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What is Neural Net ? 

 

• A neural net is an artificial representation  of  the  human  brain  that  tries to

simulate its learning process. An artificial neural network 

(ANN) is often called a "Neural Network" or simply Neural Net (NN). 

 

• Traditionally, the word neural network is referred to a network of biological neurons 

in the nervous system that process and transmit information. 

 

• Artificial neural network is an interconnected group of artificial neurons 

that uses a mathematical model or computational model for information processing 

based on a connectionist approach to computation. 

• The artificial neural networks are made of interconnecting artificial 

neurons which may share some properties of biological neural networks. 

 

• Artificial Neural network is a network of simple processing elements 

(neurons) which can exhibit complex global behavior, determined by the 

connections between the processing elements and element parameters. 

 

1. Introduction 

 

Neural Computers mimic certain processing capabilities of the human brain. 

 

- Neural Computing is an information processing paradigm, inspired by biological 

system, composed of a large number of highly interconnected processing elements 

(neurons) working in unison to solve specific problems. 

- Artificial Neural Networks (ANNs), like people, learn by example. 

 

- An ANN is configured for a specific application, such as pattern recognition or data 

classification, through a learning process. 

- Learning in biological systems involves adjustments to the synaptic connections that 

exist between the neurons. This is true of ANNs as well. 
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 Why Neural Network 

 

Neural Networks follow a different paradigm for computing. 

 
■ The conventional computers are good for - fast arithmetic and does what 

programmer programs, ask them to do. 

■ The conventional computers are not so good for - interacting with noisy data or 

data from the environment, massive parallelism, fault tolerance, and adapting to 

circumstances. 

■ The neural network systems help where we can not formulate an algorithmic 

solution or where we can get lots of examples of the behavior we require. 

■ Neural Networks follow different paradigm for computing. 

 

The von Neumann machines are based on the processing/memory abstraction of 

human information processing. 

The  neural  networks are  based  on  the parallel architecture of 

biological brains. 

■ Neural networks are a form of multiprocessor computer system, with 

- simple processing elements , 

- a high degree of interconnection, 

- simple scalar messages, and 

- adaptive interaction between elements. 

 

 Research History 

 

The history is relevant because for nearly two decades the future of  Neural network 

remained uncertain. 

McCulloch and Pitts (1943) are generally recognized as the designers of the first neural 

network. They combined many simple processing units together that could lead to an 

overall increase in computational power. They suggested many ideas like : a neuron 

has a threshold level and once that level is reached the neuron fires. It is still the 

fundamental way in which ANNs operate. The McCulloch and Pitts's network had a 

fixed set of weights. 

Hebb (1949) developed the first learning rule, that is if two neurons are active at the 

same time then the strength between them should be increased. 
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In the 1950 and 60's, many researchers (Block, Minsky, Papert, and Rosenblatt 

worked on perceptron. The neural network model could be proved to converge to the 

correct weights, that will solve the problem. The weight adjustment (learning 

algorithm) used in the perceptron was found more powerful than the learning rules 

used by Hebb. The perceptron caused great excitement. It was thought to produce 

programs that could think. 

 

Minsky & Papert (1969) showed that perceptron could not learn those functions 

which are not linearly separable. 

The neural networks research declined throughout the 1970 and until mid 80's 

because the perceptron could not learn certain important functions. 

Neural network regained importance in 1985-86. The researchers, Parker and LeCun 

discovered a learning algorithm for multi-layer networks called back propagation that 

could solve problems that were not linearly separable. 

 

 Biological Neuron Model 

The human brain consists of a large number, more than a billion of   neural cells that 

process information. Each cell works like a simple processor. The massive interaction 

between all cells and their parallel processing only makes the brain's abilities possible. 

Dendrites are branching fibers that 

extend from the cell body or soma. 

Soma or cell body of a neuron contains 

the nucleus and other structures, support 

chemical processing and production of 

neurotransmitters. 

Axon is a singular fiber carries 

information away from the soma to the 

synaptic sites of other neurons (dendrites 

and somas), muscles, or glands. 

Axon hillock is the site of summation 

for incoming information. At any 

moment, the collective influence of all 

neurons that conduct impulses to a given 

neuron will determine whether or not an 
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Fig. Structure of Neuron 

 

axon hillock and propagated along the axon. 

action potential will be initiated at the 

Myelin Sheath consists of fat-containing cells that insulate the axon from electrical 

activity. This insulation acts to increase the rate of transmission of signals. A gap 

exists between each myelin sheath cell along the axon. Since fat inhibits the 

propagation of electricity, the signals jump from one gap to the next. 

Nodes of Ranvier are the gaps (about 1 m) between myelin sheath cells long axons 

are Since fat serves as a good insulator, the myelin sheaths speed the rate of 

transmission of an electrical impulse along the axon. 

Synapse is the point of connection between two neurons or a neuron and a muscle or 

a gland. Electrochemical communication between neurons takes place at these 

junctions. 

Terminal Buttons of a neuron are the small knobs at the end of an axon that release 

chemicals called neurotransmitters.   
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• Information flow in a Neural Cell 

The input /output and the propagation of information are shown below. 

 

Fig. Structure of a neural cell in the human brain 

 

■ Dendrites receive activation from other neurons. 

 

■ Soma processes the incoming activations and converts them into output 

activations. 

■ Axons act as transmission lines to send activation to other neurons. 

 

■ Synapses the junctions allow signal transmission between the 

axons and dendrites. 

■ The process of transmission is by diffusion of chemicals called 

neuro-transmitters. 

McCulloch-Pitts introduced a simplified model of this real neurons. Artificial 

Neuron Model 

 

  

• The McCulloch-Pitts Neuron 

This is a simplified model of real neurons, known as a Threshold Logic Unit. 

 

Input1 

Input 2 

 

Input n 

       
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■ A set of input connections brings in activations from other neurons. 

 

■ A processing unit sums the inputs, and then applies a non-linear activation 

function (i.e. squashing / transfer / threshold function). 

■ An output line transmits the result to other neurons. 

 

In other words , 

- The input to a neuron arrives in the form of signals. 

- The signals build up in the cell. 

- Finally the cell discharges (cell fires) through the output . 

- The cell can start building up signals again. 

 

Notations 

 

Recaps : Scalar, Vectors, Matrices and Functions 

 

Scalar : The number xi can be added up to give a scalar number. 
n 

s = x1 + x2 + x3 + . . . . + xn =  xi 
i=1 

 

Vectors : An ordered sets of related numbers. Row Vectors (1 x n) 

X = ( x1 , x2 , x3 ,  . . .,  xn ) , Y = ( y1 , y2 , y3 , . . ., yn ) 

 

Add : Two vectors of same length added to give another vector. 

 

Z = X + Y = (x1 + y1 , x2 + y2 , ....................... , xn + yn) 

 

Multiply: Two vectors of same length multiplied to give a scalar. 

n 

p = X . Y = x1 y1 + x2 y2 + . . . . + xnyn = 

 

 

 
i=1 

xi yi 
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Matrices : m x n matrix , row no = m , column no = n 

 

w11 w11 . . . . w1n 

w21 w21 . . . . w21 

W = . . . . . . . 

. . . . . . . 

wm1 w11 .......................... wmn 
 

Add or Subtract : Matrices of the same size are added or subtracted 

component by component. A + B  = C , cij = aij + bij 

a11 a12 b11 b12 c11 = a11+b11 c12  = a12+b12 

a21 a22 
+ 

b21 b22 
= 

C21 = a21+b21 C22  = a22 +b22 

 

Multiply : matrix A multiplied by matrix B gives matrix C. 

(m x n) (n x p)  (m x p) 

n 
elements cij =  

k=1 
aik bkj 

a11 a12 b11 b12 c11 c12 

a21 a22 
x
 

 

 

 

b21 b22 
=
 c21 c22 
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c11    =    (a11    x  b11)    +     (a12    x  B21)  c12    =    

(a11    x  b12)    +     (a12    x  B22)  C21   =    (a21    x  

b11)    +    (a22    x  B21)   C22 = (a21 x b12) + (a22 x 

B22) 

 

 

 

 Functions 

 

The Function y= f(x) describes a relationship, an input-output mapping, 

from x to y. 

■ Threshold or Sign function : sgn(x) defined as 

 

 

 

 

 

sgn (x) = 

 

 

 

 

1 if x  0 

 

0 if x  0 

 

Sign(x) 

1 

.8 

.6 

.4 

.2 

0 

-4 -3 -2 -1 0 1 2 3 4 I/P 

■ Threshold  or  Sign function  : sigmoid(x) defined as a smoothed 

(differentiable) form of the threshold function 

 

 

 

 

 

sigmoid (x) = 

 

 

 

 

1 

  

1 + e -x 

 

Sign(x) 

1 

.8 

.6 

 

 

.2 

0 

O/P 

O/P 
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-4 -3 -2 -1 0 1 2 3 4 I/P 

 

 

2. Model of Artificial Neuron 

 

A very simplified model of real neurons is known as a Threshold Logic Unit 

(TLU). The model is said to have : 

- A set of synapses (connections) brings in activations from other neurons. 

- A processing unit sums the inputs, and then applies a non-linear activation function (i.e. 

squashing / transfer / threshold function). 

- An output line transmits the result to other neurons. 

 

 McCulloch-Pitts (M-P) Neuron Equation 

 

McCulloch-Pitts neuron is a simplified model of real biological neuron. 

 

Input 1 

 

Input 2 

 

 

Input n 

 

 

 

 

 

 

 

Simplified Model of Real Neuron 

(Threshold Logic Unit) 

 

 

 

Output 

The equation for the output of a McCulloch-Pitts neuron as a function     of 1 to n 

inputs is written as 

n 

Output = sgn (  
i=1 

Input i   -  ) 

where  is the neuron’s activation threshold. 
n 

If  
i=1 
n 

If  
i=1 

Input i      then  Output   = 1 

 

Input i      then  Output   = 0 

 

In this McCulloch-Pitts neuron model, the missing features are : 

- Non-binary input and output, 

- Non-linear summation, 

- Smooth thresholding, 

- Stochastic, and 

- Temporal information processing. 

 

       
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 Artificial Neuron - Basic Elements 

 

Neuron consists of three basic components - weights, thresholds, and a single activation 

function. 

x1 

 

x2 

y 

 

 

 

xn 

 

 

Fig Basic Elements of an Artificial Linear Neuron 

 
■ Weighting Factors w 

 

The values w1 , w2 , . . . wn are weights to determine the strength of input vector 

X = [x1 , x2 , . . . , xn]T. Each input is multiplied by the associated weight of the 

neuron connection XT W. The +ve weight 

excites and the -ve weight inhibits the node output. 

I = XT.W = x1 w1 + x2 w2 + . . . . + xnwn = 

n 
 

i=1 
xi wi 

 

■ Threshold  

The node’s internal threshold  is the magnitude offset. It affects the activation of 

the node output y as: 
n 

Y = f (I) =  f {  
i=1 

 

 

xi wi - k } 

W1 Activation 
Function 

W2 

 

i=1 

Wn 

Synaptic Weights 

 
Threshold 
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To generate the final output Y , the sum is passed on to a non-linear filter f called 

Activation Function or Transfer function or Squash function which releases the 

output Y. 

 

 

 
■ Threshold for a Neuron 

 

In practice, neurons generally do not fire (produce an output) unless their total 

input goes above a threshold value. 

The total input for each neuron is   the sum of the weighted inputs    to the neuron 

minus its threshold value. This is then passed through the sigmoid function. The 

equation for the transition in a neuron is : 

a = 1/(1 + exp(- x)) where 

x  =  
i 

ai wi - Q 

a is the activation for the neuron ai is 

the activation for neuron i  wi is the 

weight 

Q is the threshold subtracted 

 
■ Activation Function 

 

An activation function f performs a mathematical operation on the signal output. 

The most common activation functions are: 

- Linear Function, 

- Piecewise Linear Function, 

- Tangent hyperbolic function 

- Threshold Function, 

- Sigmoidal (S shaped) function, 

 

The activation functions are chosen depending upon the type of problem to be 

solved by the network. 
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 Activation Functions f - Types 

 

Over the years, researches tried several functions to convert the input into an outputs. 

The most commonly used functions are described below. 

- I/P Horizontal axis shows sum of inputs . 

- O/P Vertical axis shows the value the function produces ie output. 

- All functions f are designed to produce values between 0 and 1. 

 

• Threshold Function 

A threshold (hard-limiter) activation function is either a binary type or     a 

bipolar type as shown below. 

binary threshold 

 

O/p 

 

I/P 

Output of a binary threshold function produces : 

1 if the weighted sum of the inputs is +ve, 

0 if the weighted sum of the inputs is -ve. 

1 if I  0 

Y = f (I) = 

0 if I  0 

 

bipolar threshold 

 

O/p 

 

I/P 

Output of a bipolar threshold function produces : 

1 if the weighted sum of the inputs is +ve, 

-1 if the weighted sum of the inputs is -ve. 

1 if I  0 

Y = f (I) = 
-1 

1 

1  
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Neuron with hard limiter activation function is called McCulloch-Pitts model. 

 

 

 

• Piecewise Linear Function 

This activation function is also called saturating linear function and can have either a 

binary or bipolar range for the saturation limits of the output. The mathematical model 

for a symmetric saturation function is described below. 

 

Piecewise Linear 

 

O/p 

 

 

I/P 

This is a sloping function that produces : 

-1 for a -ve weighted sum of inputs, 

1 for a +ve weighted sum of inputs. 

 I proportional to input for values between +1 

and -1 weighted sum, 

 

1 if I  0 

Y =  f (I) = I if -1  I  1 

-1 if I  0 

+1 

-1 
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• Sigmoidal Function (S-shape function) 

The nonlinear curved S-shape function is called  the sigmoid function.  This is most 

common type of activation used to construct the neural networks. It is mathematically 

well behaved, differentiable and strictly increasing function. 

Sigmoidal function A sigmoidal transfer function can be 

written in the form: 

1 

Y = f (I) =  

1 + e 

 

-  

I 

, 0  f(I)  1 

 

 

 

 

 

 

 

 

 

 

 

The sigmoidal 

 

 

 

 

 

 

 

 

 

 

 

function is 

= 1/(1 + exp(-  I)) , 0  f(I)  1 

This is explained as 

 0 for large -ve input values, 

1 for large +ve values, with 

a smooth transition between the two. 

 is slope parameter also called shape 

parameter; symbol the  is also used to 

represented this parameter. 

achieved using exponential equation. 

1 O/P 

 = 2.0 

0.5 

-4 -2 0 1 2 

I/P 

 = 1.0 

 = 0.5 
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By varying  different shapes of the function can be obtained which adjusts the 

abruptness of the function as it changes between the two asymptotic values. 

 

 

• Example : 

The neuron shown consists of four inputs with the weights. 

 

x1=1 

x2=2 

X3=5 

 

xn=8 

+1 

 

+1 

 

-1 

 

+2 

 

Synaptic 

Weights 

 

 

I 

 

 

Summing 

Junction 

 

Activation 

Function 

 

 

y 

 

 

 = 0 

Threshold 

Fig Neuron Structure of Example 

The output I of the network, prior to the activation function stage, is 

 

+1 

+1 
I =  XT. W = 1   2  5  8 = 14 

-1 

+2 

= (1 x 1) + (2 x 1) + (5 x -1) + (8 x 2) = 14 

With a binary activation function the outputs of the neuron is: 

y (threshold) = 1; 
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3. Neural Network Architectures 

 

An Artificial Neural Network (ANN) is a data processing system, consisting  large number 

of simple highly interconnected processing  elements  as  artificial neuron in a network 

structure that can be represented using  a directed graph G, an ordered 2-tuple (V, E) , 

consisting a set V of vertices  and a set E of edges. 

- The vertices may represent neurons (input/output) and 

- The edges may represent synaptic links labeled by the weights attached. Example : 

 
 

Fig. Directed Graph 

 

Vertices V = { v1 , v2 , v3 , v4, v5 } Edges

 E = { e1 , e2 , e3 , e4, e5 } 

 

 

 Single Layer Feed-forward Network 

 

The Single Layer Feed-forward Network consists of a single layer of weights , where 

the inputs are directly connected to the outputs, via a series of weights. The synaptic 

links carrying weights connect every input to every output , but not other way. This 

way it is considered a network of feed-forward type. The sum of the products of the 

weights and the inputs is calculated in each neuron node, and if the value is above 

some threshold (typically 0) the neuron fires and takes the activated value (typically 

1); otherwise it takes the deactivated value (typically -1). 

V1 
e5 

V3 

V5 

 e2  
e4 

 e5  

V2 
e3 

V4 
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w11 

w12 
w21 

 
w22 

w2m 

wn1 
w1m 

wn2 

 
wnm 

input xi weights wij 

x1 

 

 

x2 

output yj 

 

y1 

 

 

y2 

 

 

 

 

 

 

xn ym 

 

Single layer Neurons 

 

Fig. Single Layer Feed-forward Network 
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x 1 

Input 

hidden layer 

weights vij 

v11 

Output 

hidden layer 

weights wjk 
w11 

y 1 

v21 y1 

x2 
v1m 

w12 

w11 

y2 

v2m y3 

vn1 w1m 

Vℓm 
ym 

xℓ 

Input Layer 

neurons xi 

Hidden Layer 

neurons yj 
y n 

Output Layer 

neurons zk 

 Multi Layer Feed-forward Network 

 

The name suggests, it consists of multiple layers. The architecture of    this class of 

network, besides having the input and the output  layers,  also have one or more 

intermediary layers called hidden layers. The computational units of the hidden layer 

are known as hidden neurons. 

Fig. Multilayer feed-forward network in (ℓ – m – n) configuration. 

 

- The hidden layer does intermediate computation before directing the input to 

output layer. 

- The input layer neurons are linked to the hidden layer neurons; the weights on 

these links are referred to as input-hidden layer weights. 

- The hidden layer neurons and the corresponding weights are referred to as output-

hidden layer weights. 

- A multi-layer feed-forward network with ℓ input neurons, m1 neurons in the first 

hidden layers, m2 neurons in the second hidden layers, and n output neurons in the 

output layers is written as (ℓ - m1 - m2 – n ). 

The Fig. above illustrates a multilayer feed-forward network with a configuration (ℓ - 

m – n). 
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 Recurrent Networks 

 

The Recurrent Networks differ from feed-forward architecture. A Recurrent network 

has at least one feed back loop. 

Example : 

 

 

 

 

 

 

 

Feedback 

links 

 

 

 

 

 

 

 

 

 

 

 

 

Fig Recurrent Neural Network 

 

There could be neurons with self-feedback links; that is the output of a 

neuron is fed back into it self as input. 

 
 
4. Learning Methods in Neural Networks 

 

The learning methods in neural networks are classified into three basic types : 

- Supervised Learning, 

- Unsupervised Learning and 

- Reinforced Learning 

 

These three types are classified based on : 

- presence or absence of teacher and 

- the information provided for the system to learn. 

 

These are further categorized, based on the rules used, as 

- Hebbian, 

y1 

x1 

y1 
y2 

x2 

ym 
Yn 

Xℓ 

Input Layer 

neurons xi 

Hidden Layer 

neurons yj 
Output Layer 

neurons zk 
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- Gradient descent, 

- Competitive and 

- Stochastic learning. 
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Error Correction 

Gradient descent 

Supervised Learning 

(Error based) 

Stochastic 

Reinforced Learning 

(Output based) 

Unsupervised Learning 

Competitive Hebbian 

• Classification of Learning Algorithms 

Fig. below indicate the hierarchical representation of the algorithms mentioned in the 

previous slide. These algorithms are explained in subsequent slides. 

 

 

 

 

 

 

 

 

 

 

Fig. Classification of learning algorithms 

 

• Supervised Learning 

- A teacher is present during learning process and presents expected output. 

- Every input pattern is used to train the network. 

- Learning process is based on comparison, between network's computed output and 

the correct expected output, generating "error". 

- The "error" generated is used to change network parameters that result improved 

performance. 

 

• Unsupervised Learning 

- No teacher is present. 

- The expected or desired output is not presented to the network. 

- The system learns of it own by discovering and adapting to the structural features in 

the input patterns. 

• Reinforced learning 

- A teacher is present but does not present the expected or desired output but only 

indicated if the computed output is correct or incorrect. 

- The information provided helps the network in its learning process. 

- A reward is given for correct answer computed and a penalty for a wrong answer. 

Neural Network 

Learning algorithms 

Back 

Propagation 

Least Mean 
Square 
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Note : The Supervised and Unsupervised learning methods are most popular forms of 

learning compared to Reinforced learning. 

 
 

• Hebbian Learning 

Hebb proposed a rule based on correlative weight adjustment. 

 

In this rule, the input-output pattern pairs  (Xi  , Yi) are associated by 

the weight matrix W, known as correlation matrix computed as 

n 
W =    

i=1 
 

 

 

Xi YiT 
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where YiT is the transpose of the associated output vector Yi 

There are many variations of this rule proposed by the other 

researchers (Kosko, Anderson, Lippman) . 

 

 

 

• Gradient descent Learning 

This is based on the minimization of errors E defined in terms of weights and the 

activation function of the network. 

- Here, the activation function of the network is required to be differentiable,  

because  the  updates  of  weight  is  dependent  on   the gradient of the error E. 

- If  Wij is the weight update of the link connecting the i th and the j th 

neuron of the two neighboring layers, then  Wij is defined as 

 

 Wij =  (  E /  Wij ) 

where  is the learning rate parameters and (  E /  Wij ) is error gradient

 with reference to the weight Wij . 

 

Note : The Hoffs Delta  rule  and  Back-propagation  learning  rule  are  the examples 

of Gradient descent learning. 

 

• Competitive Learning 

- In this method, those neurons which respond strongly to the input stimuli have 

their weights updated. 

- When an input pattern is presented, all neurons in the layer compete, and the 

winning neuron undergoes weight adjustment . 

- This strategy is called "winner-takes-all". 

 

• Stochastic Learning 

- In this method the weights are adjusted in a probabilistic fashion. 

- Example : Simulated annealing which is a learning mechanism 

employed by Boltzmann and Cauchy machines. 

 
 
5. Taxonomy Of Neural Network Systems 

 

In the previous sections,  the  Neural  Network  Architectures  and  the Learning methods 
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have been discussed. Here the popular neural network systems are listed. The grouping of 

these systems in terms of architectures and the learning methods are presented in the next 

slide. 

 

• Neural Network Systems 

– ADALINE (Adaptive Linear Neural Element) 

 
– ART (Adaptive Resonance Theory) 

 
– AM (Associative Memory) 

 
– BAM (Bidirectional Associative Memory) 

 
– Boltzmann machines 

 
– BSB ( Brain-State-in-a-Box) 

 
– Cauchy machines 

 
– Hopfield Network 

 
– LVQ (Learning Vector Quantization) 

 
– Neoconition 

 
– Perceptron 

 
– RBF ( Radial Basis Function) 

 
– RNN (Recurrent Neural Network) 

 
– SOFM (Self-organizing Feature Map) 

 

 

 

• Classification of Neural Network 

A taxonomy of  neural  network systems based on Architectural types 

and the Learning methods is illustrated below. 

 

 Learning Methods 

Gradient 

descent 

Hebbian Competitive Stochastic 

 

 
Single-layer 

feed-forward 

ADALINE, 

Hopfield, 

Percepton, 

AM, 
Hopfield, 

LVQ, 

SOFM 

- 
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Multi-layer 

feed- forward 

CC

M, 

MLF

F, 

RBF 

Neocognition   

Recurrent 

Networks 

RNN BAM

, 

BSB, 
Hopfield, 

ART Boltzmann and 

Cauchy 

machines 

 

Table : Classification of Neural Network Systems with respect to learning 

methods and Architecture types 
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w11 

w12 
w21 

 
w22 

w2m 

wn1 
w1m 

wn2 

 
wnm 

6. Single-Layer NN Systems 

Here, a simple Perceptron Model and an ADALINE Network Model is presented. 

 

 Single layer Perceptron 

 

Definition : An arrangement of one input layer of neurons feed forward to one 

output layer of neurons is known as Single Layer Perceptron. 

input xi weights wij 

x1 

 

 

x2 

output yj 

 

y1 

 

 

y2 

 

 

 

 

 

 

xn ym 

 

Single layer 

Perceptron 

 

Fig. Simple Perceptron Model 

 

1 if net j  0 

y j  =  f (net j) = where  net j = 

0 if net j  0 

 

 

n 
 

i=1 

 

xi wij 
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• Learning Algorithm : Training Perceptron 

The training of Perceptron is a supervised learning algorithm where weights are 

adjusted to minimize  error  when  ever  the  output  does  not match the desired 

output. 

− If the output is correct then no adjustment of weights is done. 

 

i.e. 
K+1 

W
i j 

=
 

K 

W
i j 

 

− If  the  output is 1 but should have been 0 then the weights are decreased 

on the active input link 

i.e. 
K+1 

W
i j 

=
 

K 

W
i j 

−  . xi 

 

− If  the  output is 0 but should have been 1 then the weights are increased on 

the active input link 

i.e. 

Where 

K+1 
W

i j 
=
 

 
K+1 

K 

W
i j 

 

+  . xi 

 

 
K 

W
i j 

 

is the new adjusted weight, W
i j 

is the old weight 
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 • 
(1, 1) 

•  

S2 S1 S1 

S2 

 

• Perceptron and Linearly Separable Task 

Perceptron can not handle  tasks which are not separable. 

 

- Definition : Sets of points in 2-D space are linearly separable if the  sets can be 

separated by a straight line. 

- Generalizing, a set of points in n-dimensional space are linearly separable if there 

is a hyper plane of (n-1) dimensions   separates    the sets. 

Example 

 

 

(a)  Linearly separable patterns (b) Not Linearly separable patterns 

 

Note : Perceptron cannot find weights for  classification  problems  that are not 

linearly separable. 

 

 

• XOR Problem : 

Exclusive OR operation 

 

X2 

 

 

 

 

 

XOR 

 

 

 

 

 

truth table 

 

  Even parity 

 

Odd parity 

 

 

(0, 1) 

 

 

 

(0, 0) X1 

(0, 1) 

 

Fig. Output of XOR in 

X1 , x2 plane 

Input x1 Input x2 Output 

0 0 0 

1 1 0 

0 1 1 

1 0 1 
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Even parity is, even number of 1 bits in the input Odd parity 

is, odd number of 1 bits in the input 

- There is no way to draw a single straight line so that the circles are on one side of 

the line and the dots on the other side. 

- Perceptron  is  unable  to  find  a line separating even parity input 

patterns from odd parity input patterns. 

 

• Perceptron Learning Algorithm 

The algorithm is illustrated step-by-step. 

■ Step 1 : 

Create  a  peceptron  with (n+1) input neurons x0 , x1 , .......................... , . xn , 

where x0 = 1 is the bias input. Let 

O be the output neuron. 

■ Step 2 : 

Initialize weight W = (w0 , w1 , . . . . . , . wn ) to random weights. 

■ Step 3 : 

Iterate  through  the input patterns Xj of the training set using the 
n 

weight set; ie compute the weighted sum of inputs net j = 

for each input pattern j . 

■ Step 4 : 

Compute the output y j using the step function 

 
i=1 

xi wi 

1 if net j  0 

y j  =  f (net j) = where net j = 

0 if net j  0 

 
n 

 xi wij 
i=1 
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W1 

W2 

 

Neuron 

Output 

Wn 

– 
Error 

 

+ 

■ Step 5 : 

Compare  the computed output yj with  the target output yj for 

each input pattern j . 

If all the input patterns have been classified correctly, then output (read) the 

weights and exit. 

■ Step 6 : 

Otherwise, update the weights as given below : 

If  the  computed  outputs  yj is 1 but should have been 0, 

Then wi  =  wi  -   xi , i= 0, 1, 2, ............ , n 

If  the  computed  outputs  yj is 0 but should have been 1, 

Then wi  = wi  +  xi , i= 0, 1, 2, ............. , n 

where  is the learning parameter and is constant. 

■ Step 7 : 

goto step 3 

■ END 

 

 

 

 ADAptive LINear Element (ADALINE) 

 

An ADALINE consists of a single neuron of the McCulloch-Pitts  type, where its 

weights are determined  by  the  normalized  least  mean  square (LMS) training law. 

The LMS learning rule is also referred to as delta rule. It is  a  well-established  

supervised  training  method  that  has been used over a wide range of diverse 

applications. 

• Architecture of a simple ADALINE 
 

x1 

x2 

 

 

xn 
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Desired Output 

 

The basic structure of an  ADALINE  is  similar  to  a  neuron  with  a  linear 

activation function and a feedback  loop.  During  the  training phase of ADALINE,  

the  input  vector  as  well  as  the  desired  output are presented to the network. 

[The complete training mechanism has been explained in the next slide. ] 

 

 

• ADALINE Training Mechanism 

(Ref. Fig. in the previous slide - Architecture of a simple ADALINE) 

 
■ The basic structure of  an ADALINE is similar to a linear neuron 

with an extra feedback loop. 

■ During  the  training  phase of ADALINE, the input vector 

X = [x1 ,  x2 ,  . . . , xn]T as well as desired output are presented to the 

network. 

■ The weights are adaptively adjusted based on delta rule. 

 
■ After the ADALINE is trained, an input vector presented to the  network with 

fixed weights will result in a scalar output. 

■ Thus, the network  performs  an  n  dimensional  mapping  to  a  scalar value. 

■ The activation function is  not  used  during  the  training  phase.  Once the 

weights are properly adjusted,  the  response  of  the  trained unit can be tested  by  

applying  various  inputs,  which  are not in the training set.  If  the  network  

produces  consistent responses  to  a  high  degree  with  the  test  inputs,  it  is  

said    that the network could generalize. The process of training and 

generalization are two important attributes of this network. 

Usage of ADLINE : 

In practice, an ADALINE is used to 

- Make binary decisions; the output is sent through a binary threshold. 

- Realizations of logic gates such as AND, NOT and OR . 

- Realize only  those  logic functions that are linearly separable. 
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Applications of Neural Network 

Neural Network Applications can be grouped in following categories: 

 
■ Clustering: 

A clustering algorithm explores the similarity between patterns  and  places similar 

patterns in a cluster. Best  known  applications  include  data compression and data 

mining. 

■ Classification/Pattern recognition: 

The  task  of  pattern  recognition  is  to   assign   an   input   pattern  (like handwritten 

symbol) to one of many  classes.  This  category  includes algorithmic 

implementations such as associative memory. 

■ Function approximation : 

The tasks of function approximation is to find an estimate  of  the unknown function 

subject to noise. Various engineering and scientific disciplines require function 

approximation. 

■ Prediction Systems: 

The task is  to  forecast  some  future  values  of  a  time-sequenced  data. Prediction 

has a significant impact on decision support systems. Prediction differs from function 

approximation by considering time factor. System may be dynamic and may produce 

different  results  for  the  same input data based on system state (time). 

 

 

Back Propagation Network 

Soft Computing 

 

Back-Propagation Network, topics : Background, what is back-prop 

network ? learning AND function, simple learning machines - Error 

measure , Perceptron learning rule, Hidden Layer, XOR problem. Back-

Propagation Learning : learning by example, multi-layer feed-forward 

back-propagation network, computation in  input, hidden and output 

layers, error calculation. Back-propagation algorithm for training 

network - basic loop structure, step-by-step procedure, numerical 

example. 
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1. Back-Propagation Learning - learning by example 

Multi-layer Feed-forward Back-propagation network; Computation of Input, Hidden and 

Output layers ; Calculation of Error. 

2. Back-Propagation Algorithm 

Algorithm for training Network - Basic loop structure, Step-by-step procedure; Example: 

Training Back-prop network, Numerical example. 

 

 

 

Back-Propagation Network 

 

What is BPN ? 

 

• A single-layer  neural  network  has  many  restrictions.  This  network  can 

accomplish very limited classes of tasks. 

 

Minsky and Papert (1969) showed that a  two  layer  feed-forward  network  can  

overcome  many  restrictions,  but  they  did  not   present a solution to the problem  

as  "how  to  adjust  the  weights  from  input to hidden layer" ? 

• An  answer  to  this  question  was  presented  by  Rumelhart,  Hinton  and Williams 

in 1986. The  central  idea  behind  this  solution  is  that  the errors for the units of the 

hidden layer are determined by back-propagating the errors of the units of the 

output layer. 

 

This method is often called the Back-propagation learning rule. 

 

Back-propagation can also be considered as a  generalization  of  the  delta rule for 

non-linear activation functions and multi-layer networks. 

• Back-propagation is a systematic method  of  training  multi-layer  artificial neural 

networks. 
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1. Back-Propagation Network – Background 

 

Real world is  faced  with  a  situations  where  data  is  incomplete or noisy.  To make 

reasonable predictions about what is missing from the information available  is  a  difficult  

task   when   there   is no a good theory available   that may to help reconstruct the missing 

data. It is in such situations the Back-propagation (Back-Prop) networks may provide some 

answers. 

 

• A BackProp network consists of at least three layers of units : 

- an input layer, 

- at least one intermediate hidden layer, and 

- an output layer. 

 

• Typically, units are connected in a  feed-forward  fashion  with  input  units fully 

connected to units in  the  hidden  layer  and  hidden  units  fully connected to units in 

the output layer. 

• When a BackProp network is cycled, an input pattern is propagated forward to the 

output units  through  the  intervening  input-to-hidden  and hidden-to-output 

weights. 

 

• The output of a BackProp network is interpreted as a classification decision.  

 

 
 

 

• With BackProp networks, learning occurs during a training phase. The steps 

followed during learning are : 

 

− each input pattern in a training set is applied to the input units and then propagated 

forward. 

− the pattern of activation arriving at the  output  layer  is  compared with the correct 

(associated) output pattern to calculate an error signal. 

− the error signal for each such target output pattern is then back-propagated from 

the outputs to the inputs in order to appropriately adjust the weights in each layer 

of the network. 

− after a BackProp network has learned the correct classification for        a set of 

inputs, it can be tested on a second set of inputs to see       how well it classifies 
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untrained patterns. 

• An important consideration in applying BackProp learning is how 

well the network generalizes. 

 

 

 Learning : 

 

AND function 

 

Implementation of AND function in the neural network. 

 

W1 

Input I1 
A

 

W2 

Input I2 B
 

 

 

 

 

 
Output O 

C 

AND 

X1 X2 Y 

0 0 0 

0 1 0 

1 0 0 

1 1 1 
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AND function implementation 

 

− there are 4 inequalities in the AND function and they must be satisfied. 

w10 + w2 0 < θ  , w1 0 + w2 1 < θ , 

w11 + w2 0 < θ , w1 1 + w2 1 > θ 

− one possible solution : 

if both weights are set to 1 and the threshold is set to 1.5, then 

(1)(0) + (1)(0) < 1.5  assign 0 , (1)(0) + (1)(1) < 1.5  assign 0 

(1)(1) + (1)(0) < 1.5  assign 0 , (1)(1) + (1)(1) > 1.5  assign 1 

 

Although it is straightforward to explicitly calculate  a  solution  to  the AND function 

problem, but  the  question  is  "how  the  network  can learn such  a   solution". That 

is, given random values for the weights   can we define an incremental procedure 

which will cover a  set  of  weights which implements AND function. 

 

 

• Example 1 

AND Problem 

 

Consider a simple neural  network  made  up  of  two  inputs  connected to a single 

output unit. 

 

Input I1 

 

 

Input I2  

W1 

A 

W2   C 

B 

 

 

 

Output O 

AND 

X1 X2 Y 

0 0 0 

0 1 0 

1 0 0 

1 1 1 
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Fig A simple two-layer network applied to the AND problem 

 

 the output of the network is determined by calculating a weighted   sum of its two 

inputs and comparing this value with a threshold θ. 

 if the net input (net)  is greater than the threshold, then the output     is 1, else it is 

0. 

 mathematically, the computation performed by the output unit is 

net = w1 I1 + w2 I2 if net > θ then O = 1, otherwise O = 0. 

 

• Example 2 

Marital status and occupation 

In the above example 1 

 the input characteristics may be : marital Status (single or married) 

and their occupation (pusher or bookie). 

 this information is presented to the network as a 2-D binary input vector where 1st 

element indicates marital status (single = 0, married = 1) and 2nd element 

indicates occupation ( pusher = 0, bookie = 1 ). 

 the output, comprise "class 0" and "class 1". 

 by applying the AND operator to  the  inputs,  we  classify  an individual as a 

member of the "class  0"  only  if  they  are  both married and a bookie; that is the 

output is 1 only when both of the inputs are 1. 

 
 
 

 Simple Learning Machines 

 

Rosenblatt (late 1950's) proposed learning networks called Perceptron. The task 

was to discover a set of connection weights which correctly classified a set of binary 

input vectors. The basic architecture of the perceptron is similar to the simple AND 

network in the previous example. 

 

A perceptron consists of a set of input units and a single output unit. 

As in the AND network, the output of the perceptron is calculated 
n 

by comparing the net input net =  
i=1 

wi Ii and a threshold θ. 
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If the net input is greater than the threshold θ , then the output unit is turned on , 

otherwise it is turned off. 

To address the learning question, Rosenblatt solved two problems. 

− first, defined a cost function which measured error. 

− second, defined a procedure or a rule which reduced that error by appropriately 

adjusting each of the weights in the network. 

However, the procedure (or learning rule) required to assesses the relative 

contribution of each weight to the total error. 

The learning rule that Roseblatt  developed,  is  based  on  determining the difference 

between the actual output  of  the  network  with  the target  output  (0  or  1),   called  

"error  measure"  which   is  explained in the next slide. 

 

 

 

• Error Measure ( learning rule ) 

Mentioned in the previous slide, the error measure is the difference between actual 

output of the network with the target output (0 or 1). 

― If the input vector is correctly classified (i.e., zero error), then the 

weights are left unchanged, and 

the next input vector is presented. 

 
― If the input vector is incorrectly classified (i.e., not zero error), then 

there are two cases to consider : 

Case 1 : If the output unit is 1 but need to be 0 then 

◊ the threshold is incremented by 1 (to make it less likely that the output unit 

would be turned on if the same input vector was presented again). 

◊ If the input Ii is 0, then the corresponding weight Wi is left unchanged. 

◊ If the input Ii is 1, then the corresponding weight Wi is 

decreased by 1. 

Case 2 : If output unit is 0 but need to be 1 then the opposite  changes are made. 
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― 
― 
― 

+ + 
+   +   + 

― +   +   + 

― + + 
― 

― 
― ― ― ― 
―  ― ― ― 

― 

 

 

 

The perceptron learning rules are govern by two equations, 

− one that defines the change in the threshold and 

− the other that defines change in the weights, The 

change in the threshold is given by 

 θ = - (tp - op) = - dp 

 

where p specifies the presented input pattern, 

op actual output of the input pattern Ipi 

tp specifies the correct classification of the input pattern ie target, 

dp is the difference between the target and actual outputs. 

 

The change in the weights are given by 

 

 wi = (tp - op) Ipi = - dp Ipi 

 

 

 Hidden Layer 

 

Back-propagation is simply a way to determine the error  values  in  hidden layers. 

This needs be done in order to update the weights. 

The best example to explain  where  back-propagation can  be  used  is the XOR 

problem. 

Consider a simple graph shown below. 

− all points on the right side of the line are +ve, therefore the output of the neuron 

should be +ve. 

− all points on the left side of the line are –ve, therefore the output of 

the neuron should be –ve. 

With this graph, one can make a simple table of 
X2 

inputs and outputs as shown below. 

AND 
X1 X2 Y 

X1 1 1 1 

― 1 0 0 
0 1 0 
0 0 0 

Training a network to operate as 

an AND switch can be done 

easily through only one neuron 

(see previous slides) 
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But a XOR problem can't be solved using only one neuron. 

If we want to train an XOR, we need 3 neurons, fully-connected in a feed-forward 

network as shown below. 

XOR 
X1 X2 Y 
1 1 0 
1 0 1 
0 1 1 
0 0 0 

 

 

X1   
A

 

X2 
 

 
X2   B 

X1 

 

 

   C Y 
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II1 1 
OI1 

V11 IH1 1 
OH1 W11 IO1 

1 
OO1 

V21 W21 

II2 2 
OI2 IH2 2 

OH2 IO2 2 
OO2 

Vl1 Wm1 

IIℓ ℓ 
OIℓ IHm 

m 
OHm IOn n 

OOn 

Vij Wij 

2. Back Propagation Network 

 

Learning By Example 

 

Consider the Multi-layer feed-forward back-propagation network below. The 

subscripts I, H, O denotes input, hidden and output neurons. 

The weight of the arc between i th input neuron to j th hidden layer is Vij . 

The weight of the arc between i th hidden neuron to j th out layer is Wij 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input Layer 

i - nodes 
Hidden 

Layer m- 

nodes 

Output Layer 

n - nodes 

 

Fig Multi-layer feed-forward back-propagation network 

 

The table below indicates an 'nset' of input and out put data. It shows ℓ 

inputs and the corresponding n output data. 

Table : 'nset' of input and output data 

No Input Ouput 

I1 I2 . . . . Iℓ O1 O2 . . . . On 

1 0.3 0.4 . . . . 0.8 0.1 0.56 .................... 0.82 

2 

: 

nset 

 

In this section, over a three layer network the computation in the  input, hidden and output 

layers are explained while  the  step-by-step  implementation of the BPN  algorithm  by  solving  

an  example  is  illustrated in the next section. 
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 Computation of Input, Hidden and Output Layers 

(Ref.Previous slide, Fig. Multi-layer feed-forward back-propagation network) 

 

• Input Layer Computation 

Consider linear activation function. 

If the output of the input  layer  is  the  input  of  the  input  layer  and the transfer 

function is 1, then 

{ O }I = { I }I 

ℓ x 1 ℓ x 1 (denotes matrix row, column size) 

The hidden neurons are connected by synapses to the input neurons. 

- Let Vij be  the  weight  of  the  arc  between  i th input  neuron to 

j th hidden layer. 

- The input to the hidden neuron is the weighted sum of the outputs     of the input

 neurons. Thus the equation 

IHp = V1p OI1 + V2p OI2 + . . . . + V1p OIℓ where (p =1, 2, 3 . . , m) 

denotes weight matrix or connectivity matrix between input neurons and a hidden 

neurons as [ V ]. 

we can get an input to the hidden neuron as ℓ x m 

{ I }H = [ V ] T { O }I 

m x 1 m x ℓ ℓ x 1 (denotes matrix row, column size) 

 

Hidden Layer Computation 

Shown below the pth neuron of the hidden layer. It has input from the output of the 

input neurons layers. If we consider transfer function as 

sigmoidal function then the output of the pth hidden neuron is given by 

1 

OHp = 
( 1 + e -  (IHP – θHP)) 

where OHp is  the  output  of  the pth hidden  neuron, IHp

 is the input of the pth  hidden  neuron,  and  θHP is the 

threshold of the pth neuron; 
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Note : a non zero threshold neuron, is computationally equivalent to an input  that is 

always held at -1 and the non-zero threshold becomes the connecting weight value as 

shown in Fig. below. 

 

 

 

 

 

 

 

 

 

 

 

 

IIO = -1 

 

 

O 
OIO = -1 

Note : the threshold is not treated as 

shown in the Fig (left); the outputs of the 

hidden neuron are given by the 

Fig. Example of Treating threshold in 

hidden layer 

above equation. 

Treating each component of the input of the hidden neuron separately,  we get the 

outputs of the hidden neuron as given by above equation . 

The input to the output neuron  is  the  weighted  sum  of  the  outputs  of the hidden 

neurons. Accordingly,   Ioq   the input to the qth   output neuron   is given by the equation 

Ioq = W1q OH1 + W2q OH2 + . . . . + Wmq OHm , where (q =1, 2, 3 . . , n) 

It denotes weight matrix or connectivity matrix between hidden neurons and output 

neurons as [ W ], we can get input to output neuron as 

{ I }O = [ W] T { O }H 

n x 1 n x m m x 1 (denotes matrix row, column size) 

 

{ O }H = 

p 

– 
– 

1 

( 1 + e - (IHP – θHP)) 

– 
– 

II1 1 
OI1 

II2 2 
OI2 

II3 
3 

OI3 

IIℓ 
ℓ 

OIℓ θHP 

V3p 

Vℓp 

V1p V2p 
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• Output Layer Computation 

Shown  below  the  qth  neuron  of  the  output  layer.  It  has  input  from  the output of 

the hidden neurons layers. 

If we  consider  transfer  function  as  sigmoidal  function  then  the  output  of the qth 

output neuron is given by 

1 

OOq = 
( 1 + e -  (IOq – θOq)) 

where OOq is the output of the qth output neuron, 

IOq is  the  input  to  the qth  output  neuron, and 

θOq is  the  threshold  of  the  qth  neuron; 

 

Note :   A non zero threshold neuron, is computationally equivalent to    an input that 

is always held at -1 and the non-zero threshold becomes  the connecting weight value 

as shown in Fig. below. 

Note :  Here  again  the  threshold  may  be  tackled  by  considering  extra Oth neuron 

in the hidden layer with output of -1 and the threshold value θOq becomes the 

connecting weight value as shown in Fig. below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

IHO = -1 

 

 

O 
OHO = -1 

 

Note : here again the threshold is not 

treated as shown in the Fig (left); the 

Outputs of the output neurons given by 

Fig. Example of Treating threshold 

in output layer 
the above equation. 

 

 

{ O }O = 

q 
OOq 

– 
– 

1 

( 1 + e - (IOq – θOq)) 

– 
– 

IH1 1 
OH1 

IH2 2 OH2 

IH3 
3 

OH3 

IHm m 
OHm 

θOq 

W3q 

Wmq 

W1q w2q 
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 Calculation of Error 

 

(refer the earlier slides - Fig. "Multi-layer feed-forward back-propagation network" 

and a table indicating an 'nset' of input and out put data for the purpose of training) 

Consider any r th  output neuron. For the target out value T, mentioned   in the table- 

'nset' of input and output  data"  for  the  purpose  of training, calculate output O . 

The error norm in output for the r th output neuron is 

E1r = (1/2) e2r = (1/2) (T –O)2 

where E1r  is  1/2  of the second norm  of  the  error er  in the r th  neuron for the given 

training pattern. 

e2r is the square of the error, considered to make it independent of sign +ve 

or –ve , ie consider only the absolute value. 

The Euclidean norm of error E1 for the first training pattern is given by 

 

E1 = (1/2) 

n 
 

r=1 
(Tor - Oor )2 

This error function is for one training pattern. If we use the same technique for all 

the training pattern, we get 

nset 

E (V, W) =  
r=1 

E j (V, W, I) 
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where E is error function depends on m ( 1 + n) weights of [W] and [V]. 

 

All that is stated is an optimization problem  solving,  where  the  objective or cost 

function is usually defined to be maximized  or  minimized with respect to a set of 

parameters. In  this  case,  the  network parameters that optimize the error function E  

over the   'nset'   of  pattern  sets  [I nset , t nset ]    are  synaptic  weight  values [ V ]   

and  [ W ] whose sizes are 

[ V ]    and    [ W ] 

ℓ x m m x n 

 

16Back-Propagation Algorithm 

 

The benefits of hidden layer neurons have been explained. The hidden layer allows ANN to 

develop its own internal representation of input-output  mapping. The complex internal 

representation capability allows  the hierarchical network to learn any mapping and  not  

just  the  linearly separable ones. 

The step-by-step algorithm  for  the  training  of  Back-propagation  network  is presented 

in next few slides. The network is the same , illustrated before, has a three layer. The input 

layer is with ℓ nodes, the hidden layer with m nodes  and  the  output  layer  with n  nodes.  

An  example  for training a   BPN with five training set have been shown for better 

understanding. 
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 Algorithm for Training Network 

 

The basic algorithm  loop structure, and the step by step procedure of Back- 

propagation algorithm are illustrated in next few slides. 

• Basic algorithm loop structure 

Initialize the weights Repeat 

For each training pattern 

"Train on that pattern" 

End 

Until the error is acceptably low. 
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• Back-Propagation Algorithm - Step-by-step procedure 

 
■ Step 1 : 

 

Normalize the I/P and O/P with respect to their maximum values. 

For each training pair, assume that in normalized form there are 

ℓ inputs given by { I }I and 

ℓ x 1 

n outputs given by { O}O 

n x 1 

 

■ Step 2 : 

 

Assume that the number of neurons in the hidden layers lie 

between  1 < m < 21 
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Step 3 : ■ 

 

 

Let [ V ] represents the weights of synapses connecting input 

neuron and hidden neuron 

Let   [ W ] represents the weights of synapses connecting hidden 

neuron and output neuron 

Initialize the weights to small random values usually from -1 to +1; 

 

[ V ] 0   =  [ random weights ] [ W 

] 0  =  [ random weights ] [  V ] 0 

= [  W ] 0 = [ 0 ] 

For general  problems    can  be  assumed  as  1  and  threshold value as 0. 
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Step 4 : ■ 

 

 

For training data, we need to present one set of inputs and outputs. Present the pattern 

as inputs to the input layer { I }I . 

then by using linear activation function, the output of the input layer may be 

evaluated as 

{ O }I = { I }I 

ℓ x 1 ℓ x 1 

■ Step 5 : 

 

Compute the inputs to the hidden layers by multiplying corresponding weights of 

synapses as 

{ I }H  = [ V] T  { O }I 

m x 1 m x ℓ ℓ x 1 

 
■ Step 6 : 

 

Let the hidden layer units, evaluate the output using the 

sigmoidal function as 

 

 

 

 

{ O }H = 

 

 

 

 

m x 1 

 

 

– 
– 

1 

( 1 + e - (IHi)) 

– 
– 
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Step 9 : ■ 

 

 

Compute the inputs to the output layers by multiplying corresponding weights of 

synapses as 

 

{ I }O = [ W] T  { O }H 

n x 1 n x m m x 1 

 
■ Step 8 : 

 

Let the output layer units, evaluate the output using sigmoidal 

function as 

 

 

 

 

{ O }O = 

 

 

 

 

Note : This output is the network output 

 

 

Calculate  the error using the difference between the network output and the 

desired output as for the j th training set as 

 

 

EP = 

  
  (Tj - Ooj )2 

n 

 

■ Step 10 : 

 

Find a term { d } as 

 

– 

– 

 

{ d } = (Tk – OOk) OOk (1 – OOk ) 

 

– 

– 
n x 1 

 

 

– 
– 

1 

( 1 + e - (IOj)) 

– 
– 
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Step 11 : ■ 

 

 

Find [ Y ] matrix as 

[ Y ]  = { O }H  d  

m x n m x 1 1 x n 

■ Step 12 : 

 

Find [  W ] 
t +1  

=  [  W ] 
t 

+  [ Y ] 

m x n m x n m x n 

 

■ Step 13 : 

 

Find { e } = [ W ] { d } 

m x 1 m x n n x 1 

 

– 

– 

 

 

{ d* } = 
(OHi) (1 – OHi ) 

ei 

– 

– 

m x 1 m x 1 

Find [ X ] matrix as 

[ X ] =  { O }I  d*  = { I }I  d*  

1 x m ℓ x 1 1 x m ℓ x 1 1 x m 
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■ Step 14 : 

Find [  V ] 
t +1  

=   [  V ] 
t   

+   [ X ] 

1 x m 1 x m 1 x m 

 
■ Step 15 : 

Find [ V ] 
t +1  

= [V ] 
t 

+ [  V ] 
t +1

 

[ W ] 
t +1  

= [W ] 
t 

+ [  W ] 
t +1

 

 

■ Step 16 : 

Find error rate as 

 

error rate = 

 

 

 

Ep 

nset 

■ Step 17 : 

Repeat steps 4 to 16 until the convergence in the error rate is less than the 

tolerance value 

 
■ End of Algorithm 

 

Note : The implementation of this algorithm, step-by-step 1 to 17, assuming one 

example for training BackProp Network is illustrated in the next section. 
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0.4 0.1 

0.2 

0.4 -0.2 TO = 0.1 

-0.7 -0.5 

0.2 

 Example : Training Back-Prop Network 

 

• Problem : 

Consider a typical problem where there are 5 training sets. 

 

Table : Training sets 

 

S. No.  Input  Output 

 I1  I2 O 

1 0.4  -0.7 0.1 

2 0.3  -0.5 0.05 

3 0.6  0.1 0.3 

4 0.2  0.4 0.25 

5 0.1  -0.2 0.12 

In this problem, 
    

- there are two inputs and one output.  

- the values lie between -1 and +1 i.e., no need to normalize the values. 

- assume two neurons in the hidden layers. 

- the NN architecture is shown in the Fig. below. 

 

 

Input 

layer 

Hidden 

layer 

Output 

layer 

 

Fig. Multi layer feed forward neural network (MFNN) architecture with 

data of the first training set 

 

The solution to problem are stated step-by-step in the subsequent 

slides. 
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■ Step 1 : Input the first training  set data (ref eq. of step 1) 

0.4 

{ O }I = 

ℓ x 1 

{ I }I = 

ℓ x 1 

 

-0.7 

 

 

2 x 1 

from training set s.no 1 

 

■ Step 2 : Initialize the weights as (ref eq. of step 3 & Fig) 

 
0.1 

[ V ] 0 = 
-0.2 

0.4 

 
0.2 

2x2 

 

 

; 

0.2 
[ W ] 0 = 

-0.5 
2 
x1 

from fig initialization from fig initialization 

■ Step 3 :  Find { I }H = [ V] T { O }I as (ref eq. of step 5) 

 

 

{ I }H 
0.1 -0.2 

= 
-0.4 0.2 

0.4 

 

-0.7 

0.18 

= 
0.02 
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(ref eq. of step 6) Step 4 : ■ 

 

 

Values from  step  

1 & 2 

 

 

 

 

 

 

{ O }H = 

1 

( 1 + e - (0.18)) 

 

1 

( 1 + e - (0.02)) 

 

 

 

0.5448 

= 
0.505 
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(ref eq. of step 7) Step 5 : ■ 

 

 

 

Values from step 3 values 

 

 

 

 

{ I }O = [ W] T { O }H = ( 0.2 - 0.5 ) 
0.5448 

 

0.505 

 

= - 0.14354 

 

Values from step 2 , from step 4 

 
■ Step 6 : (ref eq. of step 8) 

 

 

{ O }O = 
1 

( 1 + e - (0.14354)) 

 

= 0.4642 

 

Values from  step 5 

 
■ Step 7 : (ref eq. of step 9) 

 

Error = (TO – OO1 )2 = (0.1 – 0.4642)2 = 0.13264 

table first training set o/p from step 6 
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(ref eq. of step 10) Step 8 : ■ 

 

–0.02958 

 

–0.02742 

–0.018116 

 

–0.04529 

 

d = (TO – OO1 ) ( OO1 ) (1 – OO1 ) 

= (0.1 – 0.4642) (0.4642) ( 0.5358) = – 0.09058 

Training o/p all from step 6 

 

 

[ Y ] = { O }H (d ) = 

 

 

0.5448 

 

0.505 

(ref eq. of step 11) 

 

 

(– 0.09058) = 

 

from values at step 4 from values at step 8 above 

 
■ Step 9 : (ref eq. of step 12) 

[  W ] 
1  

=    [  W ] 
0   

+   [ Y ] assume   =0.6 

 

= 

 

from values at step 2 & step 8 above 

■ Step 10 : (ref eq. of step 13) 

 

0.2 
{ e }  =  [ W ]  { d } = (– 0.09058) = 

-0.5 

from values at step 8 above 
from values at step 2 

 

–0.0493 

 

–0.0457 



SC - NN - BPN – Algorithm 

(ref eq. of step 13) Step 11 : ■ 

 

 

 

(–0.018116) (0.5448) (1- 0.5448) 
{ d* } = = 

(0.04529) (0.505) ( 1 – 0.505) 

 

–0.00449 

 

–0.01132 

 

   

from values at step 10 at step 4 at step 8 

 
■ Step 12 : (ref eq. of step 13) 

 

 

[ X ] = { O }I ( d* ) = 
0.4 

 

-0.7 

 

( – 0.00449 0.01132) 

 

from values at step 1 from values at step 11 above 

 

– 0.001796 0.004528 

= 0.003143 –0.007924 

 

 

 

■ Step 13 : (ref eq. of step 14) 

 

 

[  V ] 
1  

=  [  V ] 
0 

+  [ X ] = 

– 0.001077 0.002716 

 

0.001885 –0.004754 

from values at step 2 & step 8 above 
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(ref eq. of step 15) ■ Step 14 : 

 

 

0.1 0.4 

[ V ] 
1  

= + 
-0.2 0.2 

– 0.001077 0.002716 

 

0.001885 –0.004754 

  

from values at step 2 from values at step 13 

 

– 0.0989 0.04027 

= 
0.1981 –0.19524 

 

0.2 –0.02958 0.17042 
[ W ] 

1  
= + = 

-0.5 

 

 

–0.02742 –0.52742 
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(ref eq. of step 15) ■ Step 14 : 

 

 

  
from values at step 2, from values at step 9 

 
■ Step 15 : 

 

With the updated weights [ V ] and [ W ] , error is calculated again and 

next training set is taken and the error will then get adjusted. 

■ Step 16 : 

 

Iterations are carried out till we get the error less than the tolerance. 

 
■ Step 17 : 

 

Once the weights are adjusted the network is ready

 for inferencing new objects .  
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Introduction to fuzzy set, topics : classical set theory, fuzzy set theory, 

crisp and non-crisp Sets representation, capturing uncertainty, examples. 

Fuzzy membership and graphic interpretation of fuzzy sets - small, prime 

numbers, universal,  finite,  infinite, empty space; Fuzzy Operations - 

inclusion, comparability, equality, complement, union, intersection, 

difference;  Fuzzy  properties related to union, intersection, distributivity, 

law of excluded middle, law of contradiction, and cartesian product. 

Fuzzy relations : definition, examples, forming fuzzy relations, 

projections of fuzzy relations, max-min and min-max compositions. 



Fuzzy Set Theory 
 

 

Soft Computing 

Topics 

 

1. Introduction to fuzzy Set 

What is Fuzzy set? Classical set theory; Fuzzy set  theory; Crisp and 

Non-crisp Sets : Representation; Capturing uncertainty, Examples 

 

2. Fuzzy set 

Fuzzy Membership; Graphic interpretation of fuzzy sets  :  small,  prime numbers, universal, 

finite, infinite, empty space; 

Fuzzy Operations : Inclusion, Comparability, Equality, Complement, Union, 

Intersection, Difference; 

Fuzzy Properties : Related to union – Identity, Idempotence, Associativity, 

Commutativity ; Related to Intersection – Absorption, Identity, Idempotence, 

Commutativity, Associativity; Additional properties - Distributivity, Law of excluded 

middle, Law of contradiction; Cartesian product . 

 

3. Fuzzy Relations 

Definition of Fuzzy Relation, examples; 

Forming Fuzzy Relations – Membership matrix, Graphical form; Projections of 

Fuzzy Relations – first, second and global; Max-Min and Min-Max compositions. 
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What is Fuzzy Set ? 

 

• The word "fuzzy" means "vagueness". Fuzziness occurs when the boundary of a piece 

of information is not clear-cut. 

 

• Fuzzy sets have been introduced by Lotfi A. Zadeh (1965) as  an extension of the 

classical notion of set. 

• Classical set theory allows the membership  of  the  elements  in  the set in binary 

terms, a bivalent condition - an element  either  belongs  or  does not belong to the 

set. 

 

Fuzzy set theory permits  the gradual  assessment  of  the  membership  of elements in 

a set, described with the aid of a membership function valued in the real unit interval 

[0, 1]. 

• Example: 

Words like young, tall, good, or high are fuzzy. 

 

− There is no single quantitative value which defines the term young. 

− For some people, age 25 is young, and for others, age 35 is young. 

− The concept young has no clean boundary. 

− Age 1 is definitely young and age 100 is definitely not young; 

− Age 35 has some possibility of being young and usually depends    on the 

context in which it is being considered. 
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1. Introduction 

 

In real world, there exists much fuzzy knowledge; 

Knowledge that is vague, imprecise, uncertain, ambiguous, inexact, or probabilistic in 

nature. 

Human thinking and reasoning frequently involve fuzzy information,  originating from 

inherently inexact human concepts. Humans, can give satisfactory answers, which are 

probably true. 

However,  our  systems  are   unable to answer many questions. The reason  is, most 

systems are designed based upon classical  set  theory  and two-valued logic which is 

unable to cope with unreliable and incomplete information and give expert opinions. 

We want, our systems should also be able to cope with unreliable and incomplete 

information and give  expert  opinions.  Fuzzy  sets  have  been able provide solutions to 

many real world problems. 

Fuzzy Set theory is an extension of  classical  set  theory  where  elements have degrees of 

membership. 

 

 

• Classical Set Theory 

A Set is any well defined collection of objects. An object in a set is   called an 

element or member of that set. 

− Sets are defined by a simple statement describing whether a  particular element 

having a certain property belongs  to  that particular set. 

− Classical set theory enumerates all its elements using 

A = { a1 ,  a2 ,  a3 ,  a4 , ........................ an } 

 

If the elements ai (i = 1, 2, 3, . . .  n)  of  a  set  A  are  subset  of universal set  X,   

then  set  A   can  be represented  for  all   elements   x  X by its characteristic 

function 

1 if x  X 

A (x) =  

0 otherwise 



SC - Fuzzy set theory – Fuzzy Operation 
 

 

− A set A is well described by a function called characteristic 

function. 

This function, defined on the universal space X, assumes : 

a  value  of 1  for  those  elements x  that belong to set A, and 

a value of 0 for those elements x that do not belong to set A. 

The notations used to express these mathematically are 

 

Α : Χ  [0, 1] 

A(x)  = 1 ,  x is a member of A Eq.(1) 

A(x) = 0 , x is not a member of A 

 

Alternatively,  the set  A  can be represented for all elements x  X 

by its characteristic function A (x) defined as 

1 if x  X 

A (x) = Eq.(2) 

0 otherwise 

 
− Thus in classical set theory  A (x) has only the values 0 ('false') 

and 1 ('true''). Such sets are called crisp sets. 

 

 

 

• Fuzzy Set Theory 

Fuzzy set theory is an  extension  of  classical  set  theory  where elements  have  

varying  degrees  of  membership.  A  logic  based on   the two truth values, True and 

False, is sometimes inadequate when describing human reasoning. Fuzzy logic uses 

the whole interval between 0 (false) and 1 (true) to describe human reasoning. 

− A Fuzzy Set is any set that allows its members to have different degree of 

membership, called  membership function,  in the interval [0 , 1]. 

− The degree of membership or truth is not same as probability; 

 fuzzy truth is not likelihood of some event or condition. 

 fuzzy truth represents membership in vaguely defined sets; 

 
− Fuzzy logic is derived from fuzzy set theory dealing with reasoning that is 

approximate rather than precisely deduced from classical predicate logic. 

− Fuzzy logic is capable of handling inherently imprecise concepts. 
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Degree or grade of truth 

Not Tall Tall 

1 

0    
1.8 m Height x 

Degree or grade of truth 

Not Tall Tall 

1 

0    
1.8 m Height x 

− Fuzzy logic allows in linguistic form the set membership values to imprecise 

concepts like "slightly", "quite" and "very". 

− Fuzzy set theory defines Fuzzy Operators on Fuzzy Sets. 

• Crisp and Non-Crisp Set 

− As said before, in classical set theory, the characteristic function 

A(x) of Eq.(2) has only values 0 ('false') and 1 ('true''). Such sets 

are crisp sets. 

− For Non-crisp sets   the characteristic  function A(x) can be defined. 

 The characteristic function A(x) of Eq. (2) for the crisp set is 

generalized for the Non-crisp sets. 

 This  generalized  characteristic function A(x) of Eq.(2) is called 

membership function. 

Such Non-crisp sets are called Fuzzy Sets. 

 
− Crisp set theory is not capable of representing descriptions and classifications in 

many cases; In fact, Crisp set does not provide adequate representation for most 

cases. 

− The proposition of Fuzzy Sets are motivated by the need to capture and represent 

real world data with uncertainty due to imprecise measurement. 

− The uncertainties are also caused by vagueness in the language. 

 

 

• Representation of Crisp and Non-Crisp Set Example : 

Classify students for a basketball team This example 

explains the grade of truth value. 

- tall students qualify and not tall students do not qualify 

- if students 1.8 m tall are to be qualified, then should we 

exclude a student who is 1/10" less? or should we exclude 

a student who is 1" shorter? 

■ Non-Crisp Representation to represent the notion of a tall person. 
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 

1 

c (x) 

C 

F (x)  

F 
0.5 

0 x 

Crisp logic Non-crisp logic 

 

Fig. 1 Set Representation – Degree or grade of truth 

 

A student of height 1.79m would belong to both tall and not tall sets with a 

particular degree of membership. 

 

As the height increases the membership grade within the tall set would increase 

whilst the membership grade within the not-tall set would decrease. 

 

 

 

• Capturing Uncertainty 

Instead of avoiding or ignoring uncertainty, Lotfi Zadeh introduced Fuzzy Set theory 

that captures uncertainty. 

■ A fuzzy set is described by a membership function A (x) of A. 

This membership function associates to each  element  x    X a 

number as A (x  ) in the closed unit interval [0, 1]. 

The number A (x  ) represents the degree of membership of x  in A. 

■ The notation used for membership function A (x) of a fuzzy set A is 

Α : Χ  [0, 1] 

 
■ Each membership function maps elements of a given universal base set X , which 

is itself a crisp set, into real numbers in [0, 1] . 

 
■ Example 

 

Fig. 2 Membership function of a Crisp set C and Fuzzy set F 

 
■ In the case of Crisp Sets the members of a set are : 

 

either out of the set, with membership of degree " 0 ", or in the 

set, with membership of degree " 1 ", 
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Therefore, Crisp Sets ⊆ Fuzzy Sets 

In other words, Crisp Sets are Special cases of Fuzzy Sets. 

 

 

• Examples of Crisp and Non-Crisp Set 

Example 1: Set of prime numbers ( a crisp set) 

 

If we consider space X consisting of natural numbers  12 

ie X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} 

Then, the set of prime numbers could be described as follows. 

PRIME = {x contained in X | x is a prime number} = {2, 3, 5, 6, 7, 11} 

 

Example 2: Set of SMALL ( as non-crisp set) 

 

A Set X that consists of SMALL cannot be described; 

for example 1 is a member of SMALL and 12 is not a member of SMALL. 

 

Set A, as SMALL, has un-sharp boundaries, can be characterized by a function that 

assigns a real number from the closed interval from 0 to 1 to each element x in the set 

X.  

 

A Fuzzy Set is any set that allows its members to have different degree          of 

membership, called membership function, in the interval [0 , 1]. 

• Definition of Fuzzy set 

A fuzzy set A, defined in the universal space X, is a function defined in 

X which assumes values in the range [0, 1]. 

A fuzzy set A is written as a set of pairs {x, A(x)} as 

A = {{x , A(x)}} , x in the set X 

where x is  an  element  of the universal space X, and 

A(x) is the value of the function A for this element. 

 

The value A(x) is the membership grade of the element x in a 

fuzzy set A. 

Example : Set SMALL in set X consisting of natural numbers  to 12. Assume:  

SMALL(1) = 1, SMALL(2) = 1, SMALL(3) = 0.9, SMALL(4) = 0.6, 

SMALL(5) = 0.4, SMALL(6) = 0.3, SMALL(7) = 0.2, SMALL(8) = 

0.1, SMALL(u) = 0 for u >= 9. 
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Then, following the notations described in the definition above : 

Set SMALL = {{1, 1 }, {2, 1 }, {3, 0.9}, {4, 0.6}, {5, 0.4}, {6, 0.3}, {7, 0.2}, 

{8, 0.1}, {9, 0  },  {10, 0 },  {11, 0}, {12, 0}} 

Note that a fuzzy set can  be  defined  precisely  by  associating  with  each x , its 

grade of membership in SMALL. 

 
 
 

• Definition of Universal Space 

Originally the universal space  for  fuzzy  sets  in  fuzzy  logic  was  defined only on the 

integers.  Now,  the universal space for fuzzy sets   and fuzzy relations is defined with 

three numbers. 

The first two numbers specify the start and end of the universal space, and the third  

argument  specifies  the  increment  between  elements. This gives the user more 

flexibility in choosing the universal space. 

Example : The fuzzy set of numbers, defined in the universal space 

X = { xi } = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} is presented as 

SetOption [FuzzySet, UniversalSpace  {1, 12, 1}]   

 

 

 

  

 Fuzzy Membership 

A fuzzy set A  defined  in  the  universal  space X  is  a  function  defined in X which 

assumes values in the range [0, 1]. 

A fuzzy set A is written as a set of pairs {x, A(x)}. 

A = {{x , A(x)}} , x in the set X 

where x is an element of the universal space X, and 

A(x) is the value of the function A for this element. 

 

The value A(x) is the degree of membership of the element x 

in a fuzzy set A. 

 

The Graphic Interpretation of fuzzy membership for the fuzzy sets  : Small, Prime 

Numbers, Universal-space, Finite and  Infinite UniversalSpace, and Empty are 

illustrated in the next few slides. 

 
 

• Graphic Interpretation of Fuzzy Sets SMALL 
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The fuzzy set SMALL of small numbers, defined in the universal space 

X = { xi } = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} is presented as 

SetOption [FuzzySet, UniversalSpace  {1, 12, 1}] 

 

The Set SMALL in set X is : 

SMALL = FuzzySet {{1, 1 }, {2, 1 }, {3, 0.9}, {4, 0.6}, {5, 0.4}, {6, 0.3}, 

{7, 0.2}, {8, 0.1}, {9, 0  },  {10, 0 },  {11, 0}, {12, 0}} 

 

Therefore SetSmall is represented as 

SetSmall = FuzzySet [{{1,1},{2,1}, {3,0.9}, {4,0.6}, {5,0.4},{6,0.3}, {7,0.2}, 

{8, 0.1}, {9, 0}, {10, 0}, {11, 0}, {12, 0}} , UniversalSpace  {1, 12, 1}] 

 

FuzzyPlot [ SMALL, AxesLable  {"X", "SMALL"}] 

SMALL 

1 

.8 

.6 

.4 

.2 

0 
0 1 2 3 4 5 6 7 8 9 10 11 12 X 

Fig Graphic Interpretation of Fuzzy Sets SMALL 

 

 

 

• Graphic  Interpretation of Fuzzy Sets PRIME  Numbers The 

fuzzy set PRIME  numbers,  defined  in  the universal space  X = { xi } = {1, 

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} is presented as 

SetOption [FuzzySet, UniversalSpace  {1, 12, 1}] 

 

The Set PRIME in set X is : 

PRIME = FuzzySet {{1, 0}, {2, 1}, {3, 1}, {4, 0}, {5, 1}, {6, 0}, {7, 1}, {8, 0}, 

{9, 0}, {10, 0}, {11, 1}, {12, 0}} 

Therefore SetPrime is represented as 

SetPrime = FuzzySet [{{1,0},{2,1}, {3,1}, {4,0}, {5,1},{6,0}, {7,1}, 

{8, 0}, {9, 0}, {10, 0}, {11, 1}, {12, 0}} , UniversalSpace  {1, 12, 1}] 

 

FuzzyPlot [ PRIME, AxesLable  {"X", "PRIME"}] 

PRIME 

1 
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.8 

.6 

.4 

.2 

0 
0 1 2 3 4 5 6 7 8 9 10 11 12 X 

Fig Graphic Interpretation of Fuzzy Sets PRIME 

 

 

• Graphic Interpretation of Fuzzy Sets UNIVERSALSPACE 

In any  application of sets or fuzzy sets theory, all sets are subsets  of     a fixed set 

called universal space or universe of discourse denoted by X. Universal space X as a 

fuzzy set is a function equal to 1 for all elements. 

The  fuzzy  set  UNIVERSALSPACE  numbers,  defined in the universal space 

X = { xi } = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} is presented as 

SetOption [FuzzySet, UniversalSpace  {1, 12, 1}] 

 

The Set UNIVERSALSPACE in set X is : 

 

UNIVERSALSPACE = FuzzySet {{1, 1}, {2, 1}, {3, 1}, {4, 1}, {5, 1}, {6, 1}, 

{7, 1}, {8, 1}, {9, 1}, {10, 1}, {11, 1}, {12, 1}} 

Therefore SetUniversal is represented as 

SetUniversal = FuzzySet [{{1,1},{2,1}, {3,1}, {4,1}, {5,1},{6,1}, {7,1}, 

{8, 1}, {9, 1}, {10, 1}, {11, 1}, {12, 1}} , UniversalSpace  {1, 12, 1}] 

 

 



SC - Fuzzy set theory – Fuzzy Operation 
 

FuzzyPlot [ UNIVERSALSPACE, AxesLable  {"X", " UNIVERSAL SPACE "}] 

UNIVERSAL SPACE 

1 

.8 

.6 

.4 

.2 

0  
0 1 2 3 4 5 6 7 8 9 10 11 12 X 

Fig Graphic Interpretation of Fuzzy Set UNIVERSALSPACE 

 

• Finite and Infinite Universal Space 

Universal sets can be finite or infinite. 

Any universal set is finite if it consists of a specific number of different elements, that 

is, if in counting the different elements of the set, the counting can come to an end, 

else the set is infinite. 

Examples: 

1. Let N be the universal space of the days of the week. 

N = {Mo, Tu, We, Th, Fr, Sa, Su}.  N is finite. 2. 

Let M = {1, 3, 5, 7, 9, ...}. M is infinite. 

3. Let L = {u | u is a lake in a city }. L is finite. 

(Although it may be difficult to count the number of lakes in a city, 

but L is still a finite universal set.) 

 

 

 

• Graphic Interpretation of Fuzzy Sets EMPTY 

An empty set is a set that contains only elements with a grade of membership equal to 

0. 

Example: Let EMPTY be a set of people, in Minnesota, older than 120. The Empty 

set is also called the Null set. 

The  fuzzy  set EMPTY , defined in the universal space 

X = { xi } = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} is presented as 

SetOption [FuzzySet, UniversalSpace  {1, 12, 1}] 
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The Set EMPTY in set X is : 

EMPTY = FuzzySet {{1, 0}, {2, 0}, {3, 0}, {4, 0}, {5, 0}, {6, 0}, {7, 0}, 

{8, 0}, {9, 0}, {10, 0}, {11, 0}, {12, 0}} 

Therefore SetEmpty is represented as 

SetEmpty = FuzzySet [{{1,0},{2,0}, {3,0}, {4,0}, {5,0},{6,0}, {7,0}, 

{8, 0}, {9, 0}, {10, 0}, {11, 0}, {12, 0}} , UniversalSpace  {1, 12, 1}] 

 

FuzzyPlot [ EMPTY, AxesLable  {"X", " UNIVERSAL SPACE "}] 

EMPT
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Fig Graphic Interpretation of Fuzzy Set EMPTY 

 

 Fuzzy Operations 

 

A fuzzy set operations are the operations on fuzzy sets. The fuzzy set operations are 

generalization of crisp set operations. Zadeh [1965] formulated the fuzzy set theory in 

the terms of standard operations: Complement, Union, Intersection, and Difference. 

 

In this section, the graphical interpretation of the following  standard fuzzy set terms 

and the Fuzzy Logic operations are illustrated: 

 

Inclusion : FuzzyInclude [VERYSMALL, SMALL] 

 

Equality : FuzzyEQUALITY [SMALL, STILLSMALL] 

 

Complement : FuzzyNOTSMALL = FuzzyCompliment 

[Small] Union : FuzzyUNION = [SMALL  MEDIUM] 

Intersection : FUZZYINTERSECTON = [SMALL  

MEDIUM] 
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• Inclusion 

Let A and B be fuzzy sets defined in the same universal space X. 

The fuzzy set A is included in the fuzzy set B if and only if for every x in the set X we 

have A(x)  B(x) 

Example : 

The   fuzzy   set   UNIVERSALSPACE  numbers,  defined  in the universal 

space  X = { xi } = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} is presented as 

SetOption [FuzzySet, UniversalSpace  {1, 12, 1}] 

 

The fuzzy set B SMALL 

The Set SMALL in set X is : 

SMALL = FuzzySet {{1, 1 }, {2, 1 }, {3, 0.9}, {4, 0.6}, {5, 0.4}, {6, 0.3}, 

{7, 0.2}, {8, 0.1}, {9, 0  },  {10, 0 },  {11, 0}, {12, 0}} 

Therefore SetSmall is represented as 

SetSmall = FuzzySet [{{1,1},{2,1}, {3,0.9}, {4,0.6}, {5,0.4},{6,0.3}, {7,0.2}, 

{8, 0.1}, {9, 0},  {10, 0}, {11, 0}, {12, 0}} , UniversalSpace  {1, 12, 1}] 

 

The fuzzy set A VERYSMALL 

The Set VERYSMALL in set X is : 

VERYSMALL = FuzzySet {{1, 1 }, {2, 0.8 }, {3, 0.7}, {4, 0.4}, {5, 0.2}, 

{6, 0.1},  {7, 0 }, {8, 0 }, {9, 0  },  {10, 0 },  {11, 0}, {12, 0}} 

Therefore SetVerySmall is represented as 

SetVerySmall = FuzzySet [{{1,1},{2,0.8}, {3,0.7}, {4,0.4}, {5,0.2},{6,0.1}, 

{7,0}, {8, 0}, {9, 0}, {10, 0}, {11, 0}, {12, 0}} , UniversalSpace  {1, 12, 1}] 

 

The Fuzzy Operation : Inclusion 

Include [VERYSMALL, SMALL] 

Membership Grade B A 
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Fig Graphic Interpretation of Fuzzy Inclusion 

FuzzyPlot [SMALL, VERYSMALL] 
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• Comparability 

Two fuzzy sets A and B  are comparable if the 

condition A  B or B  A holds, ie, 

if one of the fuzzy sets is a subset of the other set, they are comparable. 

 

Two fuzzy sets A and B are incomparable If the 

condition A  B or B  A holds. 

Example 1: 

Let A = {{a, 1}, {b, 1}, {c, 0}} and 

B = {{a, 1}, {b, 1}, {c, 1}}. 

Then A  is  comparable  to B,  since A is a subset of B. 

Example 2 : 

Let C = {{a, 1}, {b, 1}, {c, 0.5}} and 

D = {{a, 1}, {b, 0.9}, {c, 0.6}}. 

Then C and D are not comparable since 

C is not a subset of D and 

D is not a subset of C. 

 

Property Related to Inclusion : 

for all x in the set X, if A(x)  B(x)  C(x), then accordingly A  C. 

 

• Equality 

Let A and B be fuzzy sets defined in the same space X. 

Then A and B are equal, which is denoted X = Y 

if  and  only  if  for  all  x  in  the set X, A(x) = B(x). 

Example. 

The fuzzy set B SMALL 

SMALL = FuzzySet {{1, 1 }, {2, 1 }, {3, 0.9}, {4, 0.6}, {5, 0.4}, {6, 0.3}, 

{7, 0.2}, {8, 0.1}, {9, 0  },  {10, 0 },  {11, 0}, {12, 0}} 

 

The fuzzy set A STILLSMALL 

STILLSMALL = FuzzySet {{1, 1 }, {2, 1 }, {3, 0.9}, {4, 0.6}, {5, 0.4}, 

{6, 0.3}, {7, 0.2}, {8, 0.1}, {9, 0 }, {10, 0 }, {11, 0}, {12, 0}} 
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The Fuzzy Operation : Equality 

Equality [SMALL, STILLSMALL] 

Membership Grade B A 
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Fig Graphic Interpretation of Fuzzy Equality 

FuzzyPlot [SMALL, STILLSMALL] 

 

Note : If equality A(x) = B(x) is not satisfied even for one element x in 

the set X, then we say that A is not equal to B. 

 

 

• Complement 

Let A be a fuzzy set defined in the space X. 

Then the fuzzy set B is a complement of  the fuzzy set A,  if and only if, for all x  in 

the set X, B(x) = 1 - A(x). 

The complement of the fuzzy set A is often denoted by A' or Ac or A 

Fuzzy Complement : Ac(x) = 1 – A(x) 

Example 1. 

The fuzzy set A SMALL 

SMALL = FuzzySet {{1, 1 }, {2, 1 }, {3, 0.9}, {4, 0.6}, {5, 0.4}, {6, 0.3}, 

{7, 0.2}, {8, 0.1}, {9, 0  },  {10, 0 },  {11, 0}, {12, 0}} 

 

The fuzzy set Ac NOTSMALL 

NOTSMALL = FuzzySet {{1, 0 }, {2, 0 }, {3, 0.1}, {4, 0.4}, {5, 0.6}, {6, 0.7}, 

{7, 0.8}, {8, 0.9}, {9, 1 }, {10, 1 }, {11, 1}, {12, 1}} 

 

The Fuzzy Operation : Compliment 

NOTSMALL = Compliment [SMALL] 
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Membership Grade A Ac 
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Fig Graphic Interpretation of Fuzzy Compliment 

FuzzyPlot [SMALL, NOTSMALL] 

 

 

Example 2. 

The  empty set  and the universal set X, as fuzzy sets, are 

complements of one another. 

' = X , X' =  

 

The fuzzy set B EMPTY 

Empty = FuzzySet {{1, 0 }, {2, 0 }, {3, 0}, {4, 0}, {5, 0}, {6, 0}, 

{7, 0}, {8, 0}, {9, 0  },  {10, 0 },  {11, 0}, {12, 0}} 

 

The fuzzy set A UNIVERSAL 

Universal = FuzzySet {{1, 1 }, {2, 1 }, {3, 1}, {4, 1}, {5, 1}, {6, 1}, 

{7, 1}, {8, 1}, {9, 1  },  {10, 1 },  {11, 1}, {12, 1}} 

 

The fuzzy operation : Compliment 

EMPTY = Compliment [UNIVERSALSPACE] 

Membership Grade B A 
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Fig Graphic Interpretation of Fuzzy Compliment 

FuzzyPlot [EMPTY, UNIVERSALSPACE] 

 

• Union 

Let A and B be fuzzy sets defined in the space X. 

The union is defined as the smallest fuzzy set that contains both A and B. The union of 

A and B is denoted by A  B. 

The following relation must be satisfied for the union operation : 

for all x in the set X, (A  B)(x) = Max (A(x), B(x)). 

 

Fuzzy Union :   (A   B)(x)  =  max [A(x), B(x)] for all x  X 

 

Example 1 : Union of Fuzzy A and B 

A(x) = 0.6 and B(x) = 0.4  (A  B)(x) = max [0.6, 0.4] = 0.6 

Example 2 : Union of SMALL and MEDIUM 

The fuzzy set A SMALL 

SMALL = FuzzySet {{1, 1 }, {2, 1 }, {3, 0.9}, {4, 0.6}, {5, 0.4}, {6, 0.3}, 

{7, 0.2}, {8, 0.1}, {9, 0  },  {10, 0 },  {11, 0}, {12, 0}} 

 

The fuzzy set B MEDIUM 

MEDIUM = FuzzySet {{1, 0 }, {2, 0 }, {3, 0}, {4, 0.2}, {5, 0.5}, {6, 0.8}, 

{7, 1}, {8, 1}, {9, 0.7 }, {10, 0.4 }, {11, 0.1}, {12, 0}} 

The fuzzy operation : Union 

FUZZYUNION = [SMALL  MEDIUM] 

SetSmallUNIONMedium = FuzzySet [{{1,1},{2,1}, {3,0.9}, {4,0.6},  {5,0.5}, 

{6,0.8}, {7,1}, {8, 1}, {9, 0.7}, {10, 0.4}, {11, 0.1}, {12, 0}} , 

UniversalSpace  {1, 12, 1}] 

Membership Grade FUZZYUNION = [SMALL  MEDIUM] 
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Fig Graphic Interpretation of Fuzzy Union 

FuzzyPlot [UNION] 

 

The notion of the union is closely related to that of the connective "or". Let A is a 

class of "Young" men, B is a class of "Bald" men. 

If "David is Young" or "David is Bald," then David is associated with the 

union of A and B. Implies David is a member of A  B. 

 

• Intersection 

Let A and B be fuzzy sets defined in the space X. Intersection is defined as the 

greatest fuzzy set that include both A and B. Intersection of A and B is denoted by A 

 B. The following relation must be satisfied for the intersection operation : 

for all x in the set X, (A  B)(x) = Min (A(x), B(x)). 

Fuzzy Intersection : (A  B)(x) = min [A(x), B(x)] for all x  X Example 1 : 

Intersection of Fuzzy A and B 

A(x) = 0.6 and B(x) = 0.4  (A  B)(x) = min [0.6, 0.4] = 0.4 
 

Example 2 : Union of SMALL and MEDIUM 

 

The fuzzy set A SMALL 

SMALL = FuzzySet {{1, 1 }, {2, 1 }, {3, 0.9}, {4, 0.6}, {5, 0.4}, {6, 0.3}, 

{7, 0.2}, {8, 0.1}, {9, 0  },  {10, 0 },   {11, 0}, {12, 0}} 

 

The fuzzy set B MEDIUM 

MEDIUM = FuzzySet {{1, 0 }, {2, 0 }, {3, 0}, {4, 0.2}, {5, 0.5}, {6, 0.8}, 

{7, 1}, {8, 1}, {9, 0.7 }, {10, 0.4 }, {11, 0.1}, {12, 0}} 

 

The fuzzy operation : Intersection 

FUZZYINTERSECTION = min [SMALL  MEDIUM] 

SetSmallINTERSECTIONMedium  = FuzzySet [{{1,0},{2,0}, {3,0}, {4,0.2}, 

{5,0.4}, {6,0.3}, {7,0.2}, {8, 0.1}, {9, 0}, 

{10, 0}, {11, 0}, {12, 0}} , UniversalSpace  {1, 12, 1}] 

 

Membership Grade FUZZYINTERSECTON = [SMALL  MEDIUM] 
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Fig Graphic Interpretation of Fuzzy Union 

FuzzyPlot [INTERSECTION] 

 

 

 

• Difference 

Let A and B be fuzzy sets defined in the space X. The 

difference of A and B is denoted by A  B'. 

Fuzzy Difference : (A - B)(x)  =  min [A(x), 1- B(x)] for all x  X 

Example : Difference of MEDIUM and SMALL 

The fuzzy set A MEDIUM 

MEDIUM = FuzzySet {{1, 0 }, {2, 0 }, {3, 0}, {4, 0.2}, {5, 0.5}, {6, 0.8}, 
{7, 1}, {8, 1}, {9, 0.7 }, {10, 0.4 }, {11, 0.1}, {12, 0}} 

The fuzzy set B SMALL 

MEDIUM = FuzzySet {{1, 1 }, {2, 1 }, {3, 0.9}, {4, 0.6}, {5, 0.4}, {6, 0.3}, 

{7, 0.2}, {8, 0.1}, {9, 0.7 }, {10, 0.4 }, {11, 0}, {12, 0}} 

 

Fuzzy Complement : Bc(x) = 1 – B(x) 

The fuzzy set Bc NOTSMALL 

NOTSMALL = FuzzySet {{1, 0 }, {2, 0 }, {3, 0.1}, {4, 0.4}, {5, 0.6}, {6, 0.7}, 

{7, 0.8}, {8, 0.9}, {9, 1  },  {10, 1 },   {11, 1}, {12, 1}} 

 

The fuzzy operation : Difference by the definition of Difference 

FUZZYDIFFERENCE = [MEDIUM    SMALL'] 

SetMediumDIFFERECESmall = FuzzySet [{{1,0},{2,0}, {3,0}, {4,0.2}, 

{5,0.5}, {6,0.7}, {7,0.8}, {8, 0.9}, {9, 0.7}, 

{10, 0.4}, {11, 0.1}, {12, 0}} , UniversalSpace  {1, 12, 1}] 

 

Membership Grade FUZZYDIFFERENCE = [MEDIUM  SMALL' ] 
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Fig Graphic Interpretation of Fuzzy Union 
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FuzzyPlot [UNION] 

 

 Fuzzy Properties 

 

Properties related to Union, Intersection, Differences are illustrated below. 

 

• Properties Related to Union 

The properties related to union are : 

Identity, Idempotence, Commutativity and Associativity. 

 

■ Identity: 

A   = A 

input = Equality [SMALL  EMPTY , SMALL] 

output = True 

 

A  X = X 

input = Equality [SMALL  UnivrsalSpace , UnivrsalSpace] 

output = True 

■ Idempotence : 

A  A = A 

input = Equality [SMALL  SMALL , SMALL] 

output = True 

■ Commutativity : 

A  B = B  A 

input = Equality [SMALL  MEDIUM, MEDIUM  SMALL] 

output = True 

 

 
[Continued from previous slide] 

■ Associativity: 

 

A  (B  C) = (A  B)  C 

 

input = Equality [Small  (Medium  Big) , (Small  Medium)  Big] output = 

True 

Fuzzy Set Small , Medium , Big 

 

Small = FuzzySet {{1, 1 }, {2, 1 }, {3, 0.9}, {4, 0.6}, {5, 0.4}, {6, 0.3}, 

{7, 0.2}, {8, 0.1}, {9, 0.7 }, {10, 0.4 }, {11, 0}, {12, 0}} 

 

Medium = FuzzySet {{1, 0 }, {2, 0 }, {3, 0}, {4, 0.2}, {5, 0.5}, {6, 0.8}, 

{7, 1}, {8, 1}, {9, 0  },  {10, 0 },   {11, 0.1}, {12, 0}} 
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Big = FuzzySet [{{1,0}, {2,0}, {3,0}, {4,0}, {5,0}, {6,0.1}, 

{7,0.2}, {8,0.4}, {9,0.6}, {10,0.8}, {11,1}, {12,1}}] 

 

Calculate Fuzzy relations : 

 

(1) Medium  Big = FuzzySet [{1,0},{2,0}, {3,0}, {4,0.2}, {5,0.5}, 

{6,0.8},{7,1}, {8, 1}, {9, 0.6}, {10, 0.8}, {11, 1}, {12, 1}] 

 

(2) Small  Medium = FuzzySet [{1,1},{2,1}, {3,0.9}, {4,0.6}, {5,0.5}, 

{6,0.8}, {7,1}, {8, 1}, {9, 0.7}, {10, 0.4}, {11, 0.1}, {12, 0}] 

 

(3)  Small   (Medium   Big) = FuzzySet [{1,1},{2,1}, {3,0.9},  {4,0.6}, 

{5,0.5}, {6,0.8}, {7,1}, {8, 1}, {9, 0.7},  {10, 0.8}, {11, 1}, {12, 1}] 

 

(4) (Small  Medium)  Big] = FuzzySet [{1,1},{2,1}, {3,0.9}, {4,0.6}, 

{5,0.5}, {6,0.8}, {7,1}, {8, 1}, {9, 0.7},{10, 0.8}, {11, 1},{12, 1}] 

 

Fuzzy set (3) and (4) proves Associativity relation 
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• Properties Related to Intersection 

Absorption, Identity, Idempotence, Commutativity, Associativity. 

 

■ Absorption by Empty Set : 

A   =  

input = Equality [Small  Empty , Empty] 

output = True 

■ Identity : 

A  X = A 

input = Equality [Small  UnivrsalSpace , Small] 

output = True 

■ Idempotence : 

A  A = A 

input = Equality [Small  Small , Small] 

output = True 

■ Commutativity : 

A  B = B  A 

input = Equality [Small  Big , Big  Small] 

output = True 

■ Associativity : 

A  (B  C) = (A  B)  C 

input = Equality [Small  (Medium  Big), (Small  Medium)  Big] output = 

True 
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• Additional Properties 

Related to Intersection and Union 

 

■ Distributivity: 

A  (B  C) = (A  B)  (A  C) 

input = Equality [Small  (Medium  Big) , 

(Small  Medium)  (Small  Big)] 

output = True 

 

■ Distributivity: 

A  (B  C) = (A  B)  (A  C) 

input = Equality [Small  (Medium  Big) , 

(Small  Medium)  (Small  Big)] 

output = True 

 

■ Law of excluded middle : 

A  A' = X 

input = Equality [Small  NotSmall , UnivrsalSpace ] output = 

True 

■ Law of contradiction 

A  A' =  

input = Equality [Small  NotSmall , EmptySpace ] output = 

True 

 

 

• Cartesian Product Of Two Fuzzy Sets 

■ Cartesian Product of two Crisp Sets 

Let A and B be two crisp sets in the universe of discourse X and Y.. The 

Cartesian product of A and B is denoted by A x B 

Defined as A x B = { (a , b) │ a  A , b  B } 

Note : Generally A x B ≠ B x A 

Example : 

Let A = {a, b, c} and B = {1, 2} 

then A x B = { (a , 1) , (a , 2) , 

(b , 1) , (b , 2) , 

(c , 1) , (c , 2) } 

Graphic representation of A x B 

B 

2 

1 

 
A 
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■ Cartesian product of two Fuzzy Sets 

Let A and B be two fuzzy sets in the universe of discourse X and Y. The 

Cartesian product of A and B is denoted by A x B 

Defined by their membership function  A (x) and  B (y) as 

 

 A x B (x , y) = min [  A (x) ,  B (y) ] =  A (x)   B (y) 

or  A x B (x , y) =  A (x)  B (y) 

for all x  X and y  Y 

 

Thus the Cartesian  product A x B  is  a  fuzzy  set  of  ordered  pair  (x , y) for all 

x  X  and y   Y,  with  grade  membership  of (x , y)  in X x Y given by the 

above equations . 

In a sense Cartesian product of two Fuzzy sets is a Fuzzy Relation. 

 

2. Fuzzy Relations 

 

Fuzzy Relations describe the degree of association of the elements; Example : 

“x is approximately equal to y”. 

 

− Fuzzy relations offer the capability to capture the uncertainty and vagueness in relations 

between sets and elements of a set. 

 

− Fuzzy Relations make the description of a concept possible. 

 

− Fuzzy Relations were introduced to  supersede  classical  crisp  relations; It 

describes the total presence or absence of association of elements. 

 

In this section, first the fuzzy relation is defined and then expressing fuzzy relations in 

terms of matrices and graphical visualizations.  Later the  properties of fuzzy relations and 

operations that can be performed with fuzzy relations are illustrated. 

 

 

 Definition of Fuzzy Relation 

 

Fuzzy relation is a generalization of the definition of fuzzy set 

from 2-D space to 3-D space. 

• Fuzzy relation definition 

Consider a Cartesian product 



SC - Fuzzy set theory – Fuzzy Relations 
 

   

A x B  = { (x , y) | x  A, y  B } 

where A and B are subsets of universal sets U1 and U2. 

 

Fuzzy relation on A x B is denoted by R or R(x , y) is defined as the set 

 

R = { ((x , y) , R (x , y)) | (x , y)  A x B , R (x , y)  [0,1] } 

 

where R (x , y) is a function in two variables called membership function. 

 

 It gives the degree of membership of the ordered pair (x , y) in R associating with 

each pair (x , y) in A x B a real number  in  the  interval [0 , 1]. 

 The degree of membership indicates the degree to which x is in  relation to y. 

Note : 

 Definition of fuzzy relation is a generalization of the definition of fuzzy set from 

the 2-D space (x , , R (x)) to 3-D space ((x , y) , R (x , y)). 

 Cartesian product A x B is a relation by itself between x and y . 

 A fuzzy relation R is a sub set of R3 namely 

{ ((x , y) , R (x , y)) |  A x B x [0,1]  U1 x U2 x [0,1] } 

• Example of Fuzzy Relation 

R  =   { ((x1 , y1) , 0)) , ((x1 , y2) , 0.1)) , ((x1 , y3) , 0.2)) , 

((x2 , y1) , 0.7)) , ((x2 , y2) , 0.2)) , ((x2 , y3) , 0.3)) , 

((x3 , y1) , 1)) , ((x3 , y2) , 0.6)) , ((x3 , y3) , 0.2)) , 

The relation can be written in matrix form as 

 

 

R 

 

 

 

where symbol means ' is defined as' and 

the values in the matrix are the values of membership function: 

 

R (x1 , y1) = 0 R (x1 , y2) = 0.1 R (x1 , y3) = 0.2 

R (x2 , y1) = 0.7 R (x2, y2) = 0.2 R (x2 , y3) = 0.3 

R (x3 , y1) = 1 R (x3 , y2) = 0.6 R (x3 , y3) = 0.2 

 

Assuming x1 = 1 , x2 = 2 , x3 = 3 and y1 = 1 , y2= 2 , y3= 3 , 

the relation can be graphically represented by points in 3-D space 

(X, Y, ) as : 

 

   

y 
x 

y1 Y2 Y3 

x1 0 0.1 0.2 

X2 0.7 0.2 0.3 

X3 1 0.6 0.2 
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Fig Fuzzy Relation R describing 

x greater than y 

 

 

 

Note : Since the values of the membership function 0.7, 1, 0.6 are in the direction of x below 

the major diagonal (0, 0.2, 0.2) in the matrix are  grater  than  those 0.1, 0.2, 0.3 in the 

direction of y, we therefore say that the relation R describes x is grater than y. 

 

 

 

 Forming Fuzzy Relations 

Assume that V and W are two collections of objects. 

A fuzzy relation is characterized in the same way as it is in a fuzzy set. 

− The first item is a list containing element and membership grade pairs, 

{{v1, w1}, R11}, {{ v1, w2}, R12}, ... , {{ vn, wm}, Rnm}}. 

where { v1, w1}, { v1, w2}, ... , { vn, wm} are the elements of the relation are defined 

as ordered pairs, and { R11 , R12 , ... , Rnm} are the membership grades of the 

elements of the relation that range from 0 to 1, inclusive. 

− The second item is the universal space; for relations, the universal space consists of 

a pair of ordered pairs, 

{{ Vmin, Vmax, C1}, { Wmin, Wmax, C2}}. 

where the first pair defines the universal space for the first set and the second pair 

defines the universal space for the second set. 

Example showing how fuzzy relations are represented 

Let V = {1, 2, 3} and W = {1, 2, 3, 4}. 

A fuzzy relation R is, a function defined in the space V x W, which takes values from 

the interval [0, 1] , expressed as R : V x W  [0, 1] 

1 

.8 

.6 

.4 

.2 

0 

 

1 2 3 y 

  1    

  2   

3    

x 
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R  = FuzzyRelation [{{{1, 1}, 1}, {{1, 2}, 0.2}, {{1, 3}, 0.7}, {{1, 4}, 0}, 
{{2, 1}, 0.7}, {{2, 2}, 1}, {{2, 3}, 0.4}, {{2, 4}, 0.8}, 
{{3, 1}, 0}, {{3, 2}, 0.6}, {{3, 3}, 0.3}, {{3, 4}, 0.5}, 
UniversalSpace  {{1, 3, 1}, {1, 4, 1}}] 

This relation can be represented in the following two forms shown below 

Membership matrix form 1    Graph form 

.8 
 w w1 w2 w3 w4 .6  

 
 

 

v      .4 

v1  1 0.2 0.7 0 .2 

v2  0.7 1 0.4 0.8 0 1 2 3 4 

v3 0 0.6 0.3 0.5  
1 
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R w 

 

2 

3 
v 

Vertical lines represent membership grades 

Elements of fuzzy relation are ordered pairs {vi , wj}, where vi is first and wj is second 

element. The membership grades of the elements are represented by the heights of the 

vertical lines. 

 

 Projections of Fuzzy Relations 

 

Definition : A fuzzy relation on A x B is denoted by R or R(x , y) is defined as the 

set 

R = { ((x , y) , R (x , y)) | (x , y)  A x B , R (x , y)  [0,1] } 

where R (x , y) is a function in two variables called  membership  function. The first, 

the second and the  total  projections  of  fuzzy relations are stated below. 

• First Projection of R : defined as 

R(1) = {(x) ,  R(1) (x , y))} 

 

= {(x) , 
max  R (x , y)) | (x , y)  A x B } 

Y 

 

• Second  Projection  of R : defined as 

R(2) = {(y) ,  R(2) (x , y))} 

 

= {(y) , 

 

max 

X 

 R (x , y)) | (x , y)  A x B } 

 

• Total  Projection  of R : defined as 

 

R(T) = max 

X 
max 

Y 

{  R (x , y) | (x , y)  A x B } 

 

Note : In all these three expression 
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max 

Y 

max 

X 

means max with respect to y while x is considered fixed means max 

with respect to x while y is considered fixed 
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y y1 y2 y3 

x 

The Total Projection is also known as Global projection 

 

 

 

• Example : Fuzzy Projections 

The Fuzzy Relation R together with First, Second and Total Projection of R are 

shown below. 

 

x1 

x2 
R 

x3 

 

R(2

) 

y4 Y5 R(1) 

 

0.1 0.3 1 0.5 0.3 1  

0.2 0.5 0.7 0.9 0.6 0.9  

0.3 0.6 1 0.8 0.2 1  

 
0.3 

 
0.6 

 
1 

 
0.9 

 
0.6 

 
1 

 

= R(T) 

 

 

Note : 

 

For R(1) select 

For R(2) select 

 

 

 

max 

Y 

max 

x 

 

 

means max with respect to y while x is considered fixed means 

max with respect to x while y is considered fixed 
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y y1 y2 y3 

x 

x1 0.1 0.3 0 

x2 0.8 1 0.3 

   

R(1) 

1 

.8 

.6 

.4 

.2 

0 x 

1 2 3 4 5 

R(2) 

1 

.8 

.6 

.4 

.2 

0 y 

1 2 3 4 5 

For R(T) select max with respect to R(1) and R(2) 

The Fuzzy plot of these projections are shown below. 

 

Fig Fuzzy plot of 1st projection R(1) Fig Fuzzy plot of 2nd projection R(2) 

 

 Max-Min and Min-Max Composition 

 

The operation composition combines the  fuzzy relations in different 

variables, say (x , y) and (y , z) ;  x   A , y  B ,  z  C . 

Consider the relations : 

R1(x , y)  = { ((x , y) , R1 (x , y))  |  (x , y)    A x B  } 

R2(y , z) = { ((y , y) , R1 (y , z))  |  (y , z)    B x C  } 

The domain of  R1 is  A x B and the domain of R2 is B x C 

 

• Max-Min Composition 

Definition : The Max-Min composition denoted by R1  R2 with membership 

function   R1  R2 defined as 

R1   R2  =  { ((x , z) , max(min ( R1 (x , y) , R2 (y , z))))} , 
Y 

(x , z)  A x C , y  B 

 

Thus  R1  R2 is relation in the domain A x C 

 

An example of the composition is shown in the next slide. 

 

 

• Example : Max-Min Composition 

Consider the relations R1(x , y) and R2(y , z) as given below. 

 

 

 

R1 R2 

 

 

 

Note : Number of columns in the first table and second table are equal. Compute max-

z z1 z2 z3 

y 

y1 0.8 0.2 0 

y2 0.2 1 0.6 

y3 0.5 0 0.4 
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min composition denoted by R1  R2 : 

Step -1 Compute  min  operation  (definition  in   previous  slide). Consider row 

x1  and column z1 ,  means  the pair (x1 , z1)  for  all  yj ,  j = 1, 2, 3, and perform 

min operation 

min ( R1 (x1 , y1) ,  R2 (y1 , z1))  =  min (0.1, 0.8) = 0.1, 

min ( R1 (x1 , y2) ,  R2 (y2 , z1))  =  min (0.3, 0.2) = 0.2, 

min ( R1 (x1 , y3) , R2 (y3 , z1)) = min ( 0, 0.5) = 0, 

Step -2 Compute max operation (definition in previous slide). 

For x = x1 , z = z1 , y = yj , j = 1, 2, 3, 

Calculate the grade membership of the pair (x1 , z1) as 

{ (x1 , z1) , max ( (min (0.1, 0.8), min (0.3, 0.2), min (0, 0.5) ) 

i.e. { (x1 , z1) , max(0.1, 0.2, 0) } 

i.e. { (x1 , z1) , 0.2 } 

Hence the grade membership of the pair (x1 , z1) is 0.2 . 

Similarly, find all the grade membership of the pairs 

(x1 , z2) , (x1 , z3) , (x2 , z1) , (x2 , z2) , (x2 , z3) 

The final result is 

 

 

R1  R2 = 

 

 

 

Note : If tables R1 and R2 are considered as matrices, the operation composition resembles 

the operation multiplication in matrix calculus linking row by columns. After each cell is 

occupied max-min value (the product is replaced by min, the sum is replaced by max). 

 
 

• Example : Min-Max Composition 

The min-max composition is similar to max-min composition with the difference that 

the roll of max and min are interchanged. 

 

Definition : The max-min composition denoted by R1 ◻ R2 with membership function   

R1 ◻ R2 is defined by 

R1 ◻ R2 = { ((x , z) , mi

n 

y 

(max ( R1 (x , y) , R2 (y , z))))} , (x , 

z)  A x C , y  B 

 
x 

z z1 z2 z3 

x1  0.1 0.3 0 

x2  0.8 1 0.3 
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y y1 y2 y3 

x 

x1 

x2 

0.1 0.3 0 
   

Thus  R1 ◻ R2 is relation in the domain A x C 

 

Consider the relations R1(x , y) and R2(y , z) as given by the same 

relation of previous example of max-min composition, that is 

 

 

 

R1 R    

 

 

 

After computation in similar way as done in the case of max-min 

composition, the final result is 

 

 

R1 ◻ R2 = 

 

 

 

• Relation between Max-Min and Min-Max Compositions 

The Max-Min and Min-Max Compositions are related by the formula 

 

R1  R2 = R1 ◻ R2 

 

 

z z1 z2 z3 

y 

y1 0.8 0.2 0 

0.8 1 
2 

0.3  y2 0.2 1 0.6 

    y3 0.5 0 0.4 

 

 
x 

z z1 z2 z3 

x1  0.3 0 0.1 

x2  0.5 0.4 0.4 
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