ANNAMALAI UNIVERSITY
FACULTY OF SCIENCE
DIVISION OF COMPUTER & INFORMATION SCIENCE
REGULATIONS FOR THE THREE-YEAR POST GRADUATE PROGRAMMES UNDER
CHOICE BASED CREDIT SYSTEM (CBCS)

These Regulations are common to all the students admitted to the Two-Year Master’s Programmes in the Faculties of Arts, Science, Indian Languages, Education, Marine Sciences, and Fine Arts from the academic year 2019-2020 onwards.

1. Definitions and Nomenclature

1.1 University refers to Annamalai University.
1.2 Department means any of the academic departments and academic centres at the University.
1.3 Course is an individual subject in a programme. Each course may consist of Lectures/Tutorials/Laboratory work/Seminar/Project work/Experiential learning/ Report writing/viva-voce etc. Each course has a course title and is identified by a course code.
1.4 Curriculum encompasses the totality of student experiences that occur during the educational process.
1.5 Syllabus is an academic document that contains the complete information about an academic programme and defines responsibilities and outcomes. This includes course information, course objectives, policies, evaluation, grading, learning resources and course calendar.
1.6 Academic Year refers to the annual period of sessions of the University that comprises two consecutive semesters.
1.7 Semester is a half-year term that lasts for a minimum duration of 90 days. Each academic year is divided into two semesters.
1.8 Choice Based Credit System A mode of learning in higher education that enables a student to have the freedom to select his/her own choice of elective courses across various disciplines for completing the Degree programme.
1.9 Core Course is mandatory and an essential requirement to qualify for the Degree.
1.10 Elective Course is a course that a student can choose from a range of alternatives.
1.11 Value-added Courses are optional courses that complement the students’ knowledge and skills and enhance their employability.
1.12 Credit refers to the quantum of course work in terms of number of class hours in a semester required for a programme. The credit value reflects the content and duration of a particular course in the curriculum.
1.13 Credit Hour refers to the number of class hours per week required for a course in a semester. It is used to calculate the credit value of a particular course.
1.14 Programme Outcomes (POs) are statements that describe crucial and essential knowledge, skills and attitudes that students are expected to achieve and can reliably manifest at the end of a programme.
1.15 Programme Specific Outcomes (PSOs) are statements that list what the graduate of a specific programme should be able to do at the end of the programme.
1.16 **Learning Objectives also known as Course Objectives** are statements that define the expected goal of a course in terms of demonstrable skills or knowledge that will be acquired by a student as a result of instruction.

1.17 **Course Outcomes (COs)** are statements that describe what students should be able to achieve/demonstrate at the end of a course. They allow follow-up and measurement of learning objectives.

1.18 **Grade Point Average (GPA)** is the average of the grades acquired in various courses that a student has taken in a semester. The formula for computing GPA is given in section 11.3

1.19 **Cumulative Grade Point Average (CGPA)** is a measure of overall cumulative performance of a student over all the semesters. The CGPA is the ratio of total credit points secured by a student in various courses in all semesters and the sum of the total credits of all courses in all the semesters.

1.20 **Letter Grade** is an index of the performance of a student in a particular course. Grades are denoted by the letters S, A, B, C, D, E, RA, and W.

2. **Programme Offered and Eligibility Criteria**

2.1 The Department of Computer and Information Science offers a *Three Year Master of Computer Applications Programme*. The eligibility criteria and admission procedure are followed as per the guidelines of Tamil Nadu Common Entrance Test (TANCET).

2.2 Reservation of seats for candidates belonging to ST/SCA/SC/MBC/DNC/BC/BC (Muslim) communities and Differently-abled will be made as per the rules and regulations of the Government of Tamil Nadu.

2.3 In the case of SC/ST and Differently-abled candidates, a pass is the minimum qualification for all the above Programmes.

3. **Programme Duration**

3.2 The Three Year Master’s Programmes consist of three academic years.

3.3 Each academic year is divided into two semesters, the first being from July to November and the second from December to April.

3.4 Each semester will have 90 working days (18 weeks).

4. **Programme Structure**

4.2 The Three Year Master’s Programme consists of Core Courses, Elective Courses (Departmental & Interdepartmental), and Project.

4.3 **Core courses**

4.3.1 These are a set of compulsory courses essential for each programme.

4.3.2 The core courses include both Theory (Core Theory) and Practical (Core Practical) courses.

4.3 **Elective courses**

4.3.1 **Departmental Electives (DEs)** are the Electives that students can choose from a range of Electives offered within the Department.

4.3.2 **Interdepartmental Electives (IDEs)** are Electives that students can choose from amongst the courses offered by other departments of the same faculty as well as by the departments of other faculties.

4.3.3 Students shall take a combination of both DEs and IDEs.
4.4 Experiential Learning
4.4.1 Experiential learning provides opportunities to students to connect principles of the discipline with real-life situations.
4.4.2 In-plant training/field trips/internships/industrial visits (as applicable) fall under this category.
4.4.3 Experiential learning is categorized as Core.

4.5 Project
4.5.1 Each student shall undertake a Project in the final semester. The Head of the Department shall assign a Research Supervisor to the student.
4.5.2 The Research Supervisor shall assign a topic for research and monitor the progress of the student periodically.
4.5.3 Students who wish to undertake project work in recognised institutions/industry shall obtain prior permission from the University. The Research Supervisor will be from the host institute, while the Co-Supervisor shall be a faculty in the parent department.

4.6 Value added Courses (VACs)
4.6.1 Students may also opt to take Value added Courses beyond the minimum credits required for award of the Degree. VACs are outside the normal credit paradigm.
4.6.2 These courses impart employable and life skills. VACs are listed in the University website and in the Handbook on Interdepartmental Electives and VACs.
4.6.3 Each VAC carries 2 credits with 30 hours of instruction, of which 60% (18 hours) shall be Theory and 40% (12 hours) Practical.
4.6.4 Classes for a VAC are conducted beyond the regular class hours and preferably in the II and III Semesters.

4.7 Online Courses
4.7.1 The Heads of Departments shall facilitate enrolment of students in Massive Open Online Courses (MOOCs) platform such as SWAYAM to provide academic flexibility and enhance the academic career of students.
4.7.2 Students who successfully complete a course in the MOOCs platform shall be exempted from one elective course of the programme.

4.8 Credit Distribution
The credit distribution is organised as follows:

<table>
<thead>
<tr>
<th></th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester I to VI</td>
<td></td>
</tr>
<tr>
<td>Core Courses</td>
<td>90</td>
</tr>
<tr>
<td>Allied Courses</td>
<td>12</td>
</tr>
<tr>
<td>Electives</td>
<td>15</td>
</tr>
<tr>
<td>Project</td>
<td>20</td>
</tr>
<tr>
<td>Total Credits Semester I to VI (Minimum requirement for the award of Degree)</td>
<td>137</td>
</tr>
</tbody>
</table>

Each Department shall fix the minimum required credits for award of the Degree within the prescribed range of 135-140 credits.
4.9 Credit Hours
Each course is assigned credits and credit hours on the following basis:
1 Credit is defined as
1 Lecture period of one hour per week over a semester
1 Tutorial period of one hour per week over a semester
1 Practical/Project period of two or three hours (depending on the discipline) per week over a semester.

5 Attendance
5.1 Each faculty handling a course shall be responsible for the maintenance of Attendance and Assessment Record for candidates who have registered for the course.

5.2 The Record shall contain details of the students’ attendance, marks obtained in the Continuous Internal Assessment (CIA) Tests, Assignments and Seminars. In addition the Record shall also contain the organisation of lesson plan of the Course Instructor.

5.3 The record shall be submitted to the Head of the Department once a month for monitoring the attendance and syllabus coverage.

5.4 At the end of the semester, the record shall be duly signed by the Course Instructor and the Head of the Department and placed in safe custody for any future verification.

5.5 The Course Instructor shall intimate to the Head of the Department at least seven calendar days before the last instruction day in the semester about the attendance particulars of all students.

5.6 Each student shall have a minimum of 75% attendance in all the courses of the particular semester failing which he or she will not be permitted to write the End-Semester Examination. The student has to redo the semester in the next year.

5.7 Relaxation of attendance requirement up to 10% may be granted for valid reasons such as illness, representing the University in extracurricular activities and participation in NCC/NSS/YRC/RRC.

6 Mentor-Mentee System
6.1 To help the students in planning their course of study and for general advice on the academic programme, the Head of the Department will attach certain number of students to a member of the faculty who shall function as a Mentor throughout their period of study.

6.2 The Mentors will guide their mentees with the curriculum, monitor their progress, and provide intellectual and emotional support.

6.3 The Mentors shall also help their mentees to choose appropriate electives and value-added courses, apply for scholarships, undertake projects, prepare for competitive examinations such as NET/SET, GATE etc., attend campus interviews and participate in extracurricular activities.

7 Examinations
7.1 The examination system of the University is designed to systematically test the student's progress in class, laboratory and field work through Continuous Internal Assessment (CIA) Tests and End-Semester Examination (ESE).

7.2 There will be two CIA Tests and one ESE in each semester.

7.3 The Question Papers will be framed to test different levels of learning based on Bloom’s taxonomy viz. Knowledge, Comprehension, Application, Analysis, Synthesis and Evaluation/Creativity.

7.4 Continuous Internal Assessment Tests
7.4.1 The CIA Tests shall be a combination of a variety of tools such as class tests, assignments, seminars, and viva-voce that would be suitable to the course. This requires an element of openness.

7.4.2 The students are to be informed in advance about the assessment procedures.

7.4.3 The pattern of question paper will be decided by the respective faculty.

7.4.4 CIA Test-I will cover the syllabus of the first two units while CIA Test-II will cover the last three units.

7.4.5 CIA Tests will be for two to three hours duration depending on the quantum of syllabus.

7.4.6 A student cannot repeat the CIA Test-I and CIA Test-II. However, if for any valid reason, the student is unable to attend the test, the prerogative of arranging a special test lies with the teacher in consultation with the Head of the Department.

7.5 End Semester Examinations (ESE)

7.5.1 The ESE for the first/third semester will be conducted in November and for the second/fourth semester in May.

7.5.2 A candidate who does not pass the examination in any course(s) of the first, second and third semesters will be permitted to reappear in such course(s) that will be held in April and November in the subsequent semester/year.

7.5.3 The ESE will be of three hours duration and will cover the entire syllabus of the course.

8 Evaluation

8.1 Marks Distribution

8.1.1 Each course, both Theory and Practical as well as Project/Internship/Field work/In-plant training shall be evaluated for a maximum of 100 marks.

8.1.2 For the theory courses, CIA Tests will carry 25% and the ESE 75% of the marks.

8.1.3 For the Practical courses, the CIA Tests will constitute 40% and the ESE 60% of the marks.

8.2 Assessment of CIA Tests

8.2.1 For the CIA Tests, the assessment will be done by the Course Instructor

8.2.2 For the Theory Courses, the break-up of marks shall be as follows:

<table>
<thead>
<tr>
<th></th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test-I & Test-II</td>
<td>15</td>
</tr>
<tr>
<td>Seminar</td>
<td>05</td>
</tr>
<tr>
<td>Assignment</td>
<td>05</td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
</tr>
</tbody>
</table>

8.2.3 For the Practical Courses (wherever applicable), the break-up of marks shall be as follows:

<table>
<thead>
<tr>
<th></th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test-I</td>
<td>15</td>
</tr>
<tr>
<td>Test-II</td>
<td>15</td>
</tr>
<tr>
<td>Viva-voce and Record</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>40</td>
</tr>
</tbody>
</table>

8.3 Assessment of End-Semester Examinations

8.3.1 Evaluation for the ESE is done by both External and Internal examiners (Double Evaluation).
8.3.2 In case of a discrepancy of more than 10% between the two examiners in awarding marks, third evaluation will be resorted to.

8.4 Assessment of Project/Dissertation
8.4.1 The Project Report/Dissertation shall be submitted as per the guidelines laid down by the University.
8.4.2 The Project Work/Dissertation shall carry a maximum of 200 marks.
8.4.3 CIA for Project will consist of a Review of literature survey, experimentation/field work, attendance etc.
8.4.4 The Project Report evaluation and viva-voce will be conducted by a committee constituted by the Head of the Department.
8.4.5 The Project Evaluation Committee will comprise the Head of the Department, Project Supervisor, and a senior faculty.
8.4.6 The marks shall be distributed as follows:

<table>
<thead>
<tr>
<th>Continuous Internal Assessment (50 Marks)</th>
<th>End Semester Examination (75 Marks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Review-I 20</td>
<td>Project / Dissertation Evaluation</td>
</tr>
<tr>
<td>Review-II: 30</td>
<td>Viva-voce</td>
</tr>
<tr>
<td>100</td>
<td>50</td>
</tr>
</tbody>
</table>

8.5 Assessment of Value-added Courses
8.5.1 Assessment of VACs shall be internal.
8.5.2 Two CIA Tests shall be conducted during the semester by the Department(s) offering VAC.
8.5.3 A committee consisting of the Head of the Department, faculty handling the course and a senior faculty member shall monitor the evaluation process.
8.5.4 The grades obtained in VACs will not be included for calculating the GPA.

8.6 Passing Minimum
8.6.1 A minimum of 50% marks in each course is prescribed for a pass.
8.6.2 While a minimum of 40% marks in each course is essential for the End Semester Examinations, there is no passing minimum for CIA Tests.
8.6.3 A student is declared to have passed in each course if he/she secures not less than 40% marks in the End Semester Examination and not less than 50% marks in aggregate taking CIA and End Semester Examination marks together.
8.6.4 A candidate who has not secured a minimum of 50% of marks in a course (CIA + End Semester) shall reappear for the course in the next semester/year.

9. Conferment of the Master’s Degree
A candidate who has secured a minimum of 50% marks in all courses prescribed in the programme and earned the minimum required credits shall be considered to have passed the Master’s Programme.

10 Marks and Grading
10.1 The performance of students in each course is evaluated in terms Grade Point (GP).
10.2 The sum total performance in each semester is rated by Grade Point Average (GPA) while Cumulative Grade Point Average (CGPA) indicates the Average Grade Point obtained for all the courses completed from the first semester to the current semester.
10.3 The GPA is calculated by the formula

\[GPA = \frac{\sum_{i=1}^{n} C_i G_i}{\sum_{i=1}^{n} C_i} \]

where, \(C_i \) is the Credit earned for the Course \(i \) in any semester;
\(G_i \) is the Grade Point obtained by the student for the Course \(i \) and
\(n \) is the number of Courses passed in that semester.

CGPA is the Weighted Average Grade Point of all the Courses passed starting from the first semester to the current semester.

\[CGPA = \frac{\sum_{i=1}^{m} \frac{C_i G_i}{C_i}}{\sum_{i=1}^{m} C_i} \]

where, \(C_i \) is the Credit earned for the Course \(i \) in any semester;
\(G_i \) is the Grade Point obtained by the student for the Course \(i \) and
\(n \) is the number of Courses passed in that semester.
\(m \) is the number of semesters.

10.4 Evaluation of the performance of the student will be rated as shown in the Table.

<table>
<thead>
<tr>
<th>Letter Grade</th>
<th>Grade Points</th>
<th>Marks %</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>10</td>
<td>90 and above</td>
</tr>
<tr>
<td>A</td>
<td>9</td>
<td>80-89</td>
</tr>
<tr>
<td>B</td>
<td>8</td>
<td>70-79</td>
</tr>
<tr>
<td>C</td>
<td>7</td>
<td>60-69</td>
</tr>
<tr>
<td>D</td>
<td>6</td>
<td>55-59</td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>50-54</td>
</tr>
<tr>
<td>RA</td>
<td>0</td>
<td>Less than 50</td>
</tr>
<tr>
<td>W</td>
<td>0</td>
<td>Withdrawn from the examination</td>
</tr>
</tbody>
</table>

10.5 Classification of Results. The successful candidates are classified as follows:

10.5.1 For First Class with Distinction: Candidates who have passed all the courses prescribed in the Programme in the first attempt with a CGPA of 8.25 or above within the programme duration. Candidates who have withdrawn from the End Semester Examinations are still eligible for First Class with Distinction (See Section 12 for details).

10.5.2 For First Class: Candidates who have passed all the courses with a CGPA of 6.5 or above.

10.5.3 For Second Class: Candidates who have passed all the courses with a CGPA between 5.0 and less than 6.5.

10.5.4 Candidates who obtain highest marks in all examinations at the first appearance alone will be considered for University Rank.

10.6 Course-Wise Letter Grades

10.6.1 The percentage of marks obtained by a candidate in a course will be indicated in a letter grade.

10.6.2 A student is considered to have completed a course successfully and earned the credits if he/she secures an overall letter grade other than RA.

10.6.3 A course successfully completed cannot be repeated for the purpose of improving the Grade Point.

10.6.4 A letter grade RA indicates that the candidate shall reappear for that course. The RA Grade once awarded stays in the grade card of the student and is not deleted even when
he/she completes the course successfully later. The grade acquired later by the student will be indicated in the grade sheet of the Odd/Even semester in which the candidate has appeared for clearance of the arrears.

10.6.5 If a student secures RA grade in the Project Work/Field Work/Practical Work/Dissertation, he/she shall improve it and resubmit if it involves only rewriting/ incorporating the clarifications suggested by the evaluators or he/she can re-register and carry out the same in the subsequent semesters for evaluation.

11. **Provision for Withdrawal from the End Semester Examination**

11.1 The letter grade W indicates that a candidate has withdrawn from the examination.

11.2 A candidate is permitted to withdraw from appearing for the ESE for valid reasons. However, such permission is granted only once during the entire duration of the programme.

11.3 The application for withdrawal shall be made ten days prior to the commencement of the examination and duly approved by the Controller of Examinations. Notwithstanding the mandatory prerequisite of ten days notice, due consideration will be given under extraordinary circumstances.

11.4 Withdrawal is not granted for arrear examinations of courses in previous semesters and for the final semester examinations.

11.5 Candidates who have been granted permission to withdraw from the examination shall reappear for the courses in the subsequent semester/year.

11.6 Withdrawal shall not be taken into account as an appearance for the examination when considering the eligibility of the candidate to qualify for First Class with Distinction.

12 **Academic misconduct**

Any action that results in an unfair academic advantage/interference with the functioning of the academic community constitutes academic misconduct. This includes but is not limited to cheating, plagiarism, altering academic documents, fabrication/falsification of data, submitting the work of another student, interfering with other students’ work, removing/defacing library or computer resources, stealing other students’ notes/assignments, and electronically interfering with other students'/University’s intellectual property. Since many of these acts may be committed unintentionally due to lack of awareness, students shall be sensitised on issues of academic integrity and ethics.

13 **Transitory Regulations**

Wherever there has been a change of syllabi, examinations based on the existing syllabus will be conducted for two consecutive years after implementation of the new syllabus in order to enable the students to clear the arrears. Beyond that, the students will have to take up their examinations in equivalent subjects, as per the new syllabus, on the recommendation of the Head of the Department concerned.

14. **Notwithstanding anything contained in the above pages as Rules and Regulations governing the Two Year Master’s Programmes at Annamalai University, the Syndicate is vested with the powers to revise them from time to time on the recommendations of the Academic Council.**
Programme Structure

Master of Computer Applications Programme

Programme Code: SCIS31

Programme Structure

(For Students Admitted from the Academic year 2019 – 2020)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours per week</th>
<th>C</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>P</td>
</tr>
<tr>
<td>FIRST SEMESTER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCAC101</td>
<td>Allied-I: Mathematical Foundations for Computer Applications</td>
<td>4 - 4 25 75 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCAC102</td>
<td>Core 1: Object-Oriented Programming using C++</td>
<td>4 - 4 25 75 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCAC103</td>
<td>Core 2: Advanced Data Structures and algorithms</td>
<td>4 - 4 25 75 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCAC104</td>
<td>Core 3: Computer Organization and Architecture</td>
<td>4 - 4 25 75 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCAC105</td>
<td>Elective – I (IDE) : Soft Skills Development</td>
<td>4 - 3 25 75 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCAP106</td>
<td>Core 4: Programming Lab - I (Object-Oriented Programming)</td>
<td>- 4 2 40 60 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCAP107</td>
<td>Core 5: Programming Lab - II (Data Structures using C++)</td>
<td>- 4 2 40 60 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>20 8 23 205 495 700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SECOND SEMESTER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCAC201</td>
<td>Allied-II: Accounting and Financial Management</td>
<td>4 - 4 25 75 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCAC202</td>
<td>Core 6: JAVA Programming</td>
<td>4 - 4 25 75 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCAC203</td>
<td>Core 7: Relational Database Management System</td>
<td>4 - 4 25 75 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCAC204</td>
<td>Core 8: Operating System</td>
<td>4 - 4 25 75 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCAC205</td>
<td>Core 9: Software Engineering</td>
<td>4 - 4 25 75 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCAP206</td>
<td>Core 10: Programming Lab- III (Java Programming)</td>
<td>- 4 2 40 60 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCAP207</td>
<td>Core 11: Programming Lab- IV (RDBMS)</td>
<td>- 4 2 40 60 100</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>20 8 24 205 495 700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits</td>
<td>Lecture</td>
<td>Practical</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>---------</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>MCAC301</td>
<td>Allied-III: Resource Management Techniques</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>MCAC302</td>
<td>Core 12: C# and .Net Frame Work</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>MCAC303</td>
<td>Core 13: Computer Networks</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>MCAC304</td>
<td>Core 14: Computer Graphics and Multimedia</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>MCAC305</td>
<td>Core 15: Software Testing and quality Assurance</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>MCAP306</td>
<td>Core 16: Programming Lab- V (Software Testing)</td>
<td>-</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>MCAP307</td>
<td>Core 17: Programming Lab – V I (C# and .Net Programming)</td>
<td>-</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>20</td>
<td>8</td>
<td>24</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Lecture</th>
<th>Practical</th>
<th>Theory</th>
<th>Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCAC401</td>
<td>Core 18: Compiler Design</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>MCAC402</td>
<td>Core 19: Web Technology</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>MCAC403</td>
<td>Core 20: Mobile Computing</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>MCAC404</td>
<td>Elective – II (DE)</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>MCAC405</td>
<td>Elective – III (DE)</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>MCAP406</td>
<td>Core 21: Programming Lab –VII (Web Programming)</td>
<td>-</td>
<td>4</td>
<td>2</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>MCAP407</td>
<td>Core 22: Programming Lab -VIII (Mobile Application Development)</td>
<td>-</td>
<td>4</td>
<td>2</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>16</td>
<td>8</td>
<td>22</td>
<td>205</td>
<td>495</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Lecture</th>
<th>Practical</th>
<th>Theory</th>
<th>Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCAC501</td>
<td>Core 23: Big Data Analytics</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>MCAC502</td>
<td>Core 24: Python and R Programming</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>MCAC503</td>
<td>Core 25: Cloud Computing</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>MCAC504</td>
<td>Elective – IV (DE)</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>MCAC505</td>
<td>Elective – V (DE)</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>25</td>
<td>75</td>
</tr>
<tr>
<td>MCAP506</td>
<td>Core 26: Programming Lab–IX (Data Analytics: Python and R)</td>
<td>-</td>
<td>4</td>
<td>2</td>
<td>40</td>
<td>60</td>
</tr>
</tbody>
</table>
L-Lectures; P-Practical; C-Credits; CIA-Continuous Internal Assessment; ESE- End-Semester Examination

* Student is required to undergo 42 hours per week of practical work in software development at any Software Industry/Research Establishment of his/her choice.

Note:
1. Students shall take both Department Electives (DEs) and Interdepartmental Electives (IDEs) from a range of choices available.
2. Students may opt for any Value-added Course listed in the University website.

ELECTIVE COURSES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elective – I & II</td>
<td></td>
</tr>
<tr>
<td>MCAE4XXA</td>
<td>Object-Oriented Analysis and Design (OOAD)</td>
</tr>
<tr>
<td>MCAE4XXB</td>
<td>Open Source Technologies</td>
</tr>
<tr>
<td>MCAE4XXC</td>
<td>E-Commerce</td>
</tr>
<tr>
<td>MCAE4XXD</td>
<td>Data Mining Techniques</td>
</tr>
<tr>
<td>MCAE4XXE</td>
<td>Artificial Intelligence</td>
</tr>
<tr>
<td>MCAE4XXF</td>
<td>Soft Computing</td>
</tr>
<tr>
<td>Elective – III & IV</td>
<td></td>
</tr>
<tr>
<td>MCAE5XXA</td>
<td>Network Security</td>
</tr>
<tr>
<td>MCAE5XXB</td>
<td>Digital Image Processing</td>
</tr>
<tr>
<td>MCAE5XXC</td>
<td>Internet of Things</td>
</tr>
<tr>
<td>MCAE5XXD</td>
<td>Pattern Recognition</td>
</tr>
<tr>
<td>MCAE5XXE</td>
<td>Unix and Shell Programming</td>
</tr>
<tr>
<td>MCAE5XXF</td>
<td>Natural Language Processing</td>
</tr>
</tbody>
</table>
PROGRAMME OUTCOMES (PO)

<table>
<thead>
<tr>
<th>Sl.No</th>
<th>PO</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO1</td>
<td>An ability to apply knowledge of mathematics, computer science and management in practice.</td>
</tr>
<tr>
<td>PO2</td>
<td>An ability to identify, critically analyze, formulate and develop computer applications.</td>
</tr>
<tr>
<td>PO3</td>
<td>An ability to select modern computing tools and techniques and use them with dexterity.</td>
</tr>
<tr>
<td>PO4</td>
<td>An ability to design a computing system to meet desired needs within realistic constraints such as safety, security and applicability.</td>
</tr>
<tr>
<td>PO5</td>
<td>An ability to devise and conduct experiments, interpret data and provide well informed conclusions.</td>
</tr>
<tr>
<td>PO6</td>
<td>An ability to understand the impact of system solutions in a contemporary, global, economical, environmental, and societal context for sustainable development</td>
</tr>
<tr>
<td>PO7</td>
<td>An ability to function professionally with ethical responsibility as an individual as well as in multidisciplinary teams with positive attitude</td>
</tr>
<tr>
<td>PO8</td>
<td>An ability to effectiveness in communicating with a wide range of audiences</td>
</tr>
</tbody>
</table>

PROGRAMME SPECIFIC OUTCOMES (PSO)

<table>
<thead>
<tr>
<th>Sl.No</th>
<th>PSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSO1</td>
<td>To prepare graduates who will productive careers in software industry, corporate sector, Govt. organizations and academia by providing skill based environment for teaching and research in the core and emerging areas of the discipline.</td>
</tr>
<tr>
<td>PSO2</td>
<td>To prepare graduates who will contribute to society as broadly educated, expressive, ethical and responsible citizens with proven expertise.</td>
</tr>
<tr>
<td>PSO3</td>
<td>To prepare graduates who will achieve peer-recognition; as an individual or in a team; through demonstration of good analytical, design and implementation skills.</td>
</tr>
<tr>
<td>PSO4</td>
<td>Develop and deploy software systems with assured quality and efficiency.</td>
</tr>
<tr>
<td>PSO5</td>
<td>To prepare graduates who will thrive to pursue life-long learning to fulfill their goals.</td>
</tr>
</tbody>
</table>
MCAC101: MATHEMATICAL FOUNDATIONS FOR COMPUTER APPLICATIONS

Learning objectives:
- Computer science is the art of solving problems with computers.
- This is a broad definition that encompasses an equally broad field.
- Within computer science, we find software engineering, bioinformatics, cryptography, machine learning, human-computer interaction, graphics, and a host of other fields.
- Mathematics underpins all of these endeavors in computer science.
- To enable the student to learn the mathematical foundations of computer science.

Unit–I

Unit–II
Basic Set Theory: Basic Definitions-Venn Diagrams and set operations-Laws of set theory-Principle of inclusion and exclusion-partitions-Permutation and Combination-Relations- Properties of relations - Matrices of relations - Closure operations on relations - Functions- injective, surjective and bijective functions.

Unit–III
Mathematical Logic: Propositions and logical operators - Truth table – Propositions generated by a set, Equivalence and implication –Basic laws-Some more connectives - Functionally completesetofconnectives-Normalforms-ProofsinPropositionalcalculus-Predicate calculus.

Unit–IV
Formal Languages and Finite State Automata: Deterministic finite accepters – Regular languages- Non deterministic finite accepters-Equivalence of deterministic and Non deterministic finite accepters – Reduction of the number of states in finite automata – Regular expressions – Connection between regular expressions and regular languages.

Unit–V

Text Books:

References:

Course outcomes:

CO1: Do matrix operation, can find inverse of a given matrix, eigen values and eigen vectors.

CO2: Solve simply problems an probability and baye’s theorem.

CO3: Fit straight line by the method of least squares and they will do the problem in correlation and regression analysis for comparing two or more items.

CO4: Solve some basic problems related to automata and logical relations.

CO5: Get numerical solutions to algebraic and transcendental equations and able to solve the system of simultaneous linear equations using different Gaussian methods.

Outcome Mapping

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
<th>PSO4</th>
<th>PSO5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>CO2</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>CO3</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>CO5</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MCAC102: OBJECT-ORIENTED PROGRAMMING USING C++

Learning Objectives:

- To explain the advantages of object oriented programming over procedure oriented programming.
- Understand how to apply the major object-oriented concepts to implement object oriented programs in C++, encapsulation, inheritance and polymorphism.
- To learn how to implement constructors, function, pointes and class member functions.
- Explain array handing, function overloading, operator overloading and virtual functions.
- Helps in implementing some important features of C++ including templates, utilizing the I/O classes in C++ and exception handling.
UNIT-I
Introduction to OOP: Overview of C++ - classes - structures - union - friend function - friend class - inline function - constructors - static members - scope resolution operator - passing objects to functions - function returning objects

UNIT-II
Arrays - pointers - this pointer - references - dynamic memory allocation - functions overloading - default arguments - overloading constructors - pointers to functions

UNIT-III
Operator overloading - member operator function - friend operator function - type conversion - inheritance - types of inheritance - virtual base class - polymorphism - virtual function.

UNIT-IV
Class templates and generic classes - function templates and generic functions - overloading function templates - power of templates - exception handling - derived class exception - exception handling functions

UNIT-V
Streams - formatted I/O with its class functions and manipulators - creating own manipulators - file I/O - conversion functions - standard template library.

Text Book:

References:

Course Outcomes:
CO1: Describe the principles of object-oriented problem solving and programming.
CO2: Explain programming fundamentals, including statement and control flow.
CO3: Apply the concepts of class, method, constructor, pointers, data abstraction, function abstraction, inheritance, overriding, overloading, polymorphism, IO streams, Templates.
CO4: Design program with basic data structure like array.
CO5: Develop good quality software using object-oriented techniques.

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
<th>PSO4</th>
<th>PSO5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>CO3</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MCA103: ADVANCED DATA STRUCTURES AND ALGORITHMS

Learning Objectives:
- To teach efficient storage mechanisms of data for an easy access.
- To design and implementation of various basic and advanced data structures.
- To introduce various techniques for representation of the data in the real world.
- To develop application using data structures.
- To teach the concept of protection and management of data.

Unit-I

Unit-II

Unit-III

Unit-IV

Unit-V
Advanced Data Structures - B-trees - Definition - Basic Operations on B-trees - Deleting a key from B-tree - Fibonacci heaps - Structure - Mergeable heap operations - Decreasing a key and deleting a node - Bounding the maximum degree - Van Emde Boas Trees - Preliminaries - Recursive structures - Data structure for disjoint sets - Disjoint set operations - Linked list representation of disjoint sets.

Text Book:
1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein,
References:

Course Outcomes:
CO1: Student will be able to choose appropriate data structure as applied to specified problem definition.
CO2: Student will be able to handle operations like searching, insertion, deletion, traversing mechanism etc. on various data structures.
CO3: Students will be able to apply concepts learned in various domains like DBMS, compiler construction etc.
CO4: Students will be able to use linear data structures.
CO5: Students will be able to use non-linear data structures.

Outcome Mapping

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
<th>PSO4</th>
<th>PSO5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>CO2</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>CO3</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>✓</td>
</tr>
<tr>
<td>CO5</td>
<td>✓</td>
</tr>
</tbody>
</table>

MCAC104: COMPUTER ORGANIZATION AND ARCHITECTURE

Learning Objectives:
- To conceptualize the basics of organizational and architectural issues of a digital computer.
- To analyze performance issues in processor of a digital computer.
- To analyze performance issues in memory design of a digital computer.
- To understand various data transfer techniques in digital computer.
- To analyze processor performance improvement using instruction level parallelism Course.
Unit-I

Arithmetic and Logic – Number System – Computer Arithmetic – ALU - Integer Arithmetic – Floating point Arithmetic.

Unit-II

Memory System Design – Characteristics of memory system – Memory Hierarchy – Cache Memory Principles – Elements of cache design-Replacement Policies – Main Memory Organization – Optical Memory- Magnetic Tapes.

Unit-III

Instruction Set Design - Assembly/Machine Language– Addressing Modes- Instruction format –Instruction set design – Type of Operand - Type of Operations – Reduced Instruction Set Computers –RISCVS CISC.

Unit-IV

Unit-V

Multiprocessors and Multicore computers – Multiple Processor Organization- SISD –SIMD – MISD and MIMD-Symmetric multiprocessors – Cache Coherence – Multicore Organization .

Text Book:

References:

Course Outcomes:
CO1: Ability to understand basic structure of computer.
CO2: Ability to perform computer arithmetic operations and understand control unit operations.
CO3: Ability to design memory organization that uses banks for different word size operations.
CO4: Ability to understand the concept of cache mapping techniques and I/O organization.

CO5: Ability to conceptualize instruction level parallelism.

Outcome Mapping

<table>
<thead>
<tr>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
<th>PSO4</th>
<th>PSO5</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
</tr>
<tr>
<td>✓</td>
</tr>
<tr>
<td>✓</td>
</tr>
<tr>
<td>✓</td>
</tr>
<tr>
<td>✓</td>
</tr>
</tbody>
</table>

MCAC105: SOFT SKILLS DEVELOPMENT

Learning objectives:
- To develop the soft skill among the students.
- To impart the student knowledge in developing the positive attitude and art of speaking and writing.
- To indulge the students to improve the body language group discussion and time management.

Unit-I

Soft skills and developing positive Attitude

Soft skills: introduction – what are soft skills? - selling your soft skills - attribute regarded as soft skills – soft skills – social- soft skills- thinking – soft skills – Negotiating –exhibiting your soft skills- indentifying your soft skills- improving your soft skills - soft skills training –train yourself-top 60 soft skills.

Developing positive attitude: introduction – meaning - features of attitudes- attitude and behavior formation of attitudes– change of attitudes – what can you do to change attitude?-ways of changing attitude in a person – attitude in a workplace – the power of positive attitude-developing positive attitude-example of positive attitude- example of negative attitude-over coming negative attitude- negative attitude and its result.

Unit-II

Art of speaking and writing

Art of speaking: Introduction-what make communication important? - Defining communication-special features of communication –communication process- channel of communication-importance of communication - tips for effective communication - tips for powerful presentation-art of public speaking - importance of public speaking.

Unit-III

Body language
Introduction – body talk – voluntary and involuntary body language-forms of body language-parts of body language - origin of body language - uses of body language - body language in building interpersonal relations – body language in building industrial relations-reason to study body language-improving your body language – types of body language-Gender differences-female interest and body language - shaking hands with women - interpreting body language-developing confidence with correct body language.

Unit-IV

Group discussion
Introduction – meaning of GD – why group discussion? - characters tested in a GD – tips on GD – types of GD - skills required in a GD - consequences of GD - behavior of a GD - essential elements of GD - different characters in GD - traits tested in a GD - GD etiquette - areas to be concentrated while preparing for a GD - imitating a GD - techniques to initiate a GD - Non-verbal communication in GD – movement and gestures to be avoided in a GD-topics for GD.

Interview skills
Introduction – why an interview?.- types of interview - interview panel-types of questions asked-reason for selecting a candidate –reason for rejecting a candidate – on the day of interview– on the interview table – attending job fair-common mistakes that you would't want to do-questions the candidate should not ask during the interview –post- interview etiquette-how does one follow up?- telephonic interview –dress code at interview – typical questions asked – interview mistakes – quick tips- how to present well in interview –tips to make a good impression in an interview – job interview-basic tips-how to search for job effectively – interview quotations.

Unit-V

Time management
Introduction- the 80:20 rule- take a good look at the CO1ple around you- examine your work-sense of time management – time is money – features of time- three secretes of time management - time management matrix- analysis of time matrix-effective scheduling – grouping of activities – five steps to successful time management –difficulties in time management- evils of not planning - time management is a myth – overcoming procrastination – ways of find free time- time management tips for students – interesting facts about time- ideal way of spending a day- time wasters – time savers – realizing the value of time-time circle planner.

Text Book:

References:
MCAP106 - PROGRAMMING LAB - I (Object-Oriented Programming using C++)

Learning Objectives:
- At the end of the course students should be familiar with the main features of the C++ language.
- Be able to write a C++ program to solve a well specified problem.
- Understand a C++ program written by someone else.
- Be able to debug and test C++ programs;
- Understand how to read C++ doc library documentation and reuse library code.
- To make the students understand the features of object oriented principles and familiarize them with virtual functions, templates and exception handling.
- To make the students to develop applications using C++.

Lab Exercises
1. Programs on concept of classes and objects.
2. Programs using inheritance.
3. Programs using static polymorphism.
4. Programs on dynamic polymorphism.
5. Programs on operator overloading.
6. Programs on dynamic memory management using new, delete operators.
7. Programs on copy constructor and usage of assignment operator.
8. Programs on exception handling.
9. Programs on generic programming using template function & template class.
10. Programs on file handling.

Course outcomes:
CO1: Students will be able to apply the computer programming techniques to solve practical problems.
CO2: Students will be able to understand the concepts and implementation of constructors and destructors.
CO3: Students will be able to develop software applications using object oriented programming language in C++
CO4: Student can be able to understand and use the basic programming constructs of C++
CO5: Students are able to learn C++ data types, memory allocation/de-allocations, functions and pointers.

Outcome Mapping

<table>
<thead>
<tr>
<th>CO1</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
<th>PSO4</th>
<th>PSO5</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
</tr>
<tr>
<td>✓</td>
</tr>
<tr>
<td>✓</td>
</tr>
<tr>
<td>✓</td>
</tr>
<tr>
<td>✓</td>
</tr>
</tbody>
</table>

MCAP107 - PROGRAMMING LAB - II (Data Structures using C++)

Learning Objectives:

- To write and execute programs in C++ to solve problems using data structures such as arrays, linked lists, stacks, queues, trees, graphs, hash tables and search trees.
- To write and execute write programs in C++ to implement various sorting and searching methods.
- To understand the linear data structure such as stack, queue, list etc.
- To implement the sorting and search algorithms.

Lab Exercises

1. Write a C++ programs to implement recursive and non recursive i) Linear search ii) Binary search
2. Write a C++ programs to implement i) Bubble sort ii) Selection sort iii) quick sort iv) insertion sort
3. Write a C++ programs to implement the following using an array. a) Stack ADT b) Queue ADT
4. Write a C++ programs to implement list ADT to perform following operations a) Insert an element into a list. b) Delete an element from list c) Search for a key element in list d) count number of nodes in list
5. Write C++ programs to implement the following using a singly linked list. a) Stack ADT b) Queue ADT
6. Write C++ programs to implement the deque (double ended queue) ADT using a doubly linked list and an array.
7. Write a C++ program to perform the following operations: a) Insert an element into a binary search tree. b) Delete an element from a binary search tree. c) Search for a key element in a binary search tree.
8. Write C++ programs for implementing the following sorting methods: Merge sort b) Heap sort
9. Write C++ programs that use recursive functions to traverse the given binary tree in a) Preorder b) in order and c) post order.
10. Write a C++ program to perform the following operations a) Insertion into a B-tree b) Deletion from a B-tree.

Course Outcomes:
CO1: Ability to identify the appropriate data structure for given problem.
CO2: Graduate able to design and analyze the time and space complexity of algorithm or program.
CO3: Ability to effectively use compilers includes library functions, debuggers and trouble shooting.
CO4: Ability to identify the dynamic memory allocation concepts.
CO5: Implement the non-linear data structure concepts like binary tree.

Outcome Mapping

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
<th>PSO4</th>
<th>PSO5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>CO3</td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>✓</td>
</tr>
<tr>
<td>CO5</td>
<td>✓</td>
</tr>
</tbody>
</table>
MCAC201: ACCOUNTING AND FINANCIAL MANAGEMENT

Learning Objectives:
- To gain fundamental knowledge on accounting and accounting process.
- To have practical knowledge in the preparation of final accounts of a concern
- To impart basic knowledge on the Tools of financial statement analysis
- To give insight into the concepts cost accounting and elements of cost
- To impart basic knowledge in the preparation of budgeting
- To give conceptual knowledge on the management of funds

Unit-I

Unit-II

Unit-III
Analysis and Interpretation of Financial Statements: Need for Financial Statements Analysis-Comparative Statements–Common size Statements-Trend analysis-Ratio analysis- Liquidity, Profitability and Solvency Ratios.

Unit-IV
Basics to Cost Accounting and Marginal costing: Introduction to costing-Advantages of cost accounting- Methods of Costing-Elements of cost–Material, Labour and Overheads- Cost Sheet.
Marginal costing- Advantages-BEP-P/V Ratio and its uses

Unit-V
Budgeting and Management of Capital: Budgeting – Budgetary Control – Objectives – Types of Budgets- Production Budget – Cash Budget – Flexible Budget Working Capital– Nature -Concept (Theory only)

Note: The Question paper shall consist of 60 % Simple Problems and 40 % Theory.

Text Books:
References:

Course outcomes:

CO1: Explain the accounting process and it's concepts.
CO2: Prepare the final accounts of a business.
CO3: Describe the various tools of financial statement analysis.
CO4: Classify the cost and prepare cost sheet.
CO5: Prepare budgets- capital as well as functional budgets.

Outcome Mapping

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
<th>PSO4</th>
<th>PSO5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
</tr>
<tr>
<td>CO2</td>
<td>✓</td>
</tr>
<tr>
<td>CO3</td>
<td>✓</td>
</tr>
<tr>
<td>CO4</td>
<td>✓</td>
</tr>
<tr>
<td>CO5</td>
<td>✓</td>
</tr>
</tbody>
</table>
MCAC202: JAVA PROGRAMMING

Learning Objectives:
- To understand fundamentals of concepts of java programming.
- To understand the Applet, string handling and AWT concepts.
- Gain knowledge about Swing and JDBC.
- Be familiar with understand Java bean and EJB.
- To gain the Knowledge of Servlet and JSP.

Unit-I
CoreJava: Introduction-Operators-Datatypes-Variables-Arrays-Control Statements-Methods& Classes- Inheritance-package and interface- Exception handling-Multithread programming

Unit-II

Unit-III

JDBC: The connectivity Model-JDBC/ODBC Bridge-Java.sql package-connectivity to remote database – navigating through multiple rows retrieved from a database.

Unit-IV
JavaBeans: Application Builder tools-The bean developer kit (BDK)-JAR files-Introduction-Developing a simple bean-using bound properties-The java Beans API-Session Beans-Entity Beans-Introduction to Enterprise Java Beans(EJB)-Introduction to RMI(Remote Method Invocation):A simple client-server application using RMI.

Unit-V
Java Servlets: Servlet basic-Servlet API basic-Lifecycle of a Servlet-Running Servlet-DebuggingServlet-Thread-safeServlet-HTTPRedirects-Cookies-Introduction to Java server pages (JSP).

Text Books:

References:
5. NPTEL: https://onlinecourses.nptel.ac.in/noc19_cs07/course
Course Outcomes:
CO1: To learn the structure and model of the Java programming language.
CO2: To gain the knowledge of java programming statement.
CO3: Develop software in the Java programming language.
CO4: To gain the knowledge of Java servlets.
CO5: Evaluate user requirements for software functionality required to decide whether the Java programming language can meet user requirements.

Outcome Mapping

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
<th>PSO4</th>
<th>PSO5</th>
</tr>
</thead>
<tbody>
<tr>
<td>C01</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C02</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C03</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C04</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C05</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Overview of SQL query language - SQL data definition - Basic structure of SQL queries - Additional basic operations - Set operations - Null values - Aggregate functions - Nested sub queries - Modification of the database.

Unit-III

Unit-IV

Unit-V
Distributed Databases - Introduction - Homogeneous and Heterogeneous Databases - Distributed Data Storage - Distributed Transactions - Commit Protocols - Concurrency Control in Distributed Databases - Availability - Distributed Query Processing - Heterogeneous Distributed Databases - Cloud-Based Databases - Directory Systems.

Text Book:

References:

Course Outcomes:
Co1: Define program-data independence, data models for database systems, database schema and database instances.
Co2: Recall Relational Algebra concepts, and use it to translate queries to Relational statements and vice versa.
Co3: Identify Structure Query Language statements used in creation and manipulation of Database Identify the methodology of conceptual modeling through Entity Relationship model.
Co4: Develop an understanding of the differences between OODBMS, ORDBMS and RDBMS and the practical implications of each approach.
Co5: Analyze and design a real database application.
Learning Objectives:
- To learn the fundamentals of Operating Systems.
- To learn the mechanisms of OS to handle processes and threads and their communication.
- To learn the mechanisms involved in memory management.
- To gain knowledge on distributed operating system concepts that includes architecture, Mutual exclusion algorithms, deadlock detection algorithms and agreement protocols.
- To know the components and management aspects of concurrency management.

Unit-I

Unit-II

Unit-III
Memory Management – Background – Swapping – Contiguous Memory Allocation – Paging – Structure of the Page Table – Virtual Memory Background - Demand Paging – Copy-on-Write – Page Replacement – Allocation of Frames – Thrashing – Memory-Mapped Files – Allocating Kernel Memory – Other Considerations – Operating System Examples.
Unit-IV

Unit-V

Text Book:

References:
3. https://android.googlesource.com

Course Outcomes:
CO1: Analyze the structure of operating system and basic architectural components involved in design.
CO2: Analyze and design the applications to run in parallel either using process or thread models of different operating system.
CO3: Analyze the various device and resource management techniques for timesharing and distributed systems.
CO4: Understand the Mutual exclusion, Deadlock detection and agreement protocols of Distributed operating system.
CO5: Interpret the mechanisms adopted for file sharing in distributed Applications.
MCAC205: SOFTWARE ENGINEERING

Learning Objectives
- To understand the role of software Engineering.
- To learn the mechanisms of developing software.
- To identify the risks in software development.
- To understand the design concepts testing methods and strategies.
- To understand and collect the requirement of software engineering.

Unit-I

Unit-II

Unit-III
Software Design: Design Concepts–Design Models–Pattern Based Design–Architectural Design–Component Level Design–Component–Class Based And Conventional Components Design–User Interface–Analysis And Design

Unit-IV

Unit-V
Text Book:

References:

Course Outcomes
CO1: To gain the knowledge of Software Engineering
CO2: Gather and specify requirement of Software Engineering
CO3: Learn the design concepts.
CO4: To write the test cases.
CO5: Apply software engineering concepts in software development.

Outcome Mapping

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
<th>PSO4</th>
<th>PSO5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>✓</td>
</tr>
</tbody>
</table>
MCAP206- Programming Lab – III (Java Programming)

Learning objectives:

- To understand how to design, implement, test, debug, and document programs that use basic data types and computation, simple I/O, conditional and control structures, string handling and functions.
- To understand the importance of Classes & objects along with constructors, Arrays and Vectors.
- Discuss the principles of inheritance, interface and packages and demonstrate though problem analysis assignments how they relate to the design of methods, abstract classes and interfaces and packages.
- To understand importance of Multi-threading & different exception handling mechanisms.
- To learn experience of designing, implementing, testing, and debugging graphical user interfaces in Java using applet and AWT that respond to different user events.

Lab Exercises

1. Write a JAVA program to implement class and object
2. Write a JAVA program to implement command line argument.
3. Write a JAVA program to implement the bitwise operators.
4. Write a JAVA program to implement method overloading.
5. Write a JAVA program to implement packages.
6. Write a JAVA program to implement interface.
7. Write a JAVA program to implement inheritance mechanism.
8. Write a JAVA program to implement exception handling.
9. Write a JAVA program to implement user-defined exception handling.
10. Write a JAVA program to implement multithreaded programming concept.
11. Write a JAVA program to implement abstract class concept.
12. Write a JAVA program to implement RMI concept.
14. Library Management using JDBC concept
15. Programs using Swings Concepts

Course outcomes:

CO1: Implement Object Oriented programming concept using basic syntaxes of control Structures, strings and function for developing skills of logic building activity.
CO2: Identify classes, objects, members of a class and the relationships among them needed for a finding the solution to specific problem
CO3: Demonstrates how to achieve reusability using inheritance, interfaces and packages and describes faster application development can be achieved.
CO4: Demonstrate understanding and use of different exception handling mechanisms and concept of multithreading for robust faster and efficient application development.
CO5: Identify and describe common abstract.
Learning Objectives:

- Keep abreast of current developments to continue their own professional development.
- To engage themselves in lifelong learning of Database management systems theories and technologies this enables them to pursue higher studies.
- To interact professionally with colleagues or clients located abroad and the ability to overcome challenges that arise from geographic distance, cultural differences, and multiple languages in the context of computing.
- Develop team spirit, effective work habits, and professional attitude in written and oral forms, towards the development of database applications.

List of Exercises

Cycle – I (Simple SQL)
1. Employee Management System Using SQL Commands.
2. Students Management System Using SQL Commands.
4. Index Creation.
5. Implementation of SQL queries for route database.
6. Implementation of SQL queries for route database - part I.
7. Implementation of SQL queries for route database - Part II.
8. Creating view using SQL commands.
9. Creation of Table Partition.
10. Default trigger procedure and drop command

Cycle – II (PL/SQL)
12. Factorial of number
13. Checking whether a number is prime or not
14. Fibonacci series
15. Reversing the string
16. Swapping of two numbers
17. Odd or even number
18. Duplication of records
Course Outcomes

CO1: In drawing the ER, EER, and UML Diagrams.
CO2: In analyzing the business requirements and producing a viable model for the implementation of the database.
CO3: In converting the entity-relationship diagrams into relational tables.
CO4: To develop appropriate Databases to a given problem that integrates ethical, social, legal, and economic concerns.

Outcome Mapping

<table>
<thead>
<tr>
<th></th>
<th>P01</th>
<th>P02</th>
<th>P03</th>
<th>P04</th>
<th>P05</th>
<th>P06</th>
<th>P07</th>
<th>P08</th>
<th>P09</th>
<th>P10</th>
<th>P11</th>
<th>P12</th>
<th>P13</th>
<th>P14</th>
<th>P15</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
</tr>
<tr>
<td>CO2</td>
<td>✓</td>
</tr>
<tr>
<td>CO3</td>
<td>✓</td>
</tr>
<tr>
<td>CO4</td>
<td>✓</td>
</tr>
</tbody>
</table>

MCAC301: RESOURCE MANAGEMENT TECHNIQUES

Learning Objectives:

- Resource management techniques find applications in diverse fields including Engineering, Management Science, Computer Science and Economics.
- In this course, the general linear programming problem, simplex computation procedure, revised simplex method, duality problems in linear programming and some nonlinear programming problems, Integer programming problem, transportation and assignment problems, PERT and CPM are also covered.
- The main objective is to solve varieties of problems.

Unit-I

Linear programming (LP) LP formulation and graphical solution – the simplex method - revised simplex method.

Unit-II

Duality and networks - definition of the dual problem primal-Dual relationships Dual simplex method - transportation and assignment models - transshipment models - network minimization - shortest route problems.

Unit-III

Integer programming - cutting plane algorithms, Branch and bound Algorithm - Multistage (dynamic) programming solution of LP by dynamic programming.

Unit-IV

Unit-V
Project scheduling- network diagram representation –critical path Computation-time charts and resources levelling– PERT Networks

Text Book:

References:

Course outcomes:
CO1: Model any real life situation into a mathematical model.
CO2: Solve the problem for the required demand.
CO3: Optimize the transportation and assignment of jobs.
CO4: Upgrade their ability in production management through project scheduling and allocation of resources.
CO5: Develop their personnel management through manpower planning and salary administration.

Outcome Mapping

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
<th>PSO4</th>
<th>PSO5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
</tr>
<tr>
<td>CO2</td>
<td>✓</td>
</tr>
<tr>
<td>CO3</td>
<td>✓</td>
</tr>
<tr>
<td>CO4</td>
<td>✓</td>
</tr>
<tr>
<td>CO5</td>
<td>✓</td>
</tr>
</tbody>
</table>
MCAC302: C# and .NET FRAMEWORK

Learning objectives:
- To build deep understanding of C# language features.
- To construct strong concepts of OOP's and implement the same in C#.
- To create and manage strings, arrays, collections and enumerators using .NET framework library and perform file input-output, network, multi threading operations.
- To develop database centric applications using ADO.NET.
- To build GUI and web-based applications using .NET Framework.

Unit-I

Unit-II
C# Basics: Introduction- Data types - Identifiers- Variable & Constants- C# statements - Classes and Objects- Arrays and Strings- Methods and Classes – Operator overloading – Indexers and Properties – Inheritance – Interfaces - Delegates and Events

Unit-III

Unit-IV
Advanced Features Using C#: Creating form based windows applications – Building Components - Data access with .NET : Overview of ADO.NET – using Database Connections – Commands – Dataset class –XML Schemas - Populating a Dataset – Persisting Dataset changes -Working with ADO.NET

Unit-V
Web programming: ASP.NET introduction – Architecture - ASP.NET server controls – ADO.NET and Data Binding – Web Services

Text Books:

Reference Books:

Course outcomes:
- CO1: Recognize, diagram, and implement introductory programming concepts using C#
- CO2: Determine logical alternatives with C# decision structures utilizing iteration, class methods, fields, and properties.
- CO3: Assemble forms, classes, and controls into C# solutions utilizing arrays and file/database access methods.
- CO4: Develop windows applications.
- CO5: Develop web-based applications.

Outcome Mapping

<table>
<thead>
<tr>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
<th>PSO4</th>
<th>PSO5</th>
</tr>
</thead>
<tbody>
<tr>
<td>C01</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C02</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C03</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C04</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C05</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MCAC303: COMPUTER NETWORKS

Learning Objectives:
- Study the basic taxonomy and terminology of the computer networking and enumerate the layers of OSI model and TCP/IP model.
- Acquire knowledge of Application layer and Presentation layer paradigms and protocols.
- Study Session layer design issues, Transport layer services, and protocols.
- Gain core knowledge of Network layer routing protocols and IP addressing.
- Study data link layer concepts, design issues, and protocols.

Unit-I
Introduction: The uses of computer networks-Network hardware-Network software-Reference models-Example of networks-Network standardization.
The physical layer: The theoretical basis for data communication–Guided Transmission media –Wireless transmission– PSTN-Mobile telephone-Communication satellite.

Unit-II
The Data Link Layer: Data link layer design issues-Error detection and correction –Elementary data link protocols- Sliding window protocols- Example of data link protocols-ETHERNET–802.11-802.16-Bluetooth-Data link layer Switching.

Unit-III
The network layer: Network layer design issues- Routing algorithms- Congestion control algorithms-Internetworking-Network layer in Internet. Network Services BOOTP and DHCP- Domain Name Service-WINS-Web Serving and Surfing Web servers-Web clients (browsers).

Unit-IV
The transport layer: Transport layer design issues-Transport protocols-Simple transport protocol-Internet transport protocols UDP-TCP.

Unit-V
The application layer: Domain name system- Electronic mail- World wide web–Multimedia–Cryptography-Digital signature-Communication Security.

Text Book:

References:
Course Outcomes:
CO1: To master the terminology and concepts of the OSI reference model and the TCP-IP reference model.
CO2: To master the concepts of protocols, network interfaces, and design/performance issues in local area networks and wide area networks.
CO3: To be familiar with wireless networking concepts.
CO4: To be familiar with contemporary issues in networking technologies.
CO5: To be familiar with network tools and network programming.

Outcome Mapping

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
<th>PSO4</th>
<th>PSO5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MCAC304: COMPUTER GRAPHICS AND MULTIMEDIA

Learning Objectives:
- Gain knowledge about graphics system.
- Understand the two dimensional graphics and their transformations.
- Realize illumination and color models.
- Understand the three dimensional graphics and their transformations.
- Be familiar with understand various clipping techniques.

Unit-I

Unit-II
Unit-III

Unit-IV

Unit-V
Multimedia in Web applications: Basic web graphics, Web page design and site building, Adding multimedia to the web MACROMEDIA DREAMWEAVER: Planning, Designing (Tables, layers, templates, style sheet), Building and Publishing a web site. CASE STUDY: Creating web site with graphics, animations, audio, video and interaction.

Text Books:
1. Hearn D and Baker M.P, "Computer Graphics", PHI, India. (Unit 1, 2 & 3)
3. Macromedia Dreamweaver Basics and Programming. (Unit 5)

References:

Course Outcomes:
CO1: Design two dimensional graphics and apply two dimensional transformations.
CO2: Design three dimensional graphics and apply three dimensional transformations.
CO3: Apply Illumination and color models.
CO4: Apply clipping techniques to graphics.
CO5: Design an Animation sequence.
Outcome Mapping

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
<th>PSO4</th>
<th>PSO5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

MCAC305: SOFTWARE TESTING AND QUALITY ASSURANCE

Learning Objectives:

- Develop methods and procedures for software development that can scale up for large systems.
- It can be used to consistently produce high-quality software at low cost and with a small cycle time.
- Student learns systematic approach to the development, operation, maintenance, and retirement of software.
- Student learns how to use available resources to develop software, reduce cost of software and how to maintain quality of software.
- Methods and tools of testing and maintenance of software’s.

UNIT-I

UNIT-II

Testing Techniques and Levels of testing: Using White Box Approach to Test design - Static Testing Vs. Structural Testing – Code Functional Testing – Coverage and Control Flow Graphs – Using Black Box Approaches to Test Case Design – Random Testing – Requirements based testing – Decision tables – State-based testing – Cause-

UNIT- III

UNIT-IV

UNIT-V

Text Books:

References:

Course Outcomes:
CO1: Apply modern software testing processes in relation to software development and project management.
CO2: Create test strategies and plans, design test cases, prioritize and execute them.
CO3: Manage incidents and risks within a project.
CO4: Contribute to efficient delivery of software solutions and implement improvements in the software development processes.
CO5: To gain expertise in designing, implementation and development of computer based systems and IT processes.

Outcome Mapping

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
<th>PSO4</th>
<th>PSO5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MCAP306 - Programming Lab- V (Software Testing)

Learning Objectives:
- Testing is a process of executing a program with the intent of finding an error.
- A good test case is one that has a high probability of finding an as yet undiscovered error.
- A successful test is one that uncovers an as yet undiscovered error.
- Documenting user requirements using the UML notation.
- Description of the various types of the Use Cases.

List of Exercises:
1. Understand The Automation Testing Approach
2. Using Selenium IDE, Write a test suite containing minimum 4 test cases
3. Write and test a program to login a specific web page
4. Write the test cases for any known application (e.g. Banking application)
5. Create a test plan document for any application (e.g. Library Management System)
6. Study of any testing tool (e.g. Win runner)
7. Study of any web testing tool (e.g. Selenium)
8. Study of any bug tracking tool (e.g. Bugzilla, bugbit)
9. Study of any test management tool (e.g. Test Director)
10. Study of any open source-testing tool (e.g. Test Link)

Course Outcomes:

CO1: Apply modern software testing processes in relation to software development and project management.

CO2: Create test strategies and plans, design test cases, prioritize and execute them.

CO3: Manage incidents and risks within a project.

CO4: Contribute to efficient delivery of software solutions and implement improvements in the software development processes.

CO5: To gain expertise in designing, implementation and development of computer based systems and IT processes.

Outcome Mapping

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
<th>PSO4</th>
<th>PSO5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MCAP307 - Programming Lab V I (C# and .Net Programming)

Learning Objectives

- To impart basic knowledge of different control statements and array associated with C# programming.
- To learn various C# elements and OOPS concepts.
- To learn interface, delegates, event and error handling concepts in C#.
• To impart knowledge on networking including socket programming and reflection.
• To acquire a working knowledge of windows and web based applications.

List of Exercises
1. Finding Prime number using Classes and Objects
2. Separating Odd/Even Number into Different Arrays
3. String Manipulations
4. Jagged Array manipulation
5. Implementing ‘ref’ and ‘out’ keywords
6. Implementing ‘Params ’ keyword
7. Boxing and Unboxing
8. Constructor Overloading
9. Implementing property
10. Implementing indexer
11. Implementing Multiple inheritance using Interface
12. Implementing Abstract Class
13. Exception Handling Using Try, Catch, and Finally
14. Demonstrating multicast Delegates
15. Implementing the Concept of Reflection
16. Socket Programming
17. Simple Calculator-A Window Application
18. Student Profile-A Window Application
19. Palindrome-A Web Application
20. Formatting Text-A Web Application

Course Outcomes:
On successful completion of the course, the students will be able to:
CO1: Develop correct, well-documented C# programs using control statements.
CO2: Develop object oriented programming using C# classes and objects.
CO3: Handle the exception and event-driven programs.
CO4: Perform network based programming including chat applications.
CO5: Develop windows and web based applications
Outcome Mapping

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
<th>PSO4</th>
<th>PSO5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
</tr>
<tr>
<td>CO2</td>
<td>✓</td>
</tr>
<tr>
<td>CO3</td>
<td>✓</td>
</tr>
<tr>
<td>CO4</td>
<td>✓</td>
</tr>
<tr>
<td>CO5</td>
<td>✓</td>
</tr>
</tbody>
</table>

MCAC401: COMPILER DESIGN

Learning Objectives:
- To introduce the major concept areas of language translation and compiler design.
- To enrich the knowledge in various phases of compiler and its use, code optimization techniques, machine code generation, and use of symbol table.
- To extend the knowledge of error recovery, code generation, and code optimization.
- To extend the knowledge of parser by parsing LL parser and LR parser.
- To provide practical programming skills necessary for constructing a compiler.

Unit-I
Introduction To Compilers: Translators-Compilation and Interpretation- The phases of Compiler-Errors encountered in different phases-The grouping of phases- Compiler construction tools-A simple one-pass compiler – Language design-Programming language grammars-Derivation-Reduction and Ambiguity.

Unit-II

Unit-III
handling and recovery in syntax analyzer-YACC-Design of a syntax analyzer for a sample language.

Unit-IV

Syntax Directed Translation: Syntax-directed definitions-Construction of syntax trees-Bottom-up evaluation, L-attributed definitions-Top down translation, Recursive Evaluator Method, Comparison of Translation Methods. Syntax directed translation for declaration statements, assignment statements, Boolean expression, control flow statements, procedure calls.

Unit-V

Run-Time Environment: Source language issues-Storage organization-Storage allocation-access to non local names-parameter passing-Symbol tables.

Code Optimization and Code Generation: Principal sources of Optimization-Optimization of basic blocks-Global Optimization-Global dataflow analysis-Efficient data flow algorithms-Issues in design of a code generator-A simple code generator algorithm.

Text Book:

References:

Course Outcomes:

CO1: To apply the knowledge of lex tool & YACC tool to develop a scanner & parser.
CO2: To design & conduct experiments for Intermediate Code Generation in compiler.
CO3: To design & implement a software system for backend of the compiler.
CO4: To learn the new code optimization techniques to improve the performance of a program in terms of speed & space.
CO5: To acquire the knowledge of modern compiler & its features.
Outcome Mapping

<table>
<thead>
<tr>
<th>CO1</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
<th>PSO4</th>
<th>PSO5</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

MCAC402: WEB TECHNOLOGY

Learning Objectives

- To learn about Java, HTML, DHTML concepts.
- Deploy Java Applets and Servlets.
- To know about appropriate client-side or Server-side applications.
- To gain the Knowledge of XML and its applications.
- To know about PHP scripts and create adaptive web pages.

Unit-I

HTML: History of the Internet and World Wide Web – HTTP, SMTP, POP3, MIME, Understanding roles of Web Browsers and Web Servers. Structure of HTML, Text formatting, Text styles, hyper link, image, and tables.

Unit-II

Frames, Forms and CSS: Frames, Forms and controls, Embedding audio, video and animated files in HTML, CSS –Understanding CSS, Internal CSS, External CSS, Font Properties, Text Properties, Color and Background properties, Table properties, Numbering and List Properties.

Unit-III

JavaScript: Data types and literals, operators, conditional statements, loop constructs, reserved words; core Objects: Array Object, Date Object; Functions: passing value to JavaScript functions, user defined functions, Handling old browsers , java script events, formatting cookie, retrieving cookie value from the cookie file, removing a cookie , animations using events.
Unit-IV

Unit-V
PHP & MySQL: Why PHP and MySQL - Server-Side Web Scripting - Getting Started with PHP - Adding PHP to HTML - Syntax and Variables - Control and Functions - Passing Information between Pages - Strings - Arrays and Array Functions - Numbers - MySQL Database Administration - PHP/MySQL Functions - Displaying Queries in Tables - Building Forms from Queries.

Text Books

Course Outcomes
CO1: Develop a dynamic webpage by the use of java script and DHTML.

CO2: Write a well formed / valid XML document.

CO3: Connect a java program to a DBMS and perform insert, update and delete operations on DBMS table.

CO4: Write a server side java application called Servlet to catch form data sent from client, process it and store it on database.

CO5: Write a server side java application called JSP to catch form data sent from client and store it on database.
MCAC403: MOBILE COMPUTING

Learning Objectives:

- To learn about the concepts and principles of Mobile computing.
- To explore theoretical issues of Mobile computing.
- To develop skills of finding solutions and building software for Mobile computing applications.
- To study the specifications and functionalities of various protocols/standards of mobile networks.
- To learn Android and IOS platform and its architecture.

UNIT-I

UNIT-II

UNIT-III

Application Design: Memory Management – Design Patterns for Limited Memory - Work Flow for Application development – Techniques for Composing Applications -
Dynamic Linking - Plug ins and rule of thumb for using DLLs - Concurrency and Resource Management - Look and Feel

UNIT-IV

Application Development: Intents and Services – Storing and Retrieving data – Communication via the Web – Notification and Alarms – Graphics and Multimedia – Telephony – Location based Services – Packaging and Deployment – Security and Hacking

UNIT-V

Text Books:

References:

Course Outcomes:

CO1: Grasp the concepts and features of mobile computing technologies and applications.
CO2: Have a good understanding of how the underlying wireless and mobile communication networks work, their technical features, and what kinds of applications they can support.
CO3: Identify the important issues of developing mobile computing systems and applications.
CO4: Develop mobile computing applications by analyzing their characteristics and requirements, selecting the appropriate computing models and software architectures, and applying standard programming languages and tools.

CO5: Describe Android platform, Architecture and features and design User Interface and develop Android App.

Outcome Mapping

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
<th>PSO4</th>
<th>PSO5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
</tr>
<tr>
<td>CO2</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MCAP406 - Programming lab-VII (Web Programming)

Learning Objectives
- To understand the concept of web technologies.
- To creating web pages by using HTML Tags.
- To understand the importance of CSS in creating a web application.
- To understand the importance of Java Script in creating a web Application
- To understand the use of XML in Document type Definition.
- To know about PHP scripts and create adaptive web pages.

List of Exercises
1. Write a HTML Program to using Image, Link and Formatting tags.
2. Write a HTML Program to using table tag of your class Time table.
3. Write a Forms in Html
4. Write a HTML program to illustrate Frame tag.
5. Forms in CSS
6. Write a program to Document Type Definition in XML.
7. Write a program Form Validation using JavaScript.
8. Write a Calculator program in Java script.
9. Write a program Multiplication table using Java script.
10. Connection in My sql with php
11. Insert record in mysql with php
12. Create, Insert, Delete, Edit in mysql with php
Course Outcome:
CO1: Develop to build a complete website using HTML
CO2: Create web pages using DHTML and Cascading Style Sheets.
CO3: Able to include JavaScript for form validations and email validations.
CO4: Write a DTD XML document.
CO5: Develop a simple web application using server side PHP programming and Database Connectivity using MySQL.

Outcome Mapping

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
<th>PSO4</th>
<th>PSO5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MCAP407 - Programming lab-VIII (MOBILE APPLICATION DEVELOPMENT)

Learning Objectives:
- To introduce Android platform and its architecture.
- To learn activity creation and Android UI designing.
- To be familiarized with Intent, Broadcast receivers and Internet services.
- To work with SQLite Database and content providers.
- To integrate multimedia, camera and Location based services in Android Application.

List of Exercises
1. Develop an application that uses GUI components, Font and Colors.
2. Implement an android application that demonstrates the use of Button, TextView & EditText.
3. Implement an android application that demonstrates the use of Radio button, Radio group and Checkbox.
4. Develop a native calculator application.
5. Implement an android application that demonstrates the use of Intents.
6. Develop an application that uses Layout Managers and Event Listeners.
7. Develop a native application that uses GPS location information.
8. Develop an application that makes use of database.
9. Implement an application that writes data to the SD card.
10. Implement an application that creates an alert upon receiving a message.

Course Outcomes:
CO1: Understand Android platform, Architecture and features.
CO2: Design User Interface and develop activity for Android App.
CO3: Use Intent, Broadcast receivers and Internet services in Android App.
CO4: Design and implement Database Application and Content providers.
CO5: Use multimedia, and Location based services in Android App.

Outcome Mapping

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
<th>PSO4</th>
<th>PSO5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
</tr>
<tr>
<td>CO2</td>
<td>✓</td>
</tr>
<tr>
<td>CO3</td>
<td>✓</td>
</tr>
<tr>
<td>CO4</td>
<td>✓</td>
</tr>
<tr>
<td>CO5</td>
<td>✓</td>
</tr>
</tbody>
</table>

CAC501: BIG DATA ANALYTICS

Learning Objectives:
- To understand the concepts of Big Data Analytics and gain ability to design high scalable systems.
- To understand various statistical models.
- To understand the frequent item set and clustering concept.
- To understand big data and use cases from selected business domains.
- To learn, Install, configure, and run Hadoop and HDFS.

Unit-I

Unit-II

Data Analysis: Regression Modeling - Multivariate Analysis - Bayesian Modeling - Inference and Bayesian Networks - Support Vector and Kernel Methods - Analysis of

Unit-III

Unit-IV

Frequent Item sets and Clustering: Mining Frequent Item sets - Market Based Model – Apriori Algorithm – Handling Large Data Sets in Main Memory – Limited Pass Algorithm – Counting Frequent Item sets in a Stream – Clustering Techniques – Hierarchical – K-Means – Clustering High Dimensional Data – CLIQUE And PROCLUS – Frequent Pattern based Clustering Methods – Clustering in Non-Euclidean Space – Clustering for Streams and Parallelism.

Unit-V

Hadoop and R for Visualization: Background and fundamentals-moving data in and out of Hadoop-data serialization-applying Map Reduce patterns to big data- streaming big data-integrating R and Hadoop for statistics and more-predictive analytics with Mahout- Hacking with Hive-Programming pipelines with pig – HBase-MySQL-NoSQL-RHadoop

Text Books:

References:
Course Outcomes:
CO1: Explain the concepts of big data analysis.
CO2: Identify the various Big data management, processing techniques
CO3: Explain NoSQL big data management.
CO4: Analyze performance of big data analysis in Hadoop environment.
CO5: Use Hadoop related tools such as HBase, Cassandra, Pig, and Hive for big data analytics.

Outcome Mapping

<table>
<thead>
<tr>
<th>CO1</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
<th>PSO4</th>
<th>PSO5</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
</tr>
<tr>
<td>✓</td>
</tr>
<tr>
<td>✓</td>
</tr>
<tr>
<td>✓</td>
</tr>
<tr>
<td>✓</td>
</tr>
</tbody>
</table>

MCAC502: PYTHON AND R PROGRAMMING

Learning Objectives:
- To acquire knowledge in Python programming.
- To acquire knowledge in R programming.
- To develop Python programs with conditionals and loops and data structures.
- To learn how to design and program Python applications.
- To learn how to build and package Python modules for reusability.

UNIT-I
Introduction to Python Programming: Python interpreter and interactive mode; values and types variables, expressions, statements, tuple assignment, Order of operations, comments, debugging; modules and functions: function Calls, adding new functions, Definitions and Uses, flow of execution, parameters and arguments, Fruitful functions. Conditionals: Boolean values and operators, conditional (if), alternative (if-else), chained conditional (if-elif-else); Iteration: state, while, for, range, break, continue, pass; recursion; Strings: string slices, immutability, string functions and methods, string module; Lists as arrays.
UNIT-II
Lists, Tuples, Dictionaries: Lists: Traversing a List, list operations, list slices, list methods, Map, Filter and Reduce, list loop, mutability, aliasing, cloning lists, list parameters; Dictionaries: operations and methods; advanced list processing - list comprehension; Tuples: tuple assignment, tuple as return value.

UNIT-III
Files, Modules, Packages: Files and exception: text files, reading and writing files, format operator; command line arguments, errors and exceptions, handling exceptions, modules, packages: PANDAS, NUMPY, SCIKIT-LEARN;

UNIT-IV
Introduction to R Programming: Introduction and Preliminaries, numbers and vectors, Objects, their modes and attributes, Ordered and unordered factors, Arrays and matrices, Lists and data frames, Grouping, loops and conditional execution, functions.

UNIT-V
Statistical Models, Graphical Procedures, Packages: Statistical models: Defining statistical models; formulae, Linear models, Generic functions for extracting model information, Analysis of variance and model comparison, Updating fitted models, Generalized linear models, Nonlinear least squares and maximum likelihood models; Graphical procedures: High-level and low-level plotting commands, graphics parameters and list, Dynamic graphics. Packages: Standard packages, Contributed packages and CRAN, Namespaces.

Text Books:

Course outcomes:
CO1: Problem solving and programming capability.
CO2: Construct and execute basic programs in Python.
CO3: Use external libraries and packages with Python.
CO4: Construct and execute basic programs in R using elementary programming techniques.
CO5: Use external R-packages in statistics and graphics.
MCAC503: CLOUD COMPUTING

Learning objectives:
- To learn how to use Cloud Services.
- To implement Virtualization
- To implement Task Scheduling algorithms.
- Apply Map-Reduce concept to applications.
- To build Private Cloud.

Unit-I
Introduction: Basics, applications, intranet and cloud, examples: Amazon, Google, Microsoft, IBM- advantages and disadvantages of cloud computing, Google app engine, Microsoft Azure, Amazon(EC2, S3,SQS),open stack, cloud computing services

Unit-II

Unit-III
Software as Service: overview-driving forces-company offerings-industries. Software plus services: Overview-mobile device integration-providers-Microsoft Online.

Unit-IV
Developing Applications: Google-Microsoft-Intuit Quick Base-Cast Iron Cloud-Bungee Connect-Development (App engine, Azure, open stack etc.)- trouble shooting and application management.
Local clouds and thin clients: Virtualization-server solutions-thin clients. Cloud Migration: cloud services for individuals-enterprise cloud- methods for migration-analyzing cloud services.

Text Book:

References:

Course outcomes:
CO1: Acquire Knowledge on the features and development of Cloud Computing.
CO2: Define the principles of virtualization.
CO3: Use various performance criteria to evaluate the quality of the cloud architecture.
CO4: Identify the Service-Oriented Architecture for Distributed Computing workflow.
CO5: Create combinatorial auctions for cloud resources and design scheduling algorithms for computing clouds

Outcome Mapping

<table>
<thead>
<tr>
<th></th>
<th>P01</th>
<th>P02</th>
<th>P03</th>
<th>P04</th>
<th>P05</th>
<th>P06</th>
<th>P07</th>
<th>P08</th>
<th>PS01</th>
<th>PS02</th>
<th>PS03</th>
<th>PS04</th>
<th>PS05</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
</tr>
<tr>
<td>CO2</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>CO3</td>
<td>✓</td>
</tr>
<tr>
<td>CO4</td>
<td>✓</td>
</tr>
<tr>
<td>CO5</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>
Learning objectives:
- To understand and be able to use the basic programming principles such as data types, variable, conditionals, loops, array, recursion and function calls.
- To learn how to use basic mathematical problems are evaluated and be able to manipulate text files and file operations.
- To understand the process and will acquire skills necessary to effectively attempt a programming problem and implement it with a specific programming language - Python.

List of Exercises
1. Python Program to check if a Number is Positive, Negative or Zero.
2. Python program to check prime numbers.
3. Python Program to check Armstrong Number.
4. Python Program to Find Hash of File.
5. Python Program to Root search.
6. R Program to Check if a Number is Odd or Even.
7. R Program to Find the Factors of a Number.
8. R Program to Convert Decimal into Binary using Recursion.
9. R Program to find Fibonacci Sequence Using Recursion.
10. R program to find the Factorial of a Number Using Recursion.

Course Outcomes:
CO1: Describe the Numbers, Math functions, Strings, List, Tuples and Dictionaries in Python.
CO2: Express different Decision Making statements and Functions in R and Python.
CO3: Interpret Object oriented programming in Python.
CO4: Understand and summarize different File handling operations in R.
CO5: Design and develop Client Server network applications using Python and R.

Outcome Mapping

<table>
<thead>
<tr>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
<th>PSO4</th>
<th>PSO5</th>
</tr>
</thead>
<tbody>
<tr>
<td>C01</td>
<td></td>
</tr>
<tr>
<td>C02</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>C03</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>C04</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>C05</td>
<td></td>
<td></td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td>✔</td>
</tr>
</tbody>
</table>
MCAE4XXA: OBJECT ORIENTED ANALYSIS AND DESIGN

Learning objectives:
- To develop deep understanding of OOPs language features.
- To construct strong concepts of OOP's and implement the same using UML diagrams.
- To specify, analyze and design the use case driven requirements for a particular system and Model the event driven state of object and transform them into implementation specific layouts.
- To identify, analyze the subsystems, various components and collaborate them interchangeably.
- To develop the skill among the students to analyze and design a complete system through case studies.

Unit-I

Unit-II
Classes and Objects: The Nature of an Object- Relationships among Objects-The Nature of a Class- Relationships among Classes-The Inter play of classes and objects-On building quality classes and objects.

Unit-III
Classification: The Importance of Proper Classification-Identifying Classes and Objects- Key Abstractions and Mechanisms.

Unit-IV

Unit-V
Analysis-Design-Evolution and Maintenance of:
1) Data Acquisition: Weather Monitoring Station.
2) Frameworks: Foundation Class library and
3) Client/Server Computing: Inventory Tracking.
Text Book:

References:

Course outcomes:
CO1: Recognize, diagram, and implement introductory concepts of Object Oriented Programming.
CO2: Analyze, design and document the requirements of the system.
CO3: Identify, analyze, and model structural and behavioral concepts of the system.
CO4: Develop and explore the conceptual model into various scenarios and applications.
CO5: Apply the concepts of architectural design for deploying the code for software.

Outcome Mapping

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
<th>PSO4</th>
<th>PSO5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
</tr>
<tr>
<td>CO2</td>
<td>✓</td>
</tr>
<tr>
<td>CO3</td>
<td>✓</td>
</tr>
<tr>
<td>CO4</td>
<td>✓</td>
</tr>
<tr>
<td>CO5</td>
<td>✓</td>
</tr>
</tbody>
</table>
MCAE4XXB: OPEN SOURCE TECHNOLOGIES

Learning objectives:
- To learn the concepts of dynamic web content.
- To learn implementation of web development server.
- To understand the basics of syntax, arrays, functions and objects in PHP programming language.
- To know the structure of MySQL database and access using PHP.
- Testing and debug a PHP applications.

UNIT-I

UNIT-II

UNIT-III
PHP Functions and Objects: PHP Functions - Including and Requiring Files - PHP Version Compatibility - PHP Objects. PHP Arrays: Basic Access - The foreach...as Loop - Multidimensional Arrays - Using Array Functions.

UNIT-IV

UNIT-V
Accessing MySQL Using PHP: Querying a MySQL Database with PHP - Example - Practical MySQL - Preventing Hacking Attempts - Using mysqli procedurally Form
Handling: Building Forms - Retrieving Submitted Data. Cookies, Sessions, and Authentication: Cookies in PHP - HTTP Authentication - Sessions.

Text book

References:

Course outcomes:
CO1: Apply dynamic web content concept into real time web applications.
CO2: Develop web server side programming.
CO3: Design database for real time applications.
CO4: How to receive and process form submission data.
CO5: Using PHP built-in functions and creating custom functions

Outcome Mapping

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
<th>PSO4</th>
<th>PSO5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>✔</td>
</tr>
<tr>
<td>CO3</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td></td>
<td>✔</td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td></td>
<td>✔</td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Learning Objectives:

- This objective of this study is to use of e-commerce domain companies and consumers.
- This study is conducted to evaluate the perception and attentive and secure recommending payment method based on analysis and study.
- The results are expected to contribute significantly towards the current thinking, security regarding e-commerce online transactions.
- The main objectives are involved an attempt to determine the current awareness and alert in the particular area in ecommerce like security issues, Screening, Recommended payment method, Internal order cancellations.
- This study provides best solution to e-commerce domain companies/industries and alert and awareness to common man. For safe and secure transaction consumers and e-commerce domain companies should follow some basic rules and regulations with latest technologies.

Unit-I
Introduction to E–Commerce: Benefits–Impacts-Classification and Application of E-Commerce-Business Model-Architectural Frame Work

Unit-II

Unit-III

Unit-IV

Unit-V
Text Book:

References:

Course outcomes:
Co1: Recognize the impact of Information and Communication technologies, especially of the Internet in business operations.
Co2: Recognize the fundamental principles of e-Business and e-Commerce.
Co3: Distinguish the role of Management in the context of e-Business and e-Commerce.
Co4: Explain the added value, risks and barriers in the adoption of e-Business and e-Commerce.
Co5: Examine applications of e-Commerce in relation to the applied.

Outcome Mapping

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
<th>PSO4</th>
<th>PSO5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td></td>
<td>✔</td>
<td></td>
<td>✔</td>
<td></td>
<td>✔</td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Learning Objectives:

- To introduce concepts of data mining techniques.
- To understand its applications in knowledge extraction from databases.
- To develop skills of using recent data mining software for solving practical problems.
- To understand preprocessing operations on data.
- To understand data interpretation, transformation and reduction techniques.

Unit-I

Unit-II
Data Preprocessing: Summarization - Data cleaning - Data Integration and Transformation - Data Reduction - Discretization and Concept Hierarchy Generation.

Unit-III
Mining Frequent Patterns – Frequent Item set Mining Methods. Classification: Classification by Decision Tree Induction – Bayesian Classification – Rule based Classification - Prediction– Accuracy and Error Measures.

Unit-IV

Unit-V

Text book:
1. JiaweiHan, Micheline amber, "Data Mining: Concepts and Techniques", 3rd Edition, Elsevier India Private Limited, 2012

References:
Course Outcomes:
CO1: Explain the concepts in data mining and KDD, recognizing issues in Data Mining.
CO2: Practice the preprocessing operations of Data.
CO3: Define the methodologies in Data interpretation, transformation and reduction.
CO4: Perform Association Rule Mining, Classify and Cluster the data sets into groups.
CO5: Implement star schema through ETL tools.

Outcome Mapping

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
<th>PSO4</th>
<th>PSO5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MCAE4XXE: ARTIFICIAL INTELLIGENCE

Learning objectives:
- To obtain a thorough knowledge of various knowledge representation schemes.
- To have an overview of various AI applications.
- To study about various heuristic and game search algorithms.
- To know about various Expert System tools and applications.
- An ability to design, implement, and evaluate a computer-based system, process, component, or program to meet desired needs.

Unit-I

Unit-II
Knowledge Representation Issues: Procedural Knowledge- Declarative

Unit-III
Reasoning Uncertainty: Introduction to uncertain knowledge – review of probability theory– Bayes’s Theorem- Non monotonic reasoning.
Planning and Learning: Planning-Introduction-Partial order planning algorithm- Learning from examples-Discovery as learning–Learning by analogy–Explanation based learning.

Unit-IV

Unit-V
Applications: Principles of Natural Language Processing- Expert systems- Knowledge acquisition concepts- Introduction to Agents.

Text Books:

Reference:

Course outcomes:
CO1: Know how to build simple knowledge-based systems.
CO2: Apply knowledge representation and machine learning techniques to solve real-world problems.
CO3: Apply Artificial Intelligence techniques to solve real-world problems.
CO4: Ability to carry out independent (or in a small group) research and communicate it effectively in a seminar setting.
CO5: Demonstrate working knowledge of reasoning in the presence of incomplete and/or uncertain information.
Outcome Mapping

<table>
<thead>
<tr>
<th>CO1</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
<th>PSO4</th>
<th>PSO5</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
</tr>
<tr>
<td>✓</td>
</tr>
<tr>
<td>✓</td>
</tr>
<tr>
<td>✓</td>
</tr>
<tr>
<td>✓</td>
</tr>
</tbody>
</table>

MCAE4XXF: SOFT COMPUTING

Learning objectives:
- To introduce the techniques of soft computing.
- To explain the hybridization of soft computing systems which differ from conventional AI.
- Computing in terms of its tolerance to imprecision and uncertainty.
- Develop the skills to gain a basic understanding of neural network theory and fuzzy logic theory.
- Introduce students to artificial neural networks and fuzzy theory from an engineering perspective.

Unit-I

Unit-II
Unit-III
Radial basis function neural networks – Basic learning laws in Radial basis function nets-
Counter propagation networks – Adaptive resonance theory networks – Applications of
neural nets such as pattern recognition –Optimization-Associative memories-speech and
decision-making.

Unit-IV
Fuzzy Logic- Basic concepts of Fuzzy Logic– Fuzzy set versus Crisp Set-Linguistic
variables-membership functions- operations of fuzzy sets – Fuzzy IF-THEN rules- fuzzy
relations-fuzzy conditional statements - fuzzy rules- fuzzy learning algorithms-
applications of fuzzy logic.

Unit-V
Neuro – fuzzy and fuzzy - neural control systems – Adaptive fuzzy systems – optimizing
the membership functions and the rule base of fuzzy logic controllers using neural

Text Books:

References:
2. RizaCBerkinandTrubatch, 'FuzzysystemsDesignPrinciples "BuildingaFuzzyIF,THENRuleB

Course outcomes:
CO1: Comprehend the fuzzy logic and the concept of fuzziness involved in various
systems and fuzzy set theory.
CO2: Understand the concepts of fuzzy sets, knowledge representation using fuzzy
rules, approximate reasoning, fuzzy inference systems, and fuzzy logic.
CO3: To understand the fundamental theory and concepts of neural networks, Identify
different neural network architectures, algorithms, applications and their limitations.
CO4: Understand appropriate learning rules for each of the architectures and learn
several neural network paradigms and its applications.
CO5: Reveal different applications of these models to solve engineering and other
problems.
Outcome Mapping

<table>
<thead>
<tr>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
<th>PSO4</th>
<th>PSO5</th>
</tr>
</thead>
<tbody>
<tr>
<td>C01</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>C02</td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C04</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>C05</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

MCAE5XXA: NETWORKSECURITY

Learning objectives:
- To understand the fundamentals of Cryptography.
- To acquire knowledge on standard algorithms used to provide confidentiality, integrity and authenticity.
- To understand the various key distribution and management schemes.
- To understand how to deploy encryption techniques to secure data in transit across data Networks.
- To design security applications in the field of Information technology.

Unit-I

Unit-II

Unit-III

Unit-IV
Database Security: Introduction to Database – Security Requirement – Reliability and
Integrity – Sensitive Data–Inference–Multilevel Databases- Multilevel Security

Unit-V

Text Books:

Course outcomes:
CO1: Analyze the vulnerabilities in any computing system.
CO2: Able to design a security solution.
CO3: Identify the security issues in the network and resolve it.
CO4: Evaluate security mechanisms using rigorous approaches, including theoretical.
CO5: Compare and Contrast different IEEE standards and electronic mail security.

Outcome Mapping

<table>
<thead>
<tr>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
<th>PSO4</th>
<th>PSO5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
</tr>
<tr>
<td>CO2</td>
<td>✓</td>
</tr>
<tr>
<td>CO3</td>
<td>✓</td>
</tr>
<tr>
<td>CO4</td>
<td>✓</td>
</tr>
<tr>
<td>CO5</td>
<td>✓</td>
</tr>
</tbody>
</table>
Learning objectives:
- To understand the fundamental concepts related to image processing, feature extraction, pattern analysis etc.
- To understand image processing, analysis and understanding.
- To understand low-level, middle-level and high-level operations.
- To apply the concepts to solve computer vision problems of different fields.
- To study the image compression procedures.

Unit-I

Unit-II
Image Enhancement in the Spatial Domain: Gray level transformations-Histogram processing-Arithmetic and logic operations-Spatial filtering: Introduction - Smoothing and sharpening filters
Image Enhancement in the Frequency Domain: Frequency domain filters: Smoothing and Sharpening filters-Homomorphic filtering

Unit-III
Wavelets and Multi resolution Processing: Image pyramids-Sub and coding-Haar transform-Series expansion-Scaling functions- Wavelet functions-Discrete wavelet transforms in one dimensions- Fast wavelet transform-Wavelet transforms in two dimensions

Unit-IV

Unit-V
Morphological Image Processing: Introduction-Dilation- Erosion- Opening-Closing-Hit-or-Miss transformation-Morphological algorithm operations on binary images-Morphological algorithm operations on gray-scale images.
Image Segmentation: Detection of discontinuities-Edge linking and Boundary detection-Threshholding-Region based segmentation
Image Representation and Description: Representation schemes-Boundary descriptors- Regional descriptors
Text Books:

References:

Course outcomes:
CO1: Review the fundamental concepts of a digital image processing system.
CO2: Analyze images in the frequency domain using various transforms.
CO3: Evaluate the techniques for image enhancement and image restoration.
CO4: Categorize various compression techniques.
CO5: Interpret image segmentation and representation techniques.

Outcome Mapping

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
<th>PSO4</th>
<th>PSO5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Learning objectives:
- To understand the fundamentals of Internet of Things
- To learn about the basics of IOT protocols
- To build a small low cost embedded system using Raspberry Pi.
- To apply the concept of Internet of Things in the real world scenario.
- To classify Real World IoT Design Constraints, Industrial Automation in IoT.

Unit I

Unit II

Unit III

Unit IV

Unit V
Text Books:

Course outcomes:
CO1: Interpret the vision of IoT from a global context.
CO2: Determine the Market perspective of IoT.
CO3: Compare and Contrast the use of Devices, Gateways and Data Management in IoT.
CO4: Implement state of the art architecture in IoT.
CO5: Illustrate the application of IoT in Industrial Automation and identify Real World Design Constraints.

Outcome Mapping

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
<th>PSO4</th>
<th>PSO5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MCAE5XXD: PATTERN RECOGNITION

Learning Objectives:
- Understand the concept of a pattern and the basic approach to the development of pattern recognition and machine intelligence algorithms.
- Understand the basic methods of feature extraction, feature evaluation, and data mining.
- Understand and apply both supervised and unsupervised classification methods to detect and characterize patterns in real-world data.
• Develop prototype pattern recognition algorithms.
• It can be used to study algorithm behaviour and performance against real-world multivariate data.

Unit-I

Unit-II
Maximum-likelihood and Bayesian parameter estimation: Maximum-likelihood estimation-Bayesian estimation –Bayesian parameter estimation: Gaussian case-
Problems of dimensionality.

Unit-III

Unit-IV

Unit-V

Text Books:

References:
Course outcomes:

CO1: Fundamentals of Pattern Recognition Various Statistical, Syntactic and applications.

CO2: Neural Network Approaches of PR and their applications.

CO3: Understand the fundamentals of Pattern Recognition. Learn the various approaches to identify the patterns.

CO4: Applying the appropriate techniques on the real time application development.

CO5: Understand the principles of Bayesian parameter estimation and apply them in relatively simple probabilistic models.

Outcome Mapping

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
<th>PSO4</th>
<th>PSO5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>CO2</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>CO3</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>CO4</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>CO5</td>
<td>✓</td>
</tr>
</tbody>
</table>

MCAE5XXE: UNIX AND SHELL PROGRAMMING

Learning Objectives:

- To learn the UNIX operating system concepts
- To understand Unix file system and directories
- To learn shell programming
- To understand text file editing and formatting.
- To understand shell customization and programming.

Unit-I

Unit-II

Unit-III

Introduction to Shells: UNIX Session –Standard Streams –Redirection –Pipes –Command Line Editing -Job Control – Aliases –Variables -Shell/Environment Customization.

Unit-IV

Unit-V

References:

Course Outcomes:
CO1: Know the concepts of UNIX Operating System.
CO2: Use various file and directory commands in UNIX Operating System.
CO3: Monitor system performance and network activities.
CO4: Effectively use software development tools including libraries, preprocessors, compilers, linkers, and make files.
CO5: Comprehend technical documentation, prepare simple readable user documentation and adhere to style guidelines.
Learning Objectives:
- To inculcate the concepts of natural language Processing.
- To learn Language related algorithms and techniques.
- To learn Computational morphology and Phonology, parsing and semantic interpretation.
- Training students to read aloud and make appropriate pauses-guided by punctuation.
- Developing students’ ability to infer meaning of new vocabulary from the surrounding context.

Unit-I

Unit-II

Unit-III
Unit-IV

Unit-V

Text Book:

References:

Course Outcomes:
CO1: Apply natural algorithms to languages.
CO2: Implement computational morphology and phonology.
CO3: Apply semantic interpretations techniques.
CO4: Relate the theme to other ideas found in a text as well as supporting ideas.
CO5: Able to infer meaning of new vocabulary from the surrounding context.

Outcome Mapping

<table>
<thead>
<tr>
<th></th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PSO1</th>
<th>PSO2</th>
<th>PSO3</th>
<th>PSO4</th>
<th>PSO5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO3</td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO4</td>
<td>✔</td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td></td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td></td>
<td></td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>