
1 V UNIT IV

Java RMI - Introduction
RMI stands for Remote Method Invocation. It is a mechanism that allows an object
residing in one system (JVM) to access/invoke an object running on another JVM.

RMI is used to build distributed applications; it provides remote communication
between Java programs. It is provided in the package java.rmi.

Architecture of an RMI Application

In an RMI application, we write two programs, a server program (resides on the
server) and a client program (resides on the client).

 Inside the server program, a remote object is created and reference of that object is made available
for the client (using the registry).

 The client program requests the remote objects on the server and tries to invoke its methods.

The following diagram shows the architecture of an RMI application.

Let us now discuss the components of this architecture.

 Transport Layer − This layer connects the client and the server. It manages the existing connection
and also sets up new connections.

 Stub − A stub is a representation (proxy) of the remote object at client. It resides in the client system;

it acts as a gateway for the client program.

 Skeleton − This is the object which resides on the server side. stub communicates with this skeleton
to pass request to the remote object.

 RRL(Remote Reference Layer) − It is the layer which manages the references made by the client to
the remote object.

Working of an RMI Application

The following points summarize how an RMI application works −

2 V UNIT IV

 When the client makes a call to the remote object, it is received by the stub which eventually passes
this request to the RRL.

 When the client-side RRL receives the request, it invokes a method called invoke() of the
object remoteRef. It passes the request to the RRL on the server side.

 The RRL on the server side passes the request to the Skeleton (proxy on the server) which finally
invokes the required object on the server.

 The result is passed all the way back to the client.

Marshalling and Unmarshalling

Whenever a client invokes a method that accepts parameters on a remote object, the
parameters are bundled into a message before being sent over the network. These
parameters may be of primitive type or objects. In case of primitive type, the
parameters are put together and a header is attached to it. In case the parameters are
objects, then they are serialized. This process is known as marshalling.

At the server side, the packed parameters are unbundled and then the required
method is invoked. This process is known as unmarshalling.

RMI Registry

RMI registry is a namespace on which all server objects are placed. Each time the
server creates an object, it registers this object with the RMIregistry
(using bind() or reBind() methods). These are registered using a unique name known
as bind name.

To invoke a remote object, the client needs a reference of that object. At that time, the
client fetches the object from the registry using its bind name (using lookup() method).

The following illustration explains the entire process −

3 V UNIT IV

Goals of RMI

Following are the goals of RMI −

 To minimize the complexity of the application.

 To preserve type safety.

 Distributed garbage collection.

 Minimize the difference between working with local and remote objects.

To write an RMI Java application, you would have to follow the steps given below −

 Define the remote interface

 Develop the implementation class (remote object)

 Develop the server program

 Develop the client program

 Compile the application

 Execute the application

Defining the Remote Interface

A remote interface provides the description of all the methods of a particular remote
object. The client communicates with this remote interface.

To create a remote interface −

 Create an interface that extends the predefined interface Remote which belongs to the package.

 Declare all the business methods that can be invoked by the client in this interface.

 Since there is a chance of network issues during remote calls, an exception
named RemoteException may occur; throw it.

Following is an example of a remote interface. Here we have defined an interface with
the name Hello and it has a method called printMsg().

import java.rmi.Remote;

import java.rmi.RemoteException;

// Creating Remote interface for our application

public interface Hello extends Remote {

 void printMsg() throws RemoteException;

}

Developing the Implementation Class (Remote Object)

We need to implement the remote interface created in the earlier step. (We can write
an implementation class separately or we can directly make the server program
implement this interface.)

To develop an implementation class −

4 V UNIT IV

 Implement the interface created in the previous step.

 Provide implementation to all the abstract methods of the remote interface.

Following is an implementation class. Here, we have created a class
named ImplExample and implemented the interface Hello created in the previous step
and provided body for this method which prints a message.

// Implementing the remote interface

public class ImplExample implements Hello {

 // Implementing the interface method

 public void printMsg() {

 System.out.println("This is an example RMI program");

 }

}

Developing the Server Program

An RMI server program should implement the remote interface or extend the
implementation class. Here, we should create a remote object and bind it to
the RMIregistry.

To develop a server program −

 Create a client class from where you want invoke the remote object.

 Create a remote object by instantiating the implementation class as shown below.

 Export the remote object using the method exportObject() of the class
named UnicastRemoteObject which belongs to the package java.rmi.server.

 Get the RMI registry using the getRegistry() method of the LocateRegistry class which belongs to
the package java.rmi.registry.

 Bind the remote object created to the registry using the bind() method of the class named Registry.

To this method, pass a string representing the bind name and the object exported, as parameters.

Following is an example of an RMI server program.

import java.rmi.registry.Registry;

import java.rmi.registry.LocateRegistry;

import java.rmi.RemoteException;

import java.rmi.server.UnicastRemoteObject;

public class Server extends ImplExample {

 public Server() {}

 public static void main(String args[]) {

 try {

 // Instantiating the implementation class

 ImplExample obj = new ImplExample();

 // Exporting the object of implementation class

 // (here we are exporting the remote object to the stub)

5 V UNIT IV

 Hello stub = (Hello) UnicastRemoteObject.exportObject(obj,

0);

 // Binding the remote object (stub) in the registry

 Registry registry = LocateRegistry.getRegistry();

 registry.bind("Hello", stub);

 System.err.println("Server ready");

 } catch (Exception e) {

 System.err.println("Server exception: " + e.toString());

 e.printStackTrace();

 }

 }

}

Developing the Client Program

Write a client program in it, fetch the remote object and invoke the required method
using this object.

To develop a client program −

 Create a client class from where your intended to invoke the remote object.

 Get the RMI registry using the getRegistry() method of the LocateRegistry class which belongs to
the package java.rmi.registry.

 Fetch the object from the registry using the method lookup() of the class Registry which belongs to
the package java.rmi.registry.

To this method, you need to pass a string value representing the bind name as a parameter. This will
return you the remote object.

 The lookup() returns an object of type remote, down cast it to the type Hello.

 Finally invoke the required method using the obtained remote object.

Following is an example of an RMI client program.

import java.rmi.registry.LocateRegistry;

import java.rmi.registry.Registry;

public class Client {

 private Client() {}

 public static void main(String[] args) {

 try {

 // Getting the registry

 Registry registry = LocateRegistry.getRegistry(null);

 // Looking up the registry for the remote object

 Hello stub = (Hello) registry.lookup("Hello");

 // Calling the remote method using the obtained object

 stub.printMsg();

6 V UNIT IV

 // System.out.println("Remote method invoked");

 } catch (Exception e) {

 System.err.println("Client exception: " + e.toString());

 e.printStackTrace();

 }

 }

}

Compiling the Application

To compile the application −

 Compile the Remote interface.

 Compile the implementation class.

 Compile the server program.

 Compile the client program.

Or,

Open the folder where you have stored all the programs and compile all the Java files
as shown below.

Javac *.java

Executing the Application

Step 1 − Start the rmi registry using the following command.

start rmiregistry

7 V UNIT IV

This will start an rmi registry on a separate window as shown below.

Step 2 − Run the server class file as shown below.
Java Server

Step 3 − Run the client class file as shown below.
java Client

8 V UNIT IV

Verification − As soon you start the client, you would see the following output in the
server.

RMI applications

1. When the client makes a call to the remote object, it is received by the stub which eventually

passes this request to the RRL.

When the client-side RRL receives the request, it invokes a method called invoke() of the

object remoteRef. It passes the request to the RRL on the server side.

The RRL on the server side passes the request to the Skeleton (proxy on the server) which finally

invokes the required object on the server.

The result is passed all the way back to the client.

 Marshalling and Unmarshalling

 Whenever a client invokes a method that accepts parameters on a remote object, the parameters

are bundled into a message before being sent over the network. These parameters may be of

primitive type or objects. In case of primitive type, the parameters are put together and a header

is attached to it. In case the parameters are objects, then they are serialized. This process is

known as marshalling.

 At the server side, the packed parameters are unbundled and then the required method is invoked.

This process is known as unmarshalling.

 RMI Registry

 RMI registry is a namespace on which all server objects are placed. Each time the server creates

an object, it registers this object with the RMIregistry (using bind() or reBind() methods). These

are registered using a unique name known as bind name.

 To invoke a remote object, the client needs a reference of that object. At that time, the client

fetches the object from the registry using its bind name (using lookup() method).

 The following illustration explains the entire process −

9 V UNIT IV

Components of RMI

1. Transport Layer − This layer connects the client and the server. It manages the existing

connection and also sets up new connections.

Stub − A stub is a representation (proxy) of the remote object at client. It resides in the client
system; it acts as a gateway for the client program.

Skeleton − This is the object which resides on the server side. stub communicates with this
skeleton to pass request to the remote object.

RRL(Remote Reference Layer) − It is the layer which manages the references made by the client
to the remote object.

Implementation class for remote object of RMI

We need to implement the remote interface created in the earlier step. (We can write
an implementation class separately or we can directly make the server program
implement this interface.)

10 V UNIT IV

To develop an implementation class −

 Implement the interface created in the previous step.

 Provide implementation to all the abstract methods of the remote interface.

Following is an implementation class. Here, we have created a class
named ImplExample and implemented the interface Hello created in the previous step
and provided body for this method which prints a message.

// Implementing the remote interface

public class ImplExample implements Hello {

 // Implementing the interface method

 public void printMsg() {

System.out.println("This is an example RMI program");

}

}

1

Unit V JSP - JavaBeans

A JavaBean is a specially constructed Java class written in the Java and coded
according to the JavaBeans API specifications.

Following are the unique characteristics that distinguish a JavaBean from other Java
classes −

 It provides a default, no-argument constructor.

 It should be serializable and that which can implement the Serializable interface.

 It may have a number of properties which can be read or written.

 It may have a number of "getter" and "setter" methods for the properties.

JavaBeans Properties

A JavaBean property is a named attribute that can be accessed by the user of the
object. The attribute can be of any Java data type, including the classes that you
define.

A JavaBean property may be read, write, read only, or write only. JavaBean
properties are accessed through two methods in the JavaBean's implementation class
−

S.No. Method & Description

1
getPropertyName()

For example, if property name is firstName, your method name would be getFirstName() to

read that property. This method is called accessor.

2
setPropertyName()

For example, if property name is firstName, your method name would be setFirstName() to
write that property. This method is called mutator.

A read-only attribute will have only a getPropertyName() method, and a write-only
attribute will have only a setPropertyName() method.

JavaBeans Example

Consider a student class with few properties −

package com.tutorialspoint;

public class StudentsBean implements java.io.Serializable {

 private String firstName = null;

 private String lastName = null;

2

 private int age = 0;

 public StudentsBean() {

 }

 public String getFirstName(){

 return firstName;

 }

 public String getLastName(){

 return lastName;

 }

 public int getAge(){

 return age;

 }

 public void setFirstName(String firstName){

 this.firstName = firstName;

 }

 public void setLastName(String lastName){

 this.lastName = lastName;

 }

 public void setAge(Integer age){

 this.age = age;

 }

}

Accessing JavaBeans

The useBean action declares a JavaBean for use in a JSP. Once declared, the bean
becomes a scripting variable that can be accessed by both scripting elements and
other custom tags used in the JSP. The full syntax for the useBean tag is as follows −

<jsp:useBean id = "bean's name" scope = "bean's scope" typeSpec/>

Here values for the scope attribute can be a page, request, session or application
based on your requirement. The value of the id attribute may be any value as a long
as it is a unique name among other useBean declarations in the same JSP.

Following example shows how to use the useBean action −

<html>

 <head>

 <title>useBean Example</title>

 </head>

 <body>

 <jsp:useBean id = "date" class = "java.util.Date" />

 <p>The date/time is <%= date %>

 </body>

</html>

3

You will receive the following result − −

The date/time is Thu Sep 30 11:18:11 GST 2010

Accessing JavaBeans Properties

Along with <jsp:useBean...> action, you can use the <jsp:getProperty/> action to
access the get methods and the <jsp:setProperty/> action to access the set methods.
Here is the full syntax −

<jsp:useBean id = "id" class = "bean's class" scope = "bean's scope">

 <jsp:setProperty name = "bean's id" property = "property name"

 value = "value"/>

 <jsp:getProperty name = "bean's id" property = "property name"/>

</jsp:useBean>

The name attribute references the id of a JavaBean previously introduced to the JSP
by the useBean action. The property attribute is the name of the get or
the set methods that should be invoked.

Following example shows how to access the data using the above syntax −

<html>

 <head>

 <title>get and set properties Example</title>

 </head>

 <body>

 <jsp:useBean id = "students" class = "com.tutorialspoint.StudentsBean">

 <jsp:setProperty name = "students" property = "firstName" value = "Zara"/>

 <jsp:setProperty name = "students" property = "lastName" value = "Ali"/>

 <jsp:setProperty name = "students" property = "age" value = "10"/>

 </jsp:useBean>

 <p>Student First Name:

 <jsp:getProperty name = "students" property = "firstName"/>

 </p>

 <p>Student Last Name:

 <jsp:getProperty name = "students" property = "lastName"/>

 </p>

 <p>Student Age:

 <jsp:getProperty name = "students" property = "age"/>

 </p>

 </body>

</html>

4

Let us make the StudentsBean.class available in CLASSPATH. Access the above
JSP. the following result will be displayed −

Student First Name: Zara

Student Last Name: Ali

Student Age: 10

JSP - Custom Tags

A custom tag is a user-defined JSP language element. When a JSP page containing a
custom tag is translated into a servlet, the tag is converted to operations on an object
called a tag handler. The Web container then invokes those operations when the JSP
page's servlet is executed.

JSP tag extensions lets you create new tags that you can insert directly into a
JavaServer Page. The JSP 2.0 specification introduced the Simple Tag Handlers for
writing these custom tags.

To write a custom tag, you can simply extend SimpleTagSupport class and override
the doTag() method, where you can place your code to generate content for the tag.

Create "Hello" Tag

Consider you want to define a custom tag named <ex:Hello> and you want to use it in
the following fashion without a body −

<ex:Hello />

To create a custom JSP tag, you must first create a Java class that acts as a tag
handler. Let us now create the HelloTag class as follows −

package com.tutorialspoint;

import javax.servlet.jsp.tagext.*;

import javax.servlet.jsp.*;

import java.io.*;

public class HelloTag extends SimpleTagSupport {

 public void doTag() throws JspException, IOException {

 JspWriter out = getJspContext().getOut();

 out.println("Hello Custom Tag!");

 }

}

The above code has simple coding where the doTag() method takes the current
JspContext object using the getJspContext() method and uses it to send "Hello
Custom Tag!" to the current JspWriter object

5

Let us compile the above class and copy it in a directory available in the environment
variable CLASSPATH. Finally, create the following tag library file: <Tomcat-
Installation-Directory>webapps\ROOT\WEB-INF\custom.tld.

<taglib>

 <tlib-version>1.0</tlib-version>

 <jsp-version>2.0</jsp-version>

 <short-name>Example TLD</short-name>

 <tag>

 <name>Hello</name>

 <tag-class>com.tutorialspoint.HelloTag</tag-class>

 <body-content>empty</body-content>

 </tag>

</taglib>

Let us now use the above defined custom tag Hello in our JSP program as follows −

<%@ taglib prefix = "ex" uri = "WEB-INF/custom.tld"%>

<html>

 <head>

 <title>A sample custom tag</title>

 </head>

 <body>

 <ex:Hello/>

 </body>

</html>

Call the above JSP and this should produce the following result −

Hello Custom Tag!

JSP - Expression Language (EL)

JSP Expression Language (EL) makes it possible to easily access application data
stored in JavaBeans components. JSP EL allows you to create expressions
both (a) arithmetic and (b) logical. Within a JSP EL expression, you can use integers,
floating point numbers, strings, the built-in constants true and false for boolean
values, and null.

Simple Syntax

Typically, when you specify an attribute value in a JSP tag, you simply use a string. For
example −

<jsp:setProperty name = "box" property = "perimeter" value =

"100"/>

6

JSP EL allows you to specify an expression for any of these attribute values. A simple
syntax for JSP EL is as follows −

${expr}

Here expr specifies the expression itself. The most common operators in JSP EL
are . and []. These two operators allow you to access various attributes of Java Beans
and built-in JSP objects.

For example, the above syntax <jsp:setProperty> tag can be written with an
expression like −

<jsp:setProperty name = "box" property = "perimeter"

 value = "${2*box.width+2*box.height}"/>

When the JSP compiler sees the ${} form in an attribute, it generates code to evaluate
the expression and substitues the value of expresson.

You can also use the JSP EL expressions within template text for a tag. For example,
the <jsp:text> tag simply inserts its content within the body of a JSP. The
following <jsp:text> declaration inserts <h1>Hello JSP!</h1> into the JSP output −

<jsp:text>

 <h1>Hello JSP!</h1>

</jsp:text>

You can now include a JSP EL expression in the body of a <jsp:text> tag (or any other
tag) with the same ${} syntax you use for attributes. For example −

<jsp:text>

 Box Perimeter is: ${2*box.width + 2*box.height}

</jsp:text>

EL expressions can use parentheses to group subexpressions. For example, ${(1 + 2)
* 3} equals 9, but ${1 + (2 * 3)} equals 7.

To deactivate the evaluation of EL expressions, we specify the isELIgnored attribute
of the page directive as below −

<%@ page isELIgnored = "true|false" %>

The valid values of this attribute are true and false. If it is true, EL expressions are
ignored when they appear in static text or tag attributes. If it is false, EL expressions
are evaluated by the container.

Basic Operators in EL

JSP Expression Language (EL) supports most of the arithmetic and logical operators
supported by Java. Following table lists out the most frequently used operators −

S.No. Operator & Description

7

1 .

Access a bean property or Map entry

2 []

Access an array or List element

3 ()

Group a subexpression to change the evaluation order

4 +

Addition

5 -

Subtraction or negation of a value

6 *

Multiplication

7 / or div

Division

8 % or mod

Modulo (remainder)

9 == or eq

Test for equality

10 != or ne

Test for inequality

11 < or lt

Test for less than

12 > or gt

Test for greater than

8

13 <= or le

Test for less than or equal

14 >= or ge

Test for greater than or equal

15 && or and

Test for logical AND

16 || or or

Test for logical OR

17 ! or not

Unary Boolean complement

18 empty

Test for empty variable values

Functions in JSP EL

JSP EL allows you to use functions in expressions as well. These functions must be
defined in the custom tag libraries. A function usage has the following syntax −

${ns:func(param1, param2, ...)}

Where ns is the namespace of the function, func is the name of the function
and param1 is the first parameter value. For example, the function fn:length, which is
part of the JSTL library. This function can be used as follows to get the length of a
string.

${fn:length("Get my length")}

To use a function from any tag library (standard or custom), you must install that library
on your server and must include the library in your JSP using the <taglib> directive as
explained in the JSTL chapter.

JSP EL Implicit Objects

The JSP expression language supports the following implicit objects −

S.No Implicit object & Description

9

1 pageScope

Scoped variables from page scope

2 requestScope

Scoped variables from request scope

3 sessionScope

Scoped variables from session scope

4 applicationScope

Scoped variables from application scope

5 param

Request parameters as strings

6 paramValues

Request parameters as collections of strings

7 header

HTTP request headers as strings

8 headerValues

HTTP request headers as collections of strings

9 initParam

Context-initialization parameters

10 cookie

Cookie values

11 pageContext

The JSP PageContext object for the current page

You can use these objects in an expression as if they were variables. The examples
that follow will help you understand the concepts −

10

The pageContext Object

The pageContext object gives you access to the pageContext JSP object. Through the
pageContext object, you can access the request object. For example, to access the
incoming query string for a request, you can use the following expression −

${pageContext.request.queryString}

The Scope Objects

The pageScope, requestScope, sessionScope, and applicationScope variables
provide access to variables stored at each scope level.

For example, if you need to explicitly access the box variable in the application scope,
you can access it through the applicationScope variable as applicationScope.box.

The param and paramValues Objects

The param and paramValues objects give you access to the parameter values
normally available through
the request.getParameter and request.getParameterValues methods.

For example, to access a parameter named order, use the
expression ${param.order} or ${param["order"]}.

Following is the example to access a request parameter named username −

<%@ page import = "java.io.*,java.util.*" %>

<%String title = "Accessing Request Param";%>

<html>

 <head>

 <title><% out.print(title); %></title>

 </head>

 <body>

 <center>

 <h1><% out.print(title); %></h1>

 </center>

 <div align = "center">

 <p>${param["username"]}</p>

 </div>

 </body>

</html>

The param object returns single string values, whereas the paramValues object returns
string arrays.

11

header and headerValues Objects

The header and headerValues objects give you access to the header values normally
available through the request.getHeader and the request.getHeaders methods.

For example, to access a header named user-agent, use the
expression ${header.user-agent} or ${header["user-agent"]}.

Following is the example to access a header parameter named user-agent −

<%@ page import = "java.io.*,java.util.*" %>

<%String title = "User Agent Example";%>

<html>

 <head>

 <title><% out.print(title); %></title>

 </head>

 <body>

 <center>

 <h1><% out.print(title); %></h1>

 </center>

 <div align = "center">

 <p>${header["user-agent"]}</p>

 </div>

 </body>

</html>

	Java RMI - Introduction
	Architecture of an RMI Application
	Working of an RMI Application
	Marshalling and Unmarshalling
	RMI Registry
	Goals of RMI
	Defining the Remote Interface
	Developing the Implementation Class (Remote Object)
	Developing the Server Program
	Developing the Client Program
	Compiling the Application
	Executing the Application
	RMI applications
	RMI Registry
	Components of RMI
	Implementation class for remote object of RMI

	Unit V JSP - JavaBeans
	JavaBeans Properties
	JavaBeans Example
	Accessing JavaBeans
	Accessing JavaBeans Properties
	JSP - Custom Tags
	Create "Hello" Tag
	JSP - Expression Language (EL)
	Simple Syntax
	Basic Operators in EL
	Functions in JSP EL
	JSP EL Implicit Objects
	The pageContext Object
	The Scope Objects
	The param and paramValues Objects
	header and headerValues Objects

