that a fuzzy set can be defined precisely by associating with each x , its

grade of membership in SMALL.

• Definition of Universal Space

Originally the universal space for fuzzy sets in fuzzy logic was defined only on the

integers. Now, the universal space for fuzzy sets and fuzzy relations is defined with

three numbers.

The first two numbers specify the start and end of the universal space, and the third

argument specifies the increment between elements. This gives the user more

flexibility in choosing the universal space.

Example : The fuzzy set of numbers, defined in the universal space

X = { xi } = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} is presented as

SetOption [FuzzySet, UniversalSpace {1, 12, 1}]

 Fuzzy Membership

A fuzzy set A defined in the universal space X is a function defined in X which

assumes values in the range [0, 1].

A fuzzy set A is written as a set of pairs {x, A(x)}.

A = {{x , A(x)}} , x in the set X

where x is an element of the universal space X, and

A(x) is the value of the function A for this element.

The value A(x) is the degree of membership of the element x

in a fuzzy set A.

The Graphic Interpretation of fuzzy membership for the fuzzy sets : Small, Prime

Numbers, Universal-space, Finite and Infinite UniversalSpace, and Empty are

illustrated in the next few slides.

• Graphic Interpretation of Fuzzy Sets SMALL

SC - Fuzzy set theory – Fuzzy Operation

The fuzzy set SMALL of small numbers, defined in the universal space

X = { xi } = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} is presented as

SetOption [FuzzySet, UniversalSpace {1, 12, 1}]

The Set SMALL in set X is :

SMALL = FuzzySet {{1, 1 }, {2, 1 }, {3, 0.9}, {4, 0.6}, {5, 0.4}, {6, 0.3},

{7, 0.2}, {8, 0.1}, {9, 0 }, {10, 0 }, {11, 0}, {12, 0}}

Therefore SetSmall is represented as

SetSmall = FuzzySet [{{1,1},{2,1}, {3,0.9}, {4,0.6}, {5,0.4},{6,0.3}, {7,0.2},

{8, 0.1}, {9, 0}, {10, 0}, {11, 0}, {12, 0}} , UniversalSpace {1, 12, 1}]

FuzzyPlot [SMALL, AxesLable {"X", "SMALL"}]

SMALL

1

.8

.6

.4

.2

0
0 1 2 3 4 5 6 7 8 9 10 11 12 X

Fig Graphic Interpretation of Fuzzy Sets SMALL

• Graphic Interpretation of Fuzzy Sets PRIME Numbers The

fuzzy set PRIME numbers, defined in the universal space X = { xi } = {1,

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} is presented as

SetOption [FuzzySet, UniversalSpace {1, 12, 1}]

The Set PRIME in set X is :

PRIME = FuzzySet {{1, 0}, {2, 1}, {3, 1}, {4, 0}, {5, 1}, {6, 0}, {7, 1}, {8, 0},

{9, 0}, {10, 0}, {11, 1}, {12, 0}}

Therefore SetPrime is represented as

SetPrime = FuzzySet [{{1,0},{2,1}, {3,1}, {4,0}, {5,1},{6,0}, {7,1},

{8, 0}, {9, 0}, {10, 0}, {11, 1}, {12, 0}} , UniversalSpace {1, 12, 1}]

FuzzyPlot [PRIME, AxesLable {"X", "PRIME"}]

PRIME

1

SC - Fuzzy set theory – Fuzzy Operation

.8

.6

.4

.2

0
0 1 2 3 4 5 6 7 8 9 10 11 12 X

Fig Graphic Interpretation of Fuzzy Sets PRIME

• Graphic Interpretation of Fuzzy Sets UNIVERSALSPACE

In any application of sets or fuzzy sets theory, all sets are subsets of a fixed set

called universal space or universe of discourse denoted by X. Universal space X as a

fuzzy set is a function equal to 1 for all elements.

The fuzzy set UNIVERSALSPACE numbers, defined in the universal space

X = { xi } = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} is presented as

SetOption [FuzzySet, UniversalSpace {1, 12, 1}]

The Set UNIVERSALSPACE in set X is :

UNIVERSALSPACE = FuzzySet {{1, 1}, {2, 1}, {3, 1}, {4, 1}, {5, 1}, {6, 1},

{7, 1}, {8, 1}, {9, 1}, {10, 1}, {11, 1}, {12, 1}}

Therefore SetUniversal is represented as

SetUniversal = FuzzySet [{{1,1},{2,1}, {3,1}, {4,1}, {5,1},{6,1}, {7,1},

{8, 1}, {9, 1}, {10, 1}, {11, 1}, {12, 1}} , UniversalSpace {1, 12, 1}]

SC - Fuzzy set theory – Fuzzy Operation

FuzzyPlot [UNIVERSALSPACE, AxesLable {"X", " UNIVERSAL SPACE "}]

UNIVERSAL SPACE

1

.8

.6

.4

.2

0
0 1 2 3 4 5 6 7 8 9 10 11 12 X

Fig Graphic Interpretation of Fuzzy Set UNIVERSALSPACE

• Finite and Infinite Universal Space

Universal sets can be finite or infinite.

Any universal set is finite if it consists of a specific number of different elements, that

is, if in counting the different elements of the set, the counting can come to an end,

else the set is infinite.

Examples:

1. Let N be the universal space of the days of the week.

N = {Mo, Tu, We, Th, Fr, Sa, Su}. N is finite. 2.

Let M = {1, 3, 5, 7, 9, ...}. M is infinite.

3. Let L = {u | u is a lake in a city }. L is finite.

(Although it may be difficult to count the number of lakes in a city,

but L is still a finite universal set.)

• Graphic Interpretation of Fuzzy Sets EMPTY

An empty set is a set that contains only elements with a grade of membership equal to

0.

Example: Let EMPTY be a set of people, in Minnesota, older than 120. The Empty

set is also called the Null set.

The fuzzy set EMPTY , defined in the universal space

X = { xi } = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} is presented as

SetOption [FuzzySet, UniversalSpace {1, 12, 1}]

SC - Fuzzy set theory – Fuzzy Operation

The Set EMPTY in set X is :

EMPTY = FuzzySet {{1, 0}, {2, 0}, {3, 0}, {4, 0}, {5, 0}, {6, 0}, {7, 0},

{8, 0}, {9, 0}, {10, 0}, {11, 0}, {12, 0}}

Therefore SetEmpty is represented as

SetEmpty = FuzzySet [{{1,0},{2,0}, {3,0}, {4,0}, {5,0},{6,0}, {7,0},

{8, 0}, {9, 0}, {10, 0}, {11, 0}, {12, 0}} , UniversalSpace {1, 12, 1}]

FuzzyPlot [EMPTY, AxesLable {"X", " UNIVERSAL SPACE "}]

EMPT

Y 1

.8

.6

.4

.2

0
0 1 2 3 4 5 6 7 8 9 10 11 12 X

Fig Graphic Interpretation of Fuzzy Set EMPTY

 Fuzzy Operations

A fuzzy set operations are the operations on fuzzy sets. The fuzzy set operations are

generalization of crisp set operations. Zadeh [1965] formulated the fuzzy set theory in

the terms of standard operations: Complement, Union, Intersection, and Difference.

In this section, the graphical interpretation of the following standard fuzzy set terms

and the Fuzzy Logic operations are illustrated:

Inclusion : FuzzyInclude [VERYSMALL, SMALL]

Equality : FuzzyEQUALITY [SMALL, STILLSMALL]

Complement : FuzzyNOTSMALL = FuzzyCompliment

[Small] Union : FuzzyUNION = [SMALL MEDIUM]

Intersection : FUZZYINTERSECTON = [SMALL

MEDIUM]

SC - Fuzzy set theory – Fuzzy Operation

• Inclusion

Let A and B be fuzzy sets defined in the same universal space X.

The fuzzy set A is included in the fuzzy set B if and only if for every x in the set X we

have A(x) B(x)

Example :

The fuzzy set UNIVERSALSPACE numbers, defined in the universal

space X = { xi } = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} is presented as

SetOption [FuzzySet, UniversalSpace {1, 12, 1}]

The fuzzy set B SMALL

The Set SMALL in set X is :

SMALL = FuzzySet {{1, 1 }, {2, 1 }, {3, 0.9}, {4, 0.6}, {5, 0.4}, {6, 0.3},

{7, 0.2}, {8, 0.1}, {9, 0 }, {10, 0 }, {11, 0}, {12, 0}}

Therefore SetSmall is represented as

SetSmall = FuzzySet [{{1,1},{2,1}, {3,0.9}, {4,0.6}, {5,0.4},{6,0.3}, {7,0.2},

{8, 0.1}, {9, 0}, {10, 0}, {11, 0}, {12, 0}} , UniversalSpace {1, 12, 1}]

The fuzzy set A VERYSMALL

The Set VERYSMALL in set X is :

VERYSMALL = FuzzySet {{1, 1 }, {2, 0.8 }, {3, 0.7}, {4, 0.4}, {5, 0.2},

{6, 0.1}, {7, 0 }, {8, 0 }, {9, 0 }, {10, 0 }, {11, 0}, {12, 0}}

Therefore SetVerySmall is represented as

SetVerySmall = FuzzySet [{{1,1},{2,0.8}, {3,0.7}, {4,0.4}, {5,0.2},{6,0.1},

{7,0}, {8, 0}, {9, 0}, {10, 0}, {11, 0}, {12, 0}} , UniversalSpace {1, 12, 1}]

The Fuzzy Operation : Inclusion

Include [VERYSMALL, SMALL]

Membership Grade B A

1

.8

.6

.4

.2

0
0 1 2 3 4 5 6 7 8 9 10 11 12 X

Fig Graphic Interpretation of Fuzzy Inclusion

FuzzyPlot [SMALL, VERYSMALL]

SC - Fuzzy set theory – Fuzzy Properties

• Comparability

Two fuzzy sets A and B are comparable if the

condition A B or B A holds, ie,

if one of the fuzzy sets is a subset of the other set, they are comparable.

Two fuzzy sets A and B are incomparable If the

condition A B or B A holds.

Example 1:

Let A = {{a, 1}, {b, 1}, {c, 0}} and

B = {{a, 1}, {b, 1}, {c, 1}}.

Then A is comparable to B, since A is a subset of B.

Example 2 :

Let C = {{a, 1}, {b, 1}, {c, 0.5}} and

D = {{a, 1}, {b, 0.9}, {c, 0.6}}.

Then C and D are not comparable since

C is not a subset of D and

D is not a subset of C.

Property Related to Inclusion :

for all x in the set X, if A(x) B(x) C(x), then accordingly A C.

• Equality

Let A and B be fuzzy sets defined in the same space X.

Then A and B are equal, which is denoted X = Y

if and only if for all x in the set X, A(x) = B(x).

Example.

The fuzzy set B SMALL

SMALL = FuzzySet {{1, 1 }, {2, 1 }, {3, 0.9}, {4, 0.6}, {5, 0.4}, {6, 0.3},

{7, 0.2}, {8, 0.1}, {9, 0 }, {10, 0 }, {11, 0}, {12, 0}}

The fuzzy set A STILLSMALL

STILLSMALL = FuzzySet {{1, 1 }, {2, 1 }, {3, 0.9}, {4, 0.6}, {5, 0.4},

{6, 0.3}, {7, 0.2}, {8, 0.1}, {9, 0 }, {10, 0 }, {11, 0}, {12, 0}}

SC - Fuzzy set theory – Fuzzy Properties

The Fuzzy Operation : Equality

Equality [SMALL, STILLSMALL]

Membership Grade B A

1

.8

.6

.4

.2

0
0 1 2 3 4 5 6 7 8 9 10 11 12 X

Fig Graphic Interpretation of Fuzzy Equality

FuzzyPlot [SMALL, STILLSMALL]

Note : If equality A(x) = B(x) is not satisfied even for one element x in

the set X, then we say that A is not equal to B.

• Complement

Let A be a fuzzy set defined in the space X.

Then the fuzzy set B is a complement of the fuzzy set A, if and only if, for all x in

the set X, B(x) = 1 - A(x).

The complement of the fuzzy set A is often denoted by A' or Ac or A

Fuzzy Complement : Ac(x) = 1 – A(x)

Example 1.

The fuzzy set A SMALL

SMALL = FuzzySet {{1, 1 }, {2, 1 }, {3, 0.9}, {4, 0.6}, {5, 0.4}, {6, 0.3},

{7, 0.2}, {8, 0.1}, {9, 0 }, {10, 0 }, {11, 0}, {12, 0}}

The fuzzy set Ac NOTSMALL

NOTSMALL = FuzzySet {{1, 0 }, {2, 0 }, {3, 0.1}, {4, 0.4}, {5, 0.6}, {6, 0.7},

{7, 0.8}, {8, 0.9}, {9, 1 }, {10, 1 }, {11, 1}, {12, 1}}

The Fuzzy Operation : Compliment

NOTSMALL = Compliment [SMALL]

SC - Fuzzy set theory – Fuzzy Properties

Membership Grade A Ac

1

.8

.6

.4

.2

0
0 1 2 3 4 5 6 7 8 9 10 11 12 X

Fig Graphic Interpretation of Fuzzy Compliment

FuzzyPlot [SMALL, NOTSMALL]

Example 2.

The empty set and the universal set X, as fuzzy sets, are

complements of one another.

' = X , X' =

The fuzzy set B EMPTY

Empty = FuzzySet {{1, 0 }, {2, 0 }, {3, 0}, {4, 0}, {5, 0}, {6, 0},

{7, 0}, {8, 0}, {9, 0 }, {10, 0 }, {11, 0}, {12, 0}}

The fuzzy set A UNIVERSAL

Universal = FuzzySet {{1, 1 }, {2, 1 }, {3, 1}, {4, 1}, {5, 1}, {6, 1},

{7, 1}, {8, 1}, {9, 1 }, {10, 1 }, {11, 1}, {12, 1}}

The fuzzy operation : Compliment

EMPTY = Compliment [UNIVERSALSPACE]

Membership Grade B A

1

.8

.6

SC - Fuzzy set theory – Fuzzy Properties

.4

.2

0
0 1 2 3 4 5 6 7 8 9 10 11 12 X

Fig Graphic Interpretation of Fuzzy Compliment

FuzzyPlot [EMPTY, UNIVERSALSPACE]

• Union

Let A and B be fuzzy sets defined in the space X.

The union is defined as the smallest fuzzy set that contains both A and B. The union of

A and B is denoted by A B.

The following relation must be satisfied for the union operation :

for all x in the set X, (A B)(x) = Max (A(x), B(x)).

Fuzzy Union : (A B)(x) = max [A(x), B(x)] for all x X

Example 1 : Union of Fuzzy A and B

A(x) = 0.6 and B(x) = 0.4 (A B)(x) = max [0.6, 0.4] = 0.6

Example 2 : Union of SMALL and MEDIUM

The fuzzy set A SMALL

SMALL = FuzzySet {{1, 1 }, {2, 1 }, {3, 0.9}, {4, 0.6}, {5, 0.4}, {6, 0.3},

{7, 0.2}, {8, 0.1}, {9, 0 }, {10, 0 }, {11, 0}, {12, 0}}

The fuzzy set B MEDIUM

MEDIUM = FuzzySet {{1, 0 }, {2, 0 }, {3, 0}, {4, 0.2}, {5, 0.5}, {6, 0.8},

{7, 1}, {8, 1}, {9, 0.7 }, {10, 0.4 }, {11, 0.1}, {12, 0}}

The fuzzy operation : Union

FUZZYUNION = [SMALL MEDIUM]

SetSmallUNIONMedium = FuzzySet [{{1,1},{2,1}, {3,0.9}, {4,0.6}, {5,0.5},

{6,0.8}, {7,1}, {8, 1}, {9, 0.7}, {10, 0.4}, {11, 0.1}, {12, 0}} ,

UniversalSpace {1, 12, 1}]

Membership Grade FUZZYUNION = [SMALL MEDIUM]

1

.8

.6

.4

.2

0
0 1 2 3 4 5 6 7 8 9 10 11 12 X

SC - Fuzzy set theory – Fuzzy Properties

Fig Graphic Interpretation of Fuzzy Union

FuzzyPlot [UNION]

The notion of the union is closely related to that of the connective "or". Let A is a

class of "Young" men, B is a class of "Bald" men.

If "David is Young" or "David is Bald," then David is associated with the

union of A and B. Implies David is a member of A B.

• Intersection

Let A and B be fuzzy sets defined in the space X. Intersection is defined as the

greatest fuzzy set that include both A and B. Intersection of A and B is denoted by A

 B. The following relation must be satisfied for the intersection operation :

for all x in the set X, (A B)(x) = Min (A(x), B(x)).

Fuzzy Intersection : (A B)(x) = min [A(x), B(x)] for all x X Example 1 :

Intersection of Fuzzy A and B

A(x) = 0.6 and B(x) = 0.4 (A B)(x) = min [0.6, 0.4] = 0.4

Example 2 : Union of SMALL and MEDIUM

The fuzzy set A SMALL

SMALL = FuzzySet {{1, 1 }, {2, 1 }, {3, 0.9}, {4, 0.6}, {5, 0.4}, {6, 0.3},

{7, 0.2}, {8, 0.1}, {9, 0 }, {10, 0 }, {11, 0}, {12, 0}}

The fuzzy set B MEDIUM

MEDIUM = FuzzySet {{1, 0 }, {2, 0 }, {3, 0}, {4, 0.2}, {5, 0.5}, {6, 0.8},

{7, 1}, {8, 1}, {9, 0.7 }, {10, 0.4 }, {11, 0.1}, {12, 0}}

The fuzzy operation : Intersection

FUZZYINTERSECTION = min [SMALL MEDIUM]

SetSmallINTERSECTIONMedium = FuzzySet [{{1,0},{2,0}, {3,0}, {4,0.2},

{5,0.4}, {6,0.3}, {7,0.2}, {8, 0.1}, {9, 0},

{10, 0}, {11, 0}, {12, 0}} , UniversalSpace {1, 12, 1}]

Membership Grade FUZZYINTERSECTON = [SMALL MEDIUM]

1

.8

.6

.4

SC - Fuzzy set theory – Fuzzy Properties

.2

0
0 1 2 3 4 5 6 7 8 9 10 11 12 X

Fig Graphic Interpretation of Fuzzy Union

FuzzyPlot [INTERSECTION]

• Difference

Let A and B be fuzzy sets defined in the space X. The

difference of A and B is denoted by A B'.

Fuzzy Difference : (A - B)(x) = min [A(x), 1- B(x)] for all x X

Example : Difference of MEDIUM and SMALL

The fuzzy set A MEDIUM

MEDIUM = FuzzySet {{1, 0 }, {2, 0 }, {3, 0}, {4, 0.2}, {5, 0.5}, {6, 0.8},
{7, 1}, {8, 1}, {9, 0.7 }, {10, 0.4 }, {11, 0.1}, {12, 0}}

The fuzzy set B SMALL

MEDIUM = FuzzySet {{1, 1 }, {2, 1 }, {3, 0.9}, {4, 0.6}, {5, 0.4}, {6, 0.3},

{7, 0.2}, {8, 0.1}, {9, 0.7 }, {10, 0.4 }, {11, 0}, {12, 0}}

Fuzzy Complement : Bc(x) = 1 – B(x)

The fuzzy set Bc NOTSMALL

NOTSMALL = FuzzySet {{1, 0 }, {2, 0 }, {3, 0.1}, {4, 0.4}, {5, 0.6}, {6, 0.7},

{7, 0.8}, {8, 0.9}, {9, 1 }, {10, 1 }, {11, 1}, {12, 1}}

The fuzzy operation : Difference by the definition of Difference

FUZZYDIFFERENCE = [MEDIUM SMALL']

SetMediumDIFFERECESmall = FuzzySet [{{1,0},{2,0}, {3,0}, {4,0.2},

{5,0.5}, {6,0.7}, {7,0.8}, {8, 0.9}, {9, 0.7},

{10, 0.4}, {11, 0.1}, {12, 0}} , UniversalSpace {1, 12, 1}]

Membership Grade FUZZYDIFFERENCE = [MEDIUM SMALL']

1

.8

.6

.4

.2

0
0 1 2 3 4 5 6 7 8 9 10 11 12 X

Fig Graphic Interpretation of Fuzzy Union

SC - Fuzzy set theory – Fuzzy Properties

FuzzyPlot [UNION]

 Fuzzy Properties

Properties related to Union, Intersection, Differences are illustrated below.

• Properties Related to Union

The properties related to union are :

Identity, Idempotence, Commutativity and Associativity.

■ Identity:

A = A

input = Equality [SMALL EMPTY , SMALL]

output = True

A X = X

input = Equality [SMALL UnivrsalSpace , UnivrsalSpace]

output = True

■ Idempotence :

A A = A

input = Equality [SMALL SMALL , SMALL]

output = True

■ Commutativity :

A B = B A

input = Equality [SMALL MEDIUM, MEDIUM SMALL]

output = True

[Continued from previous slide]

■ Associativity:

A (B C) = (A B) C

input = Equality [Small (Medium Big) , (Small Medium) Big] output =

True

Fuzzy Set Small , Medium , Big

Small = FuzzySet {{1, 1 }, {2, 1 }, {3, 0.9}, {4, 0.6}, {5, 0.4}, {6, 0.3},

{7, 0.2}, {8, 0.1}, {9, 0.7 }, {10, 0.4 }, {11, 0}, {12, 0}}

Medium = FuzzySet {{1, 0 }, {2, 0 }, {3, 0}, {4, 0.2}, {5, 0.5}, {6, 0.8},

{7, 1}, {8, 1}, {9, 0 }, {10, 0 }, {11, 0.1}, {12, 0}}

SC - Fuzzy set theory – Fuzzy Properties

Big = FuzzySet [{{1,0}, {2,0}, {3,0}, {4,0}, {5,0}, {6,0.1},

{7,0.2}, {8,0.4}, {9,0.6}, {10,0.8}, {11,1}, {12,1}}]

Calculate Fuzzy relations :

(1) Medium Big = FuzzySet [{1,0},{2,0}, {3,0}, {4,0.2}, {5,0.5},

{6,0.8},{7,1}, {8, 1}, {9, 0.6}, {10, 0.8}, {11, 1}, {12, 1}]

(2) Small Medium = FuzzySet [{1,1},{2,1}, {3,0.9}, {4,0.6}, {5,0.5},

{6,0.8}, {7,1}, {8, 1}, {9, 0.7}, {10, 0.4}, {11, 0.1}, {12, 0}]

(3) Small (Medium Big) = FuzzySet [{1,1},{2,1}, {3,0.9}, {4,0.6},

{5,0.5}, {6,0.8}, {7,1}, {8, 1}, {9, 0.7}, {10, 0.8}, {11, 1}, {12, 1}]

(4) (Small Medium) Big] = FuzzySet [{1,1},{2,1}, {3,0.9}, {4,0.6},

{5,0.5}, {6,0.8}, {7,1}, {8, 1}, {9, 0.7},{10, 0.8}, {11, 1},{12, 1}]

Fuzzy set (3) and (4) proves Associativity relation

SC - Fuzzy set theory – Fuzzy Properties

• Properties Related to Intersection

Absorption, Identity, Idempotence, Commutativity, Associativity.

■ Absorption by Empty Set :

A =

input = Equality [Small Empty , Empty]

output = True

■ Identity :

A X = A

input = Equality [Small UnivrsalSpace , Small]

output = True

■ Idempotence :

A A = A

input = Equality [Small Small , Small]

output = True

■ Commutativity :

A B = B A

input = Equality [Small Big , Big Small]

output = True

■ Associativity :

A (B C) = (A B) C

input = Equality [Small (Medium Big), (Small Medium) Big] output =

True

SC - Fuzzy set theory – Fuzzy Properties

• Additional Properties

Related to Intersection and Union

■ Distributivity:

A (B C) = (A B) (A C)

input = Equality [Small (Medium Big) ,

(Small Medium) (Small Big)]

output = True

■ Distributivity:

A (B C) = (A B) (A C)

input = Equality [Small (Medium Big) ,

(Small Medium) (Small Big)]

output = True

■ Law of excluded middle :

A A' = X

input = Equality [Small NotSmall , UnivrsalSpace] output =

True

■ Law of contradiction

A A' =

input = Equality [Small NotSmall , EmptySpace] output =

True

• Cartesian Product Of Two Fuzzy Sets

■ Cartesian Product of two Crisp Sets

Let A and B be two crisp sets in the universe of discourse X and Y.. The

Cartesian product of A and B is denoted by A x B

Defined as A x B = { (a , b) │ a A , b B }

Note : Generally A x B ≠ B x A

Example :

Let A = {a, b, c} and B = {1, 2}

then A x B = { (a , 1) , (a , 2) ,

(b , 1) , (b , 2) ,

(c , 1) , (c , 2) }

Graphic representation of A x B

B

2

1

A

SC - Fuzzy set theory – Fuzzy Properties

a b c

SC - Fuzzy set theory – Fuzzy Relations

■ Cartesian product of two Fuzzy Sets

Let A and B be two fuzzy sets in the universe of discourse X and Y. The

Cartesian product of A and B is denoted by A x B

Defined by their membership function A (x) and B (y) as

 A x B (x , y) = min [A (x) , B (y)] = A (x) B (y)

or A x B (x , y) = A (x) B (y)

for all x X and y Y

Thus the Cartesian product A x B is a fuzzy set of ordered pair (x , y) for all

x X and y Y, with grade membership of (x , y) in X x Y given by the

above equations .

In a sense Cartesian product of two Fuzzy sets is a Fuzzy Relation.

2. Fuzzy Relations

Fuzzy Relations describe the degree of association of the elements; Example :

“x is approximately equal to y”.

− Fuzzy relations offer the capability to capture the uncertainty and vagueness in relations

between sets and elements of a set.

− Fuzzy Relations make the description of a concept possible.

− Fuzzy Relations were introduced to supersede classical crisp relations; It

describes the total presence or absence of association of elements.

In this section, first the fuzzy relation is defined and then expressing fuzzy relations in

terms of matrices and graphical visualizations. Later the properties of fuzzy relations and

operations that can be performed with fuzzy relations are illustrated.

 Definition of Fuzzy Relation

Fuzzy relation is a generalization of the definition of fuzzy set

from 2-D space to 3-D space.

• Fuzzy relation definition

Consider a Cartesian product

SC - Fuzzy set theory – Fuzzy Relations

A x B = { (x , y) | x A, y B }

where A and B are subsets of universal sets U1 and U2.

Fuzzy relation on A x B is denoted by R or R(x , y) is defined as the set

R = { ((x , y) , R (x , y)) | (x , y) A x B , R (x , y) [0,1] }

where R (x , y) is a function in two variables called membership function.

 It gives the degree of membership of the ordered pair (x , y) in R associating with

each pair (x , y) in A x B a real number in the interval [0 , 1].

 The degree of membership indicates the degree to which x is in relation to y.

Note :

 Definition of fuzzy relation is a generalization of the definition of fuzzy set from

the 2-D space (x , , R (x)) to 3-D space ((x , y) , R (x , y)).

 Cartesian product A x B is a relation by itself between x and y .

 A fuzzy relation R is a sub set of R3 namely

{ ((x , y) , R (x , y)) | A x B x [0,1] U1 x U2 x [0,1] }

• Example of Fuzzy Relation

R = { ((x1 , y1) , 0)) , ((x1 , y2) , 0.1)) , ((x1 , y3) , 0.2)) ,

((x2 , y1) , 0.7)) , ((x2 , y2) , 0.2)) , ((x2 , y3) , 0.3)) ,

((x3 , y1) , 1)) , ((x3 , y2) , 0.6)) , ((x3 , y3) , 0.2)) ,

The relation can be written in matrix form as

R

where symbol means ' is defined as' and

the values in the matrix are the values of membership function:

R (x1 , y1) = 0 R (x1 , y2) = 0.1 R (x1 , y3) = 0.2

R (x2 , y1) = 0.7 R (x2, y2) = 0.2 R (x2 , y3) = 0.3

R (x3 , y1) = 1 R (x3 , y2) = 0.6 R (x3 , y3) = 0.2

Assuming x1 = 1 , x2 = 2 , x3 = 3 and y1 = 1 , y2= 2 , y3= 3 ,

the relation can be graphically represented by points in 3-D space

(X, Y,) as :

y
x

y1 Y2 Y3

x1 0 0.1 0.2

X2 0.7 0.2 0.3

X3 1 0.6 0.2

SC - Fuzzy set theory – Fuzzy Relations

Fig Fuzzy Relation R describing

x greater than y

Note : Since the values of the membership function 0.7, 1, 0.6 are in the direction of x below

the major diagonal (0, 0.2, 0.2) in the matrix are grater than those 0.1, 0.2, 0.3 in the

direction of y, we therefore say that the relation R describes x is grater than y.

 Forming Fuzzy Relations

Assume that V and W are two collections of objects.

A fuzzy relation is characterized in the same way as it is in a fuzzy set.

− The first item is a list containing element and membership grade pairs,

{{v1, w1}, R11}, {{ v1, w2}, R12}, ... , {{ vn, wm}, Rnm}}.

where { v1, w1}, { v1, w2}, ... , { vn, wm} are the elements of the relation are defined

as ordered pairs, and { R11 , R12 , ... , Rnm} are the membership grades of the

elements of the relation that range from 0 to 1, inclusive.

− The second item is the universal space; for relations, the universal space consists of

a pair of ordered pairs,

{{ Vmin, Vmax, C1}, { Wmin, Wmax, C2}}.

where the first pair defines the universal space for the first set and the second pair

defines the universal space for the second set.

Example showing how fuzzy relations are represented

Let V = {1, 2, 3} and W = {1, 2, 3, 4}.

A fuzzy relation R is, a function defined in the space V x W, which takes values from

the interval [0, 1] , expressed as R : V x W [0, 1]

1

.8

.6

.4

.2

0



1 2 3 y

 1

 2

3

x

SC - Fuzzy set theory – Fuzzy Relations

R = FuzzyRelation [{{{1, 1}, 1}, {{1, 2}, 0.2}, {{1, 3}, 0.7}, {{1, 4}, 0},
{{2, 1}, 0.7}, {{2, 2}, 1}, {{2, 3}, 0.4}, {{2, 4}, 0.8},
{{3, 1}, 0}, {{3, 2}, 0.6}, {{3, 3}, 0.3}, {{3, 4}, 0.5},
UniversalSpace {{1, 3, 1}, {1, 4, 1}}]

This relation can be represented in the following two forms shown below

Membership matrix form 1 Graph form

.8
 w w1 w2 w3 w4 .6

v .4

v1 1 0.2 0.7 0 .2

v2 0.7 1 0.4 0.8 0 1 2 3 4

v3 0 0.6 0.3 0.5
1

SC - Fuzzy set theory – Fuzzy Relations

R w

2

3
v

Vertical lines represent membership grades

Elements of fuzzy relation are ordered pairs {vi , wj}, where vi is first and wj is second

element. The membership grades of the elements are represented by the heights of the

vertical lines.

 Projections of Fuzzy Relations

Definition : A fuzzy relation on A x B is denoted by R or R(x , y) is defined as the

set

R = { ((x , y) , R (x , y)) | (x , y) A x B , R (x , y) [0,1] }

where R (x , y) is a function in two variables called membership function. The first,

the second and the total projections of fuzzy relations are stated below.

• First Projection of R : defined as

R(1) = {(x) , R(1) (x , y))}

= {(x) ,
max R (x , y)) | (x , y) A x B }

Y

• Second Projection of R : defined as

R(2) = {(y) , R(2) (x , y))}

= {(y) ,

max

X

 R (x , y)) | (x , y) A x B }

• Total Projection of R : defined as

R(T) = max

X
max

Y

{ R (x , y) | (x , y) A x B }

Note : In all these three expression

SC - Fuzzy set theory – Fuzzy Relations

max

Y

max

X

means max with respect to y while x is considered fixed means max

with respect to x while y is considered fixed

SC - Fuzzy set theory – Fuzzy Relations

y y1 y2 y3

x

The Total Projection is also known as Global projection

• Example : Fuzzy Projections

The Fuzzy Relation R together with First, Second and Total Projection of R are

shown below.

x1

x2
R

x3

R(2

)

y4 Y5 R(1)

0.1 0.3 1 0.5 0.3 1

0.2 0.5 0.7 0.9 0.6 0.9

0.3 0.6 1 0.8 0.2 1

0.3

0.6

1

0.9

0.6

1

= R(T)

Note :

For R(1) select

For R(2) select

max

Y

max

x

means max with respect to y while x is considered fixed means

max with respect to x while y is considered fixed

SC - Fuzzy set theory – Fuzzy Relations

y y1 y2 y3

x

x1 0.1 0.3 0

x2 0.8 1 0.3

R(1)

1

.8

.6

.4

.2

0 x

1 2 3 4 5

R(2)

1

.8

.6

.4

.2

0 y

1 2 3 4 5

For R(T) select max with respect to R(1) and R(2)

The Fuzzy plot of these projections are shown below.

Fig Fuzzy plot of 1st projection R(1) Fig Fuzzy plot of 2nd projection R(2)

 Max-Min and Min-Max Composition

The operation composition combines the fuzzy relations in different

variables, say (x , y) and (y , z) ; x A , y B , z C .

Consider the relations :

R1(x , y) = { ((x , y) , R1 (x , y)) | (x , y) A x B }

R2(y , z) = { ((y , y) , R1 (y , z)) | (y , z) B x C }

The domain of R1 is A x B and the domain of R2 is B x C

• Max-Min Composition

Definition : The Max-Min composition denoted by R1 R2 with membership

function R1 R2 defined as

R1 R2 = { ((x , z) , max(min (R1 (x , y) , R2 (y , z))))} ,
Y

(x , z) A x C , y B

Thus R1 R2 is relation in the domain A x C

An example of the composition is shown in the next slide.

• Example : Max-Min Composition

Consider the relations R1(x , y) and R2(y , z) as given below.

R1 R2

Note : Number of columns in the first table and second table are equal. Compute max-

z z1 z2 z3

y

y1 0.8 0.2 0

y2 0.2 1 0.6

y3 0.5 0 0.4

SC - Fuzzy set theory – Fuzzy Relations

min composition denoted by R1 R2 :

Step -1 Compute min operation (definition in previous slide). Consider row

x1 and column z1 , means the pair (x1 , z1) for all yj , j = 1, 2, 3, and perform

min operation

min (R1 (x1 , y1) , R2 (y1 , z1)) = min (0.1, 0.8) = 0.1,

min (R1 (x1 , y2) , R2 (y2 , z1)) = min (0.3, 0.2) = 0.2,

min (R1 (x1 , y3) , R2 (y3 , z1)) = min (0, 0.5) = 0,

Step -2 Compute max operation (definition in previous slide).

For x = x1 , z = z1 , y = yj , j = 1, 2, 3,

Calculate the grade membership of the pair (x1 , z1) as

{ (x1 , z1) , max ((min (0.1, 0.8), min (0.3, 0.2), min (0, 0.5))

i.e. { (x1 , z1) , max(0.1, 0.2, 0) }

i.e. { (x1 , z1) , 0.2 }

Hence the grade membership of the pair (x1 , z1) is 0.2 .

Similarly, find all the grade membership of the pairs

(x1 , z2) , (x1 , z3) , (x2 , z1) , (x2 , z2) , (x2 , z3)

The final result is

R1 R2 =

Note : If tables R1 and R2 are considered as matrices, the operation composition resembles

the operation multiplication in matrix calculus linking row by columns. After each cell is

occupied max-min value (the product is replaced by min, the sum is replaced by max).

• Example : Min-Max Composition

The min-max composition is similar to max-min composition with the difference that

the roll of max and min are interchanged.

Definition : The max-min composition denoted by R1 ◻ R2 with membership function

R1 ◻ R2 is defined by

R1 ◻ R2 = { ((x , z) , mi

n

y

(max (R1 (x , y) , R2 (y , z))))} , (x ,

z) A x C , y B

x

z z1 z2 z3

x1 0.1 0.3 0

x2 0.8 1 0.3

SC - Neural Network –Applications

y y1 y2 y3

x

x1

x2

0.1 0.3 0

Thus R1 ◻ R2 is relation in the domain A x C

Consider the relations R1(x , y) and R2(y , z) as given by the same

relation of previous example of max-min composition, that is

R1 R

After computation in similar way as done in the case of max-min

composition, the final result is

R1 ◻ R2 =

• Relation between Max-Min and Min-Max Compositions

The Max-Min and Min-Max Compositions are related by the formula

R1 R2 = R1 ◻ R2

z z1 z2 z3

y

y1 0.8 0.2 0

0.8 1
2

0.3 y2 0.2 1 0.6

 y3 0.5 0 0.4

x

z z1 z2 z3

x1 0.3 0 0.1

x2 0.5 0.4 0.4

SC - Neural Network –Applications

