
OSS: (Open Source Software)

Open source software are user friendly and are available as commercial and free licenced

software. Therefore, these are easy to use by anyone, anywhere. Open source is easily modifiable

as its core code is publicly accessible.

OS (Operating System)

An operating system (OS) is a collection of software that manages computer hardware resources

and provides common services for computer programs. The operating system is a vital

component of the system software in a computer system.

Linux operating System

Linux is a free open-source operating system based on Unix. Linux was originally created by

Linus Torvalds with the assistance of developers from around the globe. Linux is free to

download, edit and distribute. Linux is a very powerful operating system and it is gradually

becoming popular throughout the world.

Advantages of Linux:

Low cost: There is no need to spend time and huge amount money to obtain licenses since

Linux and much of it's software come with the GNU General Public License. There is no need to

worry about any software's that you use in Linux.

Stability: Linux has high stability compared with other operating systems. There is no need to

reboot the Linux system to maintain performance levels. Rarely it freeze up or slow down. It has

a continuous up-times of hundreds of days or more.

Performance: Linux provides high performance on various networks. It has the ability to handle

large numbers of users simultaneously.

Networking: Linux provides a strong support for network functionality; client and server

systems can be easily set up on any computer running Linux. It can perform tasks like network

backup more faster than other operating systems.

Flexibility: Linux is very flexible. Linux can be used for high performance server applications,

desktop applications, and embedded systems. You can install only the needed components for a

particular use. You can also restrict the use of specific computers.

Compatibility: It runs all common Unix software packages and can process all common file

formats.

Wider Choice: There is a large number of Linux distributions which gives you a wider choice.

Each organization develop and support different distribution. You can pick the one you like best;

the core function's are the same.

Better use of hard disk: Linux uses its resources well enough even when the hard disk is almost

full.

Multitasking: Linux is a multitasking operating system. It can handle many things at the same

time.

Security: Linux is one of the most secure operating systems. File ownership and permissions

make linux more secure.

Open source: Linux is an Open source operating systems. You can easily get the source code for

linux and edit it to develop your personal operating system.

Components of Linux System

Linux Operating System has primarily three components

Kernel − Kernel is the core part of Linux. It is responsible for all major activities of this operating

system. It consists of various modules and it interacts directly with the underlying hardware.

Kernel provides the required abstraction to hide low level hardware details to system or

application programs.

System Library − System libraries are special functions or programs using which application

programs or system utilities accesses Kernel's features. These libraries implement most of the

functionalities of the operating system and do not requires kernel module's code access rights.

System Utility − System Utility programs are responsible to do specialized, individual level

tasks.

Kernel Mode vs User Mode

Kernel component code executes in a special privileged mode called kernel mode with full

access to all resources of the computer. This code represents a single process, executes in single

address space and do not require any context switch and hence is very efficient and fast. Kernel

runs each processes and provides system services to processes, provides protected access to

hardware to processes.

Support code which is not required to run in kernel mode is in System Library. User programs

and other system programs works in User Mode which has no access to system hardware and

kernel code. User programs/ utilities use System libraries to access Kernel functions to get

system's low level tasks.

Basic Features

Following are some of the important features of Linux Operating System.

Portable − Portability means software can works on different types of hardware in same way.

Linux kernel and application programs supports their installation on any kind of hardware

platform.

Open Source − Linux source code is freely available and it is community based development

project. Multiple teams work in collaboration to enhance the capability of Linux operating

system and it is continuously evolving.

Multi-User − Linux is a multiuser system means multiple users can access system resources like

memory/ ram/ application programs at same time.

Multiprogramming − Linux is a multiprogramming system means multiple applications can run

at same time.

Hierarchical File System − Linux provides a standard file structure in which system files/ user

files are arranged.

Shell − Linux provides a special interpreter program which can be used to execute commands

of the operating system. It can be used to do various types of operations, call application

programs. etc.

Security − Linux provides user security using authentication features like password protection/

controlled access to specific files/ encryption of data.

Architecture

The following illustration shows the architecture of a Linux system −

The architecture of a Linux System consists of the following layers

Hardware layer − Hardware consists of all peripheral devices (RAM/ HDD/ CPU etc).

Kernel − It is the core component of Operating System, interacts directly with hardware,

provides low level services to upper layer components.

Shell − An interface to kernel, hiding complexity of kernel's functions from users. The shell takes

commands from the user and executes kernel's functions.

Utilities − Utility programs that provide the user most of the functionalities of an operating

systems.

Kernel Mode

In Kernel mode, the executing code has complete and unrestricted access to the underlying

hardware. It can execute any CPU instruction and reference any memory address. Kernel mode is

generally reserved for the lowest-level, most trusted functions of the operating system. Crashes

in kernel mode are catastrophic; they will halt the entire PC.

User Mode

In User mode, the executing code has no ability to directly access hardware or reference

memory. Code running in user mode must delegate to system APIs to access hardware or

memory. Due to the protection afforded by this sort of isolation, crashes in user mode are

always recoverable. Most of the code running on your computer will execute in user mode.

Windows Vs. Linux File System

In Microsoft Windows, files are stored in folders on different data drives like C: D: E:

But, in Linux, files are ordered in a tree structure starting with the root directory.

This root directory can be considered as the start of the file system, and it further branches out

various other subdirectories. The root is denoted with a forward slash '/'.

A general tree file system on your UNIX may look like this.

Types of Files

In Linux and UNIX, everything is a file. Directories are files, files are files, and devices like Printer,

mouse, keyboard etc.are files.

Let's look into the File types in more detail.

General Files

General Files also called as Ordinary files. They can contain image, video, program or simply text.

They can be in ASCII or a Binary format. These are the most commonly used files by Linux Users.

Directory Files

These files are a warehouse for other file types. You can have a directory file within a directory

(sub-directory).You can take them as 'Folders' found in Windows operating system.

Device Files:

In MS Windows, devices like Printers, CD-ROM, and hard drives are represented as drive letters

like G: H:. In Linux, there are represented as files.For example, if the first SATA hard drive had

https://cdn.guru99.com/images/FolderStructure.png

three primary partitions, they would be named and numbered as /dev/sda1, /dev/sda2 and

/dev/sda3.

Note: All device files reside in the directory /dev/

All the above file types (including devices) have permissions, which allow a user to read, edit or

execute (run) them. This is a powerful Linux/Unix feature. Access restrictions can be applied for

different kinds of users, by changing permissions.

Windows Vs. Linux: Users

There are 3 types of users in Linux.

1. Regular

2. Administrative(root)

3. Service

Regular User

A regular user account is created for you when you install Ubuntu on your system. All your files

and folders are stored in /home/ which is your home directory. As a regular user, you do not

have access to directories of other users.

Root User

Other than your regular account another user account called root is created at the time of

installation. The root account is a superuser who can access restricted files, install software and

has administrative privileges. Whenever you want to install software, make changes to system

files or perform any administrative task on Linux; you need to log in as a root user. Otherwise,

for general tasks like playing music and browsing the internet, you can use your regular account.

Service user

Linux is widely used as a Server Operating System. Services such as Apache, Squid, email, etc.

have their own individual service accounts. Having service accounts increases the security of

your computer. Linux can allow or deny access to various resources depending on the service.

In Windows, there are 4 types of user account types.

1. Administrator

2. Standard

3. Child

4. Guest

Windows Vs. Linux: File Name Convention

In Windows, you cannot have 2 files with the same name in the same folder. While in Linux, you

can have 2 files with the same name in the same directory, provided they use different cases.

Windows Vs. Linux: HOME Directory

For every user in Linux, a directory is created as /home/

Consider, a regular user account "Tom". He can store his personal files and directories in the

directory "/home/tom". He can't save files outside his user directory and does not have access to

directories of other users. For instance, he cannot access directory "/home/jerry" of another user

account"Jerry".

The concept is similar to C:\Documents and Settings in Windows.

When you boot the Linux operating system, your user directory (from the above example

/home/tom) is the default working directory. Hence the directory "/home/tom is also called

the Home directory which is a misnomer.

Windows Vs. Linux: Key Differences

Windows Linux

Windows uses different data drives like C: D: E

to stored files and folders.

Unix/Linux uses a tree like a hierarchical file system.

Windows has different drives like C: D: E There are no drives in Linux

Hard drives, CD-ROMs, printers are considered

as devices

Peripherals like hard drives, CD-ROMs, printers are also

considered files in Linux/Unix

There are 4 types of user account types 1)

Administrator, 2) Standard, 3) Child, 4) Guest

There are 3 types of user account types 1) Regular, 2) Root

and 3) Service Account

Administrator user has all administrative

privileges of computers.

Root user is the super user and has all administrative

privileges.

In Windows, you cannot have 2 files with the

same name in the same folder

Linux file naming convention is case sensitive. Thus, sample

and SAMPLE are 2 different files in Linux/Unix operating

system.

In windows, My Documents is default home

directory.

For every user /home/username directory is created which is

called his home directory.

Linux Command Line Tutorial: Manipulate Terminal with CD Commands

The most frequent tasks that you perform on your PC is creating, moving or deleting Files. Let's

look at various options for File Management.

To manage your files, you can either use

1. Terminal (Command Line Interface - CLI)

2. File manager (Graphical User Interface -GUI)

Why learn Command Line Interface?

Even though the world is moving to GUI based systems, CLI has its specific uses and is widely

used in scripting and server administration. Let's look at it some compelling uses -

• Comparatively, Commands offer more options & are flexible. Piping and stdin/stdout are

immensely powerful are not available in GUI

• Some configurations in GUI are up to 5 screens deep while in a CLI it's just a single

command

• Moving, renaming 1000's of the file in GUI will be time-consuming (Using Control /Shift

to select multiple files), while in CLI, using regular expressions so can do the same task

with a single command.

• CLI load fast and do not consume RAM compared to GUI. In crunch scenarios this

matters.

Both GUI and CLI have their specific uses. For example, in GUI, performance monitoring

graphs give instant visual feedback on system health, while seeing hundreds of lines of logs in

CLI is an eyesore.

Files and directory related commands

Command Meaning

cd directory change to named directory

cd change to home-directory

cd ~ change to home-directory

cd .. change to parent directory

pwd display the path of the current director

Command Description

ls Lists all files and directories in the present
working directory

ls - R Lists files in sub-directories as well

ls - a Lists hidden files as well

ls - al Lists files and directories with detailed information
like permissions, size, owner, etc.

cat > filename Creates a new file

cat filename Displays the file content

cat file file2 > file3 Joins two files (file1, file2) and stores the output in
a new file (file3)

mv file "new file
path"

Moves the files to the new location

mv filename
new_file_name

Renames the file to a new filename

sudo Allows regular users to run programs with the
security privileges of the superuser or root

rm Deletes a file

man Gives help information on a command

history

Gives a list of all past commands typed in the
current terminal session

clear Clears the terminal

mkdir Creates a new directory in the present working
directory

mkdir Create a new directory at the specified path

rmdir Deletes a directory

mv Renames a directory

pr -x Divides the file into x columns

pr -h Assigns a header to the file

pr -n Denotes the file with Line Numbers

lp -nc
lpr c

Prints "c" copies of the File

lp -d lp -P Specifies name of the printer

apt-get Command used to install and update packages

mail -s 'subject' -c
'cc-address' -b 'bcc-
address' 'to-address'

Command to send email

Command Meaning

less file display a file a page at a time

head file display the first few lines of a file

tail file display the last few lines of a file

grep 'keyword' file search a file for keywords

wc file count number of lines/words/characters in file

File Permissions in Linux/Unix with Example

Linux is a clone of UNIX, the multi-user operating system which can be accessed by many

users simultaneously. Linux can also be used in mainframes and servers without any

modifications. But this raises security concerns as an unsolicited or malign usercan corrupt,

change or remove crucial data. For effective security, Linux divides authorization into 2 levels.

1. Ownership

2. Permission

The concept of permissions and ownership is crucial in Linux. Here, we will discuss both of

them. Let us start with the Ownership.

Command Meaning

command > file redirect standard output to a file

command >> file append standard output to a file

command < file redirect standard input from a file

command1 | command2
pipe the output of command1 to the input of

command2

cat file1

file2 > file0
concatenate file1 and file2 to file0

sort sort data

who list users currently logged in

Ownership of Linux files

Every file and directory on your Unix/Linux system is assigned 3 types of owner, given below.

User

A user is the owner of the file. By default, the person who created a file becomes its owner.

Hence, a user is also sometimes called an owner.

Group

A user- group can contain multiple users. All users belonging to a group will have the same

access permissions to the file. Suppose you have a project where a number of people require

access to a file. Instead of manually assigning permissions to each user, you could add all users

to a group, and assign group permission to file such that only this group members and no one

else can read or modify the files.

Other

Any other user who has access to a file. This person has neither created the file, nor he belongs

to a usergroup who could own the file. Practically, it means everybody else. Hence, when you set

the permission for others, it is also referred as set permissions for the world.

Now, the big question arises how does Linux distinguish between these three user types so

that a user 'A' cannot affect a file which contains some other user 'B's' vital information/data. It

is like you do not want your colleague, who works on your Linux computer, to view your images.

This is where Permissions set in, and they define user behavior.

Let us understand the Permission system on Linux.

Permissions

Every file and directory in your UNIX/Linux system has following 3 permissions defined for all

the 3 owners discussed above.

• Read: This permission give you the authority to open and read a file. Read permission on

a directory gives you the ability to lists its content.

• Write: The right permission gives you the authority to modify the contents of a file. The

write permission on a directory gives you the authority to add, remove and rename files

stored in the directory. Consider a scenario where you have to write permission on file

but do not have write permission on the directory where the file is stored. You will be

able to modify the file contents. But you will not be able to rename, move or remove the

file from the directory.

• Execute: In Windows, an executable program usually has an extension ".exe" and which

you can easily run. In Unix/Linux, you cannot run a program unless the execute

permission is set. If the execute permission is not set, you might still be able to

see/modify the program code(provided read & write permissions are set), but not run it.

 Let's see this in action

ls - l on terminal gives

ls - l

Here, we have highlighted '-rw-rw-r--'and this weird looking code is the one that tells us about

the permissions given to the owner, user group and the world.

Here, the first '-' implies that we have selected a file.p>

Else, if it were a directory, d would have been shown.

The characters are pretty easy to remember.

r = read permission

w = write permission

x = execute permission

- = no permission

Let us look at it this way.

The first part of the code is 'rw-'. This suggests that the owner 'Home' can:

• Read the file

• Write or edit the file

• He cannot execute the file since the execute bit is set to '-'.

By design, many Linux distributions like Fedora, CentOS, Ubuntu, etc. will add users to a group

of the same group name as the user name. Thus, a user 'tom' is added to a group named 'tom'.

https://cdn.guru99.com/images/PermissionsConcept.png
https://cdn.guru99.com/images/Permis_system.png
https://cdn.guru99.com/images/its_a_file.png
https://cdn.guru99.com/images/Directory.png
https://cdn.guru99.com/images/no_execute.png

The second part is 'rw-'. It for the user group 'Home' and group-members can:

• Read the file

• Write or edit the file

The third part is for the world which means any user. It says 'r--'. This means the user can only:

• Read the file

Changing file/directory permissions with 'chmod' command

Say you do not want your colleague to see your personal images. This can be achieved by

changing file permissions.

We can use the 'chmod' command which stands for 'change mode'. Using the command, we

can set permissions (read, write, execute) on a file/directory for the owner, group and the

world. Syntax:

chmod permissions filename

There are 2 ways to use the command -

1. Absolute mode

2. Symbolic mode

Absolute(Numeric) Mode

In this mode, file permissions are not represented as characters but a three-digit octal

number.

The table below gives numbers for all for permissions types.

Number Permission Type Symbol

0 No Permission ---

1 Execute --x

2 Write -w-

3 Execute + Write -wx

4 Read r--

5 Read + Execute r-x

https://cdn.guru99.com/images/permission(1).png

6 Read +Write rw-

7 Read + Write +Execute rwx

Let's see the chmod command in action.

In the above-given terminal window, we have changed the permissions of the file 'sample to

'764'.

'764' absolute code says the following:

• Owner can read, write and execute

• Usergroup can read and write

• World can only read

This is shown as '-rwxrw-r-

This is how you can change the permissions on file by assigning an absolute number.

Symbolic Mode

In the Absolute mode, you change permissions for all 3 owners. In the symbolic mode, you can

modify permissions of a specific owner. It makes use of mathematical symbols to modify the file

permissions.

Operator Description

+ Adds a permission to a file or directory

- Removes the permission

= Sets the permission and overrides the permissions set earlier.

The various owners are represented as -

https://cdn.guru99.com/images/chmod_new(1).png
https://cdn.guru99.com/images/FilePermissions(1).png

User Denotations

u user/owner

g group

o other

a all

We will not be using permissions in numbers like 755 but characters like rwx. Let's look into an

example

Vi Editor:

Vi is a command line text editor. As you would be quite aware now, the command line is quite a

different environment to your GUI. It's a single window with text input and output only. Vi has

been designed to work within these limitations and many would argue, is actually quite powerful

as a result. Vi is intended as a plain text editor (similar to Notepad on Windows, or Textedit on

Mac) as opposed to a word processing suite such as Word or Pages. It does, however have a lot

more power compared to Notepad or Textedit.

As a result you have to ditch the mouse. Everything in Vi is done via the keyboard. There are two

modes in Vi. Insert (or Input) mode and Edit mode. In input mode you may input or enter

content into the file. In edit mode you can move around the file, perform actions such as

deleting, copying, search and replace, saving etc. A common mistake is to start entering

commands without first going back into edit mode or to start typing input without first going

into insert mode. If you do either of these it is generally easy to recover so don't worry too

much.

When we run vi we normally issue it with a single command line argument which is the file you

would like to edit

> vi file name

https://cdn.guru99.com/images/Symbolic_Mode(1).png

PROCESSES:

A process refers to a program in execution; it’s a running instance of a program. It

is made up of the program instruction, data read from files, other programs or
input from a system user.

Types of Processes

init
It is the first process executed by the kernel during the booting of a system. It is a

daemon process which runs till the system is shutdown. That is why, it is the parent
of all the processes. First of all, init reads the script stored in the
file /etc/inittab. Command init reads the initial configuration script which

basically take care of everything that a system do at the time of system
initialization like setting the clock, initializing the serial port and so on.

Foreground processes (also referred to as interactive processes) – these are
initialized and controlled through a terminal session. In other words, there has to
be a user connected to the system to start such processes; they haven’t started

automatically as part of the system functions/services.

Background processes (also referred to as non-interactive/automatic processes)
– are processes not connected to a terminal; they don’t expect any user input.

Batch process

Processes which are in queue or stack executes one by one in FIFO order are called
batch process.

Daemons

These are special types of background processes that start at system startup and

keep running forever as a service; they don’t die. They are started as system tasks
(run as services), spontaneously. However, they can be controlled by a user via the
init process.

What is a zombie process?

When a process finishes execution, it will have an exit status to report to its parent
process. Because of this last little bit of information, the process will remain in the

operating system’s process table as a zombie process, indicating that it is not to be
scheduled for further execution, but that it cannot be completely removed (and its

process ID cannot be reused) until it has been determined that the exit status is no
longer needed.

When a child exits, the parent process will receive a SIGCHLD signal to indicate that
one of its children has finished executing; the parent process will typically call

the wait() system call at this point. That call will provide the parent with the child’s

exit status, and will cause the child to be reaped, or removed from the process
table.

Process States:

As a process executes it changes state according to its circumstances. Linux processes have the

following states:

Running

The process is either running (it is the current process in the system) or it is ready to run (it is

waiting to be assigned to one of the system's CPUs).

Waiting

The process is waiting for an event or for a resource. Linux differentiates between two types of

waiting process; interruptible and uninterruptible. Interruptible waiting processes can be

interrupted by signals whereas uninterruptible waiting processes are waiting directly on hardware

conditions and cannot be interrupted under any circumstances.

Stopped

The process has been stopped, usually by receiving a signal. A process that is being debugged can

be in a stopped state.

Zombie

This is a halted process which, for some reason, still has a task_struct data structure in

the task vector. It is what it sounds like, a dead process.

Linux/Unix Process Management: ps, kill, top, df, free, nice Commands

What is a Process?

An instance of a program is called a Process. In simple terms, any command that you give to

your Linux machine starts a new process.

Running a Foreground Process

To start a foreground process, you can either run it from the dashboard, or you can run it from

the terminal.

When using the Terminal, you will have to wait, until the foreground process runs.

Running a Background process

If you start a foreground program/process from the terminal, then you cannot work on the

terminal, till the program is up and running.

Particular, data-intensive tasks take lots of processing power and may even take hours to

complete. You do not want your terminal to be held up for such a long time.

To avoid such a situation, you can run the program and send it to the background so that

terminal remains available to you. Let's learn how to do this -

https://cdn.guru99.com/images/whatisprocessid.jpg
https://cdn.guru99.com/images/foreground.png
https://cdn.guru99.com/images/bg.jpg

Fg

You can use the command "fg" to continue a program which was stopped and bring it to the

foreground.

The simple syntax for this utility is:

fg jobname

Example

1. Launch 'banshee' music player

2. Stop it with the 'ctrl +z' command

3. Continue it with the 'fg' utility.

Let's look at other important commands to manage processes -

Top

This utility tells the user about all the running processes on the Linux machine.

Press 'q' on the keyboard to move out of the process display.

The terminology follows:

Field Description Example 1 Example 2

PID The process ID of each task 1525 961

User The username of task owner Home Root

https://cdn.guru99.com/images/fg.png
https://cdn.guru99.com/images/top.png

PR Priority Can be 20(highest) or -20(lowest) 20 20

NI The nice value of a task 0 0

VIRT Virtual memory used (kb) 1775 75972

RES Physical memory used (kb) 100 51

SHR Shared memory used (kb) 28 7952

S Status

There are five types:

 'D' = uninterruptible sleep

 'R' = running

 'S' = sleeping

 'T' = traced or stopped

 'Z' = zombie

S R

%CPU % of CPU time 1.7 1.0

%MEM Physical memory used 10 5.1

TIME+ Total CPU time 5:05.34 2:23.42

Command Command name Photoshop.exe Xorg

PS

This command stands for 'Process Status'. It is similar to the "Task Manager" that pop-ups in a

Windows Machine when we use Cntrl+Alt+Del. This command is similar to 'top' command but

the information displayed is different.

To check all the processes running under a user, use the command -

ps ux

You can also check the process status of a single process, use the syntax -

ps PID

Kill

This command terminates running processes on a Linux machine.

To use these utilities you need to know the PID (process id) of the process you want to kill

https://cdn.guru99.com/images/ps.png
https://cdn.guru99.com/images/ps_pid.jpg

Syntax –

kill PID

To find the PID of a process simply type

pidof Process name

Let us try it with an example.

Creation of Process:

The below given program shows how to create a process:

#include<errno.h>

#include<stdio.h>

#include<unistd.h>

Main()

{

 pid_t pid

 pid=fork();//this will create a new process

 if(pid==-1) //if the process is not created

 perror(“fork”); // printing the error message

 else if(pid==0)

 printf(“this is a child process with pid:%d\n”,pid);

 else

 printf(“this is a parent process with pid:%d\n”,pid);

}

Compiling file process.c

https://cdn.guru99.com/images/kill.png

$gcc process.c

Executing the compiled file

$./a.out

The output generated by this program is:

This is a child process with pid: 0

This is a parent process with pid: 5335

Fork() function:

System call fork() is used to create processes. It takes no arguments and returns a process ID.

The purpose of fork() is to create a new process, which becomes the child process of the caller.

After a new child process is created, both processes will execute the next instruction following

the fork() system call. Therefore, we have to distinguish the parent from the child. This can be

done by testing the returned value of fork():

• If fork() returns a negative value, the creation of a child process was unsuccessful.

• fork() returns a zero to the newly created child process.

• fork() returns a positive value, the process ID of the child process, to the parent. The

returned process ID is of type pid_t defined in sys/types.h. Normally, the process ID is

an integer. Moreover, a process can use function getpid() to retrieve the process ID

assigned to this process.

• the child process will have a parent process ID (PPID) which is same as the PID of the

process that created it.

• The child process will have a unique process identifier (PID), like all other processes in

the system.

• The child process does not have the possibility to inherit any timers from its parent.

• Resource utilization and CPU timers will be reset to zero in the child process.

After the fork function completes its work, there exist two processes. Each process continues its

execution from the position, where fork() returns.

Syntax of fork() function:

#include<sys/types.h>

#include<unistd.h>

Pid_t fork(void);

Vfork() function:

It is used for creating new processes without copying the page tables belonging to the parent

process. Vfork() is faster than a fork(). It does not make any copy of the parent process address

space, rather it will borrow the parents memory and thread of the control, until a call to exit or

execve() is occurred. The execve() executes the program pointed by specified filename.

Whenever a new process is created by using vfork(), the parent process is suspended

temporarily and the child process will proceed by borrowing the parent proess address space.

This will be continued, until the child process calls execve() or exits at which the parent process

will be continued.

Vfork() function syntax:

#include<sys/types.h>

#include<vunistd.h>

Pid_t vfork();

getpid() and getppid() functions:

getpid(): the child process can acquire its own process ID by using getpid() function.

getppid(): the child process can acquire its parent process ID by using getppid() function.

Wait() function:

A process is said to be in waiting state, if it needs some resource for its execution or some event

to occur.

Syntax of wait() function:

#include<sys/wait.h>

Int wait(status)

Example:

#include<sys/wait.h>

#include<stdio.h>

#include<sys/wait.h>

Main()

{

Int statuspr,pid,cpid;

Pid=fork();

If(pid!=0)

{

Printf(“process id %d”,pid);

Cpid=wait(&statuspr);

Printf(“child process is in wait state”);

}

Else

{

Printf(“process id %d”,getpid());

Exit()

}

Printf(“pid %d is going to be terminated:”,pid);

}

Reasons for failure of creating a new process

The following are the possible reasons for the failure of creation of new processes:

➢ The resource limit on the number of processes permitted to a particular user ID has been

exceeded.

➢ The system wide limit on the number of processes that can be created has been reached.

Scheduling

The scheduler is the component of the kernel that selects which process to run next. The

scheduler (or process scheduler, as it is sometimes called) can be viewed as the code that

divides the finite resource of processor time between the runnable processes on a system. The

scheduler is the basis of a multitasking operating system such as Linux. By deciding what

process can run, the scheduler is responsible for best utilizing the system and giving the

impression that multiple processes are simultaneously executing.

The idea behind the scheduler is simple. To best utilize processor time, assuming there are

runnable processes, a process should always be running. If there are more processes than

processors in a system, some processes will not always be running. These processes are waiting

to run. Deciding what process runs next, given a set of runnable processes, is a fundamental

decision the scheduler must make.

Objectives of scheduling:

Scheduling policy determines when to switch and what process to choose. The following are

some of the scheduling objectives:

➢ To avoid process starvation

➢ To achieve good throughput for background jobs

➢ To improve system performance

➢ To enforce priorities

➢ To minimise the wasted resources overhead

➢ To achieve a balance between a response and utilization

➢ To support for soft real time processes

Processes running for a long time have their priorities decreased, whereas the processes which

are waiting for a long time will have their priorities increased dynamically.

Categories of Processes:

I/O bound processes: the processes which use I/O devices, and wait for a long time for I/O

operations to complete, can be treated as I/O bound processes.

CPU bound Processes: the processes which require a lot of CPU time, can be treated as CPU

bound processes.

Process Priority

A common type of scheduling algorithm is priority-based scheduling. The idea is to rank

processes based on their worth and need for processor time. Processes with a higher priority will

run before those with a lower priority, while processes with the same priority are scheduled

round-robin (one after the next, repeating).

Static Priority: The users assign this this priority to real-time processes ranging from 1 to 99. It

is not possible for the scheduler to change this static priority.

Dynamic Priority: it is sum of base priority time and the CPU time left for remaining process.

The static priority is always higher than dynamic priority. When there is no real time

process in running state, then only the scheduler will prefers to run conventional processes.

Scheduling Policies

SCHED_FIFO: First in-first out scheduling

 SCHED_FIFO can be used only with static priorities higher than 0, which means that when

a SCHED_FIFO threads becomes runnable, it will always immediately preempt any currently

running SCHED_OTHER,SCHED_BATCH, or SCHED_IDLE thread. SCHED_FIFO is a simple

scheduling algorithm without time slicing

SCHED_RR: round robin scheduling

 SCHED_RR is a simple enhancement of SCHED_FIFO. Everything described above for

SCHED_FIFO also applies to SCHED_RR, except that each thread is allowed to run only for a

maximum time quantum.

SCHED_OTHER: Default Linux time-sharing scheduling

 SCHED_OTHER can be used at only static priority 0 (i.e., threads under real-time policies

always have priority over SCHED_OTHER processes). SCHED_OTHER is the standard Linux

time-sharing scheduler that is intended for all threads that do not require the special real-time

mechanisms.

Scheduling in Multiprocessor Systems

In a multiprocessor system hopefully all of the processors are busily running processes. Each will

run the scheduler separately as its current process exhausts its time-slice or has to wait for a

system resource. The first thing to notice about an SMP system is that there is not just one idle

process in the system. In a single processor system the idle process is the first task in

the task vector, in an SMP system there is one idle process per CPU as you could have more

than one idle CPU. Additionally there is one current process per CPU, so SMP systems must keep

track of the current and idle processes for each processor.

Personalities

Name

personality - set the process execution domain

Synopsis

#include <sys/personality.h>

int personality(unsigned long persona);

Description

Linux supports different execution domains, or personalities, for each process. Among other

things, execution domains tell Linux how to map signal numbers into signal actions. The

execution domain system allows Linux to provide limited support for binaries compiled under

other UNIX-like operating systems.

This function will return the current personality() when persona equals 0xffffffff. Otherwise, it

will make the execution domain referenced by persona the new execution domain of the calling

process.

Return Value

On success, the previous persona is returned. On error, -1 is returned, and errno is set

appropriately.

Clonning

NAME

 clone - create a child process

SYNOPSIS

 #define _GNU_SOURCE

 #include <sched.h>

 int clone(int (*fn)(void *), void *child_stack,

 int flags, void *arg, ...

 /* pid_t *ptid, void *newtls, pid_t *ctid */);

 /* For the prototype of the raw system call, see NOTES */

https://linux.die.net/include/sys/personality.h

DESCRIPTION

 clone() creates a new process, in a manner similar to fork(2).

 This page describes both the glibc clone() wrapper function and the underlying system call

on which it is based. The main text describes the wrapper function; the differences for the raw

system call are described toward the end of this page.

 Unlike fork(2), clone() allows the child process to share parts of its execution context with

the calling process, such as the virtual address space, the table of file descriptors, and the table

of signal handlers.

 One use of clone() is to implement threads: multiple flows of control in a program that run

concurrently in a shared address space.

Signals

Signal is a notification, a message sent by either operating system or some application to our

program. Signals are a mechanism for one-way asynchronous notifications. A signal may be sent

from the kernel to a process, from a process to another process, or from a process to itself.

Signal typically alert a process to some event, such as a segmentation fault, or the user pressing

Ctrl-C.

Linux kernel implements about 30 signals. Each signal identified by a number, from 1 to 31.

Signals don't carry any argument and their names are mostly self explanatory. For

instance SIGKILL or signal number 9 tells the program that someone tries to kill it,

and SIGHUP used to signal that a terminal hangup has occurred, and it has a value of 1 on the

i386 architecture.

With the exception of SIGKILL and SIGSTOP which always terminates the process or stops the

process, respectively, processes may control what happens when they receive a signal. They can

1. accept the default action, which may be to terminate the process, terminate and coredump the

process, stop the process, or do nothing, depending on the signal.

2. Or, processes can elect to explicitly ignore or handle signals.

1. Ignored signals are silently dropped.

2. Handled signals cause the execution of a user-supplied signal handler function. The program

jumps to this function as soon as the signal is received, and the control of the program resumes

at the previously interrupted instructions.

ignal Name Description

SIGHUP 1 Hangup (POSIX)

SIGINT 2 Terminal interrupt (ANSI)

SIGQUIT 3 Terminal quit (POSIX)

http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man2/fork.2.html

Note that, we cannot ignore SIGSTOP and SIGKILL signals, because these signals provide a way

for the kernel or root user to stop or kill process in any circumstances. The default action for

these two signals is to terminate the process. These two signals can neither be caught nor be

ignored.

Sending and Receiving Signals:

The term raise is used to indicate the generation of a signal, and the term catch is used to

indicate the receipt of a signal.

Signals are raised by error conditions, and they are generated by the shell and terminal handlers

to cause interrupts and can also be sent from one process to another to pass information or to

modify the behavior.

Signals can be:

1. Raised

2. Caught

3. Acted upon

4. Ignored

If a process receives signals such as SIGFPE, SIGKILL, etc., the process will be terminated

immediately, and a core dump file is created. The core file is an image of the process, and we

can use it to debug.

Here is an example of the common situation when we use a signal: when we type the interrupt

character (Ctrl+C), the ISGINT signal will be sent to the foreground process(the program

currently running). This will cause the program to terminate unless it has some arrangement for

catching the signal.

The command kill can be used to send a signal to a process other than the current foreground

process.

Development with LINUX:

Everyone has a favorite development platform. With Windows becoming less popular, is Linux

getting the breakthrough it needs? The answer, on the surface, is “Yes.” If you haven’t yet

experimented with the operating system yourself, now’s the time to give it a try.

SIGKILL 9 Kill(can't be caught or ignored) (POSIX)

SIGALRM 14 Alarm clock (POSIX)

SIGCHLD 17 Child process has stopped or exited, changed (POSIX)

SIGTERM 15 Termination (ANSI)

mailto:http://www.theregister.co.uk/2017/02/15/think_different_shut_up_and_work_harder_says_linus_torvalds/

According to the Stack Overflow 2016 survey, desktop developers now constitute just 6.9

percent of all developers (and that also includes Mac Desktops). Over half of programming jobs

are now for Web developers, and that has opened up development on alternative platforms

such as Linux and Mac. That’s why, after 20 years of focusing on building Windows applications,

I decided to learn Linux, specifically Ubuntu.

So Why Switch?

Here’s why you might prefer Linux to Mac or Windows.

• It offers greater breadth and depth of open-source software.

• It’s less fiddly running open-source software on Linux.

• It runs on anything, especially an old Windows PC.

• Once you’ve learned the terminal commands, you can be extremely efficient and

productive.

• Rebuilding a Windows Development PC after a major crash can take hours or days to

reinstall everything. Linux, by contrast, is a lot quicker and also easier to containerize.

• The development environment is similar to production. It’s also likely to stay stable

longer, as there’s less commercial pressure to release new OS versions.

• In the world of servers, it reigns supreme. It’s also a major player in mobile, thanks to

Android.

Let’s look at a couple of these points:

Terminal Commands

Linux at heart is a command-line operating system with many commands for controlling and

configuring the system, running applications, and so on. You can control everything from the

command line.

This might be a bit of a controversial statement, but I’ve not seen any Linux GUIs that are quite

as good as Windows. To be fair to those GUis, they are far more user-friendly than a terminal,

and let you run multiple terminals at once; you can also browse around the file system far more

easily than issuing commands in a terminal. (To be a Linux developer, you should feel at home

with terminal commands, particularly for installing and updating software.)

Irrespective of the GUI used, if you are familiar with the terminal commands and one of the

shells, you can find your way around any Linux deployment. There are many popular shells,

though everyone knows Bash (a.k.a. Bourne-again Shell); they differ in features such as history,

saving commands as scripts, command line completion and the like.

Shell scripts are not unlike Windows batch files for controlling the system, but a lot more

powerful. They constitute a “mini-programming language,” albeit with many more commands,

and include constants, string and integer variables; if, case, for, while and until loops; as well as

job control, shell functions and aliases (and lots more).

Rebuilding After a Major Crash

http://stackoverflow.com/research/developer-survey-2016

If you’ve been developing on Windows for a couple of years, you’ve likely experienced a

catastrophic failure at some point, or had to move all your dev tools to a new version of

Windows.

Windows 10 is perhaps better at handling crashes than previous versions, but I’ve had to reload

my entire development package on Windows 95, 2000, XP and 7. None of these were total disk

crashes, and I had backups, but each wasted a day or two before I could get back to my pre-

crash state.

There are probably less than 20 pieces of development software that I need on a PC, but that

still means a lot of time spent reacquiring and reinstalling.

You can have the same issues with Linux, except most Linux upgrades don’t require application

reinstalls (and I’ve never experienced a catastrophic crash while working with Linux). In the event

of a total implosion, much of the software can be reinstalled with batch files made up of

multiple sudo apt install statements. It’s just far quicker.

Gcc:

The GNU compiler collection(gcc) is a command line compiler on linux systems. It is also c and

c++ compiler developed by the GNU project. For example, if one had written a program whose

filename is ‘add’, the compilation procedure is as follows:

➢ The primary way of compiling that file ‘add.c’ into an executable file called ‘add’ is gcc -o

add add.c.

➢ If the program compiles without any errors, it can be executed by typing ‘./add’

Gdb:

The gdb will step through the source code line by line or instruction by instruction. It is also

possible to know the value of any variable at run time.

Gnat:

It is an acronym for GNU NYU ada translator (GNAT). It is a free software compiler for the

programming language ‘ada’ which is part of the GNU compiler collection. The gcc compiler is

having the capability of compiling programs written in several languages including ada95, and c.

if the file extension is either ‘.ads’ or ‘.adb’, it assumes that the given program has been written

in ada and, then it will call the GNAT compiler to compile the particular specified file.

What is MySQL

MySQL is a fast, easy to use relational database. It is currently the most popular open-

source database. It is very commonly used in conjunction with PHP scripts to create

powerful and dynamic server-side applications.

MySQL is used for many small and big businesses. It is developed, marketed and

supported by MySQL AB, a Swedish company. It is written in C and C++.

Reasons of popularity

MySQL is becoming so popular because of these following reasons:

o MySQL is an open-source database so you don't have to pay a single penny to use it.

o MySQL is a very powerful program so it can handle a large set of functionality of the

most expensive and powerful database packages.

o MySQL is customizable because it is an open source database and the open-source GPL

license facilitates programmers to modify the SQL software according to their own

specific environment.

o MySQL is quicker than other databases so it can work well even with the large data

set.

o MySQL supports many operating systems with many languages like PHP, PERL, C,

C++, JAVA, etc.

o MySQL uses a standard form of the well-known SQL data language.

o MySQL is very friendly with PHP, the most popular language for web development.

o MySQL supports large databases, up to 50 million rows or more in a table. The default

file size limit for a table is 4GB, but you can increase this (if your operating system can

handle it) to a theoretical limit of 8 million terabytes (TB).

History of MySQL

MySQL is an open source database product that was created by MySQL AB, a company

founded in 1995 in Sweden. In 2008, MySQL AB announced that it had agreed to be

acquired by Sun Microsystems for approximately $1 billion.

Initial Efforts

The project of MySQL was started in 1979, when MySQL's inventor, Michael Widenius

developed an in-house database tool called UNIREG for managing databases. After that

UNIREG has been rewritten in several different languages and extended to handle big

databases. After some time Michael Widenius contacted David Hughes, the author of

mSQL, to see if Hughes would be interested in connecting mSQL to UNIREG's B+ ISAM

handler to provide indexing to mSQL. That's the way MySQL came in existence.

MySQL is named after the daughter of Michael Widenius whose name is "My".

MySQL Features

o Relational Database Management System (RDBMS): MySQL is a relational

database management system.

o Easy to use: MySQL is easy to use. You have to get only the basic knowledge of SQL.

You can build and interact with MySQL with only a few simple SQL statements.

o It is secure: MySQL consist of a solid data security layer that protects sensitive data

from intruders. Passwords are encrypted in MySQL.

o Client/ Server Architecture: MySQL follows a client /server architecture. There is a

database server (MySQL) and arbitrarily many clients (application programs), which

communicate with the server; that is, they query data, save changes, etc.

o Free to download: MySQL is free to use and you can download it from MySQL official

website.

o It is scalable: MySQL can handle almost any amount of data, up to as much as 50

million rows or more. The default file size limit is about 4 GB. However, you can

increase this number to a theoretical limit of 8 TB of data.

o Compatibale on many operating systems: MySQL is compatible to run on many

operating systems, like Novell NetWare, Windows* Linux*, many varieties of UNIX*

(such as Sun* Solaris*, AIX, and DEC* UNIX), OS/2, FreeBSD*, and others. MySQL

also provides a facility that the clients can run on the same computer as the server or

on another computer (communication via a local network or the Internet).

o Allows roll-back: MySQL allows transactions to be rolled back, commit and crash

recovery.

o High Performance: MySQL is faster, more reliable and cheaper because of its unique

storage engine architecture.

o High Flexibility: MySQL supports a large number of embedded applications which

makes MySQL very flexible.

o High Productivity: MySQL uses Triggers, Stored procedures and views which allows

the developer to give a higher productivity.

Disadvantages / Drawback of MySQL:

Following are the few disadvantages of MySQL:

o MySQL version less than 5.0 doesn't support ROLE, COMMIT and stored procedure.

o MySQL does not support a very large database size as efficiently.

o MySQL doesn't handle transactions very efficiently and it is prone to data corruption.

o MySQL is accused that it doesn't have a good developing and debugging tool compared

to paid databases.

o MySQL doesn't support SQL check constraints.

MySQL Data Types

A Data Type specifies a particular type of data, like integer, floating points, Boolean etc.

It also identifies the possible values for that type, the operations that can be performed

on that type and the way the values of that type are stored.

MySQL supports a lot number of SQL standard data types in various categories. It uses

many different data types broken into mainly three categories: numeric, date and time,

and string types.

Numeric Data Type

Data Type
Syntax

Description

INT A normal-sized integer that can be signed or unsigned. If signed, the allowable range is from
-2147483648 to 2147483647. If unsigned, the allowable range is from 0 to 4294967295. You
can specify a width of up to 11 digits.

TINYINT A very small integer that can be signed or unsigned. If signed, the allowable range is from -
128 to 127. If unsigned, the allowable range is from 0 to 255. You can specify a width of up
to 4 digits.

SMALLINT A small integer that can be signed or unsigned. If signed, the allowable range is from -32768
to 32767. If unsigned, the allowable range is from 0 to 65535. You can specify a width of up
to 5 digits.

MEDIUMINT A medium-sized integer that can be signed or unsigned. If signed, the allowable range is from
-8388608 to 8388607. If unsigned, the allowable range is from 0 to 16777215. You can
specify a width of up to 9 digits.

BIGINT A large integer that can be signed or unsigned. If signed, the allowable range is from -
9223372036854775808 to 9223372036854775807. If unsigned, the allowable range is from
0 to 18446744073709551615. You can specify a width of up to 20 digits.

FLOAT(m,d) A floating-point number that cannot be unsigned. You can define the display length (m) and
the number of decimals (d). This is not required and will default to 10,2, where 2 is the
number of decimals and 10 is the total number of digits (including decimals). Decimal
precision can go to 24 places for a float.

DOUBLE(m,d) A double precision floating-point number that cannot be unsigned. You can define the
display length (m) and the number of decimals (d). This is not required and will default to
16,4, where 4 is the number of decimals. Decimal precision can go to 53 places for a double.
Real is a synonym for double.

DECIMAL(m,d) An unpacked floating-point number that cannot be unsigned. In unpacked decimals, each
decimal corresponds to one byte. Defining the display length (m) and the number of decimals
(d) is required. Numeric is a synonym for decimal.

Date and Time Data Type:

Data Type
Syntax

Maximum Size Explanation

DATE Values range from '1000-01-01' to '9999-12-31'. Displayed as 'yyyy-mm-dd'.

DATETIME Values range from '1000-01-01 00:00:00' to '9999-12-
31 23:59:59'.

Displayed as 'yyyy-mm-dd
hh:mm:ss'.

TIMESTAMP(m) Values range from '1970-01-01 00:00:01' UTC to '2038-
01-19 03:14:07' TC.

Displayed as 'YYYY-MM-DD
HH:MM:SS'.

TIME Values range from '-838:59:59' to '838:59:59'. Displayed as 'HH:MM:SS'.

YEAR[(2|4)] Year value as 2 digits or 4 digits. Default is 4 digits.

String Data Types:

Data Type Syntax Maximum Size Explanation

CHAR(size) Maximum size of 255
characters.

Where size is the number of characters to store. Fixed-
length strings. Space padded on right to equal size
characters.

VARCHAR(size) Maximum size of 255
characters.

Where size is the number of characters to store.
Variable-length string.

TINYTEXT(size) Maximum size of 255
characters.

Where size is the number of characters to store.

TEXT(size) Maximum size of 65,535
characters.

Where size is the number of characters to store.

MEDIUMTEXT(size) Maximum size of 16,777,215
characters.

Where size is the number of characters to store.

LONGTEXT(size) Maximum size of 4GB or
4,294,967,295 characters.

Where size is the number of characters to store.

BINARY(size) Maximum size of 255
characters.

Where size is the number of binary characters to store.
Fixed-length strings. Space padded on right to equal size
characters.
(introduced in MySQL 4.1.2)

VARBINARY(size) Maximum size of 255
characters.

Where size is the number of characters to store.
Variable-length string.
(introduced in MySQL 4.1.2)

Large Object Data Types (LOB) Data Types:

Data Type Syntax Maximum Size

TINYBLOB Maximum size of 255 bytes.

BLOB(size) Maximum size of 65,535 bytes.

MEDIUMBLOB Maximum size of 16,777,215 bytes.

LONGTEXT Maximum size of 4gb or 4,294,967,295 characters.

How to install MySQL

Download MySQL

Follow these steps:

o Go to MySQL official website http://www.mysql.com/downloads/

o Choose the version number for MySQL community server which you want.

Installing MySQL on Windows

Your downloaded MySQL is neatly packaged with an installer. Download the installer

package, unzip it anywhere and run setup.exe.

By default, this process will install everything under C:\mysql.

Verify MySQL installation

Once MySQL has been successfully installed, the base tables have been initialized, and the

server has been started, you can verify its working via some simple tests.

Open your MySQL Command Line Client, it should be appeared with a mysql> prompt. If

you have set any password, write your password here. Now, you are connected to the

MySQL server and you can execute all the SQL command at mysql> prompt as follows:

For example: Check the already created databases with show databases command:

Mysql User Creation: Setting Up a New MySQL User Account

How do I create a user account on MySQL database server?

When you try to access MySQL database server from client such as mysql or even programming
language such as php or perl you need a user account. MySQL has sophisticated user management
system that controls who can access server and from which client system. It uses special tables in
mysql database. In order to create a new user account you need a MySQL root account password.
You need to use the GRANT SQL command to set up the MySQL user account. Finally, use the
account’s name and password to make connections to the MySQL server.

Please note that MySQL root user account is different from UNIX/Linux root login account.
For example, the MySQL root user and the Linux/Unix root user are separate and have nothing to
do with each other, even though the username is the same in each case.

Setup a root user password
To setup root password for first time, use mysqladmin command at shell prompt as follows:

$ mysqladmin -u root password NEWPASSWO

If you want to change or update a root user password, then you need to use the following
command:

$ mysqladmin -u root -p'oldpassword' password newpass

Procedure for setting up a MySQL user account
Login in as mysql root user. At shell prompt type the following command:

$ mysql -u root -p
OR

$ mysql -u root -h your-mysql-server-host-name -p

Create a new mysql database called demo. Type the following command at mysql> prompt:

mysql> CREATE DATABASE demo;

Create a new user called user1 for database called demo:

mysql> GRANT ALL ON demo.* TO user1@localhost IDENTIFIED BY 'mypassword';

How do I connect to MySQL database demo using user1 account?
User user1 can connect to demo database using the following shell command:

$ mysql -u user1 -p demo

OR
$ mysql -u user1 -h your-mysql-server-host-name-here -p demo

Where,

• -u user1 : MySQL Username

• -h : MySQL server name (default is localhost)

• -p : Prompt for password

• demo: demo is name of mysql database (optional)

https://www.cyberciti.biz/faq/mysql-change-root-password/

Starting and Terminating mysql

Problem

You want to start and stop the mysql program.

Solution

Invoke mysql from your command prompt to start it, specifying any connection parameters that

may be necessary. To leave mysql, use a QUIT statement.

Discussion

To start the mysql program, try just typing its name at your command-line prompt. If mysql starts
up correctly, you’ll see a short message, followed by a mysql> prompt that indicates the program is
ready to accept queries. To illustrate, here’s what the welcome message looks like

% mysql

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 18427 to server version: 3.23.51-log

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

If mysql tries to start but exits immediately with an “access denied” message, you’ll need to specify
connection parameters. The most commonly needed parameters are the host to connect to (the host
where the MySQL server runs), your MySQL username, and a password. For example:

% mysql -h localhost -p -u cbuser
Enter password: cbpass

In general, I’ll show mysql commands in examples with no connection parameter options. I assume
that you’ll supply any parameters that you need, either on the command line, or in an option file
(Recipe 1.5) so that you don’t have to type them each time you invoke mysql.

If you don’t have a MySQL username and password, you need to obtain permission to use the MySQL
server,

The syntax and default values for the connection parameter options are shown in the following table.
These options have both a single-dash short form and a double-dash long form.

As
the

table indicates, there is no default password. To supply one, use --password or -p, then enter your
password when mysql prompts you for it:

% mysql -pEnter password: ← enter your password here

Parameter type Option syntax forms Default value

Hostname -h hostname--host=hostname localhost

Username -u username--user=username Your login name

Password -p--password None

https://www.safaribooksonline.com/library/view/mysql-cookbook/0596001452/ch01s05.html

If you like, you can specify the password directly on the command line by using either -ppassword
(note that there is no space after the -p) or --password=password. I don’t recommend doing this
on a multiple-user machine, because the password may be visible momentarily to other users who

are running tools such as ps that report process information.

If you get an error message that mysql cannot be found or is an invalid command when you try to
invoke it, that means your command interpreter doesn’t know where mysql is installed.

To terminate a mysql session, issue a QUIT statement:

mysql> QUIT

You can also terminate the session by issuing an EXIT statement or (under Unix) by typing Ctrl-D.
The way you specify connection parameters for mysql also applies to other MySQL programs such
as mysqldump and mysqladmin. For example, some of the actions that mysqladmin can
perform are available only to the MySQL root account, so you need to specify name and password

options for that user:

% mysqladmin -p -u root shutdown
Enter password:

MySQL Create Database

You can create a MySQL database by using MySQL Command Line Client.

Open the MySQL console and write down password, if you set one while installation. You will get the
following:

Now you are ready to create database.

Syntax:

CREATE DATABASE database_name;

Example:

Let's take an example to create a database name "employees"

CREATE DATABASE employees;

It will look like this:

You can check the created database by the following query:

SHOW DATABASES;

Output

Here, you can see the all created databases.

MySQL SELECT Database

SELECT Database is used in MySQL to select a particular database to work with. This query is used
when multiple databases are available with MySQL Server.

You can use SQL command USE to select a particular database.

Syntax:

USE database_name;

Example:

Let's take an example to use a database name "customers".

USE customers;

It will look like this:

Note: All the database names, table names and table fields name are case sensitive. You must have
to use proper names while giving any SQL command.

MySQL Drop Database

You can drop/delete/remove a MySQL database easily with the MySQL command. You should be
careful while deleting any database because you will lose your all the data available in your database.

Syntax:

DROP DATABASE database_name;

Example:

Let's take an example to drop a database name "employees"

DROP DATABASE employees;

It will look like this:

Now you can check that either your database is removed by executing the following query:

SHOW DATABASES;

Output:

Here, you can see that the database "employees" is removed.

MySQL CREATE TABLE

The MySQL CREATE TABLE command is used to create a new table into the database. A table creation
command requires three things:

o Name of the table

o Names of fields

o Definitions for each field

Syntax:

Following is a generic syntax for creating a MySQL table in the database.

CREATE TABLE table_name (column_name column_type...);

Example:

Here, we will create a table named "cus_tbl" in the database "customers".

CREATE TABLE cus_tbl(
 cus_id INT NOT NULL AUTO_INCREMENT,
 cus_firstname VARCHAR(100) NOT NULL,

 cus_surname VARCHAR(100) NOT NULL,
 PRIMARY KEY (cus_id)

);

Note:

1. Here, NOT NULL is a field attribute and it is used because we don't want this field to be NULL. If you

will try to create a record with NULL value, then MySQL will raise an error.

2. The field attribute AUTO_INCREMENT specifies MySQL to go ahead and add the next available
number to the id field.PRIMARY KEY is used to define a column as primary key. You can use multiple
columns separated by comma to define a primary key.

Visual representation of creating a MySQL table:

See the created table:

Use the following command to see the table already created:

1. SHOW tables;

See the table structure:

Use the following command to see the table already created:

1. DESCRIBE cus_tbl;

MySQL ALTER Table

MySQL ALTER statement is used when you want to change the name of your table or any table
field. It is also used to add or delete an existing column in a table.

The ALTER statement is always used with "ADD", "DROP" and "MODIFY" commands according to
the situation.

1) ADD a column in the table

Syntax:

ALTER TABLE table_name
ADD new_column_name column_definition

[FIRST | AFTER column_name];

Parameters

table_name: It specifies the name of the table that you want to modify.

new_column_name: It specifies the name of the new column that you want to add to the table.

column_definition: It specifies the data type and definition of the column (NULL or NOT NULL,
etc).

FIRST | AFTER column_name: It is optional. It tells MySQL where in the table to create the
column. If this parameter is not specified, the new column will be added to the end of the table.

Example:

In this example, we add a new column "cus_age" in the existing table "cus_tbl".

Use the following query to do this:

ALTER TABLE cus_tbl
ADD cus_age varchar(40) NOT NULL;

Output:

See the recently added column:

1. SELECT* FROM cus_tbl;

Output:

2) Add multiple columns in the table

Syntax:

ALTER TABLE table_name
 ADD new_column_name column_definition

 [FIRST | AFTER column_name],
ADD new_column_name column_definition
[FIRST | AFTER column_name],
 ... ;

Example:

In this example, we add two new columns "cus_address", and cus_salary in the existing table
"cus_tbl". cus_address is added after cus_surname column and cus_salary is added after cus_age
column.

Use the following query to do this:

ALTER TABLE cus_tbl
ADD cus_address varchar(100) NOT NULL
AFTER cus_surname,
ADD cus_salary int(100) NOT NULL
AFTER cus_age ;

See the recently added columns:

SELECT* FROM cus_tbl;

3) MODIFY column in the table

The MODIFY command is used to change the column definition of the table.

Syntax:

ALTER TABLE table_name
MODIFY column_name column_definition
[FIRST | AFTER column_name];

Example:

In this example, we modify the column cus_surname to be a data type of varchar(50) and force
the column to allow NULL values.

Use the following query to do this:

ALTER TABLE cus_tbl
MODIFY cus_surname varchar(50) NULL;

See the table structure:

4) DROP column in table

Syntax:

ALTER TABLE table_name
DROP COLUMN column_name;
 Let's take an example to drop the column name "cus_address" from the table "cus_tbl".

Use the following query to do this:

ALTER TABLE cus_tbl
DROP COLUMN cus_address;

Output:

See the table structure:

5) RENAME column in table

Syntax:

ALTER TABLE table_name
CHANGE COLUMN old_name new_name
column_definition
[FIRST | AFTER column_name]

Example:

In this example, we will change the column name "cus_surname" to "cus_title".

Use the following query to do this:

ALTER TABLE cus_tbl

CHANGE COLUMN cus_surname cus_title
varchar(20) NOT NULL;

Output:

6) RENAME table

Syntax:

1. ALTER TABLE table_name
2. RENAME TO new_table_name;

Example:

In this example, the table name cus_tbl is renamed as cus_table.

ALTER TABLE cus_tbl
RENAME TO cus_table;

Output:

See the renamed table:

MySQL TRUNCATE Table

MYSQL TRUNCATE statement removes the complete data without removing its structure.

The TRUNCATE TABLE statement is used when you want to delete the complete data from a table
without removing the table structure.

Syntax:

TRUNCATE TABLE table_name;

Example:

This example specifies how to truncate a table. In this example, we truncate the table "cus_tbl".

TRUNCATE TABLE cus_tbl;

Output:

See the table:

1. SELECT* FROM cus_tbl;

Output:

MySQL DROP Table

MYSQL DROP table statement removes the complete data with structure.

Syntax:

DROP TABLE table_name;

Example:

This example specifies how to drop a table. In this example, we are dropping the table "cus_tbl".

DROP TABLE cus_tbl;

MySQL TRUNCATE Table vs DROP Table

You can also use DROP TABLE command to delete complete table but it will remove complete table

data and structure both. You need to re-create the table again if you have to store some data. But
in the case of TRUNCATE TABLE, it removes only table data not structure. You don't need to re-
create the table again because the table structure already exists.

MySQL View

In MySQL, View is a virtual table created by a query by joining one or more tables.

MySQL Create VIEW

A VIEW is created by SELECT statements. SELECT statements are used to take data from the source
table to make a VIEW.

Syntax:

CREATE [OR REPLACE] VIEW view_name AS
SELECT columns
FROM tables

[WHERE conditions];

Parameters:

OR REPLACE: It is optional. It is used when a VIEW already exist. If you do not specify this clause
and the VIEW already exists, the CREATE VIEW statement will return an error.

view_name: It specifies the name of the VIEW that you want to create in MySQL.

WHERE conditions: It is also optional. It specifies the conditions that must be met for the records
to be included in the VIEW.

The following example will create a VIEW name "trainer". This is a virtual table made by taking data
from the table "courses".

CREATE VIEW trainer AS
SELECT course_name, course_trainer
FROM courses;

To see the created VIEW:

Syntax:

SELECT * FROM view_name;

Let's see how it looks the created VIEW:

SELECT * FROM trainer;

MySQL Update VIEW

In MYSQL, the ALTER VIEW statement is used to modify or update the already created VIEW without
dropping it.

Syntax:

ALTER VIEW view_name AS
SELECT columns
FROM table
WHERE conditions;

Example:

The following example will alter the already created VIEW name "trainer" by adding a new column.

ALTER VIEW trainer AS

SELECT course_name, course_trainer, course_id
FROM courses;

To see the altered VIEW:

SELECT*FROM trainer;

MySQL Drop VIEW

You can drop the VIEW by using the DROP VIEW statement.

Syntax:

DROP VIEW [IF EXISTS] view_name;

Parameters:

view_name: It specifies the name of the VIEW that you want to drop.

IF EXISTS: It is optional. If you do not specify this clause and the VIEW doesn't exist, the DROP
VIEW statement will return an error.

Example:

DROP VIEW trainer;

MySQL Queries

A list of commonly used MySQL queries to create database, use database, create table,

insert record, update record, delete record, select record, truncate table and drop table

are given below.

1) MySQL Create Database

MySQL create database is used to create database. For example

create database db1;

2) MySQL Select/Use Database

MySQL use database is used to select database. For example

use db1;

3) MySQL Create Query

MySQL create query is used to create a table, view, procedure and function. For example:

CREATE TABLE customers
(id int(10),
name varchar(50),
city varchar(50),
PRIMARY KEY (id));

4) MySQL Alter Query

MySQL alter query is used to add, modify, delete or drop colums of a table. Let's see a query to add
column in customers table:

ALTER TABLE customers
ADD age varchar(50);

5) MySQL Insert Query

MySQL insert query is used to insert records into table. For example:

insert into customers values(101,'rahul','delhi');

6) MySQL Update Query

MySQL update query is used to update records of a table. For example:

update customers set name='bob', city='london' where id=101;

7) MySQL Delete Query

MySQL update query is used to delete records of a table from database. For example:

delete from customers where id=101;

8) MySQL Select Query

Oracle select query is used to fetch records from database. For example:

SELECT * from customers;

9) MySQL Truncate Table Query

MySQL update query is used to truncate or remove records of a table. It doesn't remove structure.
For example:

truncate table customers;

10) MySQL Drop Query

MySQL drop query is used to drop a table, view or database. It removes structure and data of a
table if you drop table. For example:

drop table customers;

MySQL INSERT Statement

MySQL INSERT statement is used to insert data in MySQL table within the database. We can insert
single or multiple records using a single query in MySQL.

Syntax:

The SQL INSERT INTO command is used to insert data in MySQL table. Following is a generic syntax:

INSERT INTO table_name (field1, field2,...fieldN)
VALUES
(value1, value2,...valueN);

Field name is optional. If you want to specify partial values, field name is mandatory.

Syntax for all fields:

INSERT INTO table_name VALUES (value1, value2,...valueN);

MySQL INSERT Example 1: for all fields

If you have to store all the field values, either specify all field name or don't specify any field.

Example:

INSERT INTO emp VALUES (7, 'Sonoo', 40000);

Or,

INSERT INTO emp(id,name,salary) VALUES (7, 'Sonoo', 40000);

MySQL INSERT Example 2: for partial fields

In such case, it is mandatory to specify field names.

INSERT INTO emp(id,name) VALUES (7, 'Sonoo');

MySQL INSERT Example 3: inserting multiple records

Here, we are going to insert record in the "cus_tbl" table of "customers" database.

INSERT INTO cus_tbl
(cus_id, cus_firstname, cus_surname)
VALUES
(5, 'Ajeet', 'Maurya'),

(6, 'Deepika', 'Chopra'),
(7, 'Vimal', 'Jaiswal');

Visual Representation:

See the data within the table by using the SELECT command:

MySQL UPDATE Query

MySQL UPDATE statement is used to update data of the MySQL table within the database. It is used
when you need to modify the table.

Syntax:

Following is a generic syntax of UPDATE command to modify data into the MySQL table:

UPDATE table_name SET field1=new-value1, field2=new-value2
[WHERE Clause]

Note:

o One or more field can be updated altogether.

o Any condition can be specified by using WHERE clause.

o You can update values in a single table at a time.

o WHERE clause is used to update selected rows in a table.

Example:

Here, we have a table "cus_tbl" within the database "customers". We are going to update the data
within the table "cus_tbl".

This query will update cus_surname field for a record having cus_id as 5.

UPDATE cus_tbl

SET cus_surname = 'Ambani'

WHERE cus_id = 5;

Visual Representation:

Output by SELECT query:

1. SELECT * FROM cus_tbl;

Here, you can see that the table is updated as per your conditions.

MySQL DELETE Statement

MySQL DELETE statement is used to delete data from the MySQL table within the database. By using
delete statement, we can delete records on the basis of conditions.

Syntax:

DELETE FROM table_name
WHERE
(Condition specified);

Example:

DELETE FROM cus_tbl
WHERE cus_id = 6;

Output:

MySQL SELECT Statement

The MySQL SELECT statement is used to fetch data from the one or more tables in MySQL. We can

retrieve records of all fields or specified fields.

Syntax for specified fields:

SELECT expressions
FROM tables

[WHERE conditions];

Syntax for all fields:

SELECT * FROM tables [WHERE conditions];

MySQL SELECT Example 1: for specified fields

In such case, it is mandatory to specify field names.

Example:

SELECT officer_name, address

FROM officers

MySQL SELECT Example 2: for all fields

In such case, we can specify either all fields or * (asterisk) symbol.

SELECT * FROM officers

MySQL SELECT Example 3: from multiple tables

MySQL WHERE Clause

MySQL WHERE Clause is used with SELECT, INSERT, UPDATE and DELETE clause to filter the results.
It specifies a specific position where you have to do the operation.

Syntax:

WHERE conditions;

Parameter:

conditions: It specifies the conditions that must be fulfilled for records to be selected.

MySQL WHERE Clause with single condition

Let's take an example to retrieve data from a table "officers".

Table structure:

Execute this query:

SELECT *
FROM officers
WHERE address = 'Mau';

Output:

MySQL WHERE Clause with AND condition

In this example, we are retrieving data from the table "officers" with AND condition.

Execute the following query:

SELECT *
FROM officers
WHERE address = 'Lucknow'
AND officer_id < 5;

Output:

WHERE Clause with OR condition

Execute the following query:

SELECT *
FROM officers
WHERE address = 'Lucknow'
OR address = 'Mau';

Output:

MySQL WHERE Clause with combination of AND & OR conditions

You can also use the AND & OR conditions altogether with the WHERE clause.

See this example:

Execute the following query:

SELECT *
FROM officers

WHERE (address = 'Mau' AND officer_name = 'Ajeet')
OR (officer_id < 5);

Output:

MySQL Distinct Clause

MySQL DISTINCT clause is used to remove duplicate records from the table and fetch only the unique
records. The DISTINCT clause is only used with the SELECT statement.

Syntax:

SELECT DISTINCT expressions
FROM tables
[WHERE conditions];

Parameters

expressions: specify the columns or calculations that you want to retrieve.

tables: specify the name of the tables from where you retrieve records. There must be at least one

table listed in the FROM clause.

WHERE conditions: It is optional. It specifies the conditions that must be met for the records to
be selected.

Note:

o If you put only one expression in the DISTINCT clause, the query will return the unique
values for that expression.

o If you put more than one expression in the DISTINCT clause, the query will retrieve unique

combinations for the expressions listed.

o In MySQL, the DISTINCT clause doesn't ignore NULL values. So if you are using the
DISTINCT clause in your SQL statement, your result set will include NULL as a distinct value.

MySQL DISTINCT Clause with single expression

If you use a single expression then the MySQL DISTINCT clause will return a single field with unique

records (no duplicate record).

See the table:

Use the following query:

SELECT DISTINCT address
FROM officers;

MySQL DISTINCT Clause with multiple expressions

If you use multiple expressions with DISTINCT Clause then MySQL DISTINCT clause will remove
duplicates from more than one field in your SELECT statement.

Use the following query:

SELECT DISTINCT officer_name, address
FROM officers;

MySQL FROM Clause

The MySQL FROM Clause is used to select some records from a table. It can also be used to retrieve
records from multiple tables using JOIN condition.

Syntax:

FROM table1
[{ INNER JOIN | LEFT [OUTER] JOIN| RIGHT [OUTER] JOIN } table2
ON table1.column1 = table2.column1]

Parameters

table1 and table2: specify tables used in the MySQL statement. The two tables are joined based
on table1.column1 = table2.column1.

Note:

o If you are using the FROM clause in a MySQL statement then at least one table must have
been selected.

o If you are using two or more tables in the MySQL FROM clause, these tables are generally
joined using INNER or OUTER joins.

MySQL FROM Clause: Retrieve data from one table

The following query specifies how to retrieve data from a single table.

Use the following Query:

SELECT *
FROM officers

WHERE officer_id <= 3;

MySQL FROM Clause: Retrieve data from two tables with inner join

MySQL FROM Clause: Retrieve data from two tables using outer join

MySQL ORDER BY Clause

The MYSQL ORDER BY Clause is used to sort the records in ascending or descending order.

Syntax:

SELECT expressions
FROM tables
[WHERE conditions]
ORDER BY expression [ASC | DESC];

Parameters

expressions: It specifies the columns that you want to retrieve.

tables: It specifies the tables, from where you want to retrieve records. There must be at least one

table listed in the FROM clause.

WHERE conditions: It is optional. It specifies conditions that must be fulfilled for the records to be
selected.

ASC: It is optional. It sorts the result set in ascending order by expression (default, if no modifier is
provider).

DESC: It is also optional. It sorts the result set in descending order by expression.

Note: You can use MySQL ORDER BY clause in a SELECT statement, SELECT LIMIT statement, and
DELETE LIMIT statement.

MySQL ORDER BY: without using ASC/DESC attribute

If you use MySQL ORDER BY clause without specifying the ASC and DESC modifier then by default
you will get the result in ascending order.

Execute the following query:

SELECT *
FROM officers
WHERE address = 'Lucknow'

ORDER BY officer_name;

Output:

MySQL ORDER BY: with ASC attribute

Let's take an example to retrieve the data in ascending order.

Execute the following query:

SELECT *
FROM officers
WHERE address = 'Lucknow'
ORDER BY officer_name ASC;

Output:

MySQL ORDER BY: with DESC attribute

SELECT *
FROM officers

WHERE address = 'Lucknow'
ORDER BY officer_name DESC;

MySQL ORDER BY: using both ASC and DESC attributes

Execute the following query:

SELECT officer_name, address
FROM officers
WHERE officer_id < 5

ORDER BY officer_name DESC, address ASC;

Output:

MySQL GROUP BY Clause

The MYSQL GROUP BY Clause is used to collect data from multiple records and group the result by
one or more column. It is generally used in a SELECT statement.

You can also use some aggregate functions like COUNT, SUM, MIN, MAX, AVG etc. on the grouped
column.

Syntax:

SELECT expression1, expression2, ... expression_n,
aggregate_function (expression)
FROM tables
[WHERE conditions]
GROUP BY expression1, expression2, ... expression_n;

Parameters

expression1, expression2, ... expression_n: It specifies the expressions that are not
encapsulated within an aggregate function and must be included in the GROUP BY clause.

aggregate_function: It specifies a function such as SUM, COUNT, MIN, MAX, or AVG etc. tables:
It specifies the tables, from where you want to retrieve the records. There must be at least one table
listed in the FROM clause.

WHERE conditions: It is optional. It specifies the conditions that must be fulfilled for the records
to be selected.

(i) MySQL GROUP BY Clause with COUNT function

Consider a table named "officers" table, having the following records.

Now, let's count repetitive number of cities in the column address.

Execute the following query:

SELECT address, COUNT(*)

FROM officers
GROUP BY address;

Output:

(ii) MySQL GROUP BY Clause with SUM function

Let's take a table "employees" table, having the following data.

Now, the following query will GROUP BY the example using the SUM function and return the
emp_name and total working hours of each employee.

Execute the following query:

SELECT emp_name, SUM(working_hours) AS "Total working hours"
FROM employees
GROUP BY emp_name;

Output:

(iii) MySQL GROUP BY Clause with MIN function

The following example specifies the minimum working hours of the employees form the table
"employees".

Execute the following query:

SELECT emp_name, MIN(working_hours) AS "Minimum working hour"
FROM employees
GROUP BY emp_name;

Output:

(iv) MySQL GROUP BY Clause with MAX function

The following example specifies the maximum working hours of the employees form the table
"employees".

Execute the following query:

SELECT emp_name, MAX (working_hours) AS "Minimum working hour"
FROM employees

GROUP BY emp_name;

Output:

(v) MySQL GROUP BY Clause with AVG function

The following example specifies the average working hours of the employees form the table
"employees".

Execute the following query:

SELECT emp_name, AVG(working_hours) AS "Average working hour"
FROM employees
GROUP BY emp_name;

Output:

MySQL HAVING Clause

MySQL HAVING Clause is used with GROUP BY clause. It always returns the rows where condition is
TRUE.

Syntax:

SELECT expression1, expression2, ... expression_n,
aggregate_function (expression)
FROM tables
[WHERE conditions]
GROUP BY expression1, expression2, ... expression_n

HAVING condition;

Parameters

aggregate_function: It specifies any one of the aggregate function such as SUM, COUNT, MIN,
MAX, or AVG.

expression1, expression2, ... expression_n: It specifies the expressions that are not

encapsulated within an aggregate function and must be included in the GROUP BY clause.

WHERE conditions: It is optional. It specifies the conditions for the records to be selected.

HAVING condition: It is used to restrict the groups of returned rows. It shows only those groups
in result set whose conditions are TRUE.

HAVING Clause with SUM function

Consider a table "employees" table having the following data.

Here, we use the SUM function with the HAVING Clause to return the emp_name and sum of their
working hours.

Execute the following query:

SELECT emp_name, SUM(working_hours) AS "Total working hours"
FROM employees
GROUP BY emp_name
HAVING SUM(working_hours) > 5;

Simply, it can also be used with COUNT, MIN, MAX and AVG functions.

MySQL Conditions
MySQL AND MySQL OR MySQL AND OR MySQL LIKE MySQL IN MySQL NOT MySQL IS NULL MySQL
IS NOT NULL MySQL BETWEEN
MySQL Join

MySQL JOINS

MySQL JOINS are used with SELECT statement. It is used to retrieve data from multiple tables. It is

performed whenever you need to fetch records from two or more tables.

There are three types of MySQL joins:

o MySQL INNER JOIN (or sometimes called simple join)

o MySQL LEFT OUTER JOIN (or sometimes called LEFT JOIN)

o MySQL RIGHT OUTER JOIN (or sometimes called RIGHT JOIN)

MySQL Inner JOIN (Simple Join)

The MySQL INNER JOIN is used to return all rows from multiple tables where the join condition is
satisfied. It is the most common type of join.

https://www.javatpoint.com/mysql-and
https://www.javatpoint.com/mysql-or
https://www.javatpoint.com/mysql-and-or
https://www.javatpoint.com/mysql-like
https://www.javatpoint.com/mysql-in
https://www.javatpoint.com/mysql-not
https://www.javatpoint.com/mysql-is-null
https://www.javatpoint.com/mysql-is-not-null
https://www.javatpoint.com/mysql-is-not-null
https://www.javatpoint.com/mysql-between

Syntax:

SELECT columns
FROM table1
INNER JOIN table2
ON table1.column = table2.column;

Image representation:

Let's take an example:

Consider two tables "officers" and "students", having the following data.

Execute the following query:

SELECT officers.officer_name, officers.address, students.course_name
FROM officers

INNER JOIN students
ON officers.officer_id = students.student_id;

Output:

MySQL Left Outer Join

The LEFT OUTER JOIN returns all rows from the left hand table specified in the ON condition and
only those rows from the other table where the join condition is fulfilled.

Syntax:

SELECT columns
FROM table1
LEFT [OUTER] JOIN table2
ON table1.column = table2.column;

Image representation:

Let's take an example:
Consider two tables "officers" and "students", having the following data.

Execute the following query:

SELECT officers.officer_name, officers.address, students.course_name

FROM officers
LEFT JOIN students
ON officers.officer_id = students.student_id;

Output:

MySQL Right Outer Join

The MySQL Right Outer Join returns all rows from the RIGHT-hand table specified in the ON condition
and only those rows from the other table where he join condition is fulfilled.

Syntax:

SELECT columns
FROM table1
RIGHT [OUTER] JOIN table2
ON table1.column = table2.column;

Image representation:

Let's take an example:

Consider two tables "officers" and "students", having the following data.

Execute the following query:

SELECT officers.officer_name, officers.address, students.course_name, students.student_name
FROM officers
RIGHT JOIN students
ON officers.officer_id = students.student_id;

Output:

Aggregate Functions

MySQL count() MySQL sum() MySQL avg() MySQL min() MySQL max() MySQL first() MySQL last()

String Functions:

S.No. Function Example

1 CHAR_LENGTH(str)

Returns the length of the string str, measured in
characters. A multi-byte character counts as a single
character. This means that for a string containing
five two-byte characters, LENGTH() returns 10,
whereas CHAR_LENGTH() returns 5.

mysql> SELECT CHAR_LENGTH("text");
+---+
| CHAR_LENGTH("text") |
+---+
| 4 |
+---+
1 row in set (0.00 sec)

2 CONCAT(str1,str2,...)
Returns the string that results from concatenating
the arguments. May have one or more arguments.
If all arguments are non-binary strings, the result is
a non-binary string. If the arguments include any
binary strings, the result is a binary string. A numeric
argument is converted to its equivalent binary
string form; if you want to avoid that, you can use
an explicit type cast, as in this example:

mysql> SELECT CONCAT('My', 'S', 'QL');
+---+
| CONCAT('My', 'S', 'QL') |
+---+
| MySQL |
+---+
1 row in set (0.00 sec)

3 BIT_LENGTH(str)
Returns the length of the string str in bits.

mysql> SELECT BIT_LENGTH('text');
+---+
| BIT_LENGTH('text') |
+---+
| 32 |
+---+
1 row in set (0.00 sec)

https://www.javatpoint.com/mysql-count
https://www.javatpoint.com/mysql-sum
https://www.javatpoint.com/mysql-average
https://www.javatpoint.com/mysql-min
https://www.javatpoint.com/mysql-max
https://www.javatpoint.com/mysql-first
https://www.javatpoint.com/mysql-last

4 CONCAT_WS(separator,str1,str2,...)
CONCAT_WS() stands for Concatenate With
Separator and is a special form of CONCAT(). The
first argument is the separator for the rest of the
arguments. The separator is added between the
strings to be concatenated. The separator can be a
string, as can the rest of the arguments. If the
separator is NULL, the result is NULL.

mysql> SELECT CONCAT_WS(',','First name','Last Name'
);
+---+
| CONCAT_WS(',','First name','Last Name') |
+---+
| First name, Last Name |
+---+
1 row in set (0.00 sec)

5 FORMAT(X,D)
Formats the number X to a format like
'#,###,###.##', rounded to D decimal places, and
returns the result as a string. If D is 0, the result has
no decimal point or fractional part.

mysql> SELECT FORMAT(12332.123456, 4);
+---+
| FORMAT(12332.123456, 4) |
+---+
| 12,332.1235 |
+---+
1 row in set (0.00 sec)

6 INSERT(str,pos,len,newstr)
Returns the string str, with the substring beginning
at position pos and len characters long replaced by
the string newstr. Returns the original string if pos
is not within the length of the string. Replaces the
rest of the string from position pos if len is not
within the length of the rest of the string. Returns
NULL if any argument is NULL.

mysql> SELECT INSERT('Quadratic', 3, 4, 'What');
+---+
| INSERT('Quadratic', 3, 4, 'What') |
+---+
| QuWhattic |
+---+
1 row in set (0.00 sec)

7 INSTR(str,substr)
Returns the position of the first occurrence of
substring substr in string str. This is the same as the
two-argument form of LOCATE(), except that the
order of the arguments is reversed.

mysql> SELECT INSTR('foobarbar', 'bar');
+---+
| INSTR('foobarbar', 'bar') |
+---+
| 4 |
+---+
1 row in set (0.00 sec)

8 LOWER(str)
Returns the string str with all characters changed to
lowercase according to the current character set
mapping.

mysql> SELECT LOWER('QUADRATICALLY');
+---+
| LOWER('QUADRATICALLY') |
+---+
| quadratically |
+---+
1 row in set (0.00 sec)

9 LTRIM(str)
Returns the string str with leading space characters
removed.

mysql> SELECT LTRIM(' barbar');
+---+
| LTRIM(' barbar') |
+---+
| barbar |
+---+
1 row in set (0.00 sec)

Date and Time Functions

S.No. Function Example

1 CURDATE()

Returns the current date as a value in 'YYYY-MM-
DD' or YYYYMMDD format, depending on whether
the function is used in a string or numeric context.

mysql> SELECT CURDATE();
+---+
| CURDATE() |
+---+
| 1997-12-15 |
+---+
1 row in set (0.00 sec)

mysql> SELECT CURDATE() + 0;
+---+
| CURDATE() + 0 |
+---+
| 19971215 |
+---+
1 row in set (0.00 sec)

2 CURTIME()

Returns the current time as a value in 'HH:MM:SS'
or HHMMSS format, depending on whether the
function is used in a string or numeric context. The
value is expressed in the current time zone.

mysql> SELECT CURTIME();
+---+
| CURTIME() |
+---+
| 23:50:26 |
+---+
1 row in set (0.00 sec)

mysql> SELECT CURTIME() + 0;
+---+
| CURTIME() + 0 |
+---+
| 235026 |
+---+
1 row in set (0.00 sec)

3 DATE(expr)

Extracts the date part of the date or datetime
expression expr.

mysql> SELECT DATE('2003-12-31 01:02:03');
+---+
| DATE('2003-12-31 01:02:03')
|
+---+
| 2003-12-31 |
+---+
1 row in set (0.00 sec)

4 DATEDIFF(expr1,expr2)

DATEDIFF() returns expr1 . expr2 expressed as a
value in days from one date to the other. expr1 and
expr2 are date or date-and-time expressions. Only
the date parts of the values are used in the
calculation.

mysql> SELECT DATEDIFF('1997-12-31
23:59:59','1997-12-30');
+---+
| DATEDIFF('1997-12-31 23:59:59','1997-
12-30') |
+---+
| 1 |
+---+
1 row in set (0.00 sec)

METADATA

Obtaining Database Metadata

MySQL provides several ways to obtain database metadata—that is, information about databases and the

objects in them:

• SHOW statements such as SHOW DATABASES or SHOW TABLES

• Tables in the INFORMATION_SCHEMA database

• Command-line programs such as mysqlshow or mysqldump

The following sections describe how to use each of these information sources to access metadata.

2.7.1. Obtaining Metadata with SHOW
MySQL provides a SHOW statement that displays many types of database metadata. SHOW is helpful for

keeping track of the contents of your databases and reminding yourself about the structure of your tables. The

following examples demonstrate a few uses for SHOW statements.

List the databases you can access:

SHOW DATABASES;

Display the CREATE DATABASE statement for a database:

SHOW CREATE DATABASE db_name;

List the tables in the default database or a given database:

SHOW TABLES;

SHOW TABLES FROM db_name;

SHOW TABLES doesn’t show TEMPORARY tables.

Display the CREATE TABLE statement for a table:

SHOW CREATE TABLE tbl_name;

Display information about columns or indexes in a table:

SHOW COLUMNS FROM tbl_name;

SHOW INDEX FROM tbl_name;

The DESCRIBE tbl_name and EXPLAIN tbl_name statements are synonymous with SHOW

COLUMNS FROM tbl_name.

Display descriptive information about tables in the default database or in a given database:

SHOW TABLE STATUS;

SHOW TABLE STATUS FROM db_name;

Several forms of the SHOW statement take a LIKE 'pattern' clause permitting a pattern to be given that

limits the scope of the output. MySQL interprets 'pattern' as an SQL pattern that may include the ‘%’ and

‘_’ wildcard characters. For example, this statement displays the names of columns in the student table

that begin with ‘s’:

mysql> SHOW COLUMNS FROM student LIKE 's%';

+------------+------------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+------------+------------------+------+-----+---------+----------------+
| sex | enum('F','M') | NO | | NULL | |
| student_id | int(10) unsigned | NO | PRI | NULL | auto_increment |
+------------+------------------+------+-----+---------+----------------+

To match a literal instance of a wildcard character in a LIKE pattern, precede it with a back-slash. This is

commonly done to match a literal ‘_’, which occurs frequently in database, table, and column names.

Any SHOW statement that supports a LIKE clause can also be written to use a WHERE clause. The statement

displays the same columns, but WHERE provides more flexibility about specifying which rows to return. The

WHERE clause should refer to the SHOW statement column names. If the column name is a reserved word such

as KEY, specify it as a quoted identifier. This statement determines which column in the student table is

the primary key:

mysql> SHOW COLUMNS FROM student WHERE `Key` = `PRI`;

+------------+------------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |

| student_id | int(10) unsigned | NO | PRI | NULL | auto_increment |
+------------+------------------+------+-----+---------+----------------+

MySQL: Sequences (AUTO_INCREMENT)

This MySQL tutorial explains how to create sequences using the AUTO_INCREMENT attribute in
MySQL with syntax and examples.

Description

In MySQL, you can create a column that contains a sequence of numbers (1, 2, 3, and so on) by

using the AUTO_INCREMENT attribute. The AUTO_INCREMENT attribute is used when you need to
create a unique number to act as a primary key in a table.

Syntax

The syntax to create a sequence (or use the AUTO_INCREMENT attribute) in MySQL is:

CREATE TABLE table_name

(

 column1 datatype NOT NULL AUTO_INCREMENT,

 column2 datatype [NULL | NOT NULL],

 ...

);

AUTO_INCREMENT
The attribute to use when you want MySQL to assign a sequence of numbers automatically to a field
(in essence, creating an autonumber field).
NULL or NOT NULL

Each column should be defined as NULL or NOT NULL. If this parameter is omitted, the database
assumes NULL as the default.

Note

You can use the LAST_INSERT_ID function to find last value assigned by the AUTO_INCREMENT
field.

Example
Let's look at an example of how to use a sequence or the AUTO_INCREMENT attribute in MySQL.
For example:

CREATE TABLE contacts
(contact_id INT(11) NOT NULL AUTO_INCREMENT,
 last_name VARCHAR(30) NOT NULL,
 first_name VARCHAR(25),

 birthday DATE,
 CONSTRAINT contacts_pk PRIMARY KEY (contact_id)
);

This MySQL AUTO_INCREMENT example creates a table called contacts which has 4 columns and

one primary key:

• The first column is called contact_id which is created as an INT datatype (maximum 11 digits in
length) and can not contain NULL values. It is set as an AUTO_INCREMENT field which means that
it is an autonumber field (starting at 1, and incrementing by 1, unless otherwise specified.)

• The second column is called last_name which is a VARCHAR datatype (maximum 30 characters in
length) and can not contain NULL values.

• The third column is called first_name which is a VARCHAR datatype (maximum 25 characters in
length) and can contain NULL values.

• The fourth column is called birthday which is a DATE datatype and can contain NULL values.

• The primary key is called contacts_pk and is set to the contact_id column.

Set AUTO_INCREMENT starting value
Now that you've created a table using the AUTO_INCREMENT attribute, how can you change the
starting value for the AUTO_INCREMENT field if you don't want to start at 1?
You can use the ALTER TABLE statement to change or set the next value assigned by the
AUTO_INCREMENT.

Syntax
In MySQL, the syntax to change the starting value for an AUTO_INCREMENT column using the ALTER
TABLE statement is:

ALTER TABLE table_name AUTO_INCREMENT = start_value;

table_name
The name of the table whose AUTO_INCREMENT value you wish to change. Since a table in MySQL

can only contain one AUTO_INCREMENT column, you are only required to specify the table name
that contains the sequence. You do not need to specify the name of the column that contains the
AUTO_INCREMENT value.

start_value
The next value in the sequence to assign in the AUTO_INCREMENT column.

Example
Let's look at an example of how to change the starting value for the AUTO_INCREMENT column in a
table in MySQL.
For example:

ALTER TABLE contacts AUTO_INCREMENT = 50;

This MySQL AUTO_INCREMENT example would change the next value in the AUTO_INCREMENT field
(ie: next value in the sequence) to 50 for the contact_id field in the contacts table.

https://www.techonthenet.com/mysql/functions/last_insert_id.php

PYTHON

Python is a general-purpose interpreted, interactive, object-oriented, and high-

level programming language. It was created by Guido van Rossum during 1985-

1990. Like Perl, Python source code is also available under the GNU General Public

License (GPL). It has become famous because of its apparent and easily

understandable syntax, portability and easy to learn.

Facts About Python

• Python is derived from programming languages such as ABC, Modula 3, small
talk, Algol-68.

• Python page is a file with a .py extension that contains could be the

combination of HTML Tags and Python scripts.

• In December 1989 the creator developed the 1st python interpreter as a

hobby and then on 16 October 2000, Python 2.0 was released with many

new features.

• On 3rd December 2008, Python 3.0 was released with more testing and

includes new features.

• Python is an open source scripting language.

• Python is free to download and use.

• Python is one of the official languages at Google.

Features of Python

• Interpreted Language: Python is processed at runtime by Python
Interpreter.

• Object-Oriented Language: It supports object-oriented features
and techniques of programming.

• Interactive Programming Language: Users can interact with the python
interpreter directly for writing programs.

• Easy language: Python is easy to learn language especially for beginners.

• Straightforward Syntax: The formation of python syntax is simple and
straightforward which also makes it popular.

• Easy to read: Python source-code is clearly defined and visible to the eyes.

• Portable: Python codes can be run on a wide variety of hardware platforms

having the same interface.

• Extendable: Users can add low level-modules to Python interpreter.

• Scalable: Python provides an improved structure for supporting large
programs then shell-scripts.

Python is used to create web and desktop applications, and some of the most

popular web applications like Instagram, YouTube, Spotify all has been developed

in Python, and you can also develop next big thing by using Python.

PYTHON Installation:

Python source code is available under the GNU General Public License (GPL).

Python interpreter is free, and downloads are available for all major platforms

(Windows, Mac OS, and Linux) in the form of source and binary. You can
download it from the Python Website: python.org.

Python GUI

There are various GUI based Python IDE that python programmers can use

for better coding experience.

Names of some Python interpreters are:

• PyCharm
• Python IDLE
• The Python Bundle

• pyGUI
• Sublime Text etc.

Interpreter:

Interpreter can be termed as system software which has the capability to read

and execute the program, rather you can say interpret programs. This
interpretation includes the source code of high-level language, programs that

are pre-compiled as well as scripts. It is to be noted that, interpreter interprets
program line-by-line, which means it translates one statement at a single go.
This feature makes easy for programmers to check any particular line at the

time of debugging, but slows down the overall time of execution of the entire
program.

Basics of PYTHON

Python is an interpreted programming language. Python source code is

compiled to bytecode as a .pyc file, and this bytecode can be interpreted.

There are two modes for using the Python interpreter:

1. Interactive Mode

2. Script Mode

https://www.python.org/

Interactive Mode

Without passing python script file to the interpreter, directly execute code to

Python prompt.

Example:

>>>2+6

Output:

8

The chevron at the beginning of the 1st line, i.e., the symbol >>> is a prompt
the python interpreter uses to indicate that it is ready. If the programmer

types 2+6, the interpreter replies 8.

Script Mode

Alternatively, programmers can store Python script source code in a file with

the .py extension, and use the interpreter to execute the contents of the file.
To execute the script by the interpreter, you have to tell the interpreter the

name of the file. For example, if you have a script name MyFile.py and you're
working on Unix, to run the script you have to type:

python MyFile.py

Working with the interactive mode is better when Python programmers deal

with small pieces of code as you can type and execute them immediately, but
when the code is more than 2-4 lines, using the script for coding can help to

modify and use the code in future.

Python - Variable Types

Variables are nothing but reserved memory locations to store values. This
means that when you create a variable you reserve some space in memory.

Based on the data type of a variable, the interpreter allocates memory and

decides what can be stored in the reserved memory. Therefore, by assigning
different data types to variables, you can store integers, decimals or

characters in these variables.

Assigning Values to Variables

Python variables do not need explicit declaration to reserve memory space.

The declaration happens automatically when you assign a value to a variable.

The equal sign (=) is used to assign values to variables.

The operand to the left of the = operator is the name of the variable and the

operand to the right of the = operator is the value stored in the variable. For

example −

#!/usr/bin/python

counter = 100 # An integer assignment

miles = 1000.0 # A floating point

name = "John" # A string

print counter

print miles

print name

Here, 100, 1000.0 and "John" are the values assigned to counter, miles, and

name variables, respectively. This produces the following result −

100
1000.0

John

Multiple Assignment

Python allows you to assign a single value to several variables simultaneously.

For example −

a = b = c = 1

Here, an integer object is created with the value 1, and all three variables are

assigned to the same memory location. You can also assign multiple objects

to multiple variables. For example −

a,b,c = 1,2,"john"

Here, two integer objects with values 1 and 2 are assigned to variables a and

b respectively, and one string object with the value "john" is assigned to the

variable c.

Standard Data Types

The data stored in memory can be of many types. For example, a person's

age is stored as a numeric value and his or her address is stored as

alphanumeric characters. Python has various standard data types that are

used to define the operations possible on them and the storage method for

each of them.

Python has five standard data types −

o Numbers

o String

o List

o Tuple

o Dictionary

Python Numbers

Number data types store numeric values. Number objects are created when

you assign a value to them. For example –

var1 = 1
var2 = 10

You can also delete the reference to a number object by using the del

statement. The syntax of the del statement is –

del var1[,var2[,var3[....,varN]]]]

You can delete a single object or multiple objects by using the del statement.

For example −

del var
del var_a, var_b

Python supports four different numerical types −

• int (signed integers)

• long (long integers, they can also be represented in octal and

hexadecimal)

• float (floating point real values)

• complex (complex numbers)

Examples

• Here are some examples of numbers −

int long float complex

10 51924361L 0.0 3.14j

100 -0x19323L 15.20 45.j

-786 0122L -21.9 9.322e-36j

080 0xDEFABCECBDAECBFBAEl 32.3+e18 .876j

-0490 535633629843L -90. -.6545+0J

-0x260 -052318172735L -32.54e100 3e+26J

0x69 -4721885298529L 70.2-E12 4.53e-7j

• Python allows you to use a lowercase l with long, but it is recommended

that you use only an uppercase L to avoid confusion with the number

1. Python displays long integers with an uppercase L.

• A complex number consists of an ordered pair of real floating-point

numbers denoted by x + yj, where x and y are the real numbers and j

is the imaginary unit.

Python Strings

Strings in Python are identified as a contiguous set of characters represented in

the quotation marks. Python allows for either pairs of single or double quotes.

Subsets of strings can be taken using the slice operator ([] and [:]) with indexes

starting at 0 in the beginning of the string and working their way from -1 at the

end.

The plus (+) sign is the string concatenation operator and the asterisk (*) is the

repetition operator. For example −

#!/usr/bin/python

str = 'Hello World!'

print str # Prints complete string

print str[0] # Prints first character of the string

print str[2:5] # Prints characters starting from 3rd to 5th

print str[2:] # Prints string starting from 3rd character

print str * 2 # Prints string two times

print str + "TEST" # Prints concatenated string

This will produce the following result −

Hello World!

H

llo

llo World!

Hello World!Hello World!

Hello World!TEST

Python Lists

Lists are the most versatile of Python's compound data types. A list contains items

separated by commas and enclosed within square brackets ([]). To some extent,

lists are similar to arrays in C. One difference between them is that all the items

belonging to a list can be of different data type.

The values stored in a list can be accessed using the slice operator ([] and [:])

with indexes starting at 0 in the beginning of the list and working their way to end

-1. The plus (+) sign is the list concatenation operator, and the asterisk (*) is the

repetition operator. For example −

#!/usr/bin/python

list = ['abcd', 786 , 2.23, 'john', 70.2]

tinylist = [123, 'john']

print list # Prints complete list

print list[0] # Prints first element of the list

print list[1:3] # Prints elements starting from 2nd till 3rd

print list[2:] # Prints elements starting from 3rd element

print tinylist * 2 # Prints list two times

print list + tinylist # Prints concatenated lists

This produce the following result −

['abcd', 786, 2.23, 'john', 70.200000000000003]

abcd

[786, 2.23]

[2.23, 'john', 70.200000000000003]

[123, 'john', 123, 'john']

['abcd', 786, 2.23, 'john', 70.200000000000003, 123, 'john']

Python Tuples

A tuple is another sequence data type that is similar to the list. A tuple consists of

a number of values separated by commas. Unlike lists, however, tuples are

enclosed within parentheses.

The main differences between lists and tuples are: Lists are enclosed in brackets

([]) and their elements and size can be changed, while tuples are enclosed in

parentheses (()) and cannot be updated. Tuples can be thought of as read-only

lists. For example −

#!/usr/bin/python

tuple = ('abcd', 786 , 2.23, 'john', 70.2)

tinytuple = (123, 'john')

print tuple # Prints complete list

print tuple[0] # Prints first element of the list

print tuple[1:3] # Prints elements starting from 2nd till 3rd

print tuple[2:] # Prints elements starting from 3rd element

print tinytuple * 2 # Prints list two times

print tuple + tinytuple # Prints concatenated lists

This produce the following result −

('abcd', 786, 2.23, 'john', 70.200000000000003)

abcd

(786, 2.23)

(2.23, 'john', 70.200000000000003)

(123, 'john', 123, 'john')

('abcd', 786, 2.23, 'john', 70.200000000000003, 123, 'john')

The following code is invalid with tuple, because we attempted to update a tuple,

which is not allowed. Similar case is possible with lists –

#!/usr/bin/python

tuple = ('abcd', 786 , 2.23, 'john', 70.2)

list = ['abcd', 786 , 2.23, 'john', 70.2]

tuple[2] = 1000 # Invalid syntax with tuple

list[2] = 1000 # Valid syntax with list

Python Dictionary

Python's dictionaries are kind of hash table type. They work like associative arrays

or hashes found in Perl and consist of key-value pairs. A dictionary key can be

almost any Python type, but are usually numbers or strings. Values, on the other

hand, can be any arbitrary Python object.

Dictionaries are enclosed by curly braces ({ }) and values can be assigned and

accessed using square braces ([]). For example −

#!/usr/bin/python

dict = {}

dict['one'] = "This is one"

dict[2] = "This is two"

tinydict = {'name': 'john','code':6734, 'dept': 'sales'}

print dict['one'] # Prints value for 'one' key

print dict[2] # Prints value for 2 key

print tinydict # Prints complete dictionary

print tinydict.keys() # Prints all the keys

print tinydict.values() # Prints all the values

This produce the following result −

This is one

This is two

{'dept': 'sales', 'code': 6734, 'name': 'john'}

['dept', 'code', 'name']

['sales', 6734, 'john']

Dictionaries have no concept of order among elements. It is incorrect to say that

the elements are "out of order"; they are simply unordered.

Python - Basic Operators

Operators are the constructs which can manipulate the value of operands.

Consider the expression 4 + 5 = 9. Here, 4 and 5 are called operands and +

is called operator.

Types of Operator

Python language supports the following types of operators.

o Arithmetic Operators
o Comparison (Relational) Operators

o Assignment Operators
o Logical Operators

o Bitwise Operators
o Membership Operators

o Identity Operators

Python - Decision Making

Decisions in a program are used when the program has conditional choices to
execute code block. Let's take an example of traffic lights, where different

colors of lights lit up at different situations based on the conditions of the road
or any specific rule.

It is the prediction of conditions that occur while executing a program to specify actions.
Multiple expressions get evaluated with an outcome of either TRUE or FALSE. These are
logical decisions, and Python also provides decision-making statements that to make

decisions within a program for an application based on the user requirement.

Python provides various types of conditional statements:

Statement Description

if Statements It consists of a Boolean expression which results is either TRUE or FALSE
followed by one or more statements.

if else Statements It also contains a Boolean expression. The if statement is followed by
an optional else statement & if the expression results in FALSE, then
else statement gets executed. It is also called alternative execution in
which there are two possibilities of the condition determined in which

any one of them will get executed.

Nested Statements We can implement if statement and or if-else statement inside another
if or if - else statement. Here more than one if conditions are applied &
there can be more than one if within elif.

if Statement

The decision-making structures can be recognized and understood using

flowcharts.

Figure - If condition Flowchart:

Syntax:

if expression:

 #execute your code

Example:

a = 15

if a > 10:

 print("a is greater")

Output:

a is greater

if else Statements

Figure - If else condition Flowchart:

Syntax:

if expression:

 #execute your code

else:

 #execute your code

Example:

a = 15

b = 20

if a > b:

 print("a is greater")

else:

 print("b is greater")

Output:

b is greater

elif Statements

elif - is a keyword used in Python replacement of else if to place another condition

in the program. This is called chained conditional.

Figure - elif condition Flowchart:

Syntax:

if expression:

 #execute your code

elif expression:

 #execute your code

else:

 #execute your code

Example:

a = 15

b = 15

if a > b:

 print("a is greater")

elif a == b:

 print("both are equal")

else:

 print("b is greater")

Output:

both are equal

Single Statement Condition

If the block of an executable statement of if - clause contains only a single line,

programmers can write it on the same line as a header statement.

Example:

a = 15

if (a == 15): print("The value of a is 15")

PHYTHON LOOPS:
In programming, loops are a sequence of instructions that does a specific set of

instructions or tasks based on some conditions and continue the tasks until it
reaches certain conditions.

It is seen that in programming, sometimes we need to write a set of instructions
repeatedly - which is a tedious task and the processing also takes time. So in
programming, we use iteration technique to repeat the same or similar type of

tasks based on the specified condition.

Statements are executed sequentially, but there sometimes occur such cases
where programmers need to execute a block of code several times. The control
structures of programming languages allow us to execute a statement or block of

statement repeatedly.

Types of Loops in Python

Python provides three types of looping techniques:

Loop Description

for Loop This is traditionally used when programmers had a piece of
code and wanted to repeat that 'n' number of times.

while Loop The loop gets repeated until the specific Boolean condition
is met.

Nested Loops Programmers can use one loop inside another; i.e., they

can use for loop inside while or vice - versa or for loop
inside for loop or while inside while.

for Loop

The graphical representation of the logic behind for looping is shown below:

Figure - for loop Flowchart:

Syntax:

for iterating_var in sequence:

 #execute your code

Example 01:

for x in range (0,3) :

 print ('Loop execution %d' % (x))

Output:

Loop execution 0

Loop execution 1

Loop execution 2

Example 02:

for letter in 'TutorialsCloud':

 print ('Current letter is:', letter)

Output:

Current letter is : T

Current letter is : u

Current letter is : t

Current letter is : o

Current letter is : r

Current letter is : i

Current letter is : a

Current letter is : l

Current letter is : s

Current letter is : C

Current letter is : l

Current letter is : o

Current letter is : u

Current letter is : d

while Loop

The graphical representation of the logic behind while looping is shown below:

Figure - while loop Flowchart:

Syntax:

while expression:

 #execute your code

Example:

#initialize count variable to 1

count =1

while count < 6 :

 print (count)

 count+=1

#the above line means count = count + 1

Output:

1

2

3

4

5

Nested Loops

Syntax:

for iterating_var in sequence:

 for iterating_var in sequence:

 #execute your code

 #execute your code

Example:

for g in range(1, 6):

 for k in range(1, 3):

 print ("%d * %d = %d" % (g, k, g*k))

Output:

1 * 1 = 1

1 * 2 = 2

2 * 1 = 2

2 * 2 = 4

3 * 1 = 3

3 * 2 = 6

4 * 1 = 4

4 * 2 = 8

5 * 1 = 5

5 * 2 = 10

Loop Control Statements

These statements are used to change execution from its normal sequence.

Python supports three types of loop control statements:

Python Loop Control Statements

Control Statements Description

Break statement It is used to exit a while loop or a for loop. It terminates the

looping & transfers execution to the statement next to the loop.

Continue statement It causes the looping to skip the rest part of its body & start re-

testing its condition.

Pass statement It is used in Python to when a statement is required

syntactically, and the programmer does not want to execute

any code block or command.

Break statement

Syntax:

break

Example:

count = 0

while count <= 100: print (count) count += 1 if count >= 3:

 break

Output:

0

1

2

Continue statement

Syntax:

continue

Example:

for x in range(10):

 #check whether x is even

 if x % 2 == 0:

 continue

 print (x)

Output:

1

3

5

7

9

Pass Statement

Syntax:

pass

Example:

for letter in 'TutorialsCloud':

 if letter == 'C':

 pass

 print ('Pass block')

 print ('Current letter is:', letter)

Output:

Current letter is : T

Current letter is : u

Current letter is : t

Current letter is : o

Current letter is : r

Current letter is : i

Current letter is : a

Current letter is : l

Current letter is : s

Pass block

Current letter is : C

Current letter is : l

Current letter is : o

Current letter is : u

Current letter is : d

PYTHON FUCNTIONS:

A function is a block of organized, reusable code that is used to perform a single, related

action. Functions provide better modularity for your application and a high degree of code

reusing.

As you already know, Python gives you many built-in functions like print(), etc. but you

can also create your own functions. These functions are called user-defined functions.

Defining a Function

You can define functions to provide the required functionality. Here are simple rules to

define a function in Python.

• Function blocks begin with the keyword def followed by the function name and

parentheses (()).

• Any input parameters or arguments should be placed within these parentheses. You

can also define parameters inside these parentheses.

• The first statement of a function can be an optional statement - the documentation

string of the function or docstring.

• The code block within every function starts with a colon (:) and is indented.

• The statement return [expression] exits a function, optionally passing back an

expression to the caller. A return statement with no arguments is the same as return

None.

Syntax

def functionname(parameters):
 "function_docstring"
 function_suite
 return [expression]

By default, parameters have a positional behavior and you need to inform them in the

same order that they were defined.

Example

The following function takes a string as input parameter and prints it on standard screen.

def printme(str):
 "This prints a passed string into this function"
 print str
 return

Calling a Function

Defining a function only gives it a name, specifies the parameters that are to be included

in the function and structures the blocks of code.

Once the basic structure of a function is finalized, you can execute it by calling it from

another function or directly from the Python prompt. Following is the example to call

printme() function −

#!/usr/bin/python

Function definition is here
def printme(str):
 "This prints a passed string into this function"
 print str
 return;

Now you can call printme function
printme("I'm first call to user defined function!")
printme("Again second call to the same function")

When the above code is executed, it produces the following result −

I'm first call to user defined function!
Again second call to the same function

Pass by reference vs value

All parameters (arguments) in the Python language are passed by reference. It means if

you change what a parameter refers to within a function, the change also reflects back in

the calling function. For example −

#!/usr/bin/python
Function definition is here
def changeme(mylist):
 "This changes a passed list into this function"
 mylist.append([1,2,3,4]);
 print "Values inside the function: ", mylist
 return
Now you can call changeme function
mylist = [10,20,30];
changeme(mylist);
print "Values outside the function: ", mylist

Here, we are maintaining reference of the passed object and appending values in the

same object. So, this would produce the following result −

Values inside the function: [10, 20, 30, [1, 2, 3, 4]]

Values outside the function: [10, 20, 30, [1, 2, 3, 4]]

There is one more example where argument is being passed by reference and the

reference is being overwritten inside the called function.

#!/usr/bin/python

Function definition is here
def changeme(mylist):
 "This changes a passed list into this function"
 mylist = [1,2,3,4]; # This would assig new reference in mylist
 print "Values inside the function: ", mylist
 return

Now you can call changeme function
mylist = [10,20,30];
changeme(mylist);
print "Values outside the function: ", mylist

The parameter mylist is local to the function changeme. Changing mylist within the

function does not affect mylist. The function accomplishes nothing and finally this would

produce the following result −

Values inside the function: [1, 2, 3, 4]

Values outside the function: [10, 20, 30]

Function Arguments

You can call a function by using the following types of formal arguments −

o Required arguments

o Keyword arguments

o Default arguments

o Variable-length arguments

Required arguments

Required arguments are the arguments passed to a function in correct positional order.

Here, the number of arguments in the function call should match exactly with the function

definition.

To call the function printme(), you definitely need to pass one argument, otherwise it

gives a syntax error as follows −

#!/usr/bin/python
Function definition is here
def printme(str):
 "This prints a passed string into this function"
 print str
 return;
Now you can call printme function
printme()

When the above code is executed, it produces the following result −

Traceback (most recent call last):
 File "test.py", line 11, in <module>
 printme();
TypeError: printme() takes exactly 1 argument (0 given)

Keyword arguments

Keyword arguments are related to the function calls. When you use keyword arguments

in a function call, the caller identifies the arguments by the parameter name.

This allows you to skip arguments or place them out of order because the Python

interpreter is able to use the keywords provided to match the values with parameters.

You can also make keyword calls to the printme() function in the following ways −

#!/usr/bin/python
Function definition is here
def printme(str):
 "This prints a passed string into this function"
 print str
 return;
Now you can call printme function
printme(str = "My string")

When the above code is executed, it produces the following result −

My string

The following example gives more clear picture. Note that the order of parameters does

not matter.

#!/usr/bin/python

Function definition is here
def printinfo(name, age):
 "This prints a passed info into this function"
 print "Name: ", name
 print "Age ", age
 return;

Now you can call printinfo function
printinfo(age=50, name="miki")

When the above code is executed, it produces the following result −

Name: miki
Age 50

Default arguments

A default argument is an argument that assumes a default value if a value is not provided

in the function call for that argument. The following example gives an idea on default

arguments, it prints default age if it is not passed −

#!/usr/bin/python

Function definition is here
def printinfo(name, age = 35):
 "This prints a passed info into this function"
 print "Name: ", name
 print "Age ", age
 return;

Now you can call printinfo function
printinfo(age=50, name="miki")
printinfo(name="miki")

When the above code is executed, it produces the following result −

Name: miki
Age 50
Name: miki
Age 35

Variable-length arguments

You may need to process a function for more arguments than you specified while defining

the function. These arguments are called variable-length arguments and are not named

in the function definition, unlike required and default arguments.

Syntax for a function with non-keyword variable arguments is this −

def functionname([formal_args,] *var_args_tuple):

 "function_docstring"

 function_suite

 return [expression]

An asterisk (*) is placed before the variable name that holds the values of all nonkeyword

variable arguments. This tuple remains empty if no additional arguments are specified

during the function call. Following is a simple example −

#!/usr/bin/python
Function definition is here
def printinfo(arg1, *vartuple):
 "This prints a variable passed arguments"
 print "Output is: "
 print arg1
 for var in vartuple:
 print var

 return;

Now you can call printinfo function
printinfo(10)
printinfo(70, 60, 50)

When the above code is executed, it produces the following result −

Output is:
10
Output is:
70
60
50

The Anonymous Functions

These functions are called anonymous because they are not declared in the standard

manner by using the def keyword. You can use the lambda keyword to create small

anonymous functions.

• Lambda forms can take any number of arguments but return just one value in the form

of an expression. They cannot contain commands or multiple expressions.

• An anonymous function cannot be a direct call to print because lambda requires an

expression

• Lambda functions have their own local namespace and cannot access variables other

than those in their parameter list and those in the global namespace.

• Although it appears that lambda's are a one-line version of a function, they are not

equivalent to inline statements in C or C++, whose purpose is by passing function

stack allocation during invocation for performance reasons.

Syntax

The syntax of lambda functions contains only a single statement, which is as follows −

lambda [arg1 [,arg2,.....argn]]:expression

Following is the example to show how lambda form of function works −

#!/usr/bin/python

Function definition is here
sum = lambda arg1, arg2: arg1 + arg2;

Now you can call sum as a function
print "Value of total : ", sum(10, 20)
print "Value of total : ", sum(20, 20)

When the above code is executed, it produces the following result –

Value of total : 30
Value of total : 40

The return Statement

The statement return [expression] exits a function, optionally passing back an expression

to the caller. A return statement with no arguments is the same as return None.

All the above examples are not returning any value. You can return a value from a function

as follows −

#!/usr/bin/python

Function definition is here
def sum(arg1, arg2):
 # Add both the parameters and return them."
 total = arg1 + arg2
 print "Inside the function : ", total
 return total;

Now you can call sum function
total = sum(10, 20);
print "Outside the function : ", total

When the above code is executed, it produces the following result −

Inside the function : 30

Outside the function : 30

Scope of Variables

All variables in a program may not be accessible at all locations in that program. This

depends on where you have declared a variable.

The scope of a variable determines the portion of the program where you can access a

particular identifier. There are two basic scopes of variables in Python −

o Global variables

o Local variables

Global vs. Local variables

Variables that are defined inside a function body have a local scope, and those defined

outside have a global scope.

This means that local variables can be accessed only inside the function in which they are

declared, whereas global variables can be accessed throughout the program body by all

functions. When you call a function, the variables declared inside it are brought into scope.

Following is a simple example −

#!/usr/bin/python

total = 0; # This is global variable.
Function definition is here
def sum(arg1, arg2):
 # Add both the parameters and return them."
 total = arg1 + arg2; # Here total is local variable.
 print "Inside the function local total : ", total
 return total;

Now you can call sum function
sum(10, 20);
print "Outside the function global total : ", total

When the above code is executed, it produces the following result −

Inside the function local total : 30
Outside the function global total : 0

PYTHON – MODULES:

A module allows you to logically organize your Python code. Grouping related

code into a module makes the code easier to understand and use. A module

is a Python object with arbitrarily named attributes that you can bind and

reference.

Simply, a module is a file consisting of Python code. A module can define

functions, classes and variables. A module can also include runnable code.

Example

The Python code for a module named aname normally resides in a file named

aname.py. Here's an example of a simple module, support.py

def print_func(par):
 print "Hello : ", par
 return

The import Statement

You can use any Python source file as a module by executing an import

statement in some other Python source file. The import has the following

syntax −

import module1[, module2[,... moduleN]

When the interpreter encounters an import statement, it imports the module

if the module is present in the search path. A search path is a list of directories

that the interpreter searches before importing a module. For example, to

import the module support.py, you need to put the following command at the

top of the script −

#!/usr/bin/python

Import module support
import support

Now you can call defined function that module as follows
support.print_func("Zara")

When the above code is executed, it produces the following result −

Hello : Zara

A module is loaded only once, regardless of the number of times it is imported.

This prevents the module execution from happening over and over again if

multiple imports occur.

The from...import Statement

Python's from statement lets you import specific attributes from a module into

the current namespace. The from...import has the following syntax −

from modname import name1[, name2[, ... nameN]]

For example, to import the function fibonacci from the module fib, use the

following statement −

from fib import fibonacci

This statement does not import the entire module fib into the current

namespace; it just introduces the item fibonacci from the module fib into the

global symbol table of the importing module.

The from...import * Statement

It is also possible to import all names from a module into the current

namespace by using the following import statement −

from modname import *

This provides an easy way to import all the items from a module into the

current namespace; however, this statement should be used sparingly.

PYTHON – FILES I/O

Printing to the Screen

The simplest way to produce output is using the print statement where you can pass zero

or more expressions separated by commas. This function converts the expressions you

pass into a string and writes the result to standard output as follows −

#!/usr/bin/python

print "Python is really a great language,", "isn't it?"

This produces the following result on your standard screen −

Python is really a great language, isn't it?

Reading Keyboard Input

Python provides two built-in functions to read a line of text from standard input, which by

default comes from the keyboard. These functions are −

o raw_input
o input

o

The raw_input Function

The raw_input([prompt]) function reads one line from standard input and returns it as a

string (removing the trailing newline).

#!/usr/bin/python

str = raw_input("Enter your input: ");
print "Received input is : ", str

This prompts you to enter any string and it would display same string on the screen. When

I typed "Hello Python!", its output is like this −

Enter your input: Hello Python

Received input is : Hello Python

The input Function

The input([prompt]) function is equivalent to raw_input, except that it assumes the input

is a valid Python expression and returns the evaluated result to you.

#!/usr/bin/python
str = input("Enter your input: ");
print "Received input is : ", str

This would produce the following result against the entered input −

Enter your input: [x*5 for x in range(2,10,2)]
Recieved input is : [10, 20, 30, 40]

Opening and Closing Files

Until now, you have been reading and writing to the standard input and output. Now, we

will see how to use actual data files.

Python provides basic functions and methods necessary to manipulate files by default.

You can do most of the file manipulation using a file object.

The open Function

Before you can read or write a file, you have to open it using Python's built-in open()

function. This function creates a file object, which would be utilized to call other support

methods associated with it.

Syntax

file object = open(file_name [, access_mode][, buffering])

Here are parameter details −

• file_name − The file_name argument is a string value that contains the name of the

file that you want to access.

• access_mode − The access_mode determines the mode in which the file has to be

opened, i.e., read, write, append, etc. A complete list of possible values is given below

in the table. This is optional parameter and the default file access mode is read (r).

• buffering − If the buffering value is set to 0, no buffering takes place. If the buffering

value is 1, line buffering is performed while accessing a file. If you specify the buffering

value as an integer greater than 1, then buffering action is performed with the indicated

buffer size. If negative, the buffer size is the system default(default behavior).

Here is a list of the different modes of opening a file –

1 r

Opens a file for reading only. The file pointer is placed at the beginning of the file. This is
the default mode.

2 rb

Opens a file for reading only in binary format. The file pointer is placed at the beginning
of the file. This is the default mode.

3 r+

Opens a file for both reading and writing. The file pointer placed at the beginning of the
file.

4 rb+

Opens a file for both reading and writing in binary format. The file pointer placed at the
beginning of the file.

5 w

Opens a file for writing only. Overwrites the file if the file exists. If the file does not exist,
creates a new file for writing.

6 wb

Opens a file for writing only in binary format. Overwrites the file if the file exists. If the
file does not exist, creates a new file for writing.

7 w+

Opens a file for both writing and reading. Overwrites the existing file if the file exists. If
the file does not exist, creates a new file for reading and writing.

8 wb+

Opens a file for both writing and reading in binary format. Overwrites the existing file if
the file exists. If the file does not exist, creates a new file for reading and writing.

9 a

Opens a file for appending. The file pointer is at the end of the file if the file exists. That
is, the file is in the append mode. If the file does not exist, it creates a new file for writing.

10 ab

Opens a file for appending in binary format. The file pointer is at the end of the file if the
file exists. That is, the file is in the append mode. If the file does not exist, it creates a
new file for writing.

11 a+

Opens a file for both appending and reading. The file pointer is at the end of the file if the
file exists. The file opens in the append mode. If the file does not exist, it creates a new

file for reading and writing.

12 ab+

Opens a file for both appending and reading in binary format. The file pointer is at the

end of the file if the file exists. The file opens in the append mode. If the file does not
exist, it creates a new file for reading and writing.

The file Object Attributes

Once a file is opened and you have one file object, you can get various information related

to that file.

Here is a list of all attributes related to file object −

Sr.No. Attribute & Description

1
file.closed

Returns true if file is closed, false otherwise.

2
file.mode

Returns access mode with which file was opened.

3
file.name

Returns name of the file.

4
file.softspace

Returns false if space explicitly required with print, true otherwise.

Example

#!/usr/bin/python

Open a file

fo = open("foo.txt", "wb")

print "Name of the file: ", fo.name

print "Closed or not : ", fo.closed

print "Opening mode : ", fo.mode

print "Softspace flag : ", fo.softspace

This produces the following result −

Name of the file: foo.txt

Closed or not : False

Opening mode : wb

Softspace flag : 0

The close() Method

The close() method of a file object flushes any unwritten information and closes the file

object, after which no more writing can be done.

Python automatically closes a file when the reference object of a file is reassigned to

another file. It is a good practice to use the close() method to close a file.

Syntax

fileObject.close();

Example

#!/usr/bin/python

Open a file
fo = open("foo.txt", "wb")
print "Name of the file: ", fo.name

Close opend file
fo.close()

This produces the following result −

Name of the file: foo.txt

Reading and Writing Files

The file object provides a set of access methods to make our lives easier. We would see

how to use read() and write() methods to read and write files.

The write() Method

The write() method writes any string to an open file. It is important to note that Python

strings can have binary data and not just text.

The write() method does not add a newline character ('\n') to the end of the string −

Syntax

fileObject.write(string);

Here, passed parameter is the content to be written into the opened file.

Example

#!/usr/bin/python

Open a file
fo = open("foo.txt", "wb")
fo.write("Python is a great language.\nYeah its great!!\n");

Close opend file
fo.close()

The above method would create foo.txt file and would write given content in that file and

finally it would close that file. If you would open this file, it would have following content.

Python is a great language.

Yeah its great!!

The read() Method

The read() method reads a string from an open file. It is important to note that Python

strings can have binary data. apart from text data.

Syntax

fileObject.read([count]);

Here, passed parameter is the number of bytes to be read from the opened file. This

method starts reading from the beginning of the file and if count is missing, then it tries

to read as much as possible, maybe until the end of file.

Example
Let's take a file foo.txt, which we created above.

#!/usr/bin/python

Open a file
fo = open("foo.txt", "r+")
str = fo.read(10);
print "Read String is : ", str
Close opend file
fo.close()

This produces the following result −

Read String is : Python is

File Positions

The tell() method tells you the current position within the file; in other words, the next

read or write will occur at that many bytes from the beginning of the file.

The seek(offset[, from]) method changes the current file position. The offset argument

indicates the number of bytes to be moved. The from argument specifies the reference

position from where the bytes are to be moved.

If from is set to 0, it means use the beginning of the file as the reference position and 1

means use the current position as the reference position and if it is set to 2 then the end

of the file would be taken as the reference position.

Example

Let us take a file foo.txt, which we created above.

#!/usr/bin/python

Open a file
fo = open("foo.txt", "r+")
str = fo.read(10);
print "Read String is : ", str

Check current position
position = fo.tell();
print "Current file position : ", position

Reposition pointer at the beginning once again
position = fo.seek(0, 0);
str = fo.read(10);
print "Again read String is : ", str
Close opend file
fo.close()

This produces the following result −

Read String is : Python is
Current file position : 10
Again read String is : Python is

Renaming and Deleting Files

Python os module provides methods that help you perform file-processing operations,

such as renaming and deleting files.

To use this module you need to import it first and then you can call any related functions.

The rename() Method

The rename() method takes two arguments, the current filename and the new filename.

Syntax

os.rename(current_file_name, new_file_name)

Example

Following is the example to rename an existing file test1.txt −

#!/usr/bin/python

import os

Rename a file from test1.txt to test2.txt

os.rename("test1.txt", "test2.txt")

The remove() Method

You can use the remove() method to delete files by supplying the name of the file to be

deleted as the argument.

Syntax

os.remove(file_name)

Example

Following is the example to delete an existing file test2.txt −

#!/usr/bin/python
import os

Delete file test2.txt
os.remove("text2.txt")

Directories in Python

All files are contained within various directories, and Python has no problem handling

these too. The os module has several methods that help you create, remove, and change

directories.

The mkdir() Method

You can use the mkdir() method of the os module to create directories in the current

directory. You need to supply an argument to this method which contains the name of the

directory to be created.

Syntax

os.mkdir("newdir")

Example
Following is the example to create a directory test in the current directory −

#!/usr/bin/python
import os

Create a directory "test"
os.mkdir("test")

The chdir() Method

You can use the chdir() method to change the current directory. The chdir() method takes

an argument, which is the name of the directory that you want to make the current

directory.

Syntax

os.chdir("newdir")

Example
Following is the example to go into "/home/newdir" directory −

#!/usr/bin/python
import os

Changing a directory to "/home/newdir"
os.chdir("/home/newdir")

The getcwd() Method

The getcwd() method displays the current working directory.

Syntax

os.getcwd()

Example
Following is the example to give current directory −

#!/usr/bin/python
import os

This would give location of the current directory
os.getcwd()

The rmdir() Method

The rmdir() method deletes the directory, which is passed as an argument in the method.

Before removing a directory, all the contents in it should be removed.

Syntax

os.rmdir('dirname')

Example

Following is the example to remove "/tmp/test" directory. It is required to give fully

qualified name of the directory, otherwise it would search for that directory in the current

directory.

#!/usr/bin/python

import os

This would remove "/tmp/test" directory.

os.rmdir("/tmp/test")

File & Directory Related Methods

There are three important sources, which provide a wide range of utility methods to handle

and manipulate files & directories on Windows and Unix operating systems. They are as

follows −

o File Object Methods: The file object provides functions to manipulate files.

o OS Object Methods: This provides methods to process files as well as directories.

PHYTHON – EXCEPTION HANDLING

Sometimes we what to catch some or all errors that can possibly get

generated; and as a programmer, we want to be as specific as possible. So,

python allows programmers to deal with errors smoothly.

Exceptions are events that are used to modify the flow of control through a
program when the error occurs. Exceptions get triggered automatically on

finding errors in Python.

These exceptions are processed using five statements. These are:

1. try/except: catch the error and recover from exceptions hoist by

programmers or Python itself.
2. try/finally: Whether exception occurs or not, it automatically performs the

clean-up action.

3. assert: triggers an exception conditionally in the code.
4. raise: manually triggers an exception in the code.

5. with/as: implement context managers in older versions of Python such as -
Python 2.6 & Python 3.0.

The last was an optional extension to Python 2.6 & Python 3.0.

https://www.tutorialspoint.com/python/file_methods.htm
https://www.tutorialspoint.com/python/os_file_methods.htm

Why are Exceptions Used?

Exceptions allow us to jump out of random illogical large chunks of codes in case

of errors. Let us take a scenario that you have given a function to do a specific
task. If you go there and found those things missing that are required to do that

specific task, what will you do? Either you stop working or think about a solution
- where to find those items to perform the task. The same thing happens here in

case of Exceptions also. Exceptions allow programmers jump to an exception
handler in a single step, abandoning all function calls. You can think exceptions to
an optimized quality go-to statement, in which the program error that occurs at

runtime gets easily managed by the exception block. When the interpreter
encounters an error, it lets the execution go to the exception part to solve and

continue the execution instead of stopping.

While dealing with exceptions, the exception handler creates a mark & executes

some code. Somewhere further within that program the exception is raised that
solves the problem & makes Python jump back to the marked location; by not

throwing away/skipping any active functions that were called after the marker was
left.

Roles of an Exception Handler in Python
• Error handling: The exceptions get raised whenever Python detects an error

in a program at runtime. As a programmer, if you don't want the default
behavior then code a 'try' statement to catch and recover the program from
an exception. Python will jump to the 'try' handler when the program detects

an error the execution will be resumed.
• Event Notification: Exceptions are also used to signal suitable conditions &

then passing result flags around a program & text them explicitly.
• Terminate Execution: There may arise some problems or errors in programs

that it needs a termination. So try/finally is used that guarantees that closing-

time operation will be performed. The 'with' statement offers an alternative
for objects that support it.

• Exotic flow of Control: Programmers can also use exceptions as a basis for
implementing unusual control flow. Since there is no 'go to' statement in
Python so exceptions can help in this respect.

A Simple Program to Demonstrate Python Exception Handling

Example 01:

(a,b) = (6,0)
try:# simple use of try-except block for handling errors
 g = a/b
except ZeroDivisionError:
 print ("This is a DIVIDED BY ZERO error")

Output:

This is a DIVIDED BY ZERO error

The above program can also be written like this:

Example 02:

(a,b) = (6,0)
try:

 g = a/b
except ZeroDivisionError as s:
 k = s

 print (k)
#Output will be: integer division or modulo by zero

Output:

division by zero

The 'try - Except' Clause with No Exception

The structure of such type of 'except' clause having no exception is shown with an
example.

try:
all operations are done within this block.

.
except:

this block will get executed if any exception encounters.
.
else:

this block will get executed if no exception is found.
.

All the exceptions get caught where there is try/except the statement of this type.
Good programmers use this technique of exception to make the program fully

executable.
'except' Clause with Multiple Exceptions

try:
all operations are done within this block.
.
except (Exception1 [, Exception2[,….Exception N]]]) :

this block will get executed if any exception encounters from the above lists of
exceptions.

.
else:
this block will get executed if no exception is found.

.

The 'try - Finally' Clause

try:
all operations are done within this block.
.

if any exception encounters, this block may get skipped.
finally:

this block will definitely be executed.

PHYTHON – OOP

The python is an Object-oriented programming Language. This means there
exists a concept called 'class' that let's programmer structure the codes of

software in a fashioned way. Because of the use of classes and objects, the
programming became easy to understand and code.

Defining Class and Object

A class is a technique to group functions and data members and put them in a

container so that they can be accessed later by using dot (.) operator. Objects are

the basic runtime entities of object-oriented programming. It defines the instance

of a class. Objects get their variables and functions from classes and the class we

will be creating are the templates made to create the object.

Object-Oriented Terminologies

o class: Classes are a user-defined data type that is used to encapsulate data
and associated functions together. It also helps in binding data together into
a single unit.

o Data Member: A variable or memory location name that holds value to does
a specific task within a program.

o Member Function: They are the functions; usually a block of a code snippet
that is written to re-use it.

o Instance variable: A variable that is defined inside a method of a class.
o Function Overloading: This technique is used to assign multiple tasks to a

single function & the tasks are performed based on the number of argument

or the type of argument the function has.
o Operator Overloading: It is the technique of assigning multiple

function/tasks to a particular operator.
o Inheritance: It is the process of acquiring the properties of one class to

another, i.e., one class can acquire the properties of another.

o Instantiation: It is the technique of creating an instance of a class.

Program for Class in Python

Example:

class karl :
 varabl = 'Hello'
def function(self) :

 print ("This is a message Hello")

Another program to explain functions inside a class:
Example:

class karl(object) :
 def __init__(self, x, y):

 self.x = x
 self.y = y

def sample(self) :
 print ("This is just a sample code")

In the above code, we created a class name karl using 'class' keyword. And two

functions are used namely __init__() (for setting the instance variable) &

sample(). Classes are used instead of modules because programmers can take

this class 'karl' & use it or modify it as many times as we want & each one won't

interfere with each other. Importing a module brings the entire program into use.

Creating Objects (Instance of A Class)

Let's see an example to show how to create an object:

Example:

class student:
 def __init__(self, roll, name):
 self.r = roll
 self.n = name

 print ((self.n))

#...
stud1 = student(1, "Alex")
stud2 = student(2, "Karlos")

print ("Data successfully stored in variables")

Output:

Alex
Karlos

Data successfully stored in variables

Accessing Object Variables

We can access the object's variable using dot (.) operator.

The syntax is:

my object_name.variable_name

Example:

print object.varabl

Accessing Attributes

Object attributes can also be accessed by using dot operator.

Example:

stud1.display()

stud2.display()

print ("total number of students are: %d" % student.i)

Use of Pre-defined Functions

Instead of using general statements to access attributes, programmers can use

the following functions:

o getattr(obj, name [,default]) : used to access object's attribute.

o hasattr(object, name): used for checking whether the attribute exists or not.

o setattr(obj, name, value) : set or create an attribute, if doesn't exist.

o delattr(obj, name) : used to delete an attribute.

Built-in Class Attributes

All the Python built-in class attributes can be accessed using dot (.) operator like

other attributes.

The built-in class attributes are:

o __dict__: This attribute is a dictionary that contains class's-namespace.

o __doc__: Used for class documentation string.

o __name__: used as class-name.

o __module__: used to define module name for the class in which it is
defined. In interactive mode it is __main__.

o __bases__: An empty tuple containing the base-class.

1 | P a g e

PHP Tutorial

The PHP Hypertext Pre-processor (PHP) is a programming language that allows web

developers to create dynamic content that interacts with databases.

PHP is basically used for developing web based software applications.

PHP Introduction

PHP started out as a small open source project that evolved as more and more people found out
how useful it was. Rasmus Lerdorf unleashed the first version of PHP way back in 1994.

• PHP is a recursive acronym for "PHP: Hypertext Preprocessor".

• PHP is a server side scripting language that is embedded in HTML. It is used to manage

dynamic content, databases, session tracking, even build entire e-commerce sites.

• It is integrated with a number of popular databases, including MySQL, PostgreSQL,

Oracle, Sybase, Informix, and Microsoft SQL Server.

• PHP is pleasingly zippy in its execution, especially when compiled as an Apache module

on the Unix side. The MySQL server, once started, executes even very complex queries

with huge result sets in record-setting time.

• PHP supports a large number of major protocols such as POP3, IMAP, and LDAP. PHP4

added support for Java and distributed object architectures (COM and CORBA), making

n-tier development a possibility for the first time.

• PHP is forgiving: PHP language tries to be as forgiving as possible.

• PHP Syntax is C-Like.

Common uses of PHP:

• PHP performs system functions, i.e. from files on a system it can create, open, read,

write, and close them.

• PHP can handle forms, i.e. gather data from files, save data to a file, thru email you can

send data, return data to the user.

• You add, delete, modify elements within your database thru PHP.

• Access cookies variables and set cookies.

• Using PHP, you can restrict users to access some pages of your website.

• It can encrypt data.

Characteristics of PHP

Five important characteristics make PHP's practical nature possible:

• Simplicity

• Efficiency

• Security

• Flexibility

• Familiarity

"Hello World" Script in PHP:

To get a feel for PHP, first start with simple PHP scripts. Since "Hello, World!" is an essential
example, first we will create a friendly little "Hello, World!" script.

As mentioned earlier, PHP is embedded in HTML. That means that in amongst your normal HTML

(or XHTML if you're cutting-edge) you'll have PHP statements like this:

2 | P a g e

It will produce following result:

If you examine the HTML output of the above example, you'll notice that the PHP code is not
present in the file sent from the server to your Web browser. All of the PHP present in the Web

page is processed and stripped from the page; the only thing returned to the client from the

Web server is pure HTML output.

All PHP code must be included inside one of the three special markup tags ate are recognised by

the PHP Parser.

Most common tag is the <?php...?> and we will also use same tag in our tutorial.

From the next chapter we will start with PHP Environment Setup on your machine and then we

will dig out almost all concepts related to PHP to make you comfortable with the PHP language.

PHP Environment Setup

In order to develop and run PHP Web pages three vital components need to be installed on your

computer system.

• Web Server - PHP will work with virtually all Web Server software, including Microsoft's

Internet Information Server (IIS) but then most often used is freely availble Apache

Server. Download Apache for free here: http://httpd.apache.org/download.cgi

• Database - PHP will work with virtually all database software, including Oracle and

Sybase but most commonly used is freely available MySQL database. Download MySQL

for free here: http://www.mysql.com/downloads/index.html

• PHP Parser - In order to process PHP script instructions a parser must be installed to

generate HTML output that can be sent to the Web Browser. This tutorial will guide you

how to install PHP parser on your computer.

PHP Parser Installation:

Before you proceed it is important to make sure that you have proper environment setup on

your machine to develop your web programs using PHP.

Type the following address into your browser's address box.

<html>

<head>

<title>Hello World</title>

<body>

<?php echo "Hello, World!";?>

</body>

</html>

Hello, World!

<?php PHP code goes here ?>

<? PHP code goes here ?>

<script language="php"> PHP code goes here </script>

http://127.0.0.1/info.php

http://httpd.apache.org/download.cgi
http://www.mysql.com/downloads/index.html
http://127.0.0.1/info.php

3 | P a g e

If this displays a page showing your PHP installation related information then it means you have

PHP and Webserver installed properly. Otherwise you have to follow given procedure to install
PHP on your computer.

Apache Configuration:

If you are using Apache as a Web Server then this section will guide you to edit Apache

Configuration Files.

PHP.INI File Configuration:

The PHP configuration file, php.ini, is the final and most immediate way to affect PHP's

functionality.

Windows IIS Configuration:

To configure IIS on your Windows machine you can refer your IIS Reference Manual shipped

along with IIS.

PHP Syntax Overview

This chapter will give you an idea of very basic syntax of PHP and very important to make your

PHP foundation strong.

Escaping to PHP:

The PHP parsing engine needs a way to differentiate PHP code from other elements in the page.
The mechanism for doing so is known as 'escaping to PHP.' There are four ways to do this:

Canonical PHP tags:

The most universally effective PHP tag style is:

If you use this style, you can be positive that your tags will always be correctly interpreted.

Short-open (SGML-style) tags:
Short or short-open tags look like this:

Short tags are, as one might expect, the shortest option You must do one of two things to

enable PHP to recognize the tags:

• Choose the --enable-short-tags configuration option when you're building PHP.

• Set the short_open_tag setting in your php.ini file to on. This option must be disabled

to parse XML with PHP because the same syntax is used for XML tags.

ASP-style tags:

ASP-style tags mimic the tags used by Active Server Pages to delineate code blocks. ASP-style

tags look like this:

To use ASP-style tags, you will need to set the configuration option in your php.ini file.

<?php...?>

<?...?>

<%...%>

4 | P a g e

HTML script tags:

HTML script tags look like this:

Commenting PHP Code:

A comment is the portion of a program that exists only for the human reader and stripped out
before displaying the programs result. There are two commenting formats in PHP:

Single-line comments: They are generally used for short explanations or notes relevant to the

local code. Here are the examples of single line comments.

Multi-lines printing: Here are the examples to print multiple lines in a single print statement:

Multi-lines comments: They are generally used to provide pseudocode algorithms and more

detailed explanations when necessary. The multiline style of commenting is the same as in C.
Here are the example of multi lines comments.

PHP is whitespace insensitive:

Whitespace is the stuff you type that is typically invisible on the screen, including spaces, tabs,

and carriage returns (end-of-line characters).

PHP whitespace insensitive means that it almost never matters how many whitespace

characters you have in a row.one whitespace character is the same as many such characters

<script language="PHP">...</script>

<?

This is a comment, and

This is the second line of the comment

// This is a comment too. Each style comments only
print "An example with single line comments";

?>

<?

First Example
print <<<END

This uses the "here document" syntax to output
multiple lines with $variable interpolation. Note
that the here document terminator must appear on a
line with just a semicolon no extra whitespace!

END;

Second Example
print "This spans

multiple lines. The newlines will be
output as well";

?>

<?

/* This is a comment with multiline
Author : Mohammad Mohtashim
Purpose: Multiline Comments Demo
Subject: PHP

*/

print "An example with multi line comments";

?>

5 | P a g e

For example, each of the following PHP statements that assigns the sum of 2 + 2 to the variable
$four is equivalent:

PHP is case sensitive:

Yeah it is true that PHP is a case sensitive language. Try out following example:

This will produce following result:

Statements are expressions terminated by semicolons:

A statement in PHP is any expression that is followed by a semicolon (;).Any sequence of valid

PHP statements that is enclosed by the PHP tags is a valid PHP program. Here is a typical
statement in PHP, which in this case assigns a string of characters to a variable called
$greeting:

Expressions are combinations of tokens:

The smallest building blocks of PHP are the indivisible tokens, such as numbers (3.14159),
strings (.two.), variables ($two), constants (TRUE), and the special words that make up the

syntax of PHP itself like if, else, while, for and so forth

Braces make blocks:

Although statements cannot be combined like expressions, you can always put a sequence of
statements anywhere a statement can go by enclosing them in a set of curly braces.

Here both statements are equivalent:

$four = 2 + 2; // single spaces

$four <tab>=<tab2<tab>+<tab>2 ; // spaces and tabs

$four =
2+

2; // multiple lines

<html>

<body>

<?

$capital = 67;

print("Variable capital is $capital
");
print("Variable CaPiTaL is $CaPiTaL
");

?>

</body>

</html>

Variable capital is 67
Variable CaPiTaL is

$greeting = "Welcome to PHP!";

if (3 == 2 + 1)

print("Good - I haven't totally lost my mind.
");

if (3 == 2 + 1)

{

print("Good - I haven't totally");
print("lost my mind.
");

}

6 | P a g e

Running PHP Script from Command Prompt:

Yes you can run your PHP script on your command prompt. Assuming you have following

content in test.php file

Now run this script as command prompt as follows:

It will produce following result:

Hope now you have basic knowledge of PHP Syntax.

PHP Variable Types

The main way to store information in the middle of a PHP program is by using a variable.

Here are the most important things to know about variables in PHP.

• All variables in PHP are denoted with a leading dollar sign ($).

• The value of a variable is the value of its most recent assignment.

• Variables are assigned with the = operator, with the variable on the left-hand side and

the expression to be evaluated on the right.

• Variables can, but do not need, to be declared before assignment.

• Variables in PHP do not have intrinsic types - a variable does not know in advance

whether it will be used to store a number or a string of characters.

• Variables used before they are assigned have default values.

• PHP does a good job of automatically converting types from one to another when

necessary.

• PHP variables are Perl-like.

PHP has a total of eight data types which we use to construct our variables:

• Integers: are whole numbers, without a decimal point, like 4195.

• Doubles: are floating-point numbers, like 3.14159 or 49.1.

• Booleans: have only two possible values either true or false.

• NULL: is a special type that only has one value: NULL.

• Strings: are sequences of characters, like 'PHP supports string operations.'

• Arrays: are named and indexed collections of other values.

• Objects: are instances of programmer-defined classes, which can package up both

other kinds of values and functions that are specific to the class.

• Resources: are special variables that hold references to resources external to PHP

(such as database connections).

The first five are simple types, and the next two (arrays and objects) are compound - the

compound types can package up other arbitrary values of arbitrary type, whereas the simple

types cannot.

We will explain only simile data type in this chapters. Array and Objects will be explained

separately.

<?php

echo "Hello PHP!!!!!";

?>

$ php test.php

Hello PHP!!!!!

7 | P a g e

Integers:
They are whole numbers, without a decimal point, like 4195. They are the simplest type .they

correspond to simple whole numbers, both positive and negative. Integers can be assigned to

variables, or they can be used in expressions, like so:

Integer can be in decimal (base 10), octal (base 8), and hexadecimal (base 16) format. Decimal
format is the default, octal integers are specified with a leading 0, and hexadecimals have a

leading 0x.

For most common platforms, the largest integer is (2**31 . 1) (or 2,147,483,647), and the

smallest (most negative) integer is . (2**31 . 1) (or .2,147,483,647).

Doubles:
They like 3.14159 or 49.1. By default, doubles print with the minimum number of decimal
places needed. For example, the code:

It produces the following browser output:

Boolean:
They have only two possible values either true or false. PHP provides a couple of constants

especially for use as Booleans: TRUE and FALSE, which can be used like so:

Interpreting other types as Booleans:

Here are the rules for determine the "truth" of any value not already of the Boolean type:

• If the value is a number, it is false if exactly equal to zero and true otherwise.

• If the value is a string, it is false if the string is empty (has zero characters) or is the

string "0", and is true otherwise.

• Values of type NULL are always false.

• If the value is an array, it is false if it contains no other values, and it is true otherwise.
For an object, containing a value means having a member variable that has been

assigned a value.

• Valid resources are true (although some functions that return resources when they are

successful will return FALSE when unsuccessful).

• Don't use double as Booleans.

Each of the following variables has the truth value embedded in its name when it is used in a

Boolean context.

$int_var = 12345;

$another_int = -12345 + 12345;

$many = 2.2888800;

$many_2 = 2.2111200;

$few = $many + $many_2;

print(.$many + $many_2 = $few
.);

2.28888 + 2.21112 = 4.5

if (TRUE)

print("This will always print
");
else

print("This will never print
");

8 | P a g e

NULL:
NULL is a special type that only has one value: NULL. To give a variable the NULL value, simply

assign it like this:

The special constant NULL is capitalized by convention, but actually it is case insensitive; you

could just as well have typed:

A variable that has been assigned NULL has the following properties:

• It evaluates to FALSE in a Boolean context.

• It returns FALSE when tested with IsSet() function.

Strings:
They are sequences of characters, like "PHP supports string operations". Following are valid

examples of string

Singly quoted strings are treated almost literally, whereas doubly quoted strings replace

variables with their values as well as specially interpreting certain character sequences.

This will produce following result:

There are no artificial limits on string length - within the bounds of available memory, you ought
to be able to make arbitrarily long strings.

Strings that are delimited by double quotes (as in "this") are preprocessed in both the following

two ways by PHP:

• Certain character sequences beginning with backslash (\) are replaced with special

characters

• Variable names (starting with $) are replaced with string representations of their

values.

$true_num = 3 + 0.14159;

$true_str = "Tried and true"

$true_array[49] = "An array element";

$false_array = array();

$false_null = NULL;

$false_num = 999 - 999;

$false_str = "";

$my_var = NULL;

$my_var = null;

$string_1 = "This is a string in double quotes";

$string_2 = "This is a somewhat longer, singly quoted string";

$string_39 = "This string has thirty-nine characters";

$string_0 = ""; // a string with zero characters

<?

$variable = "name";

$literally = 'My $variable will not print!\\n';
print($literally);

$literally = "My $variable will print!\\n";
print($literally);

?>

My $variable will not print!\n
My name will print

9 | P a g e

The escape-sequence replacements are:

• \n is replaced by the newline character

• \r is replaced by the carriage-return character

• \t is replaced by the tab character

• \$ is replaced by the dollar sign itself ($)

• \" is replaced by a single double-quote (")

• \\ is replaced by a single backslash (\)

Here Document:

You can assign multiple lines to a single string variable using here document:

This will produce following result:

Variable Scope:

Scope can be defined as the range of availability a variable has to the program in which it is

declared. PHP variables can be one of four scope types:

• Local variables

• Function parameters

• Global variables

• Static variables

<?php

$channel =<<<_XML_

<channel>

<title>What's For Dinner<title>

<link>http://menu.example.com/<link>

<description>Choose what to eat tonight.</description>

</channel>

XML;

echo <<<END

This uses the "here document" syntax to output
multiple lines with variable interpolation. Note
that the here document terminator must appear on a
line with just a semicolon. no extra whitespace!

END;

print $channel;

?>

This uses the "here document" syntax to output
multiple lines with variable interpolation. Note
that the here document terminator must appear on a
line with just a semicolon. no extra whitespace!

<channel>

<title>What's For Dinner<title>

<link>http://menu.example.com/<link>

<description>Choose what to eat tonight.</description>

http://www.phptpoint.com/php/php-variables/
http://www.phptpoint.com/php/php-function/
http://www.phptpoint.com/php/php-variables/php-super-global-variables/
http://www.phptpoint.com/php/php-function/
http://menu.example.com/
http://menu.example.com/

10 | P a g e

Variable Naming:

Rules for naming a variable is:

• Variable names must begin with a letter or underscore character.

• A variable name can consist of numbers, letters, underscores but you cannot use

characters like + , - , % , (,) . & , etc

There is no size limit for variables.

PHP Constants

A constant is a name or an identifier for a simple value. A constant value cannot change during

the execution of the script. By default a constant is case-sensitive. By convention, constant
identifiers are always uppercase. A constant name starts with a letter or underscore, followed by

any number of letters, numbers, or underscores. If you have defined a constant, it can never be

changed or undefined.

To define a constant you have to use define() function and to retrieve the value of a constant,
you have to simply specifying its name. Unlike with variables, you do not need to have a

constant with a $. You can also use the function constant() to read a constant's value if you

wish to obtain the constant's name dynamically.

constant() function:

As indicated by the name, this function will return the value of the constant.

This is useful when you want to retrieve value of a constant, but you do not know its name, i.e.
It is stored in a variable or returned by a function.

constant() example:

Only scalar data (boolean, integer, float and string) can be contained in constants.

Differences between constants and variables are:

• There is no need to write a dollar sign ($) before a constant, where as in Variable one

has to write a dollar sign.

• Constants cannot be defined by simple assignment, they may only be defined using the

define() function.

• Constants may be defined and accessed anywhere without regard to variable scoping

rules.

• Once the Constants have been set, may not be redefined or undefined.

<?php

define("MINSIZE", 50);

echo MINSIZE;

echo constant("MINSIZE"); // same thing as the previous line

?>

11 | P a g e

Valid and invalid constant names:

PHP Magic constants:

PHP provides a large number of predefined constants to any script which it runs.

There are five magical constants that change depending on where they are used. For example,
the value of LINE depends on the line that it's used on in your script. These special
constants are case-insensitive and are as follows:

A few "magical" PHP constants ate given below:

Name Description

 LINE The current line number of the file.

 FILE The full path and filename of the file. If used inside an include,the name of

the included file is returned. Since PHP 4.0.2, FILE always contains

an absolute path whereas in older versions it contained relative path under

some circumstances.

 FUNCTION__ The function name. (Added in PHP 4.3.0) As of PHP 5 this constant returns

the function name as it was declared (case-sensitive). In PHP 4 its value is

 always lowercased.

 CLASS The class name. (Added in PHP 4.3.0) As of PHP 5 this constant returns the

class name as it was declared (case-sensitive). In PHP 4 its value is always

lowercased.

 METHOD__ The class method name. (Added in PHP 5.0.0) The method name is

returned as it was declared (case-sensitive).

PHP Operator Types

What is Operator? Simple answer can be given using expression 4 + 5 is equal to 9. Here 4

and 5 are called operands and + is called operator. PHP language supports following type of
operators.

• Arithmetic Operators

• Comparision Operators

• Logical (or Relational) Operators

• Assignment Operators

• Conditional (or ternary) Operators

Lets have a look on all operators one by one.

// Valid constant names
define("ONE", "first thing");
define("TWO2", "second thing");
define("THREE_3", "third thing")

// Invalid constant names
define("2TWO", "second thing");
define(" THREE ", "third value");

12 | P a g e

Arithmatic Operators:

There are following arithmatic operators supported by PHP language:

Assume variable A holds 10 and variable B holds 20 then:

Operator Description Example

+ Adds two operands A + B will give 30

- Subtracts second operand from the first A - B will give -10

* Multiply both operands A * B will give 200

/ Divide numerator by denumerator B / A will give 2

% Modulus Operator and remainder of

after an integer division

B % A will give 0

++ Increment operator, increases integer

value by one

A++ will give 11

-- Decrement operator, decreases integer

value by one

A-- will give 9

Comparison Operators:

There are following comparison operators supported by PHP language

Assume variable A holds 10 and variable B holds 20 then:

Operator Description Example

== Checks if the value of two operands are

equal or not, if yes then condition

becomes true.

(A == B) is not true.

!= Checks if the value of two operands are

equal or not, if values are not equal

then condition becomes true.

(A != B) is true.

> Checks if the value of left operand is

greater than the value of right operand,

if yes then condition becomes true.

(A > B) is not true.

< Checks if the value of left operand is

less than the value of right operand, if

yes then condition becomes true.

(A < B) is true.

13 | P a g e

>= Checks if the value of left operand is

greater than or equal to the value of

right operand, if yes then condition

becomes true.

(A >= B) is not true.

<= Checks if the value of left operand is

less than or equal to the value of right

operand, if yes then condition becomes

true.

(A <= B) is true.

Logical Operators:

There are following logical operators supported by PHP language

Assume variable A holds 10 and variable B holds 20 then:

Operator Description Example

and Called Logical AND operator. If both the

operands are true then then condition

becomes true.

(A and B) is true.

or Called Logical OR Operator. If any of

the two operands are non zero then

then condition becomes true.

(A or B) is true.

&& Called Logical AND operator. If both the

operands are non zero then then

condition becomes true.

(A && B) is true.

|| Called Logical OR Operator. If any of

the two operands are non zero then

then condition becomes true.

(A || B) is true.

! Called Logical NOT Operator. Use to

reverses the logical state of its

operand. If a condition is true then

Logical NOT operator will make false.

!(A && B) is false.

14 | P a g e

Assignment Operators:

There are following assignment operators supported by PHP language:

Operator Description Example

= Simple assignment operator,

Assigns values from right

side operands to left side

operand

C = A + B will assigne value of A + B into C

+= Add AND assignment operator,

It adds right operand to the left

operand and assign the result to

left operand

C += A is equivalent to C = C + A

-= Subtract AND assignment

operator, It subtracts right

operand from the left operand

and assign the result to left

operand

C -= A is equivalent to C = C - A

*= Multiply AND assignment

operator, It multiplies right

operand with the left operand and

assign the result

C *= A is equivalent to C = C * A

 to left operand

/= Divide AND assignment operator,

It divides left operand with the

right operand and assign the

result to left operand

C /= A is equivalent to C = C / A

%= Modulus AND assignment

operator, It takes modulus using

two operands and assign the

result to left operand

C %= A is equivalent to C = C % A

Conditional Operator

There is one more operator called conditional operator. This first evaluates an expression for a

true or false value and then execute one of the two given statements depending upon the result
of the evaluation. The conditional operator has this syntax:

Operator Description Example

? : Conditional Expression If Condition is true ? Then value X :

Otherwise value Y

15 | P a g e

Operators Categories:

All the operators we have discussed above can be categorised into following categories:

• Unary prefix operators, which precede a single operand.

• Binary operators, which take two operands and perform a variety of arithmetic and

logical operations.

• The conditional operator (a ternary operator), which takes three operands and evaluates
either the second or third expression, depending on the evaluation of the first expression.

• Assignment operators, which assign a value to a variable.

Precedence of PHP Operators:

Operator precedence determines the grouping of terms in an expression. This affects how an

expression is evaluated. Certain operators have higher precedence than others; for example,
the multiplication operator has higher precedence than the addition operator:

For example x = 7 + 3 * 2; Here x is assigned 13, not 20 because operator * has higher

precedenace than + so it first get multiplied with 3*2 and then adds into 7.

Here operators with the highest precedence appear at the top of the table, those with the lowest
appear at the bottom. Within an expression, higher precedence operators will be evaluated first.

Category Operator Associativity

Unary ! ++ -- Right to left

Multiplicative * / % Left to right

Additive + - Left to right

Relational < <= > >= Left to right

Equality == != Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment = += -= *= /=

PHP Decision Making

The if, elseif ...else and switch statements are used to take decision based on the different
condition.

You can use conditional statements in your code to make your decisions. PHP supports following

threedecision making statements:

16 | P a g e

• if...else statement - use this statement if you want to execute a set of code when a

condition is true and another if the condition is not true

• elseif statement - is used with the if...else statement to execute a set of code

if one of several condition are true

• switch statement - is used if you want to select one of many blocks of code to be

executed, use the Switch statement. The switch statement is used to avoid long blocks

of if..elseif..else code.

The If...Else Statement

If you want to execute some code if a condition is true and another code if a condition is false,
use the if....else statement.

Syntax

Example

The following example will output "Have a nice weekend!" if the current day is Friday, otherwise

it will output "Have a nice day!":

If more than one line should be executed if a condition is true/false, the lines should be

enclosed within curly braces:

The ElseIf Statement

If you want to execute some code if one of several conditions are true use the elseif statement

if (condition)

code to be executed if condition is true;

else

code to be executed if condition is false;

<html>

<body>

<?php

$d=date("D");

if ($d=="Fri")

echo "Have a nice weekend!";
else

echo "Have a nice day!";

?>

</body>

</html>

<html>

<body>

<?php

$d=date("D");

if ($d=="Fri")

{

echo "Hello!
";

echo "Have a nice weekend!";
echo "See you on Monday!";

}

?>

</body>

</html>

17 | P a g e

Syntax

Example

The following example will output "Have a nice weekend!" if the current day is Friday, and "Have

a nice Sunday!" if the current day is Sunday. Otherwise it will output "Have a nice day!":

The Switch Statement

If you want to select one of many blocks of code to be executed, use the Switch statement.

The switch statement is used to avoid long blocks of if..elseif..else code.

Syntax

Example

The switch statement works in an unusual way. First it evaluates given expression then seeks a

lable to match the resulting value. If a matching value is found then the code associated with

the matching label will be executed or if none of the lables match then statement will execute

any specified default code.

if (condition)

code to be executed if condition is true;

elseif (condition)

code to be executed if condition is true;

else

code to be executed if condition is false;

<html>

<body>

<?php

$d=date("D");

if ($d=="Fri")

echo "Have a nice weekend!";
elseif ($d=="Sun")

echo "Have a nice Sunday!";
else

echo "Have a nice day!";

?>

</body>

</html>

switch (expression)

{

case label1:

code to be executed if expression = label1;

break;
case label2:

code to be executed if expression = label2;

break;
default:

code to be executed

if expression is different
from both label1 and label2;

}

18 | P a g e

PHP Loop Types

Loops in PHP are used to execute the same block of code a specified number of times. PHP

supports following four loop types.

• for - loops through a block of code a specified number of times.

• while - loops through a block of code if and as long as a specified condition is true.

• do...while - loops through a block of code once, and then repeats the loop as long as a

special condition is trur.

• foreach - loops through a block of code for each element in an array.

We will discuss about continue and break keywords used to control the loops execution.

The for loop statement

The for statement is used when you know how many times you want to execute a statement or

a block of statements.

Syntax

The initializer is used to set the start value for the counter of the number of loop iterations. A

variable may be declared here for this purpose and it is traditional to name it $i.

<html>

<body>

<?php

$d=date("D");
switch ($d)

{

case "Mon":

echo "Today is Monday";
break;

case "Tue":

echo "Today is Tuesday";
break;

case "Wed":

echo "Today is Wednesday";
break;

case "Thu":

echo "Today is Thursday";
break;

case "Fri":

echo "Today is Friday";
break;

case "Sat":

echo "Today is Saturday";
break;

case "Sun":

echo "Today is Sunday";
break;

default:

echo "Wonder which day is this ?";

}

?>

</body>

</html>

for (initialization; condition; increment)

{

code to be executed;

}

19 | P a g e

Example

The following example makes five iterations and changes the assigned value of two variables on

each pass of the loop:

This will produce following result:

The while loop statement

The while statement will execute a block of code if and as long as a test expression is true.

If the test expression is true then the code block will be executed. After the code has executed

the test expression will again be evaluated and the loop will continue until the test expression is

found to be false.

Syntax

Example
This example decrements a variable value on each iteration of the loop and the counter

increments until it reaches 10 when the evaluation is false and the loop ends.

<html>

<body>

<?php

$a = 0;

$b = 0;

for($i=0; $i<5; $i++)

{

$a += 10;

$b += 5;

}

echo ("At the end of the loop a=$a and b=$b");

?>

</body>

</html>

At the end of the loop a=50 and b=25

while (condition)

{

code to be executed;

}

<html>

<body>

<?php

$i = 0;

$num = 50;

while($i < 10)

{

$num--;

$i++;

}

echo ("Loop stopped at i = $i and num = $num");

?>

</body>

</html>

20 | P a g e

This will produce following result:

The do...while loop statement

The do...while statement will execute a block of code at least once - it then will repeat the loop

as long as a condition is true.

Syntax

Example

The following example will increment the value of i at least once, and it will continue

incrementing the variable i as long as it has a value of less than 10:

This will produce following result:

The foreach loop statement

The foreach statement is used to loop through arrays. For each pass the value of the current
array element is assigned to $value and the array pointer is moved by one and in the next pass

next element will be processed.

Syntax

Example

Try out following example to list out the values of an array.

Loop stopped at i = 1 and num = 40

do

{

code to be executed;

}while (condition);

<html>

<body>

<?php

$i = 0;

$num = 0;
do

{

$i++;

}while($i < 10);

echo ("Loop stopped at i = $i");

?>

</body>

</html>

Loop stopped at i = 10

foreach (array as value)

{

code to be executed;

}

21 | P a g e

This will produce following result:

The break statement

The PHP break keyword is used to terminate the execution of a loop prematurely.

The break statement is situated inside the statement block. If gives you full control and

whenever you want to exit from the loop you can come out. After coming out of a loop

immediate statement to the loop will be executed.

Example

In the following example condition test becomes true when the counter value reaches 3 and

loop terminates.

This will produce following result:

The continue statement

The PHP continue keyword is used to halt the current iteration of a loop but it does not
terminate the loop.

<html>

<body>

<?php

$array = array(1, 2, 3, 4, 5);
foreach($array as $value)

{

echo "Value is $value
";

}

?>

</body>

</html>

Value is 1

Value is 2

Value is 3

Value is 4

Value is 5

<html>

<body>

<?php

$i = 0;

while($i < 10)

{

$i++;

if($i == 3)break;

}

echo ("Loop stopped at i = $i");

?>

</body>

</html>

Loop stopped at i = 3

22 | P a g e

Just like the break statement the continue statement is situated inside the statement block

containing the code that the loop executes, preceded by a conditional test. For the pass

encountering continue statement, rest of the loop code is skipped and next pass starts.

Example

In the following example loop prints the value of array but for which condition becomes true it
just skip the code and next value is printed.

This will produce following result

PHP Arrays

An array is a data structure that stores one or more similar type of values in a single value. For

example if you want to store 100 numbers then instead of defining 100 variables its easy to

define an array of 100 length.

There are three different kind of arrays and each array value is accessed using an ID c which is

called array index.

• Numeric array - An array with a numeric index. Values are stored and accessed in

linear fashion

• Associative array - An array with strings as index. This stores element values in

association with key values rather than in a strict linear index order.

• Multidimensional array - An array containing one or more arrays and values are

accessed using multiple indices

Numeric Array

These arrays can store numbers, strings and any object but their index will be prepresented by

numbers. By default array index starts from zero.

Example

Following is the example showing how to create and access numeric arrays.

<html>

<body>

<?php

$array = array(1, 2, 3, 4, 5);

foreach($array as $value)

{

if($value == 3)continue;

echo "Value is $value
";

}

?>

</body>

</html>

Value is 1

Value is 2

Value is 4

Value is 5

23 | P a g e

Here we have used array() function to create array. This function is explained in function

reference.

This will produce following result:

Associative Arrays

The associative arrays are very similar to numeric arrays in term of functionality but they are

different in terms of their index. Associative array will have their index as string so that you can

establish a strong association between key and values.

To store the salaries of employees in an array, a numerically indexed array would not be the

best choice. Instead, we could use the employees names as the keys in our associative array,
and the value would be their respective salary.

NOTE: Don't keep associative array inside double quote while printing otheriwse it would not
return any value.

Example

<html>

<body>

<?php

/* First method to create array. */

$numbers = array(1, 2, 3, 4, 5);
foreach($numbers as $value)

{

echo "Value is $value
";

}

/* Second method to create array. */

$numbers[0] = "one";

$numbers[1] = "two";

$numbers[2] = "three";

$numbers[3] = "four";

$numbers[4] = "five";

foreach($numbers as $value)

{

echo "Value is $value
";

}

?>

</body>

</html>

Value is 1

Value is 2

Value is 3

Value is 4

Value is 5
Value is one
Value is two
Value is three
Value is four
Value is five

24 | P a g e

This will produce following result:

Multidimensional Arrays

A multi-dimensional array each element in the main array can also be an array. And each

element in the sub-array can be an array, and so on. Values in the multi-dimensional array are

accessed using multiple index.

Example

In this example we create a two dimensional array to store marks of three students in three

subjects:

This example is an associative array, you can create numeric array in the same fashion.

<html>

<body>

<?php

/* First method to associate create array. */

$salaries = array(

"mohammad" => 2000,

"qadir" => 1000,

"zara" => 500

);

echo "Salary of mohammad is ". $salaries['mohammad'] . "
";
echo "Salary of qadir is ". $salaries['qadir']. "
";

echo "Salary of zara is ". $salaries['zara']. "
";

/* Second method to create array. */

$salaries['mohammad'] = "high";

$salaries['qadir'] = "medium";

$salaries['zara'] = "low";

echo "Salary of mohammad is ". $salaries['mohammad'] . "
";
echo "Salary of qadir is ". $salaries['qadir']. "
";

echo "Salary of zara is ". $salaries['zara']. "
";

?>

</body>

</html>

Salary of mohammad is 2000
Salary of qadir is 1000
Salary of zara is 500
Salary of mohammad is high
Salary of qadir is medium
Salary of zara is low

25 | P a g e

This will produce following result:

PHP Strings

They are sequences of characters, like "PHP supports string operations".

Following are valid examples of string

Singly quoted strings are treated almost literally, whereas doubly quoted strings replace

variables with their values as well as specially interpreting certain character sequences.

<html>

<body>

<?php

$marks = array(

"mohammad" => array
(

"physics" => 35,

"maths" => 30,

"chemistry" => 39

),

"qadir" => array
(

"physics" => 30,

"maths" => 32,

"chemistry" => 29

),

"zara" => array
(

"physics" => 31,

"maths" => 22,

"chemistry" => 39

)

);

/* Accessing multi-dimensional array values */
echo "Marks for mohammad in physics : " ;

echo $marks['mohammad']['physics'] . "
";
echo "Marks for qadir in maths : ";

echo $marks['qadir']['maths'] . "
";
echo "Marks for zara in chemistry : " ;
echo $marks['zara']['chemistry'] . "
";

?>

</body>

</html>

Marks for mohammad in physics : 35
Marks for qadir in maths : 32
Marks for zara in chemistry : 39

$string_1 = "This is a string in double quotes";

$string_2 = "This is a somewhat longer, singly quoted string";

$string_39 = "This string has thirty-nine characters";

$string_0 = ""; // a string with zero characters

<?

$variable = "name";

$literally = 'My $variable will not print!\\n';
print($literally);

$literally = "My $variable will print!\\n";
print($literally);

?>

26 | P a g e

This will produce following result:

There are no artificial limits on string length - within the bounds of available memory, you ought
to be able to make arbitrarily long strings.

Strings that are delimited by double quotes (as in "this") are preprocessed in both the following

two ways by PHP:

• Certain character sequences beginning with backslash (\) are replaced with special

characters

• Variable names (starting with $) are replaced with string representations of their

values.

The escape-sequence replacements are:

• \n is replaced by the newline character

• \r is replaced by the carriage-return character

• \t is replaced by the tab character

• \$ is replaced by the dollar sign itself ($)

• \" is replaced by a single double-quote (")

• \\ is replaced by a single backslash (\)

String Concatenation Operator

To concatenate two string variables together, use the dot (.) operator:

This will produce following result:

If we look at the code above you see that we used the concatenation operator two times. This is

because we had to insert a third string.

Between the two string variables we added a string with a single character, an empty space, to

separate the two variables.

Using the strlen() function

The strlen() function is used to find the length of a string.

Let's find the length of our string "Hello world!":

My $variable will not print!\n
My name will print

<?php

$string1="Hello World";

$string2="1234";

echo $string1 . " " . $string2;

?>

Hello World 1234

<?php

echo strlen("Hello world!");

?>

27 | P a g e

This will produce following result:

The length of a string is often used in loops or other functions, when it is important to know

when the string ends. (i.e. in a loop, we would want to stop the loop after the last character in

the string)

Using the strpos() function

The strpos() function is used to search for a string or character within a string.

If a match is found in the string, this function will return the position of the first match. If no

match is found, it will return FALSE.

Let's see if we can find the string "world" in our string:

This will produce following result:

As you see the position of the string "world" in our string is position 6. The reason that it is 6,
and not 7, is that the first position in the string is 0, and not 1.

PHP File Inclusion

You can include the content of a PHP file into another PHP file before the server executes it.
There are two PHP functions which can be used to included one PHP file into another PHP file.

• The include() Function

• The require() Function

This is a strong point of PHP which helps in creating functions, headers, footers, or elements

that can be reused on multiple pages. This will help developers to make it easy to change the

layout of complete website with minimal effort. If there is any change required then instead of
changing thousand of files just change included file.

The include() Function

The include() function takes all the text in a specified file and copies it into the file that uses the

include function. If there is any problem in loading a file then the include() function generates

a warning but the script will continue execution.

Assume you want to create a common menu for your website. Then create a file menu.php with

the following content.

Now create as many pages as you like and include this file to create header. For example now

your test.php file can have following content.

12

<?php

echo strpos("Hello world!","world");

?>

6

Home -

ebXML -

AJAX -

PERL

http://www.tutorialspoint.com/index.htm
http://www.tutorialspoint.com/ebxml
http://www.tutorialspoint.com/ajax
http://www.tutorialspoint.com/perl

28 | P a g e

This will produce following result

The require() Function

The require() function takes all the text in a specified file and copies it into the file that uses the

include function. If there is any problem in loading a file then the require() function generates

a fatal error and halt the excution of the script.

So there is no difference in require() and include() except they handle error conditions. It is

recommended to use the require() function instead of include(), because scripts should not
continue executing if files are missing or misnamed.

You can try using above example with require() function and it will generate same result. But if
you will try following two examples where file does not exist then you will get different results.

This will produce following result

Now lets try same example with require() function.

This time file execution halts and nothing is displayed.

NOTE: You may get plain warning messages or fatal error messages or nothing at all. This

depends on your PHP Server configuration.

<html>

<body>

<?php include("menu.php"); ?>

<p>This is an example to show how to include PHP file!</p>

</body>

</html>

Home - ebXML - AJAX - PERL

This is an example to show how to include PHP file. You can include mean.php file in as many

as files you like!

<html>

<body>

<?php include("xxmenu.php"); ?>

<p>This is an example to show how to include wrong PHP file!</p>

</body>

</html>

This is an example to show how to include wrong PHP file!

<html>

<body>

<?php require("xxmenu.php"); ?>

<p>This is an example to show how to include wrong PHP file!</p>

</body>

</html>

http://www.tutorialspoint.com/index.htm
http://www.tutorialspoint.com/ebxml
http://www.tutorialspoint.com/ajax
http://www.tutorialspoint.com/perl

29 | P a g e

PHP Files & I/O

This chapter will explain following functions related to files:

• Opening a file

• Reading a file

• Writing a file

• Closing a file

Opening and Closing Files

The PHP fopen() function is used to open a file. It requires two arguments stating first the file

name and then mode in which to operate.

Files modes can be specified as one of the six options in this table.

r Opens the file for reading only.

Places the file pointer at the beginning of the file.

r+ Opens the file for reading and writing.

Places the file pointer at the beginning of the file.

w Opens the file for writing only.

Places the file pointer at the beginning of the file.

and truncates the file to zero length. If files does not

exist then it attemts to create a file.

w+ Opens the file for reading and writing only.

Places the file pointer at the beginning of the file.

and truncates the file to zero length. If files does not

exist then it attemts to create a file.

a Opens the file for writing only.

Places the file pointer at the end of the file.

If files does not exist then it attemts to create a file.

a+ Opens the file for reading and writing only.

Places the file pointer at the end of the file.

If files does not exist then it attemts to create a file.

If an attempt to open a file fails then fopen returns a value of false otherwise it returns a file

pointer which is used for further reading or writing to that file.

After making a changes to the opened file it is important to close it with the fclose() function.
The fclose() function requires a file pointer as its argument and then returns true when the

closure succeeds or false if it fails.

Reading a file
Once a file is opened using fopen() function it can be read with a function called fread(). This

function requires two arguments. These must be the file pointer and the length of the file

expressed in bytes.

Mode Purpose

30 | P a g e

The files's length can be found using the filesize() function which takes the file name as its

argument and returns the size of the file expressed in bytes.

So here are the steps required to read a file with PHP.

• Open a file using fopen() function.

• Get the file's length using filesize() function.

• Read the file's content using fread() function.

• Close the file with fclose() function.

The following example assigns the content of a text file to a variable then displays those

contents on the web page.

Writing a file

A new file can be written or text can be appended to an existing file using the PHP
fwrite()function. This function requires two arguments specifying a file pointer and the string
of data that is to be written. Optionally a third intger argument can be included to specify the
length of the data to write. If the third argument is included, writing would will stop after the
specified length has been reached.

The following example creates a new text file then writes a short text heading insite it. After

closing this file its existence is confirmed using file_exist() function which takes file name as

an argument

<html>

<head>

<title>Reading a file using PHP</title>

</head>

<body>

<?php

$filename = "/home/user/guest/tmp.txt";

$file = fopen($filename, "r");
if($file == false)

{

echo ("Error in opening file");
exit();

}

$filesize = filesize($filename);

$filetext = fread($file, $filesize);

fclose($file);

echo ("File size : $filesize bytes");
echo ("<pre>$text</pre>");

?>

</body>

</html>

31 | P a g e

PHP Functions

PHP functions are similar to other programming languages. A function is a piece of code which

takes one more input in the form of parameter and does some processing and returns a value.

You already have seen many functions like fopen() and fread() etc. They are built-in functions

but PHP gives you option to create your own functions as well.

There are two parts which should be clear to you:

• Creating a PHP Function

• Calling a PHP Function

In fact you hardly need to create your own PHP function because there are already more than

1000 of built-in library functions created for different area and you just need to call them

according to your requirement.

Creating PHP Function:

Its very easy to create your own PHP function. Suppose you want to create a PHP function which

will simply write a simple message on your browser when you will call it. Following example

creates a function called writeMessage() and then calls it just after creating it.

Note that while creating a function its name should start with keyword function and all the PHP

code should be put inside { and } braces as shown in the following example below:

<?php

$filename = "/home/user/guest/newfile.txt";

$file = fopen($filename, "w");
if($file == false)

{

echo ("Error in opening new file");
exit();

}

fwrite($file, "This is a simple test\n");
fclose($file);

?>

<html>

<head>

<title>Writing a file using PHP</title>

</head>

<body>

<?php

if(file_exist($filename))

{

$filesize = filesize($filename);

$msg = "File created with name $filename ";

$msg .= "containing $filesize bytes";
echo ($msg);

}

else

{

echo ("File $filename does not exit");

}

?>

</body>

</html>

32 | P a g e

This will display following result:

PHP Functions with Parameters:

PHP gives you option to pass your parameters inside a function. You can pass as many as

parameters your like. These parameters work like variables inside your function. Following

example takes two integer parameters and add them together and then print them.

This will display following result:

Passing Arguments by Reference:

It is possible to pass arguments to functions by reference. This means that a reference to the

variable is manipulated by the function rather than a copy of the variable's value.

Any changes made to an argument in these cases will change the value of the original variable.
You can pass an argument by reference by adding an ampersand to the variable name in either

the function call or the function definition.

Following example depicts both the cases.

<html>

<head>

<title>Writing PHP Function</title>

</head>

<body>

<?php

/* Defining a PHP Function */

function writeMessage()

{

echo "You are really a nice person, Have a nice time!";

}

/* Calling a PHP Function */
writeMessage();

?>

</body>

</html>

You are really a nice person, Have a nice time!

<html>

<head>

<title>Writing PHP Function with Parameters</title>

</head>

<body>

<?php

function addFunction($num1, $num2)

{

$sum = $num1 + $num2;

echo "Sum of the two numbers is : $sum";

}

addFunction(10, 20);

?>

</body>

</html>

Sum of the two numbers is : 30

33 | P a g e

This will display following result:

PHP Functions returning value:

A function can return a value using the return statement in conjunction with a value or object.
return stops the execution of the function and sends the value back to the calling code.

You can return more than one value from a function using return array(1,2,3,4).

Following example takes two integer parameters and add them together and then returns their

sum to the calling program. Note that return keyword is used to return a value from a function.

This will display following result:

<html>

<head>

<title>Passing Argument by Reference</title>

</head>

<body>

<?php

function addFive($num)

{

$num += 5;

}

function addSix(&$num)

{

$num += 6;

}

$orignum = 10;
addFive(&$orignum);

echo "Original Value is $orignum
";

addSix($orignum);

echo "Original Value is $orignum
";

?>

</body>

</html>

Original Value is 15
Original Value is 21

<html>

<head>

<title>Writing PHP Function which returns value</title>

</head>

<body>

<?php

function addFunction($num1, $num2)

{

$sum = $num1 + $num2;

return $sum;

}

$return_value = addFunction(10, 20);

echo "Returned value from the function : $return_value

?>

</body>

</html>

Returned value from the function : 30

34 | P a g e

Setting Default Values for Function Parameters:

You can set a parameter to have a default value if the function's caller doesn't pass it.

Following function prints NULL in case use does not pass any value to this function.

This will produce following result:

Dynamic Function Calls:

It is possible to assign function names as strings to variables and then treat these variables

exactly as you would the function name itself. Following example depicts this behaviour.

This will display following result:

<html>

<head>

<title>Writing PHP Function which returns value</title>

</head>

<body>

<?php

function printMe($param = NULL)

{

print $param;

}

printMe("This is test");
printMe();

?>

</body>

</html>

This is test

<html>

<head>

<title>Dynamic Function Calls</title>

</head>

<body>

<?php

function sayHello()

{

echo "Hello
";

}

$function_holder = "sayHello";

$function_holder();

?>

</body>

</html>

Hello

Web Servers

1

Chapter 2. Setting up a Web Server

Table of Contents

2.1 Wampserver and Apache HTTP on Windows... 1

2.1.1 Requirements .. 1
2.1.2 Installing Wampserver.. 2
2.1.3 Setting up Server Passwords .. 3
2.1.4 Testing Applications ... 5

2.2 Apache Tomcat on Windows .. 6
2.2.1 Requirements .. 6
2.2.2 Tomcat Setup .. 7
2.2.3 Testing Applications ... 10

2.3 Lampserver and Apache HTTP on Ubuntu 15.04 ... 10
2.3.1 Requirements .. 10
2.3.2 Installing Apache, PHP and MySQL .. 11
2.3.3 Testing Applications ... 13

2.4 Apache Tomcat on Ubuntu 15.04 .. 13
2.4.1 Testing Applications ... 14

Objectives

At the end of this unit you will be able to:

• install and setup Wamp server and Apache server on Windows;
• install and setup Tomcat Server on Windows;
• install and setup Lamp server and Apache server on Ubuntu 15.04; and
• install and setup Tomcat on Ubuntu 15.04.

2.1 Wampserver and Apache HTTP on
Windows

In this section, you will learn how to set up a Web Server on a Windows PC. The steps in this section will
illustrate how to use Apache HTTP. The next section will illustrate the setup for Apache Tomcat. Apache is a
popular Web Server that allows users to easily set up their own Web Servers. It has the advantage of being
open-source and hence is free to download. Apache is the basic software needed to support running of HTML
and related content. Additional software, such as Tomcat, can be installed to complement the Web Server.
Tomcat is a server that is meant to run applications written in Java and JSP (Java Server Pages).

Some popular options for deploying Apache, and optionally PHP and MySQL on Windows are Apache
Lounge, XAMPP and Wampserver. Wampserver was used for this example. WAMP is an acronym that stands
for “Windows, Apache, MySQL, and PHP”.

2.1.1 Requirements
To illustrate the steps below a Windows 7 64-bit computer was used. The Windows computer was connected
to a local area network (LAN) that has Internet access. You also need to know the IP address of your

Web Servers

2

computer. You can find your IP address by typing ‘ipconfig’ at a command prompt. Find the entry labeled
‘Ethernet adapter Local Area Network’ and take note of the IPv4 address.

It is recommended to disable the Windows Firewall before starting the Web Server setup. The steps below are
for a fresh installation of Wampserver (assumes that Wampserver had not been installed before).
2.1.2 Installing Wampserver
Download WAMP from http://www.wampserver.com/en/ . You will have the option of choosing 64-bit or 32-
bit installation depending on your PC. This example uses the 64-bit installation. Locate the downloaded
Wampserver file and click on it. This will open an installation wizard as shown in Figure 1. Follow the
instruction wizard and leave the default settings as they are. After successful installation you will get the
window shown in Figure 2. Leave the ‘launch WampServer 2 now’ box checked and click on ‘Finish’ button (in
future you can start WampServer by clicking on your Start menu and clicking on its menu). On your toolbar,
you should now see a ‘W’ shaped icon. On left-clicking this icon, you get the pop-up management console in
Figure 3. Click on ‘Start all services’ and then check the ‘W’ icon on your toolbar. If the ‘W’ icon is green it
means that all services are running. If it is red it means that no services are running. If it is orange it means that
some services are running. If everything was installed correctly you should see a window such as the one in
Figure 4.

 Figure 1: Welcome window to WAMP setup Figure 2: Finished installation

Figure 3: WampServer Management Console

http://www.wampserver.com/en/

Web Servers

3

Figure 4: Localhost home screen

2.1.3 Setting up Server Passwords

In this step, you will learn how to create passwords for your server and also passwords to protect the files that
you may want to share from your Web Server.

i. Setting up MySQL and PHP Admin Password

On your local host home screen (Figure 4) click on ‘phpmyadmin’ under ‘Tools. The interface window opens
showing the WAMP configuration page. At the bottom of this page, a message indicates that MySQL is running
without a password (Figure 5).

Click on users and then check the box next to ‘root localhost’ and then click on ‘Edit Privileges’ (Figure 6).
Scroll down to change the password and then click on ‘Go’ to save the changes. If you try to click on any other
menu on the interface, for example on the SQL menu, you will get an error. Let us fix this by also changing the
PHP admin password to match the MySQL password.

Open Windows Explorer. Navigate to the C:\wamp\apps\phpmyadminx.x.x\ folder (Figure 7). Inside that
folder open config.inc.php – ideally using Notepad or any other html editor.

Search for the line $cfg['blowfish_secret'] = ''; – if you’re using notepad it might be easier to just search for the
word ‘blowfish’. Change the line $cfg['blowfish_secret'] = 'abcdef'; to $cfg['blowfish_secret'] = 'mypassphrase';
where mypassphrase is your own password – not the same one that you specified for root in MySQL.

Now search for the phrase ['auth_type'] = 'config'. Change ‘config’ to ‘cookie’. Now search for
$cfg['Servers'][$i]['password'] = ''; Replace the '' with 'mysql-password'; where mysql-password is the
MySQL password you created earlier.

Figure 5: No Password set for WampServer

Web Servers

4

Figure 6: Changing root user privilege

Figure 7: Access config.inc folder

Save the changes you have made and exit out of the editor. Go back to your toolbar where wampserver is

located and click on ‘restart all services’. Refresh localhost on your browser. Click on ‘phpmyadmin’. You
should now be prompted for a username and password. Your username is ‘root’ (since we did not change it from

the default one) and your password is the MySQL password that you created.

ii. Setting up a password to access files stored in the Web Server
Now in case you want to share files from your server, you do not want just anyone to be able to access the files.
So let us password-protect your files. For example, assume that you would like to store music files on your

server and share them with others. First, decide where you would like to store your music files. In this
illustration, the folder ‘www’ found in C:\wamp is used to store the music directory. We are assuming that you

want your users to be able to access any folders that are stored inside the ‘www’ folder.

Next, using a command prompt, access the bin directory in the Apache folder (Figure 8). Then type:

Web Servers

5

htpsswd –c “C:\wamp\my-password-file.txt” username

my-password-file.txt is the file where you create the password to access the ‘www’ folder. username is the
username that you create to access the ‘www’ folder. Pick a username of your choice. Note that the password

file is not created inside the music folder. After you press enter, you will be prompted to enter and re-enter a
password. Create a password of your choice. This is the password that will be associated with the username you

have just created, and the combination will be used to access the ‘www’ folder.

Figure 8: Accessing Apache folder via command prompt

Now we want to apply the login to your music folder. Open a new file in a plain text editor like Notepad. Copy
and paste the following into it:

AuthType Basic

AuthName "This is a private area, please log in"

AuthUserFile "c:\wamp\my_password_file.txt"

AuthGroupFile /dev/null

require valid-user

You can replace the message ‘this is a private area, please log in’ with your own security message that you
would like users to see. Save this file in the ‘www’ folder which is our server root folder. There are two

important things to note when saving this file:
1. Save this file as .htaccess (including the dot).

2. If using an html editor such as Notepad put quotation marks around the name, thus “.htaccess”. This
way, it will not be saved as a text file.

Now when you refresh your localhost on the browser, you should be prompted for login details.

2.1.4 Testing Applications

Sharing files stored on your WampServer

If you would like to share the music files that you have stored on your Web Server, simply create a directory
called ‘music’ insider the ‘www’ folder (Figure 9). Put the music files that you would like to share in the
‘music’ folder. Type http://localhost/music/ on your address bar and you should be able to see a listing of your
music.

http://localhost/music/

Web Servers

6

Figure 9: Music folder to be shared

Take note of your computer’s IP address. Go to your wampserver toolbar, left-click and click ‘Put online’. Your
server can now be accessed on the Web.

Share the address http://xxx.xxx.xx.xxx/music/ with someone else to try on another computer. ‘xxx’ represents
the numbers in your IP address. The user will be prompted for the login details that you setup in the last section.
Note that this may not work if you are sharing the address with someone outside of your network who is behind
a firewall.

We shall soon see how to write HTML files that can be accessed via the Apache HTML server.

The next section illustrates how to set up an Apache Tomcat server on Windows.

Testing a ‘Hello World’ Application

Let us try a simple example to test that the websites we will create will work on this web server. Open Notepad
and type the following code to print ‘hello world’ and save is as hello.php in the ‘www’ folder. Then access this
file from your browser using your ip address or localhost/hello.html. You should get ta ‘hello world’ output on
your browser.

<html>
 <head>
 <title>HTML Test</title>
 </head>
 <body>
 Hello world
 </body>
</html>

2.2 Apache Tomcat on Windows

Apache Tomcat is a Java-capable HTTP server, which is able to execute special Java programs known as Java
Servlet and Java Server Pages (JSP). It is also able to execute HTML files just like Apache HTTP.

2.2.1 Requirements
To illustrate the steps below a Windows 7 64-bit computer was used. The Windows computer had Internet
access. Tomcat 8 was used for this installation. You need to have the latest Java JDK version installed. The
recommended JDK version for Tomcat 8 is jdk1.8. Make sure that your computer is updated with this version.
Go to java.com to download the latest version of Java.

The steps below are for a fresh installation of Apache Tomcat (assumes that Tomcat had not been installed
before).

http://xxx.xxx.xx.xxx/music/

Web Servers

7

2.2.2 Tomcat Setup
i. Download and Install Tomcat

Go to http://tomcat.apache.org/ and download the latest version of Tomcat (Tomcat 9 at the time of writing
this). Under Download on the left click on ‘Tomcat 9’ and under Binary Distribution click on ‘Core’ and you
will see various packages. Click on the package applicable to you. For a Windows 64-bit computer click on ‘64-
bit Windows zip’. Download this file.

Unzip the downloaded file to a directory of your choice. It is recommended not to unzip to the desktop as it is a
difficult directory to locate from a command prompt. For this illustration a folder named ‘tomcat’ was created
under drive D, hence D:/tomcat. The zipped file was extracted to this location. It is recommended to rename the
unzipped file from the default name, for example, rename to ‘apachetomcat’ (Figure 10).

 Figure 10: Creating folders to store tomcat files

ii. Create an Environment Variable

First, take note of the directory into which JDK was installed. The default is "C:\Program
Files\Java\jdk1.8.0_{xx}", where {xx} is the latest upgrade number. It is important to verify your JDK
installed directory before you proceed further. Start the command prompt and type ‘set JAVA_HOME to
check if the environmental variable had been set. If not, you will get the message ‘Environment Variable
JAVA_HOME not set’. If JAVA_HOME is set, check if it is set to your JDK installed directory correctly (For
example in Figure 11). If not, proceed to set the environmental variable as below.

To set the environment variable JAVA_HOME in Windows 7: Press "Start" button > Control Panel > System
& Security > System > Advanced system settings > Switch to "Advanced" tab > Environment Variables >
System Variables > "New" (or "Edit" for modification) > In "Variable Name", enter "JAVA_HOME" > In
"Variable Value", enter your JDK installed directory (e.g., "c:\Program Files\Java\jdk1.8.0_51"). Click OK. To
verify, restart the command prompt and type ‘set JAVA_HOME’. You should now see the output as in Figure
11.

Figure 11: Checking environmental variables for JAVA_HOME

iii. Configure Tomcat Server

The Tomcat configuration files are located in the "conf" sub-directory of your Tomcat installed directory, e.g.
"D:\tomcat\apachetomcat\conf". There are 4 configuration XML files: server.xml, web.xml, context.xml and
tomcat-users.xml. Make a BACKUP of the configuration files before you proceed.

http://tomcat.apache.org/

Web Servers

8

Set the TCP Port Number

Use an HTML text editor (e.g., NotePad++) to open the configuration file "server.xml", under the "conf" sub-
directory of Tomcat installed directory.

The default TCP port number configured in Tomcat is 8080, you may choose any number between 1024 and
65535, which is not used by an existing application. We shall choose 8888 in this article. Locate the following
lines that define the HTTP connector, and change port="8080" to port="8888". Save the file and exit.

<Connector port="8888" protocol="HTTP/1.1"
 connectionTimeout="20000"
 redirectPort="8443" />

Enabling Directory Listing

Again, use an HTML text editor to open the configuration file "web.xml", under the "conf" sub-directory of
Tomcat installed directory.

We shall enable directory listing by changing "listings" from "false" to "true" for the "default" servlet. Locate
the following lines that define the "default" servlet; and change the "listings" from "false" to "true". Save and
exit.

<servlet>
 <servlet-name>default</servlet-name>
 <servlet-class>org.apache.catalina.servlets.DefaultServlet</servlet-class>
 <init-param>
 <param-name>debug</param-name>
 <param-value>0</param-value>
 </init-param>
 <init-param>
 <param-name>listings</param-name>
 <param-value>true</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
 </servlet>

Enabling Automatic Reload

We shall add the attribute reloadable="true" to the <Context> element to enable automatic reload after code
changes. Again, this is handy for test system but not for production, due to the overhead of detecting changes.
Open context.xml and locate the <Context> start element, and change it to <Context reloadable="true">. Save
and exit.

<Context reloadable = "true">

…… </Context>

iv. Start Tomcat Server

Launch a CMD shell. Set the current directory to the tomcat directory\bin", and run "startup.bat" as in Figure 12:

Web Servers

9

Figure 12: Starting tomcat from command prompt

A new Tomcat console window appears (look out for the Tomcat's port number (double check that Tomcat is
running on port 8888). Future error messages will be sent to this console. Output messages from related Java
programs are also sent to this console. If you want to shut down the server type ‘shutdown’ in place of ‘startup’.

Start a browser. Issue URL "http://localhost:8888" to access the Tomcat server's welcome page. For users on
the other machines over the net, they have to use the server's IP address or DNS domain name or hostname in
the format of "http://serverHostnameOrIPAddress:8888". Note that this may not work if you are sharing the
address with someone outside of your network who is behind a firewall. If everything is setup correctly, you
should see the screen in Figure 13.

Figure 13: Tomcat home screen on local host

Install Tomcat's Sample Web Application

Go to: http://localhost:8888/docs/
Click the link: "3. First web application"
Click "Example App" under contents on the left side of the screen.
Click on the link "here" to download their "Sample Application". (Download link:
http://localhost:8888/docs/appdev/sample/sample.war)
Save to this location: C:\Tomcat\apachetomcat\webapps
Give the Tomcat container a minute and it will automatically extract the WAR file and create a Web
Application called "Sample".
Test your install: http://localhost:8888/sample

If you wish to create your own directory under webapps, choose a name for your webapp. Let's call it "myapps".
Go to Tomcat's "webapps" sub-directory. Create the following directory structure for you webapp "myapps":

1. Under Tomcat's "webapps", create your webapp root directory "myapps" (i.e.,
"tomcat\apachetomcat\webapps\myapps").

2. Under "myapps", create a sub-directory "WEB-INF" (case sensitive, a "dash" not an underscore) (i.e.,
"tomcat\apachetomcat\webapps\myapps\WEB-INF").

Web Servers

10

3. Under "WEB-INF", create a sub-sub-directory "classes" (case sensitive, plural) (i.e.,
"tomcat\apachetomcat\webapps\myapps\WEB-INF\classes").

Restart your tomcat server to pick up the changes. Then on your browser type http://localhost:8888/myapps/

You should see the directory listing of the directory "tomcat\apachetomcat\webapps\myapps", which shall be
empty (provided you have enabled directory listing in web.xml earlier).

We shall soon see how to write HTML and PHP files that can be accessed via the Tomcat server.

2.2.3 Testing Applications
Sharing files stored on your Tomcat Server

If you would like to share the music files that you have stored on your Web Server, simply create a directory
called ‘music’ insider the ‘myapps’ folder. Put the music files that you would like to share in the ‘music’ folder.
Type http://localhost:8888/myapps/music/ on your address bar and you should be able to see a listing of your
music.

Testing a ‘Hello World’ Application on Tomcat Server
Let us try a simple example to test that the websites we will create will work on this web server. Open Notepad
and type the following code to print ‘hello world’ and save is as hello.html in the ‘myapps’ folder. Then access
this file from your browser using your ip address or http://localhost:8888/myapps/hello.html. You should get
‘hello world’ output on your browser.

<html>
 <head>
 <title>HTML Test</title>
 </head>
 <body>
 Hello world
 </body>
</html>

2.3 Lampserver and Apache HTTP on Ubuntu
15.04

In this section, you will learn how to set up a Web Server on Ubuntu 15.04. The steps in this section will
illustrate how to use Apache HTTP. The next section will illustrate the setup for Apache Tomcat. LAMP stack
is a group of open source software used to get web servers up and running. The acronym stands for Linux,
Apache, MySQL or MariaDB, and PHP. Since I assume that your computer is already running Ubuntu, the
Linux part is taken care of.

2.3.1 Requirements

To illustrate the steps below a 64-bit computer running Ubuntu 15.04 was used. The computer was connected
to a local area network (LAN) with Internet access. You also need to know your server IP address. You can
find out your IP address by right clicking the network icon in the notification area and clicking Connection
Information, or by running ifconfig –a on the terminal. To log into your server, you will need to know the
password for the "root" user's account. First, run the command below to update your server, before which you
will be prompted to enter your root password.

http://localhost:8888/myapps/
http://localhost:8888/myapps/music/

Web Servers

11

sudo apt-get update

2.3.2 Installing Apache, PHP and MySQL

Run the commands below to install Apache2 Web Server and wait for completion of installation.

sudo apt-get install apache2

Run the commands below to start the Apache2 Web Server.

sudo service apache2 start

At this time, if you browse to the server using its IP address, you’ll see Apache2 default page for Ubuntu as in
Figure 14. This is how you also tell the server is up and functioning.

The next step is to install PHP as well as its module to enable PHP apps or web services to function. There are
hundreds of PHP modules, but these few will get most web services started. To install PHP and other modules,
run the commands below.

sudo apt-get install php5 php5-mysql php5-curl php5-gd php5-snmp php5-mcrypt
php5-tidy php5-xmlrpc libapache2-mod-php5

Figure 14: Successful Apache Installation

After installing the above modules, go to Apache root directory. It can be found at /var/www/html in Ubuntu.
There create a file called phpinfo.php. Then in that file, add the lines below.

<?php
phpinfo();
?>
Save the file, restart Apache and browser to the server IP address followed by phpinfo.php. (ex. http://Your IP
address/phpinfo.php). There you’ll find PHP information page such as Figure 15. This is how you also know
PHP is functioning.

http://your/

Web Servers

12

Figure 15: Successful PHP Installation

The next step is to install MySQL. Run the commands below. Wait for completion.

sudo apt-get install mysql-server mysql-client

After installing the database server, you can started it using the commands below.

sudo systemctl start mysql

When it’s started, run the commands below to configure the database server.

sudo mysql_secure_installation

When prompted, follow the options below and type your root password.
Next, choose Yes for the rest of the prompts until you’re done.

• Enter current password for root (enter for none): Type root password
• Change the root password? N
• Remove anonymous users? Y
• Disallow root login remotely? Y
• Remove test database and access to it? Y
• Reload privilege tables now? Y

Restart Apache2 and you’re done.

At this time, Apache2, PHP5 and other modules and MySQL database server should be installed and
functioning. You Ubuntu server is ready for any open source application that supports the LAMP stack.

You may wish to install PhpMyAdmin,which is a web interface through which you can easily
manage/administer your MySQL/MariaDB databases. The installation can be completed with the following
command:

sudo apt-get install phpmyadmin

Upon installation you will be asked to select the web server you are using. Select “Apache” and continue. Next
you will be asked if you wish to configure phpmyadmin with dbconfig-common. Select “Yes”. You need to
perform one more step so that you can be able to access phpmyadmin from your Apache server. Run the
following command.

sudo ln -s /usr/share/phpmyadmin /var/www/html

Web Servers

13

If you now access phpmyadmin on your browser through http://Your IP address/phpmyadmin you should see
the same window in Figure 16 and you can be able to log in using your MySQL username and password that
you created.

Figure 16: Phpadmin home page

2.3.3 Testing Applications
Sharing files stored on your Tomcat Server

If you would like to share the music files that you have stored on your Web Server, create a directory called
‘music’ insider the ‘var/www/html’ folder.

Put the music files that you would like to share in the ‘music’ folder. Type http://localhost/music/ on your
address bar and you should be able to see a listing of your music.

Testing a ‘Hello World’ Application on Tomcat Server

Let us try a simple example to test that the websites we will create will work on this web server. Type the
following command on the terminal to open the gedit editor.

sudo gedit

In the gedit editor, type the following code to print ‘hello world’ and save is at hello.html under var/www/html
Then access this file from your browser using your ip address or localhost/hello.html. You should get ‘hello
world’ as output in your browser.

<html>
 <head>
 <title>HTML Test</title>
 </head>
 <body>
 Hello world
 </body>
</html>

2.4 Apache Tomcat on Ubuntu 15.04

Make sure that Java JDK in installed on your machine. For this example, JDK-7 was installed. First, head-on-
over to the Apache Tomcat 8 Download site. Then, under the heading 8.0.28 (the current version as of
November 2015), or whichever is the newest version at the time you read this chapter, you’ll see Binary
Distributions. Under Binary Distributions you’ll see Core and then under Core, you will see tar.gz. Right click
on tar.gz and copy the URL link location.

http://your/
http://localhost/music/

Web Servers

14

In the terminal use the URL you copied thus:

wget http://apache.is.co.za/tomcat/tomcat-8/v8.0.28/bin/apache-tomcat-
8.0.28.tar.gz

After the download completes, decompress the file using the following command:

tar xvzf apache-tomcat-8.0.28.tar.gz

Now, move the file into a proper location using the following command. I am moving it to a folder called opt.

mv apache-tomcat-8.0.28 /opt

Now let’s set the environment variables in .bashrc by typing the following command:

vim ~/.bashrc

Once in the vim editor, type ‘i’ in order to enter the insert mode. Add this information to the end of the file.
After that press esc on the keyboard to go back to normal mode. Next press ‘:’ (the colon) and this will drop the
cursor to the bottom of the terminal. Here you save your changed by typing ‘w’ and press enter, and then you
can type ‘q’ to quit vim.

export JAVA_HOME=/usr/lib/jvm/java-7-openjdk-amd64
export CATALINA_HOME=/opt/ apache-tomcat-8.0.28
Make the changes effective by running the following command:
. ~/.bashrc

Tomcat should now be installed and configured for your server. To activate Tomcat, run the following script on
the terminal. Note that the commands are case sensitive.

$CATALINA_HOME/bin/startup.sh

You can verify that Tomcat is installed correctly by typing http://localhost:8080 in your browser. You should
see the window indicating successful installation.

2.4.1 Testing Applications
Sharing files stored on your Tomcat Server

If you would like to share the music files that you have stored on your Web Server, simply create a directory
called ‘music’ insider the ‘webapps’ folder. Put the music files that you would like to share in the ‘music’
folder. Type http://localhost/music/ on your address bar and you should be able to see a listing of your music.

Testing a ‘Hello World’ Application on Tomcat Server

Let us try a simple example to test that the websites we will create will work on this web server. Type the
following command on the terminal to open the gedit editor.

sudo gedit

In the gedit editor, type the following code to print ‘hello world’ and save is at hello.html under the webapps
folder. Then access this file from your browser using your ip address or localhost/hello.html. You should get the
output in Figure 17.

<html>
 <head>
 <title>HTML Test</title>
 </head>

http://apache.is.co.za/tomcat/tomcat-8/v8.0.28/bin/apache-tomcat-8.0.28.tar.gz
http://apache.is.co.za/tomcat/tomcat-8/v8.0.28/bin/apache-tomcat-8.0.28.tar.gz
http://localhost/music/

Web Servers

15

 <body>
 Hello world
 </body>
</html>

Figure 17: Hello World Output

Eclipse IDE Tutorial

To start Eclipse, double-click on the eclipse.exe (Microsoft Windows) or eclipse (Linux / Mac)

file in the directory where you unpacked Eclipse.

The system will prompt you for a workspace. The workspace is the physical location (file

path) you are working in. Your projects, source files, images and other artifacts can be stored

and saved in your workspace. The workspace also contains preferences settings, plug-in

specific metadata, logs etc.

You typically use different workspaces if you require different settings for your project or if

you want to divide your projects into separate directories.

You can choose the workspace during startup of Eclipse or via the menu (File → Switch

Workspace → Others).

Select an empty directory and click the OK button.

Once you select the workspace, the application will look similar to the following screenshot.

Eclipse projects

An Eclipse project contains source, configuration and binary files related to a certain task

and groups them into buildable and reusable units. An Eclipse project can

have natures assigned to it which describe the purpose of this project. For example, the

Java nature defines a project as Java project. Projects can have multiple natures combined to

model different technical aspects.

Projects in Eclipse cannot contain other projects.

Views and editors - parts

Parts are user interface components which allow you to navigate and modify data. A part

can have a dropdown menu, context menus and a toolbar.

Parts can be freely positioned in the user interface.

Parts are typically classified into views and editors. The distinction into views and editors is

not based on technical differences, but on a different concept of using and arranging these

parts.

A view is typically used to work on a set of data, which might be a hierarchical structure. If

data is changed via the view, this change is typically directly applied to the underlying data

structure. A view sometimes allows us to open an editor for a selected set of data.

An example for a view is the Project Explorer, which allows you to browse the files of Eclipse

projects. If you change data in the Project Explorer, e.g., renaming a file, the file name is

directly changed on the file system.

Editors are typically used to modify a single data element, e.g., the content of a file or a data

object. To apply the changes made in an editor to the data structure, the user has to

explicitly save the editor content.

For example, the Java editor is used to modify Java source files. Changes to the source file

are applied once the user selects the Save command. A dirty editor tab is marked with an

asterisk to the left of the modified name of the file.

Perspective

A perspective is a visual container for a set of parts. Perspectives can be used to store

different arrangements of parts. For example, the Eclipse IDE uses them to layout the views

appropriate to the task (development, debugging, review, ...) the developer wants to

perform.

Open editors are typically shared between perspectives, i.e., if you have an editor open in

the Java perspective for a certain class and switch to the Debug perspective, this editor stays

open.

You can switch Perspectives via the Window → Open Perspective → Other... menu entry.

The main perspectives used for Java development are the Java perspective and

the Debug perspective.

You can change the layout and content within a perspective by opening or closing parts and

by re-arranging them.

To open a new part in your current perspective, use the Window → Show

View → Other... menu entry.

Perspectives in Eclipse

Eclipse provides different perspectives for different tasks. The available perspectives depend

on your installation.

For Java development you usually use the Java Perspective, but Eclipse has much more

predefined perspectives, e.g., the Debug perspective.

Eclipse allows you to switch to another perspective via the Window → Open

Perspective → Other... menu entry.

Java perspective and Package Explorer

The default perspective for Java development can be opened via Window → Open

Perspective → Java.

On the left hand side, this perspective shows the Project Explorer view, which allows you to

browse your projects and to select the components you want to open in an editor via a

double-click.

For example, to open a Java source file, open the tree under src, select the

corresponding .java file and double-click it. This will open the file in the default Java editor.

The following picture shows the Eclipse IDE in its standard Java perspective. The Project

Explorer view is on the left. In the middle you see the open editors. Several editors are

stacked in the same container and you can switch between them by clicking on the

corresponding tab. Via drag and drop you can move an editor to a new position in the

Eclipse IDE.

To the right and below the editor area you find more views which were considered useful by

the developer of the perspective. For example, the Javadoc view shows the Javadoc of the

selected class or method.

Create your first Java program

Create project

Select File → New → Java project from the menu.

Enter c343.first as the project name. Select the Create separate folders for sources and class

files flag.

Press the Finish button to create the project. A new project is created and displayed as a folder.

Open the c343.first folder and explore the content of this folder.

Create package

In the following step you create a new package. A good convention for the project and

package name is to use the same name for the top level package and the project. For

example, if you name your project com.example.javaproject you should also

use com.example.javaproject as the top-level package name.

To create the c343.first package, select the src folder, right-click on it and

select New →Package. Enter the name of your new package in the dialog and press

the Finish button.

Create Java class

Right-click on your package and select New → Class. Enter MyFirstClass as the class name

and select the public static void main (String[] args) checkbox. Press the Finish button.

This creates a new file and opens the Java editor. Change the class based on the following

listing.

package c343.first;

public class MyFirstClass {

 public static void main(String[] args) {

 System.out.println("Hello Eclipse!");

 }

}

You could also directly create new packages via this dialog. If you enter a new package in this

dialog, it is created automatically.

Run your project in Eclipse

Now run your code. Either right-click on your Java class in the Package Explorer or right-click

in the Java class and select Run-as → Java application.

Eclipse will run your Java program. You should see the output in the Console view.

Congratulations! You created your first Java project, a package, a Java class and you ran this

program inside Eclipse.

	2.1 Wampserver and Apache HTTP on Windows
	2.1.1 Requirements
	2.1.2 Installing Wampserver
	2.1.3 Setting up Server Passwords
	i. Setting up MySQL and PHP Admin Password
	ii. Setting up a password to access files stored in the Web Server

	2.1.4 Testing Applications
	Sharing files stored on your WampServer
	Testing a ‘Hello World’ Application

	2.2 Apache Tomcat on Windows
	2.2.1 Requirements
	2.2.2 Tomcat Setup
	i. Download and Install Tomcat
	ii. Create an Environment Variable
	iii. Configure Tomcat Server
	Set the TCP Port Number
	Enabling Directory Listing
	Enabling Automatic Reload

	iv. Start Tomcat Server
	Install Tomcat's Sample Web Application

	2.2.3 Testing Applications
	Sharing files stored on your Tomcat Server
	Testing a ‘Hello World’ Application on Tomcat Server

	2.3 Lampserver and Apache HTTP on Ubuntu 15.04
	2.3.1 Requirements
	2.3.2 Installing Apache, PHP and MySQL
	2.3.3 Testing Applications
	Sharing files stored on your Tomcat Server
	Testing a ‘Hello World’ Application on Tomcat Server

	2.4 Apache Tomcat on Ubuntu 15.04
	2.4.1 Testing Applications
	Sharing files stored on your Tomcat Server
	Testing a ‘Hello World’ Application on Tomcat Server

