M.E. Embedded Systems
(Two-Year Full Time & Three-year Part Time)

DEGREE PROGRAM
Choice Based Credit System

Regulations & Curriculum – 2017

HAND BOOK
2017

DEPARTMENT OF ELECTRICAL ENGINEERING
M.E. / M. Tech (Two-Year Full Time & Three-year Part Time) DEGREE PROGRAM

CHOICE BASED CREDIT SYSTEM (CBCS)

REGULATIONS

1. Condition for Admission
Candidates for admission to the first year of the four-semester M.E / M.Tech Degree Program in Engineering shall be required to have passed B.E / B.Tech degree of Annamalai University or any other authority accepted by the syndicate of this University as equivalent thereto. They shall satisfy the condition regarding qualifying marks and physical fitness as may be prescribed by the syndicate of the Annamalai University from time to time. The admission for part time Program is restricted to those working or residing within a radius of 90 km from Annamalainagar. The application should be sent through their employers.

2. Branches of Study in M.E / M.Tech
The Branch and Eligibility criteria of Programs are given in Annexure 1

3. Courses of study
The courses of study and the respective syllabi for each of the M.E / M. Tech Programs offered by the different Departments of study are given separately.

4. Scheme of Examinations
The scheme of Examinations is given separately.

5. Choice Based Credit System (CBCS)
The curriculum includes three components namely Professional Core, Professional Electives and Open Electives in addition to Thesis. Each semester curriculum shall normally have a blend of theory and practical courses.

6. Assignment of Credits for Courses
Each course is normally assigned one credit per hour of lecture / tutorial per week and one credit for two hours or part thereof for laboratory or practical per week. The total credits for the Program will be 65.

7. Duration of the Program
A student of M.E / M.Tech Program is normally expected to complete in four semesters for full-time / six semesters for part-time but in any case not more than four years for full-time / six years for part-time from the date of admission.
8. **Registration for courses**

A newly admitted student will automatically be registered for all the courses prescribed for the first semester, without any option. Every other student shall submit a completed registration form indicating the list of courses intended to be credited during the next semester. This registration will be done a week before the last working day of the current semester. Late registration with the approval of the Dean on the recommendation of the Head of the Department along with a late fee will be done up to the last working day. Registration for the Thesis Phase - I and II shall be done at the appropriate semesters.

9. **Electives**

The student has to select two electives in first semester and another two electives in the second semester from the list of Professional Electives. The student has to select two electives in third semester from the list of Open Electives offered by the department/ allied department. A student may be allowed to take up the open elective courses of third semester (Full Time program) in the first and second semester, one course in each of the semesters to enable them to carry out thesis in an industry during the entire second year of study provided they should register those courses in the first semester itself. Such students should meet the teachers offering those elective courses themselves for clarifications. No specific slots will be allotted in the time table for such courses.

Further, the two open elective courses to be studied in III semester (Full Time Program) may also be credited through the SWAYAM portal of UGC with the approval of Head of the Department concerned. In such a case, the courses must be credited before the end of III Semester.

10. **Assessment**

The break-up of continuous assessment and examination marks for theory courses is as follows:

- First assessment (Mid-Semester Test-I) : 10 marks
- Second assessment (Mid-Semester Test-II) : 10 marks
- Third Assessment : 5 marks
- End Semester Examination : 75 marks

The break-up of continuous assessment and examination marks for Practical courses is as follows:

- First assessment (Test-I) : 15 marks
Second assessment (Test-II) : 15 marks
Maintenance of record book : 10 marks
End Semester Examination : 60 marks

The thesis Phase I will be assessed for 40 marks by a committee consisting of the Head of the Department, the guide and a minimum of two members nominated by the Head of the Department. The Head of the Department will be the chairman. The number of reviews must be a minimum of three per semester. 60 marks are allotted for the thesis work and viva voce examination at the end of the third semester. The same procedure will be adopted for thesis Phase II in the fourth semester.

11. Student Counsellors (Mentors)

To help the students in planning their course of study and for general advice on the academic Program, the Head of the Department will attach a certain number of students to a member of the faculty who shall function as student counsellor for those students throughout their period of study. Such student counsellors shall advise the students, give preliminary approval for the courses to be taken by the students during each semester, monitor their progress in SWAYAM courses / open elective courses and obtain the final approval of the Head of the Department.

12. Class Committee

For each of the semesters of M.E / M.TechPrograms, separate class committees will be constituted by the respective Head of the Departments. The composition of the class committees from first to fourth semesters for Full time and first to sixth semesters for Part-time will be as follows:

- Teachers of the individual courses.
- A Thesis coordinator (for Thesis Phase I and II) shall be appointed by the Head of the Department from among the Thesis supervisors.
- A thesis review committee chairman shall be appointed by the Head of the Department.
- One Professor or Associate Professor, preferably not teaching the concerned class, appointed as Chairman by the Head of the Department.
- The Head of the Department may opt to be a member or the Chairman.
• All counselors of the class and the Head of the Department (if not already a member) or any staff member nominated by the Head of the Department may opt to be special invitees.

The class committee shall meet three times during the semester. The first meeting will be held within two weeks from the date of class commencement in which the type of assessment like test, assignment etc. for the third assessment and the dates of completion of the assessments will be decided.

The second meeting will be held within a week after the completion of the first assessment to review the performance and for follow-up action.

The third meeting will be held after all the assessments but before the University semester examinations are completed for all the courses, and at least one week before the commencement of the examinations. During this meeting the assessment on a maximum of 25 marks for theory / 40 marks for practical and project work will be finalized for every student and tabulated and submitted to the Head of the Department for approval and transmission to the Controller of Examinations.

13. Temporary Break Of Study
A student can take a one-time temporary break of study covering the current semester and/or the next semester with the approval of the Dean on the recommendation of the Head of the Department, not later than seven days after the completion of the mid-semester test. However, the student must complete the entire Program within the maximum period of four years for Full time / six years for Part time.

14. Substitute Assessments
A student who has missed, for genuine reasons accepted by the Head of the Department, one or more of the assessments of a course other than the end of semester examination may take a substitute assessment for any one of the missed assessments. The substitute assessment must be completed before the date of the third meeting of the respective class committees.

A student who wishes to have a substitute assessment for a missed assessment must apply to the Head of the Department within a week from the date of the missed assessment.

15. Attendance Requirements
The students with 75% attendance and above are permitted to appear for the University examinations. However, the Vice Chancellor may give a rebate / concession not exceeding 10% in attendance for exceptional cases only on Medical Grounds.
A student who withdraws from or does not meet the minimum attendance requirement in a semester must re-register and repeat the same semester in the subsequent academic years.

16. Passing and declaration of Examination Results

All assessments of all the courses on an absolute marks basis will be considered and passed by the respective results passing boards in accordance with the rules of the University. Thereafter, the controller of examinations shall convert the marks for each course to the corresponding letter grade as follows, compute the grade point average (GPA) and cumulative grade point average (CGPA) and prepare the mark sheets.

<table>
<thead>
<tr>
<th>Marks Range</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 to 100 marks</td>
<td>Grade ‘S’</td>
</tr>
<tr>
<td>80 to 89 marks</td>
<td>Grade ‘A’</td>
</tr>
<tr>
<td>70 to 79 marks</td>
<td>Grade ‘B’</td>
</tr>
<tr>
<td>60 to 69 marks</td>
<td>Grade ‘C’</td>
</tr>
<tr>
<td>55 to 59 marks</td>
<td>Grade ‘D’</td>
</tr>
<tr>
<td>50 to 54 marks</td>
<td>Grade ‘E’</td>
</tr>
<tr>
<td>Less than 50 marks</td>
<td>Grade ‘RA’</td>
</tr>
<tr>
<td>Withdrawn from the Examination</td>
<td>Grade ‘W’</td>
</tr>
</tbody>
</table>

A student who obtains less than 30 / 24 marks out of 75 / 60 in the theory / practical examinations respectively or is absent for the examination will be awarded grade RA.

A student who earns a grade of S, A, B, C, D or E for a course is declared to have successfully completed that course and earned the credits for that course. Such a course cannot be repeated by the student.

A student who obtains letter grade RA / W in the mark sheet must reappear for the examination of the courses.

The following grade points are associated with each letter grade for calculating the grade point average and cumulative grade point average.

- \(S - 10; \ A - 9; \ B - 8; \ C - 7; \ D - 6; \ E - 5; \ RA - 0 \)

Courses with grade RA / W are not considered for calculation of grade point average or cumulative grade point average.

A student can apply for re-totaling of one or more of his examination answer papers within a week from the date of issue of mark sheet to the student on payment of the prescribed fee per paper. The application must be made to the Controller of Examinations with the recommendation of the Head of the Department.

After the results are declared, mark sheets will be issued to the students. The mark sheet will contain the list of courses registered during the semester, the grades scored and the grade point average for the semester.
GPA is the sum of the products of the number of credits of a course with the grade point scored in that course, taken over all the courses for the semester, divided by the sum of the number of credits for all courses taken in that semester.

CGPA is similarly calculated considering all the courses taken from the time of admission.

17. Awarding Degree

After successful completion of the Program, the degree will be awarded with the following classifications based on CGPA.

For First Class with Distinction the student must earn a minimum of 65 credits within four semesters for full-time / six semesters for Part time from the time of admission, pass all the courses in the first attempt and obtain a CGPA of 8.25 or above.

For First Class, the student must earn a minimum of 65 credits within two years and six months for full-time / three years and six months for Part time from the time of admission and obtain a CGPA of 6.75 or above.

For Second class, the student must earn a minimum of 65 credits within four years for full-time / six years for Part time from the time of admission.

18. Ranking of Candidates

The candidates who are eligible to get the M.E /M.Tech degree in First Class with Distinction will be ranked on the basis of CGPA for all the courses of study from I to IV semester for M.E / M.Tech full-time / I to VI semester for M.E / M.Tech part-time.

The candidates passing with First Class and without failing in any subject from the time of admission will be ranked next to those with distinction on the basis of CGPA for all the courses of study from I to IV semester for full-time / I to VI semester for M.E / M.Tech part-time.

19. Transitory Regulations

If a candidate studying under the old regulations M.E / M.Tech could not attend any of the courses in his/her courses, shall be permitted to attend equal number of courses, under the new regulation and will be examined on those subjects. The choice of courses will be decided by the concerned Head of the department. However he/she will be permitted to submit the thesis as per the old regulations. The results of such candidates will be passed as per old regulations.

The University shall have powers to revise or change or amend the regulations, the scheme of examinations, the courses of study and the syllabi from time to time.
ANNEXURE 1

<table>
<thead>
<tr>
<th>Synod</th>
<th>Department</th>
<th>Program (Full Time & Part time)</th>
<th>Eligible B.E./B. Tech Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Chemical Engineering</td>
<td>i. Chemical Engineering</td>
<td>B.E. / B.Tech – Chemical Engg, Petroleum Engg, Petrochemical Technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iii. Industrial Bio Technology</td>
<td>B.E. / B.Tech – Chemical Engg, Food Technology, Biotechnology, Leather Technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>iv. Industrial Safety Engineering</td>
<td>B.E. / B.Tech – Any Branch of Engineering</td>
</tr>
<tr>
<td>3</td>
<td>Civil & Structural Engineering</td>
<td>i. Structural Engineering</td>
<td>B.E. / B.Tech – Civil Engg, Civil & Structural Engg.</td>
</tr>
<tr>
<td>S.No.</td>
<td>Department</td>
<td>Program (Full Time & Part time)</td>
<td>Eligible B.E./B.Tech Program</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>8</td>
<td>Information Technology</td>
<td>i. Information Technology</td>
<td>B.E. / B.Tech - Computer Science and Engineering, Information Technology, Electronics and Communication Engg, Software Engineering</td>
</tr>
</tbody>
</table>
VISION

To develop the Department into a “Centre of Excellence” with a perspective to provide quality education and skill-based training with state-of-the-art technologies to the students, thereby enabling them to become achievers and contributors to the industry, society and nation together with a sense of commitment to the profession.

MISSION

M1: To impart quality education in tune with emerging technological developments in the field of Electrical and Electronics Engineering.

M2: To provide practical hands-on-training with a view to understand the theoretical concepts and latest technological developments.

M3: To produce employable and self-employable graduates.

M4: To nurture the personality traits among the students in different dimensions emphasizing the ethical values and to address the diversified societal needs of the Nation

M5: To create futuristic ambience with the state-of-the-art facilities for pursuing research.

PROGRAMME EDUCATIONAL OBJECTIVES

PEO1: Envisage a solid foundation in Basic Sciences, Electrical and Electronics Engineering for a successful career and Life-long Learning in the fields of having Societal Implications.

PEO2: Design and implement effective solutions for complex Electrical and Electronics Engineering problems using modern tools and techniques.

PEO3: Establish Professionalism, Good Communication skills and ethical attitude in multi-disciplinary team work.

PEO4: Apply creative thinking and critical reasoning skills in collaborative research.

PEO5: Contribute to the economic growth of the country by creating job opportunities through entrepreneurship.
PROGRAM OUTCOMES (POs)

After the successful completion of B.E (Electrical and Electronics Engineering) Program the students will be able to:

PO1: **Engineering Knowledge:**

Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2: **Problem Analysis:**

Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO 3: **Design/Development of Solutions:**

Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO 4: **Conduct Investigations of Complex Problems:**

Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO 5: **Modern Tool Usage:**

Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO 6: **The Engineer and Society:**

Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO 7: **Environment and Sustainability:**

Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8: **Ethics:**
Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO 9: **Individual and Team Work:**
Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO 10: **Communication:**
Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO 11: **Project Management and Finance:**
Demonstrate knowledge and understanding of the engineering and management principles and apply these to one’s own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO 12: **Life-Long Learning:**
Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs)

At the time of graduation, the students will be able to:

PSO 1: Inculcate research attitude and develop innovative methodologies independently to solve Embedded System problems.

PSO 2: Inscribe and be exposed with significant technical reports / documents in the domain of Embedded System Engineering

PSO 3: Demonstrate an acceptable degree of mastery with an exposure to the state-of-the-art practices for employability / higher education.
<table>
<thead>
<tr>
<th>PEO 1</th>
<th>3</th>
<th>3</th>
<th>3</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>2</th>
<th>2</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEO 2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>PEO 3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td>3</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>PEO 4</td>
<td></td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>PEO 5</td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td></td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>
Curriculum for M.E. Embedded Systems (Full-Time)

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Category</th>
<th>Course Code</th>
<th>Course Code</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>CA</th>
<th>FE</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PC-I</td>
<td>EMSC101</td>
<td>Applied Mathematics</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>PC-II</td>
<td>EMSC102</td>
<td>Microcontroller Based System Design</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>PC-III</td>
<td>EMSC103</td>
<td>Real Time Operating System</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>PC-IV</td>
<td>EMSC104</td>
<td>Wireless Sensor Networks</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>PE-I</td>
<td>EMSE105</td>
<td>Professional Elective-I</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>PE-II</td>
<td>EMSE106</td>
<td>Professional Elective-II</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>Lab-I</td>
<td>EMSP107</td>
<td>Microcontroller based System Design Lab</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>40</td>
<td>60</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>24</td>
<td>3</td>
<td></td>
<td>190</td>
<td>510</td>
<td>700</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Category</th>
<th>Course Code</th>
<th>Course Code</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>CA</th>
<th>FE</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PC-V</td>
<td>EMSC201</td>
<td>RISC and CISC Processors</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>PC-VI</td>
<td>EMSC202</td>
<td>Embedded Control Systems Design</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>PC-VII</td>
<td>EMSE203</td>
<td>Digital Instrumentation</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>PC-VIII</td>
<td>EMSC204</td>
<td>Advanced Digital System Design</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>PE-III</td>
<td>EMSE205</td>
<td>Professional Elective-III</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>PE-IV</td>
<td>EMSE206</td>
<td>Professional Elective-IV</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>Lab-II</td>
<td>EMSP207</td>
<td>ARM and DSP based System Design Lab</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>40</td>
<td>60</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>Semin</td>
<td>EMSS208</td>
<td>Seminar</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>100</td>
<td>-</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>24</td>
<td>5</td>
<td>-</td>
<td>290</td>
<td>510</td>
<td>800</td>
<td>21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Category</th>
<th>Course Code</th>
<th>Course Code</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>CA</th>
<th>FE</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OE-I</td>
<td>EMSE301</td>
<td>Open Elective-I</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>OE-II</td>
<td>EMSE302</td>
<td>Open Elective-II</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Thesis</td>
<td>EMST303</td>
<td>Thesis Phase-I</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>40</td>
<td>60</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>Ind Train</td>
<td>EMSI304</td>
<td>Industrial Training</td>
<td>-</td>
<td>*</td>
<td>-</td>
<td>100</td>
<td>-</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>8</td>
<td>3</td>
<td>-</td>
<td>190</td>
<td>210</td>
<td>400</td>
<td>12</td>
</tr>
</tbody>
</table>

Note: * - Four weeks during the summer vacation at the end of IInd Semester.
Curriculum for M.E. Embedded Systems (Part-Time)

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Category</th>
<th>Course Code</th>
<th>Course Code</th>
<th>Course</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>CA</th>
<th>FE</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Semester – IV</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Thesis</td>
<td>EMST401</td>
<td>Thesis Phase-II</td>
<td>-</td>
<td>8</td>
<td>-</td>
<td>40</td>
<td>60</td>
<td>100</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>8</td>
<td>-</td>
<td>40</td>
<td>60</td>
<td>100</td>
<td>12</td>
</tr>
</tbody>
</table>

L- Lecture ; P-Practical ; T-Thesis ; CA-Continuous Assessment; FE-Final Exam

Equivalent Course Code in M.E. Full Time

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Category</th>
<th>Course Code</th>
<th>Course Code</th>
<th>Course</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>CA</th>
<th>FE</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Semester – I</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PC-I</td>
<td>PEMSC101</td>
<td>Applied Mathematics</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>3</td>
<td>EMSC101</td>
</tr>
<tr>
<td>2</td>
<td>PC-II</td>
<td>PEMSC102</td>
<td>Microcontroller Based System Design</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>3</td>
<td>EMSC102</td>
</tr>
<tr>
<td>3</td>
<td>PC-III</td>
<td>PEMSC103</td>
<td>Real Time Operating System</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>3</td>
<td>EMSC103</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>-</td>
<td>-</td>
<td>75</td>
<td>225</td>
<td>300</td>
<td>09</td>
</tr>
</tbody>
</table>

Equivalent Course Code in M.E. Full Time

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Category</th>
<th>Course Code</th>
<th>Course Code</th>
<th>Course</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>CA</th>
<th>FE</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Semester – II</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PC-IV</td>
<td>PEMSC201</td>
<td>RISC and CISC Processors</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>3</td>
<td>EMSC201</td>
</tr>
<tr>
<td>2</td>
<td>PC-V</td>
<td>PEMSC202</td>
<td>Embedded Control Systems Design</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>3</td>
<td>EMSC202</td>
</tr>
<tr>
<td>3</td>
<td>PC-VI</td>
<td>PEMSE203</td>
<td>Digital Instrumentation</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>3</td>
<td>EMSC203</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>-</td>
<td>-</td>
<td>75</td>
<td>225</td>
<td>300</td>
<td>09</td>
</tr>
</tbody>
</table>

Equivalent Course Code in M.E. Full Time

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Category</th>
<th>Course Code</th>
<th>Course Code</th>
<th>Course</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>CA</th>
<th>FE</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Semester – III</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PC-IV</td>
<td>PEMSC201</td>
<td>Wireless Sensor Networks</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>3</td>
<td>EMSC104</td>
</tr>
<tr>
<td>2</td>
<td>PE-I</td>
<td>PEMSE202</td>
<td>Professional Elective-I</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>3</td>
<td>EMSE105</td>
</tr>
<tr>
<td>3</td>
<td>PE-II</td>
<td>PEMSE203</td>
<td>Professional Elective-II</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>3</td>
<td>EMSE106</td>
</tr>
<tr>
<td>4</td>
<td>Lab-I</td>
<td>PEMSP204</td>
<td>Microcontroller based System Design Lab</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>40</td>
<td>60</td>
<td>100</td>
<td>2</td>
<td>EMSP107</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>-</td>
<td>3</td>
<td>115</td>
<td>285</td>
<td>400</td>
<td>11</td>
</tr>
<tr>
<td>Sl. No.</td>
<td>Category</td>
<td>Course Code</td>
<td>Course</td>
<td>L</td>
<td>T</td>
<td>P</td>
<td>CA</td>
<td>FE</td>
<td>Total</td>
<td>Credits</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>-------------</td>
<td>-------------------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>----</td>
<td>----</td>
<td>-------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>PC-VIII</td>
<td>PEMSC401</td>
<td>Advanced Digital System Design</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>PE-III</td>
<td>PEMSE402</td>
<td>Professional Elective-III</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>PE-IV</td>
<td>PEMSE403</td>
<td>Professional Elective-IV</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Lab-II</td>
<td>PEMSP404</td>
<td>ARM and DSP based System Design Lab</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>40</td>
<td>60</td>
<td>100</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Semin</td>
<td>PEMSS405</td>
<td>Seminar</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>100</td>
<td></td>
<td>100</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>12</td>
<td>5</td>
<td></td>
<td>215</td>
<td>285</td>
<td>500</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

Semester – V

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Category</th>
<th>Course Code</th>
<th>Course</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>CA</th>
<th>FE</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OE-I</td>
<td>PEMSE501</td>
<td>Open Elective-I</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>OE-II</td>
<td>PEMSE502</td>
<td>Open Elective-II</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>25</td>
<td>75</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Thesis</td>
<td>PEMST503</td>
<td>Thesis Phase-I</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>40</td>
<td>60</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>Ind Train</td>
<td>PEMSI504</td>
<td>Industrial Training</td>
<td>-</td>
<td>*</td>
<td>-</td>
<td>100</td>
<td></td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>8</td>
<td>4</td>
<td>8</td>
<td>190</td>
<td>210</td>
<td>400</td>
<td>12</td>
</tr>
</tbody>
</table>

Note: * - Four weeks during the summer vacation at the end of IVth Semester.

Semester – VI

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Category</th>
<th>Course Code</th>
<th>Course</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>CA</th>
<th>FE</th>
<th>Total</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Thesis</td>
<td>PEMST601</td>
<td>Thesis Phase-II</td>
<td>-</td>
<td>8</td>
<td>-</td>
<td>40</td>
<td>60</td>
<td>100</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>-</td>
<td>8</td>
<td>8</td>
<td>40</td>
<td>60</td>
<td>100</td>
<td>12</td>
</tr>
</tbody>
</table>

L- Lecture ; P-Practical ; T-Thesis ; CA-Continuous Assessment ; FE-Final Exam
PE – PROFESSIONAL ELECTIVES

1. Advanced Digital Signal Processing
2. Digital Image Processing
3. Distributed Embedded Computing
4. Medical Instrumentation Systems
5. FPGA Based Embedded System Design
6. LSI for Embedded Applications
7. Micro-Electro-Mechanical Systems
8. Software Technology for Embedded Systems
9. Robotics and Automation
10. Embedded Product Development Technologies
11. SCADA for Embedded Applications
12. Wireless and Mobile Communication

OE-OPEN ELECTIVES

1. Cloud Computing
2. Optimization Techniques
3. Scientific Research and Technical Communication
4. Soft Computing Techniques
5. Internet of Things
6. Intellectual Property Rights
COURSE OBJECTIVES:

- To strengthen the mathematical background of the students
- To expose the students to the latest as required in the field of study of power systems.
- To enable the student to build up his mathematical ability in Matrices
- To acquire the knowledge in Statistics to understand the concepts with a sense of applicability.
- To emphasize on the study of operations research with specified reference to quadratic programming.
- To exploit the use of PDE for design analysis and simulation of power systems.

Matrices

Computation of the greatest and the least eigen values of a matrix by power method - Modal matrix and spectral matrix - Hermitian form - Canonical form.

Operations Research

Linear programming - Graphical method - Simplex method - Nonlinear programming with special reference to quadratic programming - Kuhn Tucker conditions - Dynamic programming-Bellman's principle of optimality.

Statistics

Random variables-Distribution function-Density function - Variance and covariance-
Stochastic process - Auto correlation and auto covariance – Cross correlation and cross covariance - Stationary process - Auto correlation and cross correlation functions – Power spectrum.

Boundary Value Problems

Special functions and multiple Fourier series: Orthogonal functions, Bessel functions and Legendre polynomials - Generalised Fourier series expansions of an arbitrary function in terms of orthogonal functions, Bessel functions of order zero and Legendre polynomials - Fourier series expansions of functions of two and three variables.

Partial Differential Equations

Solution of wave equation, diffusion equation, Poisson equation and Laplace equation by the method of separation of variables- Transverse vibration of rectangular and circular membranes - Potentials due to charged circular rings, circular plates and spheres.
REFERENCES:

COURSE OUTCOMES:
1. Enhance skills in Matrix operation to apply in embedded system domain.
2. Familiarize with Linear and nonlinear programming methods.
3. Acquire knowledge in handling situations involving random variables, random processes.
4. Able to solve some boundary value problems.
5. Acquire basic understanding of the most common partial differential equations.

<table>
<thead>
<tr>
<th>Mapping with Program Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO1</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>CO1</td>
</tr>
<tr>
<td>CO2</td>
</tr>
<tr>
<td>CO3</td>
</tr>
<tr>
<td>CO4</td>
</tr>
<tr>
<td>CO5</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES:

- To introduce the fundamentals of microcontroller-based system design.
- To study the interfacing peripherals with microcontrollers.
- To learn the features, architecture and programming of PIC.
- To introduce PIC peripheral system design.
- To study on basic tool features for target configuration.
- To give case study experiences for microcontroller-based applications.

Introduction

Need for Microcontroller based system design - Design cycle - Design problem - Hardware and software considerations - System integration/Structure and characteristics - Interrupt structures - Programmable timers - Latency - Interrupt density - Interval considerations.

89C51 Processor

Review of architectures and instruction sets of 89C51 Processor - Coprocessor configuration - Closely coupled and loosely coupled configurations - Architecture and instruction set of I/O processor - I/O control - I/O timing - Data buffering with FIFO - Key boards and switches - Remote instrument control - Self test hardware - Key board parsing - Real time programming - Self test algorithm.

PIC Microcontroller

Trouble Shooting and Development Systems

System Design Examples

REFERENCES:

COURSE OUTCOMES:
1. Understand the fundamentals of microcontroller systems and interface, and have the ability to apply them.
2. Understand the architecture and capabilities of PIC microcontroller.
3. Learn importance of PIC in designing embedded application.
4. Learn use of hardware and software tools.
5. Develop interfacing to real world devices.

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES:

- To impart students about the fundamentals of Real Time Systems and interaction with RTOS
- To teach the concepts of how process is created and controlled with RTOS.
- To study on programming logic of modeling and analyzing RTS
- To study about the services rendered by RTOS in an application.
- To acquire knowledge about the common problems in developing an RTOS.
- To discuss the application development using RTOS.

RTOS

Differences between General Purpose OS & RTOS, Real-time concepts, Hard Real time and Soft Real-time systems, Basic architecture of an RTOS, components in RTOS - kernel, objects, scheduler, Multitasking, context switch, Scheduling types - Preemptive priority-based scheduling - Round-robin and preemptive scheduling - Task states - Task management.

Kernel Objects

Semaphores – Binary, counting, mutual exclusion (mutex) semaphores, Synchronization between two tasks and multiple tasks, Single shared-resource-access synchronization, Recursive shared-resource-access synchronization - message queue- Sending messages in FIFO or LIFO order- broadcasting messages. Common pipe- pipe operation- Select operation on multiple pipes-Pipes for inter-task - Synchronization - Event register - control block- Signals- Catch operation- Execution sequence of wait and signal operations.

RTOS Services

Overview- TCP/IP protocol- Stack- File system- Remote procedure calls- RTOS command shell- Exceptions and Interrupts- Programmable interrupt controller-Priority scheme- Task and stack- Interrupt nesting- Interrupt processing in two contexts. Timer and Timer Services - Real-time clock- Soft-timer-Servicing the timer interrupt in the task context- Timeout event handlers.

I/O Subsystem and Memory Management

Port-mapped I/O- Memory-mapped I/O- Write operation for a block-mode device- I/O function mapping- Associating devices with drivers-Memory allocation map, fragmentation, free operation, Management unit.

Typical RTOS

Introduction to RT Linux, Real-Time Linux Applications in Embedded system, Common Design Problems - Deadlock, priority inversion problem, Embedded RTOS for fault-Tolerant applications
REFERENCES:

COURSE OUTCOMES:
1. It acquires knowledge about Real Time Operating System.
2. It helps to understand the concept of real time programming.
3. It gives an idea about the services rented by an RTOS in a developed application.
4. It describes about I/O and memory management concepts.
5. It provides a concept to design and develop application using RTOS.

<table>
<thead>
<tr>
<th>Mapping with Program Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
</tr>
<tr>
<td>CO2</td>
</tr>
<tr>
<td>CO3</td>
</tr>
<tr>
<td>CO4</td>
</tr>
<tr>
<td>CO5</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES:

- To introduce the basic concepts in communication networks and the protocols used in these networks.
- To give an exposure to sensor networks and different architectures of Wireless Sensor Networks.
- To familiarize the students about the various multiple access techniques available in the communication systems and introduce the different clustering algorithms for WSNs.
- To acquire knowledge on security management systems and security protocols for WSN and distributed sensor systems.
- To give an idea about power and energy level management techniques available for WSNs.

Networks Fundamentals

Architecture

Protocols

Security System

Energy Management

REFERENCES:

COURSE OUTCOMES:

1. Describe and explain the working of communication protocols and the evolution of 2G/3G networks.
2. Understand the characteristics, architectures and modeling of WSNs.
3. Explain the concepts of multiple access techniques and the working of various clustering algorithms and their usefulness for routing in WSNs.
4. Describe the different security management techniques and security protocols defined for WSNs.
5. Elucidate the design issues related to the energy and power management techniques for WSNs.

<table>
<thead>
<tr>
<th>Mapping with Program Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO1</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>CO1</td>
</tr>
<tr>
<td>CO2</td>
</tr>
<tr>
<td>CO3</td>
</tr>
<tr>
<td>CO4</td>
</tr>
<tr>
<td>CO5</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES:

- To learn the working principles of 89C51 microcontroller, PIC and ARM Processor.
- To understand the characteristics of real timesystems.
- To involve the students to Practice on Workbench /Software Tools/ Hardware Processor Boards with the supporting Peripherals.
- To instruct the concepts of algorithm development & programming on software tools and micro Controllers with peripheral interfaces.
- To practice through at least one of the subdivisions covered within experiments listed belowtoexposethestudentsintotherevisingtheconceptsacquiredfromtheorysubjects.

LIST OF EXPERIMENTS

1. Study of Microcontroller
 i. 89C51 Microcontroller
 ii. PIC Microcontroller
 iii. Spartan-6 FPGA Processor
 iv. ARM Processor
 v. RM CORTEX-M4 Processor
2. Applications of 89C51 Microcontroller
 i. Frequency Measurement (ii) Stepper Motor Control
3. Interfacing with PIC 16F877 Microcontroller (i) I²C Logic Based Character Display (ii) Realization of Real Time Clock
4. Applications of Spartan-6 FPGA Processor (i) Seven Segment LED Display (ii) Character LCD Display
5. Seven Segment LED Display using ARM Processor
6. Analog to Digital Converter using ARM Processor
7. Realization of Real Time Clock using ARM Processor
8. Applications of ARM CORTEX-M4 Processor (i) Seven Segment LED Display (ii) Character LCD Display

COURSE OUTCOMES:

Upon completion of the course the student will be able to

1. Explain the architecture and operation of Microcontroller, PIC and ARM Processors.
2. Identify and explain the operations of peripherals and memories typically interfaced with Processors.
3. Analyze instruction sets of Microcontroller, PIC and ARM Processors.
4. Gain hands-on experience in doing experiments on Microcontroller, PIC and ARM Processors by using hardware kit in the laboratory and present thereport.
5. Students should understand the hardware/software tradeoffs involved in the design of DSP Processors.
Mapping with Program Outcomes

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>2</td>
<td>2</td>
<td></td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>2</td>
<td>2</td>
<td></td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES:

- To acquire knowledge about the features of advanced processors.
- To study the architectures of CISC processor.
- To discuss on memory management, application development of CISC processors.
- To discuss the architecture and instruction set of ARM processor.
- To learn the programming concept in ARM processor.
- To study about ARM application.

Features of Advanced Processors

Instruction set - Data formats - Instruction formats - Addressing modes - Memory Hierarchy - register file - Cache - Virtual memory and paging - Segmentation - Pipelining:
The instruction pipeline - pipeline hazards - Instruction level parallelism - reduced instruction set - Computer principles - RISC versus CISC - RISC properties - RISC evaluation - On-chip register files versus cache evaluation.

Architecture of CISC Processors

PENTIUM: The software model - functional description - CPU pin descriptions - CISC concepts - bus operations - Super scalar architecture - pipe lining - Branch prediction instruction and caches - Floating point unit - protected mode operation - Segmentation - paging - Protection – Multi-tasking - Exception and interrupts - Input/Output - Virtual 8086 model - Interrupt processing - Instruction types - Addressing modes - Processor flags - Instruction set - Basic programs.

ARM Architecture

ARM Programming

Basic Assembly language program - The ARM Programr's model - Registers – Pipeline - Interrupts – ARM organization - ARM processor family – Co-processors – Instruction cycle timings

ARM Application Development

REFERENCES:

COURSE OUTCOMES:

1. Delivers insight into various embedded processors of RISC and CISC architecture with improved design strategies.
2. Introduces the recent advanced features in RISC and CISC processors.
3. Gives an idea about the instruction set in ARM processor.
4. Explains the programming model in the processors.
5. Develops an overview about the application of the advanced processors.

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

1. Mapping with Program Outcomes
EMSC202 | EMBEDDED CONTROL
SYSTEMS DESIGN | L | T | P
| | | | 4 | 0 | 0 |

COURSE OBJECTIVES:

- To provide a clear understanding on the basic concept of embedded control system.
- To know the fundamentals of Real time operating system.
- To study the software and hardware design interface, SPI, RTC interfacing and programming.
- To teach the basic concepts of developing device driver-software – interfacing and porting using C & C++.
- To teach the application development on embedded controller.

Embedded System Organization

Embedded computing – characteristics of embedded computing applications – embedded system design challenges; Build process of Real-time Embedded system – Selection of processor; Memory; I/O devices-Rs-485, MODEM, Bus Communication system using I2C, CAN, USB buses, 8 bit –ISA, EISA bus;

Real-Time Operating System

Introduction to RTOS; RTOS- Inter Process communication, Interrupt driven Input and Output- Nonmaskable interrupt, Software interrupt; Thread – Single, Multithread concept; Multitasking Semaphores.

Interface with Communication Protocol

Design methodologies and tools – design flows – designing hardware and software Interface. – system integration; SPI, High speed data acquisition and interface-SPI read/write protocol, RTC interfacing and programming.

Design of Software for Embedded Control

CASE Studies with Embedded Controller

Programmable interface with A/D & D/A interface; Digital voltmeter, control- Robot system; -PWM motor speed controller, serial communication interface.

REFERENCES:

COURSE OUTCOMES:

1. Understand the basic concept of embedded system such as memory, I/O devices, and bus communications system.
2. Design real time embedded systems using the concepts of RTOS.
3. Explain and design of software for embedded control.
4. Implement the real-time operating system principle.
5. Design simple A/D and D/A interface circuits.

<table>
<thead>
<tr>
<th>Mapping with Program Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1 3 2 1</td>
</tr>
<tr>
<td>CO2 3 2 3 2</td>
</tr>
<tr>
<td>CO3 3 3 3 3 2</td>
</tr>
<tr>
<td>CO4 3 3 3 3 2</td>
</tr>
<tr>
<td>CO5 3 3 3 3 1</td>
</tr>
</tbody>
</table>

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3
COURSE OBJECTIVES:

- To obtain the subject knowledge and ability to use basic Data acquisition system concepts.
- To familiarize the students the functioning of different types of instrument communication, interfacing and data transmission.
- To provide opportunity for students to work as part of teams on multi-disciplinary projects.
- To provide the P.G students with a sound foundation in the mathematical, scientific and engineering instruments to formulate, solve and analyze engineering problems and to prepare them for employability and higher studies.
- To promote student awareness of the lifelong learning and to introduce them to professional ethics and codes of professional practice.
- To prepare students for successful careers in industry that meets the needs of latest developments in industries as employable professionals.

Introduction

Data acquisition systems – Overview of A/D converter, types and characteristics – Sampling, Errors - Objective – Data acquisition interface requirements – Counters – Modes of operation- Frequency, Period, Time interval measurements, Prescaler, Heterodyne converter for frequency measurement, Single and Multi-channel Data Acquisitionsystems.

Interfacing and Data Transmission

Instrument Communication

Visual Instrumentation

Block diagram and Architecture – Data flow techniques – Graphical programming using GUI - Real time Embedded system – Intelligent controller – Software and hardware simulation of I/O
communication blocks – peripheral interface – ADC/DAC – Digital I/O – Counter, Timer.

Case studies
PC based DAS, Data loggers, PC based process measurements like flow, temperature, pressure and level development system, Programmable Logic Controllers, CRT interface and controller with monochrome and colour videodisplay.

REFERENCES:

COURSE OUTCOMES:
1. To enhance teaching & research contributions in Embedded System Technology particularly for PC based Instrumentation concepts.
2. An ability to design and conduct experiments as well as to organize, analyze and interpret data on multidisciplinary domains.
3. Be able to identify problems in major issues of Instrument Communication Systems, analyze problems & solve them using the base of Embedded Technology.
4. To provide guidance and to develop inter-process communication techniques based on hardware– software approaches for real time process automations.
5. An ability to effectively communicate technical information in speech, presentation, and in writing.

<table>
<thead>
<tr>
<th>Mapping with Program Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
</tr>
<tr>
<td>CO2</td>
</tr>
<tr>
<td>CO3</td>
</tr>
<tr>
<td>CO4</td>
</tr>
<tr>
<td>CO5</td>
</tr>
</tbody>
</table>
EMSC204 | ADVANCED DIGITAL SYSTEM DESIGN | L | T | P
--- | --- | --- | --- | ---
 | 4 | 0 | 0

COURSE OBJECTIVES:

- Review the analysis and design of combinational logic circuits.
- Establish the methods for the analysis, modeling and design of synchronous sequential circuits.
- Incorporate the analysis and design of asynchronous circuit and obtain the hazard free circuits.
- Implement the digital systems on reconfigurable programmable logic devices
- Study the different fault diagnosis and test methods.

Introduction

Review of Combinational circuit analysis – Minimization and design – Top-down modular design – Decoders, Encoders – Multiplexer and Demultiplexer – Incompletely specified functions – Circuit design.

Sequential Circuit Design

Asynchronous Sequential Circuit Design

Synchronous Design Using Programmable Devices

Fault Analysis

REFERENCES:

COURSE OUTCOMES:

1. Gather a review of combinational circuit and analysis.
2. Develop the ability to analyze and design synchronous sequential circuits.
3. Equip the capability to design Asynchronous sequential circuits and realize hazard free circuit.
4. Gain knowledge on implementation of sequential circuits using PLDs.
5. Understand the concepts fault diagnosis and testability.

<table>
<thead>
<tr>
<th>Mapping with Program Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
</tr>
<tr>
<td>CO2</td>
</tr>
<tr>
<td>CO3</td>
</tr>
<tr>
<td>CO4</td>
</tr>
<tr>
<td>CO5</td>
</tr>
</tbody>
</table>

COURSE OBJECTIVES:

This lab introduces

- To provide a theoretical and practical introduction to DSP Processor.
- To explain embedded C language programming techniques.
- To explain the design of hardware interfacing circuits, Microcontroller and DSP Processor system design considerations.

List of Experiments

1. Study of DSP and ARM Processors
2. Graphics LCD Display using ARM processor LPC2148
3. Interfacing Real Time Clock and Serial port with ARM processor LPC 2148
4. Stepper motor control using ARM processor LPC 2148
5. DAC using Cortex M4 ARM Processor
6. Study of SPARTAN 6 FPGA Processor
7. Linear and Circular Convolution using DSP TMS320C6713 Processor
8. Analog to Digital Conversion using DSP TMS320C5416 Processor
9. Digital to Analog Conversion using DSP TMS320C6713 Processor
10. Applications of DSP TMS320C6713 Processor
 i. Low Pass Filter
 ii. High Pass Filter
 iii. Band Pass Filter
 iv. Band Rejection Filter

COURSE OUTCOMES:

Upon completion of the course the student will be able to

i. Explain the architecture and operation of various ARM and DSP Processors.
ii. Identify and explain the operations of peripherals and memories typically interfaced with ARM and DSP Processors.
iii. Analyze instruction sets of LPC 2148, TMS320F2812, TMS320VC5416 and TMS320C6713 Processors.
iv. Gain hands-on experience in doing experiments on LPC 2148, TMS320F2812, TMS320VC5416 and TMS320C6713 Processor by using hardware kit in the laboratory and present the report.
v. Explain the hardware/software trade-offs involved in the design of ARM and DSP Processors.
<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EMSS208 | SEMINAR | L | T | P |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIVES:

- To work on a technical topic related to Embedded Systems and acquire the ability of written and oral presentation
- To acquire the ability of writing technical papers for Conferences and Journals

The students will work for two periods per week guided by student counsellor. They will be asked to present a seminar of not less than fifteen minutes and not more than thirty minutes on any technical topic of student’s choice related to Embedded Systems and to engage in discussion with audience. They will defend their presentation. A brief copy of their presentation also should be submitted. Evaluation will be done by the student counsellor based on the technical presentation and the report and also on the interaction shown during the seminar.

OUTCOMES:

1. The students will be getting the training to face the audience and to interact with the audience with confidence.
2. To tackle any problem during group discussion in the corporate interviews.
3. To enable the students capable of preparing reports based on what they have learnt in the industry.
4. To make the students think in the direction of practical applications of their work.
5. To enable the students, understand the limitations of their ideas and make them find ways to overcome those limitations.

<table>
<thead>
<tr>
<th>Mapping with Program Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO1</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>CO1</td>
</tr>
<tr>
<td>CO2</td>
</tr>
<tr>
<td>CO3</td>
</tr>
<tr>
<td>CO4</td>
</tr>
<tr>
<td>CO5</td>
</tr>
</tbody>
</table>
EMST303 THESIS PHASE-I L T P
0 4 0

COURSE OBJECTIVES:

- To undergo literature survey and identify the topic of thesis and finalize in consultation with Guide/Supervisor.
- To carry out Thesis work Phase – I which is an integral part of the thesis consisting of problem statement, literature review, thesis overview and scheme of implementation.
- To attempt the solution to the problem by analytical/simulation/experimental methods and validate with proper justification.
- To prepare and deliver presentation on the selected thesis topic of research.
- To submit the duly certified progress report of Thesis work Phase – I in standard format for satisfactory completion of the work.

COURSE OUTCOMES:

1. Ability to analyse various aspects of topics, review quality of literature survey, synthesise knowledge and Novelty in the problem.
3. Validate the relevance to the specialization.
4. Acquire Knowledge on the clarity of objective and scope.
5. Develop effective communication skills to present and defend their research work to a panel of experts.

Mapping with Program Outcomes

<table>
<thead>
<tr>
<th>CO1</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>CO5</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

ANNAMALAI UNIVERSITY FEAT 38
OBJECTIVES:

- To train the students in the field work related to the Embedded Systems and to have a practical knowledge in carrying out Embedded Systems field-related works.
- To train and develop skills in solving problems during execution of certain works related to Embedded Systems.

The students individually undergo a training program in reputed concerns in the field of Embedded Systems during the summer vacation (at the end of second semester for full-time / fourth semester for part-time) for a minimum stipulated period of four weeks. At the end of the training, the student has to submit a detailed report on the training he had, with in ten days from the commencement of the third semester for Full-time / fifth semester for part-time. The students will be evaluated, by a team of staff members nominated by Head of the department, through a viva-voce examination.

OUTCOMES:

1. The students can face the challenges in the field with confidence.
2. The students will be benefited by the training with managing the situation that arises during the execution of works related to Embedded Systems.
3. The students will be getting the training to face the audience and to interact with the audience with confidence.
4. To tackle any problem during group discussion in the corporate interviews.
5. To enable the students capable of preparing reports based on what they have learnt in the industry.

Mapping with Program Outcomes

<table>
<thead>
<tr>
<th>CO1</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

PO1: L, T: *, P: 0
COURSE OBJECTIVES:

- To carry out Thesis work Phase – II which the remaining part of the thesis.
- To attempt the solution to the problem by analytical/simulation/experimental methods and validate with proper justification.
- To deliver a presentation on the advancement in Technology pertaining to the selected thesis topic.
- To submit the duly certified progress report of Thesis work Phase – II in standard format for satisfactory completion of the work.

COURSE OUTCOMES:

1. Identify the Embedded system problem
2. Analyze, design and implement solution methodologies
3. Apply modern engineering tools for solution
4. Write technical reports following professional ethics
5. Develop effective communication skills to present and defend their research work to a panel of experts.

Mapping with Program Outcomes

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td></td>
</tr>
</tbody>
</table>

PO1: 3 PO2: 2 PO3: 1 PO4: 2 PO5: 3 PO6: 3 PO7: 3 PO8: 3 PO9: 3 PO10: 3 PO11: 3 PO12: 3 PSO1: 3 PSO2: 3 PSO3: 3
COURSE OBJECTIVES:

- To study the analysis of discrete random signals.
- To study the digital filter design.
- To study the applications of adaptive filtering.
- To study the analysis of speech signals.
- To study the multi-rate signal processing fundamentals.
- To introduce the various types of transforms.

Discrete Random Signal Processing

Adaptive Signal Processing

Speech Signal Processing

Multirate Signal Processing

Mathematical representation of change of the sampling rate - Interpolation and Decimation - Decimation by integer factor – Interpolation by an integer factory - Direct form FIR filter structures – Single and multistage realization - Poly-phase realization – Application to subband coding.

Types of Transform

REFERENCES:

COURSE OUTCOMES:
Students should be able to:

1. To understand advanced digital signal processing algorithms
2. To design adaptive filters for a given application
3. To design multi-rate DSP systems.
4. To understand decimation and interpolation of discrete-time signals.
5. To understand advanced digital signal transforms and their algorithms

<table>
<thead>
<tr>
<th>Mapping with Program Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
</tr>
<tr>
<td>CO2</td>
</tr>
<tr>
<td>CO3</td>
</tr>
<tr>
<td>CO4</td>
</tr>
<tr>
<td>CO5</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES:

- To understand the image fundamentals and mathematical transforms necessary for image processing.
- To understand about Sampling Techniques.
- To know different transform and various algorithms to evaluate them.
- To know the design of Digital filters.
- To know different coding methods.
- To understand the image segmentation techniques.

Digital Image Fundamentals and Image Transforms

Image Enhancement and Restoration

Image Compression

Image Segmentation

Detection of Discontinuities – Point detection, Line detection, - Edge detection – Edge linking and Boundary Detection – Thresholding – Basic global and adaptive thresholding - Image segmentation by region growing - region splitting and merging - Basic formulation of Region oriented segmentation – Morphological operations - Clustering methods.

Application of Image Processing

REFERENCES:

COURSE OUTCOMES:
1. Explain different transform and various algorithms to evaluate them
2. Implement the design of Digital filters
3. Implement the different coding methods
4. Apply the basic concepts of Image segmentation,
5. Explain image recognitions and the applications

<table>
<thead>
<tr>
<th>Mapping with Program Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO1</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>CO1</td>
</tr>
<tr>
<td>CO2</td>
</tr>
<tr>
<td>CO3</td>
</tr>
<tr>
<td>CO4</td>
</tr>
<tr>
<td>CO5</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES:

- To expose the students to the fundamentals of Network Management, Security and Communication Technologies.
- To understand the basics of internet with knowledge of internet server interfacing.
- To study Java based Networking.
- To get introduced to Embedded Network Routing Agents.
- To study the Networking on-chip real time multiprocessor embedded systems.

Internet Hardware Infrastructure

Internet Concepts

Capabilities and limitations of the internet – Interfacing Internet server applications to corporatedatabasesHTML andXML Webpagedesign and the use of active components.

Distributed Computing Using Embedded Java

Embedded Agent

Embedded Computing Architecture

REFERENCES:

COURSE OUTCOMES:

1. Explains various network (hardware and security).
2. Explains basic concepts of internet database and web page design.
3. Explains the distributed database computing using embedded Java.
4. Describes the embedded agent design and operation mechanism.
5. Explains the real time multiprocessor distributed embedded systems

<table>
<thead>
<tr>
<th>Mapping with Program Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO 1</td>
</tr>
<tr>
<td>CO 1</td>
</tr>
<tr>
<td>CO 2</td>
</tr>
<tr>
<td>CO 3</td>
</tr>
<tr>
<td>CO 4</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES:

- To understand basics of measurement system.
- To understand the concept of various biomedical instruments and technologies.
- To acquire knowledge about sensing devices used in biomedical instruments.
- To understand the biomedical instruments used in hospitals.
- To discuss about the reduction of noise in biomedical instruments.
- To obtain basic knowledge on medical imaging systems.

Medical Instrumentation Basics

Basic Medical Instrumentation system, General Constraints in design of medical instrumentation system, Classification of Biomedical Instruments, Biomedical Simulators, Sources of Bioelectric Potential and Electrodes- Resting and Action potential, Propagation of action potential, The bioelectric potentials: ECG, EEG, EMG, ERG, EOG, EGG; Digital Biosignals, Equipment standards and patientsafety.

Sensing Devices for Biomedical Instruments

Measurement Systems

Artifacts and Noise In Medical Instrumentation

Examples of noise in medical instrumentation and biomedical signals – baseline wander, power line interference, electrode motion artifacts, Noise reduction with digital signal processing; QRS complex detection in ECG- Pan Tompkins Algorithm

Modern Medical Imaging Systems

Ultrasound and Ultrasonic imaging system – Ultrasound Doppler and flow detector, Echocardiogram: Physics of X-rays and X-ray machines, Information content of an Image, Radiography, Computed Radiography, Computer Tomography (CT), Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET).
REFERENCES:

COURSE OUTCOMES:
1. Helps to learn about Biomedical Instruments.
2. Acquires knowledge about Electrodes, Sensors and Transducers for biomedical signal acquisition.
3. Gives an idea about ECG, EEG and EMG recording techniques and their instrumentation.
4. Helps to know about signal processing and filtering techniques for noise and artifact removal.
5. Describes the modern medical imaging modalities and instruments.

<table>
<thead>
<tr>
<th>Course</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES:

- Gain knowledge on various processors
- Acquire an exposure on system development.
- Understand the architecture of latest processors.
- Design different application circuits using a single FPGA chip.
- Program the FPGA to do specific work.
- Create embedded systems using FPGA.

ASICS, CMOS Logic and ASIC Library Design

Programmable Logic Cells and I/O Cells

Digital clock Managers-Clock management- Regional clocks- Block RAM – Distributed RAM- Configurable Logic Blocks-LUT based structures – Phase locked loops- Select I/O resources – Anti fuse - static RAM - EPROM and EEPROM technology – PREP bench marks – Actel ACT – Xilinx LCA – Altera FLEX – Altera MAX DC & AC inputs and outputs – Clock and power inputs – Xilinx I/Oblocks.

Architectures

Architecture - FPGAs, Xilinx XC4000 - ALTERA’s FLEX 8000/10000, ACTEL’s ACT-1,2,3 and their speed performance - Apex, Cyclone FPGAs and Quartus architectures - case studies: Altera MAX 5000 and 7000 - Altera MAX 9000– Spartan II and Virtex II FPGAs.

Design Entry and Testing

Partitioning and Routing

REFERENCES:

6. Design manuals of Altera, Xilinx and Actel. (From the web).

COURSE OUTCOMES:

1. Underlying fundamental concepts of VLSI have been brought out.
2. Memory management and input/output technology of various processors have been pointed out.
3. Architecture of various processors have been understood.
4. Softwares for the processors have been learnt.
5. Some basic design examples using VLSI processors have been described.

<table>
<thead>
<tr>
<th>Mapping with Program Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO1</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>CO1</td>
</tr>
<tr>
<td>CO2</td>
</tr>
<tr>
<td>CO3</td>
</tr>
<tr>
<td>CO4</td>
</tr>
<tr>
<td>CO5</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES:

- To enlighten the student with the growth of integrated circuits and develop procedure for their design, simulation and implementation.
- The evolution and growth of integrated circuit, the methods of layout and the different approaches for their design are to be discussed.
- A detailed study of the fabrication techniques is to be made. Analysis of analog and digital VLSI circuits is to be carried out. The need for application of specific devices and their features along with examples are to be dealt.
- The course will refurbish the student to realign his ideas on a different plane. It will help the student to develop newer control strategies that can meet the desired performance more precisely.

VLSI Design Concepts

Evolution of VLSI - VLSI design process - Architectural design - Logical design - Physical design - Lay-out styles - Full custom - Semi custom approaches - Need for design rules - Types of design rules - Design for MOS & CMOS circuits - Simple layout examples - Sheet resistance, area capacitance, wiring capacitance - Dry capacitive loads.

VLSI Fabrication Techniques

Wafer fabrication - Wafer processing - Oxidation - Patterning - Silicon gate NMOS process - CMOS process - Nwell - Pwell - Twin tub - Silicon on insulator - CMOS Process enhancements - Analytical techniques - Ion beam techniques - Chemical methods - Package Fabrication technology - Reliability requirements - Field loss - Failure mechanism - Design automation.

Analog VLSI

Introduction to analog VLSI - Analog circuit building blocks - Switches, active resistors - Current sources and sinks - Current mirrors/amplifiers - MOS & BJT, inverting amplifiers - CMOS and BJT two stage op-amp - Analog signal processing circuits - Sensors - D/A and A/D converters.

Digital VLSI

Logic design - Switch logic - Gate logic - Dynamic CMOS logic - Structured design - Simple combinational logic design - Clocked sequential design - Sub-system design - Design of shifters - Arithmetic processors - ALU - Serial, Parallel and pipelined multiplier arrays.

FPGA Based Embedded Processor

REFERENCES:

COURSE OUTCOMES:
1. Obtain the knowledge of basic fundamentals of VLSI design concepts
2. Understand various fabrication process technologies used in VLSI devices.
3. Be able to analyze and design CMOS analog IC building blocks like MOS amplifiers,
4. Current mirrors and multistage differential amplifiers
5. Be able to analyze and design CMOS digital IC building blocks

<table>
<thead>
<tr>
<th>Mapping with Program Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>PO 1</td>
</tr>
<tr>
<td>CO 1</td>
</tr>
<tr>
<td>CO 2</td>
</tr>
<tr>
<td>CO 3</td>
</tr>
<tr>
<td>CO 4</td>
</tr>
<tr>
<td>CO 5</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES:

- This course intends to provide a conceptual understanding of micro fabrication techniques and the issues surrounding them.
- To know the major classes, components and applications of MEMS devices/systems and to demonstrate an understanding of the fundamental principles behind the operation of these devices/systems.
- To learn Bulk micromachining process and to understand the concept of different etching process and etching materials in fabrication process.
- To impart knowledge about surface micromachining process and to understand the types and concept of bonding process.
- To study and design of different types of MEMS actuators, Micro grippers, MEMS resonators and their applications.

Introduction To Micro Machined Devices

Microsystems vs. MEMS - Markets for Microsystems and MEMS, Scaling Principles - Materials for micromachining, Micromachining terms - mechanical properties of silicon-native oxides of silicon and other semiconductors-typical silicon wafer types.

Bulk Micro Machining

Wet etching of silicon-Isotropic etching-anisotropic etching, alkali hydroxide etchants-ammonium hydroxide- tetramethyl ammoniumhydroxide (TMAH)-ethylene diaminepyrochatechol (EDP)-ultrasonic agitation in wet etching stop layers for dopant elective etchants. Porous-silicon formation – anistrophic wet etching of porous aluminum-anistrophic wet etching-quartz-vapourphaseetches.RIElaserdrivenbulkprocessing.

Surface Micromachining

Bonding Processes

Mems Actuators And Their Applications

REFERENCES:

5. Tai-Ran-Hsu, MEMS & Microsystems Design and Manufacture, Tata McGrawHill, New Delhi, 2002

COURSE OUTCOMES:

1. Understanding the concept of scaling laws that are used extensively in the design of micro devices and systems.
2. Analyze the basic principles and applications of micro-fabrication processes, such as photolithography, ion implantation, diffusion, oxidation, CVD, PVD, and etching.
3. Provide impart knowledge about thin film process and etchants used for isotropic and anisotropic etching.
5. Understanding the types of bonding process and the techniques used for sacrificial process.
6.

<table>
<thead>
<tr>
<th>Mapping with Program Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO1</td>
</tr>
<tr>
<td>--------------------------------</td>
</tr>
<tr>
<td>CO1</td>
</tr>
<tr>
<td>CO2</td>
</tr>
<tr>
<td>CO3</td>
</tr>
<tr>
<td>CO4</td>
</tr>
<tr>
<td>CO5</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES:

- To expose the students to the fundamentals of embedded Programming.
- It aims at familiarizing the students in embedded concepts and programming in ‘C’.
- This module covers the advanced topics in ‘C’
- To learn Memory management and Data structures which are of high relevance in embedded software is considered in depth.
- The syllabus also covers the topic ‘scripting languages for embedded systems’.
- To involve Discussions/ Practice/Exercise onto revising & familiarizing the concepts acquired over the 5 Units of the subject for improved employability skills.

Programming Embedded Systems

Embedded C Programming

Embedded Applications Using Data Structures

Linear data structures – Stacks and Queues Implementation of stacks and Queues - Linked List - Implementation of linked list, Sorting, Searching, Insertion and Deletion, Nonlinear structures – Trees and Graphs Object Oriented programming basics using C++ and its relevance in Embedded systems.

Scripting Languages for Embedded Systems

Embedded Software Development Tools

Host and target machines – Linkers / Locators for Embedded Software – Debugging techniques – Instruction sets simulators Laboratory tools – Practical example – Source code.
REFERENCES:

COURSE OUTCOMES:
- The learning process delivers insight into various programming languages / softwares compatible to embedded process development with improved design & programming skills.
- Develop advanced programs in EmbeddedC.
- Get knowledge in data structure andOOP.
- Develop programs using scriptinglanguages.
- Improved Employability and entrepreneurship capacity due to knowledge upgradation on recent trends in embedded systemsdesign.

<table>
<thead>
<tr>
<th>Mapping with Program Outcomes</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES:

- To introduce the basic concepts, parts of robots and types of robots.
- To make the student familiar with the various drive systems for robot.
- To learn manipulators and their applications in robots and programming of robots.
- To discuss about the various applications of robots, justification and implementation of robot.
- To know about the electronic systems in automation of mechanical operations.
- To involve Discussions/ Practice/Exercise onto revising & familiarizing the concepts acquired over the 5 Units of the subject for improved employability skills.

Introduction

Robot Drives and Power Transmission Systems

Manipulators

Construction of Manipulators, Manipulator Dynamic and Force Control, Electronic and Pneumatic manipulators.

Industrial Automation

Fundamental concepts in manufacturing and automation, definition of automation, reasons for automating. Types of production and types of automation, automation strategies, levels of automation.

Programmable Automation

Special design features of CNC systems and features for lathes and machining centers. Drive system for CNC machine tools. Introduction to CIM; condition monitoring of manufacturing systems.
REFERENCES:

COURSE OUTCOMES:
1. Explain the basic concepts of working of robot.
2. Analyze the function of manipulators in the robot.
3. Use robots in different applications.
4. Knowledge of industrial automation by transfer lines and automated assembly lines.
5. Ability to understand the electronic control systems in metal machining and other manufacturing processes.

<table>
<thead>
<tr>
<th>CO1</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES:

- To understand basics of product design and development.
- To acquire knowledge about testing methodologies.
- To understand the basic concepts of product development based on its reliability, cost, robustness.
- To discuss about the need for CAE, CAD, CAM, IDE tools in product design.
- To obtain basic knowledge on industrial design.
- To understand the concept of developing products in an embedded system.

Concepts of Product Development

Product Design Phase

Approaches in Product Development

Industrial Design

Integrate process design - Managing costs - Robust design – need for Involving CAE, CAD, CAM, IDE tools - Prototype basics - Principles of prototyping - Planning for prototypes- Economic & Cost Analysis - Understanding and representing tasks-baseline project planning - accelerating the project execution.
Developing Embedded Product Design

REFERENCES:

COURSE OUTCOMES:
1. Gives an idea about an approach to concept creativity, selection and testing.
2. Provides an idea for designing a consumer specific product.
3. Gives knowledge upgradation on recent trends in embedded system design.
4. Describes the economic analysis and the consideration while designing a product.
5. Helps to improve the integration of customer requirements in product design.

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES:

- To understand basics of SCADA.
- To understand the concept of various components involved with SCADA.
- To acquire knowledge about SCADA communication protocols.
- To study about monitoring and control techniques related to SCADA.
- To obtain basic knowledge implementation of SCADA in embedded systems.
- To learn about the application of SCADA in Embedded system.

Introduction to SCADA

Introduction to SCADA, Data acquisition systems, Evolution of SCADA, SCADA definitions, Communication technologies, Elements of a SCADA system, SCADA Functional requirements, SCADA Hierarchical concept, SCADA architecture, General features of SCADA.

SCADA System Components

Remote Terminal Unit (RTU), Interface units, Human-Machine Interface Units (HMI), Display Monitors/Data Logger Systems, Intelligent Electronic Devices (IED), Communication Network, SCADA Server, SCADA Control systems and Control panels.

SCADA Communication

SCADA Communication requirements, Communication protocols: Past, Present and Future, Structure of a SCADA Communications Protocol, Comparison of various communication protocols, IEC 61850 based communication architecture, Communication media like Fiber optic, PLCC, Interface provisions and communication extensions, synchronization with NCC, DCC.

SCADA Monitoring and Control

Online monitoring the event and alarm system, trends and reports, Blocking list, Event disturbance recording, Control function - Station control, bay control, breaker control and disconnector control.

SCADA Applications

Utility applications in Embedded systems, monitoring, analysis and improvement. SCADA applications in Utility Automation and Industries-Case studies, Implementation, Simulation Exercises

REFERENCES:

COURSE OUTCOMES:

1. Understanding the concept of SCADA.
2. Analyse various system components involved in SCADA system.
3. Acquires knowledge about monitoring and control methods in SCADA.
4. Helps to know about communication protocols in SCADA system.
5. Describes about application of SCADA in Embedded system.

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Mapping with Program Outcomes
COURSE OBJECTIVES:
- Expose the students to the fundamentals of wireless communication technologies.
- Teach the fundamentals of cellular concepts.
- Study the concepts of mobile radiopropagation.
- Explore various modulation techniques used.
- Introduce network routing protocols.
- Study the various multiple access techniques.

Introduction
Brief history of wireless communication - elements of wireless communication systems- radio frequency spectrum and bandwidth requirements - Universal Mobile Communication Systems- Personal Communication systems- emerging trends in wireless communications Wireless systems and standards: AMPS and ATACS systems- 2G, 2.5G, 3G and B3G systems and standards.

Cellular Concept

Mobile Radio Propagation

Modulation Technique for Mobile Radio

Multiple Access Techniques
Interleaving - Frequency Division Multiple Access (FDMA), Spread Spectrum Multiple Access – Space Division Multiple Access (SDMA) - PacketRadio.

REFERENCES:

COURSE OUTCOMES:
1. Fundamental concepts of wireless communication and its standards have been brought out.
2. Cellular concepts and various radio propagation models have been pointed out.
3. Architecture of various mobile radio models have been understood.
4. Various mobile radio modulation techniques have been described.
5. Different access techniques have been learnt.

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>2</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES:

- To know the principles of cloud computing.
- To study the various cloud service models.
- To understand the basics of virtualization.
- To familiarize with the programming models available in cloud.
- To get an insight on some applications and prospects of cloud computing.

An Overview

Cloud Services

Cloud services - classification - software as a service (SaaS), platform as a service (PaaS), and infrastructure as a service (IaaS) - data storage as a service - other services - security as a service (SeaaS), knowledge as a service, and analytics as a service (AaaS) - service providers - Cloud Deployment Models - Private Cloud - Public Cloud - Community Cloud - Hybrid Cloud.

Virtualization

Introduction - Virtualization Opportunities - Processor Virtualization - Memory Virtualization - Storage Virtualization - Network Virtualization - Data Virtualization - Application Virtualization - Approaches to Virtualization - Full Virtualization - Para virtualization - Hardware-Assisted Virtualization - Types of Hypervisors - From Virtualization to Cloud Computing - IaaS - PaaS - SaaS.

Programming Models for Cloud Computing

Applications and Prospects

REFERENCES:

COURSE OUTCOMES:
1. Conceptualize the basic ideas and motivation for cloud computing
2. Familiarize with the cloud services offered by the companies
3. Understand the concept of Virtualization.
4. Discuss the suitability of each programming model to different kinds of application
5. Identify the areas of application and explore future prospects.

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Mapping with Program Outcomes
COURSE OBJECTIVES:

- To introduce the fundamental concepts of optimization techniques.
- To acquire sound knowledge of obtaining optimal solutions to the power system problems with the help of different mathematical techniques.
- To understand various algorithms with their comparative study for the utilization of optimization problems solution.
- To analyse the concepts of various classical and modern methods for constrained and unconstrained problems.
- To gain in-depth knowledge about variety of performance measures for optimization problems applied in the engineering fields.

Introduction to Optimization

Linear Programming

Non Linear Programming

Geometric Programming and Integer Programming

Dynamic Programming

Multistage decision processes – Concept of sub optimization – Principle of optimality – Computational procedure in dynamic programming - Conversion of a final value problem into an initial value problem – Linear programming as a case of dynamic programming – Continuous dynamic programming.

REFERENCES:

COURSE OUTCOMES:
1. Apply concepts of mathematics to formulate an optimization problem.
2. Understand and apply the concept of optimality criteria for various types of optimization problems.
3. Solve various constrained and unconstrained problems in single variable and multivariable domains.
4. Apply the methods of optimization in practical conditions.
5. Analyze a research problem having requirement of optimization techniques.

<table>
<thead>
<tr>
<th>Mapping with Program Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO1</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>CO1</td>
</tr>
<tr>
<td>CO2</td>
</tr>
<tr>
<td>CO3</td>
</tr>
<tr>
<td>CO4</td>
</tr>
<tr>
<td>CO5</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES:

- To gain a sound knowledge of scientific research for undertaking a valid study
- To explore the techniques of defining a research problem and investigate the various research designs, highlighting their main characteristics
- To familiarize with the art of Technical Communication
- To study the different types of Listening and Speech Techniques
- To realize the heart of writing technical reports and proposals
- To understand the ethical issues of writing technical papers

Scientific Research

Research-Definition-Objectives and Motivation - Characteristics of scientific research activity - Means and methods of scientific research - Criteria of Good Research-Limitations-Components of a research problem-selecting the problem-necessity of defining the problem-technique involved in defining a problem---Importance of literature review in defining a problem –Identifying gap areas from literature review-Research design-need for research design-features of a good design-important concepts relating to research design-different research designs

Technical Communication

Importance of Technical Communication-Salient features of Technical Communication - Technical communication Vs. General communication-Objectives and characteristics of Technical Communication-Levels of communication-Flow of communication-Visual Aids in Technical Communication-Types of Barriers to communication

Listening and Speech Techniques

Types of listening, listening with a purpose, barriers to listening, listening comprehension, effective listening strategies, listening in conversational interaction, team listening-Speech techniques-Conversation and oral skills, strategies for good conversation, techniques to develop effective word accent, word stress, primary and secondary stress, use of correct stress pattern, developing voice quality, developing correct tone.

Technical Reports and Proposals

Technical Reports- Importance of Reports- Objectives of Reports-characteristics of a report-categories of reports- formats- structure of reports-writing the report- first draft- revising, editing, and proofreading-Technical proposals- definition and purpose- types- sales proposals and research proposals-characteristics- structure of proposals-preparation, budgeting, presentation, funding agencies for engineering research-evaluation of proposals
Technical Papers and Descriptions

REFERENCES:

COURSE OUTCOMES:

1. Understand the concept of Research Methodology and develop a preliminary research design for projects in the field of expertise
2. Know the significance of Technical communication
3. Familiarize with the different types of Listening and Speech Techniques
4. Prepare technical reports and proposals as per guidelines
5. Implement the acquired knowledge in preparation of technical papers.

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES:

- To give an insight to the students about the significance of soft computing techniques and artificial neural networks.
- To teach the importance, architecture, algorithm and application of artificial neural networks.
- To impart knowledge on fuzzy logics systems.
- To give exposure to genetic algorithm and swarm optimization methods.

Introduction and Artificial Neural Networks

Introduction of soft computing – Comparison of soft computing and hard computing – types and applications of soft computing techniques - Biological neural networks – Evolution of Neural Networks – Basic Models of Artificial Neural Networks – Terminologies of ANNs – Learning and Training the neural network – McCulloch-Pitts neuron model – Perceptron Model – Back propagation network.

Associative Memory and Unsupervised Neural Networks

Fuzzy Logic System

Genetic Algorithm

Swarm Optimization

Basic concept of Swarm intelligence - Ant colony optimization (ACO) - Particle swarm optimization (PSO) and Artificial Bee colony algorithm (ABC). Application of above algorithms in power system optimization problems.
REFERENCES:
2. Rajasekaran and Vilyalakshmi Pai G.A, “Neural Networks, Fuzzy Logic and Genetic
4. Russell C. Eberhart, Yuhui Shi and James Kennedy, “Swarm Intelligence”, Morgan
5. Jesse Russell, Ronald Cohn, “Artificial Bee Colony Algorithm”, Book on Demand Ltd.,
 2012

COURSE OUTCOMES:
1. Understand the concept, architecture, algorithm and application of various artificial
 neural networks.
2. Understand the process of the neural network training.
3. Acquire knowledge about fuzzy logic systems.
4. Able to implement genetic algorithm and swarm optimization methods for various
 embedded system optimization problems.
5. Able to use the MATLAB based fuzzy logic and neural network toolboxes.

<table>
<thead>
<tr>
<th>Mapping with Program Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO1</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>CO1</td>
</tr>
<tr>
<td>CO2</td>
</tr>
<tr>
<td>CO3</td>
</tr>
<tr>
<td>CO4</td>
</tr>
<tr>
<td>CO5</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES:

- To understand the concepts of Internet of Things
- To conceptualize Cloud computing and Fog computing
- To familiarize with the IOT Services and protocols
- To gain knowledge on the Security and privacy in IoT
- To explore the application areas where IoT can be applied

Introduction

Definition-benefits-IoT architectures- a reference architecture-service-oriented architecture-API-oriented architecture-taxonomy of resource management activities in IoT-various protocols in IoT communication layers-IoT applications-challenges and research domains

IoT Services

Open IoT architecture and functionalities-scheduling process and IoT services lifecycle-workflow associated with the service registration process-update resources service-process of unregistering a service-scheduling and resource management

IoT Protocols

Programming Frameworks, Cloud and Fog Computing

Minimal features to be fulfilled-IoT programming approaches-existing IoT frameworks-highlights of various IoT programming frameworks-Cloud Computing and Fog computing-Principle of Cloud computing- Architecture-cloud computing Vs fog computing -definitions and characteristics of Fog Computing-reference architecture for fog computing-applications

Security and Privacy in IoT

IoT reference model-IoT security threats-IoT security requirements-taxonomy of security attacks, threats, and security mechanisms-network and transport layer challenges-IoT gateways and security-IoT routing attacks-bootstrapping and authentication-authorization mechanisms-security frameworks for IoT-privacy in IoT networks
REFERENCES:

5. HakimaChaouchi, The Internet of Things - Connecting Objects to the Web, Wiley, 2010

COURSE OUTCOMES:

1. Acquire knowledge on IoT
2. Familiarize with IoT services
3. Analyze various protocols for IoT
4. Distinguish between cloud and Fog computing
5. Learn about the Security and privacy in IoT
6.

<table>
<thead>
<tr>
<th>Mapping with Program Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO1</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>CO1</td>
</tr>
<tr>
<td>CO2</td>
</tr>
<tr>
<td>CO3</td>
</tr>
<tr>
<td>CO4</td>
</tr>
<tr>
<td>CO5</td>
</tr>
</tbody>
</table>
COURSE OBJECTIVES:

- To provide an insight into the laws related to intellectual property
- To familiarize with the steps required for protecting, managing and enforcing intellectual property rights
- To study each field within the umbrella of intellectual property, namely, trademarks, copyright, patents, trade secrets and unfair competition.
- To address new and international developments for each of the fields of intellectual property.
- To encourage students at all levels to develop patentable technologies

Introduction to Intellectual Property Rights

Definition- Intellectual property vs. physical property-importance of Intellectual property - Types - International Organizations, Agencies and Treaties - History of Intellectual property rights (IPR) in India, Overview of IP laws in India, Indian IPR, Administrative Machinery, Major international treaties signed by India

Copyright

Meaning of copyright- Classes of works for which copyright protection is available- The Rights Afforded by Copyright Law - Copyright Ownership, Transfers, and Duration- Copyright Registration- Copyright Infringement- powers of Copyright Board- The Copyright (Amendment) Bill, 2012- The Information Technology Act, 2000.-Internet and Copyright issues-Authorship under Copyright-Plagiarism-Detection and Consequences-Plagiarism policy and regulations

Patents and Designs

Trademark

Definition-Types-Functions- Trademark Selection and Searching- The Trademark Registration Process- Post registration – Maintenance and Transfer of Rights to Marks- Infringement- New Developments in Trademark Law- International Trademark Law- Trade Marks law of India- Trade Secrets law-Factors indetermination of trade secret status-remedies for Misappropriation
Intellectual Property Management

REFERENCES:

COURSE OUTCOMES:
1. Understand the concept of Intellectual propertyrights.
2. Familiarize with the copyrightlaws.
3. Acquire knowledge on Patenting andDesign.
4. Learn about Trademark and Trade secretslaw.

<table>
<thead>
<tr>
<th>Mapping with Program Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>PO1</td>
</tr>
<tr>
<td>CO1</td>
</tr>
<tr>
<td>CO2</td>
</tr>
<tr>
<td>CO3</td>
</tr>
<tr>
<td>CO4</td>
</tr>
<tr>
<td>CO5</td>
</tr>
</tbody>
</table>