Home (http://ipindia.nic.in/index.htm) About Us (http://ipindia.nic.in/about-us.htm) Who's Who (http://ipindia.nic.in/whos-who-page.htm)

Policy & Programs (http://ipindia.nic.in/policy-pages.htm) Achievements (http://ipindia.nic.in/achievements-page.htm)

RTI (http://ipindia.nic.in/right-to-information.htm) Feedback (https://ipindiaonline.gov.in/feedback) Sitemap (shttp://ipindia.nic.in/itemap.htm) Contact Us (http://ipindia.nic.in/contact-us.htm) Help Line (http://ipindia.nic.in/helpline-page.htm)

Skip to Main Content Screen Reader Access (screen-reader-access.htm)

(http://ipindia.nic.in/index.htm)

(http://ipindia.nic.in/inc

Patent Search

Invention Title	FUNGAL CHITOSAN
Publication Number	09/2009
Publication Date	27/02/2009
Publication Type	INA
Application Number	1288/CHE/2008
Application Filing Date	27/05/2008
Priority Number	
Priority Country	
Priority Date	
Field Of Invention	BIO-CHEMISTRY
Classification (IPC)	A23L1/28

Inventor

Name	Address	Country	Nationa
R.M. AKILA	BLESSED HOME 20 FEET ROAD, 13, SUBHASH NAGAR, GANAPATHY, COIMBATORE 641006	India	India
R. MANAVALAN	HOD, PHARMACEUTICAL TECHNOLOGY, ANNAMALAI UNIVERSITY, CHIDAMBARAM-608 002.	India	India
T.K. RAVI	PRINCIPAL COLLEGE OF PHARMACY, SRIPMS, 365 SAROJINI NAIDU ROAD, COIMBATORE-641044.	India	India

Applicant

Name	Address	Country	Nationali
R.M. AKILA	BLESSED HOME 20 FEET ROAD, 13, SUBHASH NAGAR, GANAPATHY, COIMBATORE 641006	India	India

Abstract:

Disclosed is a fermentative production of a highly deacetylated chitosan from the mycelia of the fungus Beauveria bassiana and from the fungus Aspergillus wentii.

Complete Specification

FUNGAL CHITOSAN

Field of the invention

This invention is directed to chitosan and a method of isolating chitosan from fungal mycelia of Beauveria bassiana or Aspergillus wentii Back ground of the invention

Chitin is highly insoluble N-acetylated polymer of beta-l,4-N-glucosamine present in various marine and terrestrial organisms including crustacean, insects, moUusks and microorganisms such as fungi. Chitosan is an acid soluble deacetylated form of chitin.

Chitosan has many industrial, medical, pharmaceutical and nutritional uses, including those requiring a biodegradable, non-toxic polymer. For example, chitosan is used polyelectrolytic coagulant and a sludge dewatering aid in waste water treatment. Medical, pharmaceutical and nutritional uses often require a higher quality chitosan for functional and aesthetic reasons. These uses include applications as anticoagulants, antiviral agents, drug carriers, cosmetic additives, dialysis membranes, orthopedic materials, wound dressings, food stabilizers and thickeners, flavor and nutrient carriers and dietary fiber.

The quality of chitosan varies with the degree of deacetylation, degree of polymerization, manufacturing process, colour, clarity, consistency, uniformity and source. Mos chitosan is formed by dissolving calcium carbonate from the shells of aquatic crustacean to liberate chitin, deacetylating the chitin to form chitosan with a hot alkali solution, followed by recovery and drying of the chitosan. This chitosan production process has number of unfavourable characteristics. For example, the process require expensive heat energy and caustic alkali which is a potential health hazard. The process also produce large amounts of waste, thereby necessitating significant disposal costs. In addition, supply of shripp or crab shells is highly dependent upon seasonal and environmental factors, leading to unpredictable limitations on production capa

View Application Status