Annamalai University
(Accredited with 'A' Grade by NAAC)
Faculty of Science

Regulations, Curriculum and Syllabus
2019

M.Sc. MATHEMATICS Programme Code: SMAT51

Department of Mathematics

Annamalai University
 Faculty of Science DEPARTMENT OF MATHEMATICS

M.Sc. MATHEMATICS

Programme Code: SMAT51
These rules and regulations shall govern the Five year post graduate studies leading to the award of degree of Master of Science in Mathematics in the Faculty of Science. These academic Regulations shall be called "Annamalai University, Faculty of Science Five year M.Sc. Mathematics Regulations 2019". .They shall come into force with effect from the academic year 2019 - 2020.

1. Definitions and Nomenclature
1.1 University refers to Annamalai University.
1.2 Department means any of the academic departments and academic centers at the University.
1.3 Discipline refers to the specialization or branch of knowledge taught and researched in higher education. For example, Mathematics is a discipline in the Mathematical Science, while Economics is a discipline in Social Sciences.
1.4 Programme encompasses the combination of courses and/or requirements leading to a Degree. For example, M.Sc., M.A.
1.5 Course is an individual subject in a programme. Each course may consist of Lectures/ Laboratory /Seminar/Project work/viva-voce etc. Each course has a course title and is identified by a course code.
1.6 Curriculum encompasses the totality of student experiences that occur during the educational process.
1.7 Syllabus is an academic document that contains the complete information about an academic programme and defines responsibilities and outcomes. This includes course information, course objectives, policies, evaluation, grading, learning resources and course calendar.
1.8 Academic Year refers to the annual period of sessions of the University that comprises two consecutive semesters.
1.9 Semester is a half-year term that lasts for a minimum duration of 90 days.
1.10 Choice Based Credit System: A mode of learning in higher education that enables a student to have the freedom to select his/her own choice of elective courses across various disciplines for completing the Degree programme.
1.11 Core Course is mandatory and an essential requirement to qualify for the Degree.
1.12 Elective Course is a course that a student can choose from a range of alternatives.
1.13 Value-added Courses are optional courses that complement the students' knowledge and skills and enhance their employability.
1.14 Credit refers to the quantum of course work in terms of number of class hours in a semester required for a programme. The credit value reflects the content and duration of a particular course in the curriculum.
1.15 Credit Hour refers to the number of class hours per week required for a course in a semester. It is used to calculate the credit value of a particular course.
1.16 Programme Outcomes (POs) are statements that describe crucial and essential knowledge, skills and attitudes that students are expected to achieve and can reliably manifest at the end of a programme.
1.17 Programme Specific Outcomes (PSOs) are statements that list what the graduate of a specific programme should be able to do at the end of the programme.
1.18 Learning Objectives are statements that define the expected goal of a course in Course Objectives in terms of demonstrable skills or knowledge that will be acquired by a student.
1.19 Course Outcomes (COs) are statements that describe what students should be able to achieve/demonstrate at the end of a course. They allow follow-up and measurement of learning objectives.
1.20 Grade Point Average (GPA) is the average of the grades acquired in various courses that a student has taken in a semester. The formula for computing GPA is given in section 11.3
1.21 Cumulative Grade Point Average(CGPA) is a measure of overall cumulative performance of a student over all the semesters. The CGPA is the ratio of total credit points secured by a student in various courses in all semesters to the sum of the total credits of all courses in all the semesters. is given in section11.4.
1.22 Letter Grade is an index of the performance of a student in a particular course. Grades are denoted by the letters $\mathrm{S}, \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{RA}$, and W .
2. Programme Offered and Eligibility Criteria:

The Department of Mathematics offers a M.Sc. Five Year Mathematics programme. A pass in H.S.E. (10+2 level) or equivalent thereto with a minimum of 40% under academic stream in the following subjects viz. Physics, Chemistry, Mathematics or Biology.
3. Reservation Policy: Admission to the various programmes will be strictly based on the reservation policy of the Government of Tamil Nadu.
4. Programme Duration
4.1 The Five-Year Master's Programme consist of five academic years.
4.2 Each academic year is divided into two semesters, the first being from July to November and the second from December to April.
4.3 Each semester will have 90 working days (18 weeks).
5. Programme Structure
5.1 The Five-Year Integrated Programme consists of Language Courses, Core Courses, Allied Courses, Elective Courses, Experiential Learning and Project. Students shall also participate in Extension Activities as part of their curriculum.

5.2 Language Courses

5.2.1 Each student shall take two languages of four courses each, one in each semester for the first two years of the programme.
5.2.2 Language - I shall be Tamil or another language such as Hindi or French.
5.2.3 Language - II shall be English.

5.3 Core courses

5.3.1 These are a set of compulsory courses essential for each programme.
5.3.2 The core courses include both Theory (Core Theory) and Practical (Core Practical) courses.

5.4 Allied Courses

5.4.1 Each student shall take courses in two disciplines allied to the main subject (Allied - I and Allied - II) of the programme in the first four semesters.

5.5 Elective courses

5.5.1 Departmental Electives (DEs) are the Electives that students can choose from a range of Electives offered within the Department.

Interdepartmental Electives (IDEs) are Electives that students can choose from amongst the courses offered by other departments of the same faculty as well as by the departments of other faculties.IDEs are listed in the Handbook available in the University website.
5.6 Soft Skills
5.6.1 Soft skills are intended to enable students to acquire attributes that enhance their performance and achieve their goals with complementing hard skills.
5.6.1 Soft skills include communication skills, computer skills among others.

5.7 Value Education

5.7.1 All students shall take a course on Value Education that includes human values, sustainable development, gender equity, ethics and human right.
5.7.1 Value Education is categorized as Non-Credit Compulsory Course.

5.8 Experiential Learning

5.8.1 Experiential learning provides opportunities to students to connect principles of the discipline with real-life situations.
5.8.1 In-plant training/field trips/internships/industrial visits fall under this category.

5.8.2 Experiential learning is categorized as Non-Credit Compulsory Course.

5.9 Extension Activities

5.9.1 It is mandatory for every student to participate in extension activities.
5.9.2 All the students shall enrol under NSS/NCC/YRC/RRC or any other Service organisation in the University.
5.9.3 Students shall put in a minimum attendance of 40 hours in a year duly certified by the Programme Coordinator.
5.9.4 Extension activities shall be conducted outside the class hours
5.9.5 Extension activity is categorized as Non-Credit Compulsory Course
5.10 Project
5.10.1 Each student shall undertake a Project and submit a dissertation as per guidelines in the final semester.
5.10.2 The Head of the Department shall assign a Research Supervisor to the student.
5.10.3 The Research Supervisor shall assign a topic for research and monitor the progress of the student periodically.
5.10.4 Students who wish to undertake project work in recognized institutions/industry shall obtain prior permission from the University. The Research Supervisor will be from the host institute.

5.11 Value added Courses (VACs)

5.11.1 Students may also opt to take Value added Courses beyond the minimum credits required for award of the Degree. VACs are outside the normal credit paradigm.
5.11.2 These courses impart employable and life skills. VACs are listed in the Handbook available in the University website.
5.11.3 Each VAC carries 2 credits with 30 hours of instruction. Classes for a VAC are conducted beyond the regular class hours and preferably in the VIII and IX Semester.

5.12 Online Courses

5.12.1 The Heads of Departments shall facilitate enrolment of students in Massive Open Online Courses (MOOCs) platform such as SWAYAM to provide academic flexibility and enhance the academic career of students.
5.12.2 Students who successfully complete a course in the MOOCs platform shall be exempted from one elective course of the programme.
5.13 Credit Distribution: The credit distribution is organized as follows:

Semester I to VI	
Language-I (Tamil or any other Language)	12
Language-II (English)	12
Core Courses	86
Allied-I (1 ${ }^{\text {st }}$ Year- SEM I \& II)	10
Allied-II (2 ${ }^{\text {nd }}$ Year- SEM III \& IV)	10
Electives	09
Soft Skill	03
Environmental studies (UGC mandated)	03
Value Education	02^{*}
Experiential learning	02^{*}
Extension activities	01^{*}
Total Credits (Semester I to VI)	145
Core Courses	74
Electives	15
Project	06
Constitution of India	$\mathbf{1 4}$
Total Credits (Semester VII to X)	$\mathbf{9 5}$
Total Credits (Semester I to X)	$\mathbf{2 4 0}$
Nor to X	

Note: '*' - Non -Credit Compulsory Course

5.14 Credit Assignment

Each course is assigned credits and credit hours on the following basis:
1 Credit is defined as
1 Lecture period of one-hour duration per week over a semester
1 Tutorial period of one-hour duration per week over a semester
1 Practical/Project period of two hours duration per week over a semester.
6 Attendance
6.1 Each faculty handling a course shall be responsible for the maintenance of Attendance and Assessment Record for candidates who have registered for the course.
6.2 The Record shall contain details of the students' attendance, marks obtained in the Continuous Internal Assessment (CIA) Tests, Assignments and Seminars. In addition the Record shall also contain the organization of lesson plan of the Course teacher.
6.3 The record shall be submitted to the Head of the Department and Dean once a month for monitoring the attendance and syllabus coverage.
6.4 At the end of the semester, the record shall be placed in safe custody for any future verification.
6.5 The Course teacher shall intimate to the Head of the Department at least seven calendar days before the last instruction day in the semester about the attendance particulars of all students.
6.6 Each student shall have a minimum of 75% attendance in all the courses of the particular semester failing which he or she will not be permitted to write the EndSemester Examination. The student has to redo the semester in the next year.
6.7 Relaxation of attendance requirement up to 10\% may be granted for valid reasons such as illness, representing the University in extracurricular activities and participation in NCC/NSS/YRC/RRC.

7 Mentor-Mentee System
7.1 To help the students in planning their course of study and for general advice on the academic programme, the Head of the Department will attach certain number of students to a member of the faculty who shall function as a Mentor throughout their period of study.
7.2 The Mentors will guide their mentees with the curriculum, monitor their progress, and provide intellectual and emotional support.
7.3 The Mentors shall also help their mentees to choose appropriate electives and valueadded courses, apply for scholarships, undertake projects, prepare for competitive examinations such as NET/SET, GATE etc., attend campus interviews and participate in extracurricular activities.

8 Examinations

8.1 The examination system of the University is designed to systematically test the student's progress in class, laboratory and field work through Continuous Internal Assessment (CIA) Tests and End-Semester Examination (ESE).
8.2 There will be two CIA Tests and one ESE in each semester.
8.3 The Question Papers will be framed to test different levels of learning based on Bloom's taxonomy viz. Knowledge, Comprehension, Application, Analysis, Synthesis and Evaluation/Creativity.

8.4 Continuous Internal Assessment Tests

8.4.1 The CIA Tests shall be a combination of a variety of tools such as class tests, assignments and seminars. This requires an element of openness.
8.4.2 The students are to be informed in advance about the assessment procedures.
8.4.3 The question paper will be set by the respective faculty using Bloom's Taxonomy.
8.4.4 CIA Test - I will cover the syllabus of the first two units while CIA Test - II will cover the last three units.
8.4.5 CIA Tests will be for one or two hours duration depending on the quantum of syllabus.
8.4.6 A student cannot repeat the CIA Test-I and CIA Test-II. However, if for any valid reason, the student is unable to attend the test, the prerogative of arranging a special test lies with the teacher in consultation with the Head of the Department.
8.4.7 For the CIA Tests, the assessment will be done by the Course teacher.
8.5 End Semester Examinations (ESE)
8.5.1 The ESEs for the odd semester will be conducted in November and for the even semester in May.
8.5.2 Candidates who failed in any course will be permitted to reappear in failed course in the subsequent examinations.
8.5.3 The ESE will be of three hours duration and will cover the entire syllabus of the course.

9 Evaluation
9.1 Marks Distribution
9.1.1 For each course, the Theory, Practical and project shall be evaluated for a maximum of 100 marks.
9.1.2 For the theory courses and project, CIA Tests will carry 25% and the ESE 75% of the marks.
9.1.3 For the Practical courses, the CIA Tests will carry 40% and the ESE 60% of the marks.
9.2 Assessment of CIA Tests
9.2.1 For the CIA Tests, the assessment will be done by the Course Teacher
9.2.2 For the Theory Courses, the break-up of marks shall be as follows:

CIA for Theory Courses	Marks
Test-I \& Test-II	15
Seminar	5
Assignment	5
Total	25

9.2.3 For the Practical Courses (wherever applicable), the break-up of marks shall be as follows:

CIA for Practical	Marks
Test-I	15
Test-II	15
Viva-voce and Record	10
Total	40

9.3 Assessment of End-Semester Examinations

9.3.1 Evaluation for the ESE is done by Internal examiner.

9.4 Assessment of Project/Dissertation

9.4.1 The Project Report/Dissertation shall be submitted as per the guidelines.
9.4.2 The Project Work/Dissertation shall carry a maximum of 100 marks.
9.4.3 CIA for Project will consist of a Review of literature survey, experimentation/field work, attendance etc.
9.4.4 The Project Report evaluation and viva-voce will be conducted by a committee constituted by the Head of the Department.
9.4.5 The Project Evaluation Committee will comprise the Head of the Department, Project Supervisor, and a senior faculty.
9.4.6 The marks shall be distributed as follows:

Continuous Internal Assessment (25 Marks)		End Semester Examination (75 Marks)	
Review - I	Review - II	Project / Dissertation Evaluation	Viva-Voce
10	15	50	25

9.5 Assessment of Value-added Courses

9.5.1 Assessment of VACs shall be internal. Two CIA Tests shall be conducted by the Department(s) offering VAC.
9.5.2 The grades obtained in VACs will not be included for calculating the GPA/CGPA.

9.6 Passing Minimum

9.6.1 A student is declared to have passed in each course if he/she secures not less than 50\% marks in the ESE and not less than 50% marks in aggregate taking CIA and ESE marks together.
9.6.2 A candidate who has not secured a minimum of 50% of marks in a course (CIA + ESE) shall reappear for the course in the next semester/year.
10. Conferment of the Master's Degree

A candidate who has secured a minimum of 50% marks in all courses prescribed in the programme and earned the minimum required credits shall be considered to have passed the Master's Programme.

11. Marks and Grading

11.1 The performance of students in each course is evaluated in terms Grade Point (GP).
11.2 The sum total performance in each semester is rated by Grade Point Average (GPA) while Cumulative Grade Point Average (CGPA) indicates the Average Grade Point obtained for all the courses completed.
11.3 The GPA is calculated by the formula

GPA $=\frac{\sum_{i=1}^{n} C_{i} G_{i}}{\sum_{i=1}^{\mathrm{n}} C_{i}}$
where, \boldsymbol{C}_{i} is the Credit earned for the Course \boldsymbol{i} in any semester;
$\boldsymbol{G}_{\boldsymbol{i}}$ is the Grade Point obtained by the student for the Course \boldsymbol{i}
\boldsymbol{n} is the number of Courses passed in that semester.
11.4 CGPA is the Weighted Average Grade Point of all the Courses passed starting from the first semester to the current semester.

$$
\text { CGPA }=\frac{\sum_{i=1}^{m} \sum_{i=1}^{n} C_{i} G_{i}}{\sum_{i=1}^{m} \sum_{i=1}^{n} C_{i}}
$$

Where, $\boldsymbol{C}_{\boldsymbol{i}}$ is the Credit earned for the Course \boldsymbol{i} in any semester;
\boldsymbol{G}_{i} is the Grade Point obtained by the student for the Course \boldsymbol{i}
\boldsymbol{n} is the number of Courses passed in that semester.
\boldsymbol{m} is the number of semester.

11.5 Evaluation :

11.5. 1 Performance of the student for each course will be rated as shown in the Table.

Range of Marks	Grade Points	Letter Grade
90 and above	10	S
$80-89$	9	A
$70-79$	8	B
$60-69$	7	C
$55-59$	6	D
$50-54$	0	EA
Less than 50	0	W
Withdrawn from the examination		

11.5.2 A ten-point rating scale is used for evaluation of the performance of the student to provide overall grade for the Master's Programme.

CGPA	Classification of Final Result
$\mathbf{8 . 2 5}$ and above	First Class with Distinction
$\mathbf{6 . 5}$ and above but below $\mathbf{8 . 2 5}$	First Class
$\mathbf{5 . 0}$ and above but below $\mathbf{6 . 5}$	Second Class
$\mathbf{0 . 0}$ and above but below 5.0	Re-appear

11.6 Classification of Results. The successful candidates are classified as follows:
11.6.1 First Class with Distinction: Candidates who have passed all the courses prescribed in the Programme in the first attempt with a CGPA of 8.25 and above within the programme duration. Candidates who have withdrawn from the End Semester Examinations are still eligible for First Class with Distinction (See Section 12 for details).
11.6.2 First Class: Candidates who have passed all the courses with a CGPA of 6.5 and above.
11.6.3 Second Class: Candidates who have passed all the courses with a CGPA between 5.0 and less than 6.5.
11.6.4 Candidates who obtain overall highest CGPA in all examinations in the first appearance itself are eligible for University Rank.

11.7 Course-Wise Letter Grades

11.7.1 The percentage of marks obtained by a candidate in a course will be indicated in a letter grade.
11.7.2 A student is considered to have completed a course successfully and earned the credits if he/she secures an overall letter grade other than RA.
11.7.3 A course successfully completed cannot be repeated for the purpose of improving the Grade Point
11.7.4 A letter grade RA indicates that the candidate shall reappear for that course. The RA Grade once awarded stays in the grade sheet of the student and is not deleted even when he/she completes the course successfully later. The grade acquired later by the student will be indicated in the grade sheet of the Odd/Even semester in which the candidate has appeared for clearance of the arrears.
11.7.5 If a student secures RA grade in the Project Work/Field Work/Practical Work/Dissertation, he/she shall improve it and resubmit if it involves only rewriting/ incorporating the clarifications suggested by the evaluators or he/she can re-register and carry out the same in the subsequent semesters for evaluation.
12. Provision for Withdrawal from the End Semester Examination
12.1 The letter grade W indicates that a candidate has withdrawn from the examination.
12.2 A candidate is permitted to withdraw from appearing in the ESE for one course or courses in ANY ONE of the semesters ONLY for exigencies deemed valid by the University authorities.
12.3 Permission for withdrawal from the examination shall be granted only once during the entire duration of the programme.
12.4 Application for withdrawal shall be considered only if the student has registered for the course(s), and fulfilled the requirements for attendance and CIA tests.
12.5 The application for withdrawal shall be made ten days prior to the commencement of the examination and duly approved by the Controller of Examinations. Notwithstanding the mandatory prerequisite of ten days' notice, due consideration will be given under extraordinary circumstances.
12.6 Withdrawal will not be granted for arrear examinations of courses in previous semesters and for the final semester examinations.
12.7 Candidates who have been granted permission to withdraw from the examination shall reappear for the course(s) when the course(s) are offered next.
12.8 Withdrawal shall not be taken into account as an appearance for the examination when considering the eligibility of the candidate to qualify for First Class with Distinction.
13. Academic misconduct: Any action that results in an unfair academic advantage/interference with the functioning of the academic community constitutes academic misconduct. This includes but is not limited to cheating, plagiarism, altering academic documents, fabrication/falsification of data, submitting the work of another student, interfering with other students' work, removing/defacing library or computer resources, stealing other students' notes/assignments, and electronically interfering with other students'/University's intellectual property. Since many of these acts may be committed unintentionally due to lack of awareness, students shall be sensitized on issues of academic integrity and ethics.
14. Transitory Regulations: Wherever there has been a change of syllabi, examinations based on the existing syllabus will be conducted for two consecutive years after implementation of the new syllabus in order to enable the students to clear the arrears. Beyond that, the students will have to take up their examinations in equivalent subjects, as per the new syllabus, on the recommendation of the Head of the Department concerned.
15. Not with standing anything contained in the above pages as Rules and Regulations governing the Five-Year Master's Programmes at Annamalai University, the Syndicate is vested with the powers to revise them from time to time on the recommendations of the Academic Council.

M.Sc. Mathematics (Five Year) ProgrammeSMAT51 CURRICULA AND SCHEME OF EXAMINATIONS (2019)

Course Code	Course Title	Hours/ Week			C	Marks		
		L	T	P		CIA	ESE	Total
FIRST SEMESTER								
19ITAMC11	Language-I: Course 1	3	0		3	25	75	100
191 ENGC12	Language-II: Course 1	3	0		3	25	75	100
19IENSC13	Environmental Studies	3	0		3	25	75	100
19IMATC14	Core 1: Classical Algebra	5	0		5	25	75	100
19IPHYA01	Allied - Physics - I	4	0		4	25	75	100
19IMATE15	Elective: Matrices	3	0		3	25	75	100
	Total credits-Semester I				21			
SECOND SEMESTER								
19ITAMC21	Language-I: Course 2	3	0		3	25	75	100
19IENGC22	Language-II: Course 2	3	0		3	25	75	100
$19 \mathrm{ICISC23}$	Computer Applications - 1	3	0		3	25	75	100
19IMATC24	Core 2: Trigonometry	5	0		5	25	75	100
19IMATC25	Core 3: Differential Calculus	5	0		5	25	75	100
$19 \mathrm{IPHYA02}$	Allied - Physics - II	4	0		4	25	75	100
19IPHYP01	Allied - Physics Practical			6	2	40	60	100
	Total credits-Semester II				25			
THIRD SEMESTER								
191 AMC31	Language-I: Course 3	3	0		3	25	75	100
19IENGC32	Language-II: Course 3	3	0		3	25	75	100
19IMATC33	Core 4: Analytical Geometry 2D	5	0		5	25	75	100
19IMATC34	Core 5: Vector Analysis	5	0		5	25	75	100
19ISTAA01	Allied- Mathematical Statistics -I	5	0		5	25	75	100
19IMATE35	Elective: Integral Calculus	3	0		3	25	75	100
	Total credits-Semester III				24			
FOURTH SEMESTER								
19ITAMC41	Language-I: Course 4	3	0		3	25	75	100
19IENGC42	Language-II: Course 4	3	0		3	25	75	100
19IMATC43	Core 6: Statics	5	0		5	25	75	100
19IMATC44	Core 7: Fourier Series and Fourier Transforms	5	0		5	25	75	100
19ISTAA02	Allied- Mathematical Statistics -II	5	0		5	25	75	100

19IMATF40	Extension Activities*	0	0	2	1*	40	60	100
	Total credits-Semester IV				21			
FIFTH SEMESTER								
19IMATC51	Core 8: Real Analysis - I	5	0		5	25	75	100
19IMATC52	Core 9: Differential Equations and Applications	5	0		5	25	75	100
19IMATC53	Core 10: Dynamics	5	0		5	25	75	100
19IMATC54	Core 11: Astronomy	5	0		5	25	75	100
19IMATC55	Core 12: Numerical Methods	5	0		5	25	75	100
19IMATE57	Elective: Analytical Geometry 3D	3	0		3	25	75	100
19IMATV50	Value Education*	2	0	0	2*	25	75	100
	Total credits-Semester V				28			
SIXTH SEMESTER								
19IMATC61	Core 14: Real Analysis - II	5	0		5	25	75	100
19IMATC62	Core 15: Complex Analysis	5	0		5	25	75	100
19IMATC63	Core 16: Algebra	5	0		5	25	75	100
19IMATC64	Core 17: Discrete Mathematics	5	0		5	25	75	100
19IMATC65	Core 18: Optimization Techniques	6	0		6	25	75	100
19IMATF60	Experiential Learning*	0	0	4	2*	40	60	100
	Total credits-Semester VI				26			
SEVENTH SEMESTER								
191MATC71	Core 20: Advanced Abstract Algebra I	5	0		5	25	75	100
19IMATC72	Core 21: Advanced Real Analysis	5	0		5	25	75	100
19IMATC73	Core 22: Advanced Differential Equations	5	0		5	25	75	100
19IMATC74	Core 23: Differential Geometry	5	0		5	25	75	100
	Elective 1: Interdepartmental Elective	3	0		3	25	75	100
	Total credits-Semester VII				23			
EIGHTH SEMESTER								
19IMATC81	Core 24: Advanced Abstract Algebra II	5	0		5	25	75	100
19IMATC82	Core 25: Measure Theory and Integration	5	0		5	25	75	100
19IMATC83	Core 26: Advanced Complex Analysis	5	0		5	25	75	100
191MAPC84	Core 27: C++ Computer Practical		0	4	2	40	60	100
19IMATEXX	Elective 3: Department Elective: Programming Language C++	3	0		3	25	75	100
	Elective 2: Interdepartmental Elective	3	0		3	25	75	100
	Total credits-Semester VIII				23			

NINTH SEMESTER								
19IMATC91	Core 28: Topology	3	0		5	25	75	100
191MATC92	Core 29: Linear Algebra	4	0		5	25	75	100
19IMATC93	Core 30: Probability Theory	4	0		5	25	75	100
19IMATC94	Core 31: Numerical Methods Practical		0	4	2	40	60	100
	Elective 4: Interdepartmental Elective	3	0		3	25	75	100
19IMATEXX	Elective 5: Department Elective	3	0		3	25	75	100
19IPSC090*	Constitution of India	2	0		2*	25	75	100
	Total credits-Semester IX				23			
TENTH SEMESTER								
19IMATCX1	Core 32: Functional Analysis	4	0		4	25	75	100
19IMATCX2	Core 33: Stochastic Processes	4	0		4	25	75	100
19IMATCX3	Core 34: Fluid Dynamics	4	0		4	25	75	100
19IMATCX4	Core 35: Graph Theory	4	0		4	25	75	100
19IMATCX5	Core 36: Calculus of Variations \& Integral Equations	4	0		4	25	75	100
19IMATDX6	Project	6	0		6	25	75	100
	Total credits-Semester X				26			
	Semesters I-X Total Credits				240			
Value added Courses								
On-line courses (SWAYAM or MOOC)								

NOTE: $* \longrightarrow$ Non-Credit Compulsory Course
L- Lectures; T- Tutorial; P- Practical; C- Credits; CIA- Continuous Internal Assessment; ESE- End-Semester Examination

Note:

1. Students shall take both Department Electives (DEs) and Interdepartmental Electives (IDEs) from a range of choices available. The details of interdepartmental electives are given in the "Handbook of Interdepartmental Electives- PG Programmes" and listed in the University website.
2. Students may opt for any Value Added Courses listed in the University website. The details of Value Added Courses are given in the "Handbook of Value Added Courses" and listed in the University website.
3. Guidance/Discussion with students on course specific experiential learning through the application of theory and academic content to real-world experiences, either within the classroom, within the community, or within the work place, which advances program or course -based learning outcome that are specifically focused on employability skills.

DEPARTMENT ELECTIVE COURSES (DE)

S. No.	Course Code	Course Title	Hours/ week			C	Marks		
			L	T	P		CIA	ESE	Total
1.	19IMATE15	Elective: Matrices	3	0		3	25	75	100
2.	19IMATE35	Elective: Integral Calculus	3	0		3	25	75	100
3.	19IMATE57	Elective: Analytical Geometry 3D	3	0		3	25	75	100
4.	19IMATE85	Programming Language C++	3	0		3	25	75	100
5.	19IMATE95	Number Theory	3	0		3	25	75	100
6.	19IMATE96	Fuzzy Sets and their Applications	3	0		3	25	75	100

DEPARTMENT ALLIED CORSES OFFERED TO OTHER DEPARTMENTS

S. No.	Course Code	Course Title	Hours/ week			C	Marks		
			L	T	P		CIA	ESE	Total
1.	19IMATA01	Mathematics - I	5	0	0	5	25	75	100
2.	19IMATA02	Mathematics - II	5	0	0	5	25	75	100
3.	19IMATA03	Discrete Mathematics	5	0	0	5	25	75	100
4.	19IMATA04	Resource Management Techniques	5	0	0	5	25	75	100

ANNAMALAI UNIVERSITY
 Department of Mathematics
 [Question Paper Pattern - INTERNAL TESTS I \& II (CIA)]
 (Based on Revised Bloom's Taxonomy)

Programme: M.Sc: Five Year Integrated
Semester: All

Time: 2 Hrs
Max.Marks:50

Part-A (Level-K1)

Marks: (6x2=12)
(Answer ALL of the questions)

1. Define /Choose/ Relate......
2. What / Why / How?
3. Multiple Choices
a. b.
c. d.
4. Multiple Choices
a. b.
c.
d.
5. Match the following
6. Match the following
i-a ii -b iii -c
iv - d
v-....
i-a ii -b iii - c iv-d v-.....

Part-B (Level-K2)
 (Answer any THREE of the questions)

7. Explain.....
8. Describe.....
9. Select......
10. Compare

Part-C (Level-K3/ Level-K4)
(Answer any TWO of the questions)
11. Apply
12. Calculate....
13. Categorize...

> Part-D (Level-K5/ Level-K6)
(Answer any ONE of the questions)

Marks: (2x7=14)

Marks: (1x9=9)
14. Discuss....
15. Summarize....

ANNAMALAI UNIVERSITY

Department of Mathematics
Pattern of question paper for END semester examinations

(Based on Revised Bloom's Taxonomy)

Year: I/II		Semester:
Programme: M.Sc. Five Year Integrated PG		
Course Code:	Course Name:	
Time: 3 Hrs		Max.Marks:100

Part-A (Level-K1)Marks: (15x2=30)
(Answer ALL of the questions)

1. Define
2. What \qquad ?
3. Choose/ Relate \qquad
4. How?
5. Why?
6. Find......
7. Spell out......
8. Multiple Choices a.
9. Multiple Choices
a.
b.
c. d.
10. Multiple Choices
a. b.
c. d.
11. Multiple Choices
a. b.
c
d.
12. Match the following
i-a ii-b iii-c iv-d v-....
13. Match the following
i-a ii - b iii - c iv-d $v-\ldots$.
14. Match the following
i-a ii - b iii - c iv -d $\quad v-\ldots$.
15. Match the following
i-a ii-b iii-c iv-d v-.....
Part-B (Level-K2)Marks: (5x5=25)
(Answer any FIVE of the questions)
16. Explain.....
17. Describe.....
18. Select......
19. Classify....
20. Compare....
21. Interpret...

Part-C (Level-K3/ Level-K4)Marks: (5x7=35)
(Answer any FIVE of the questions)
22. Apply....
23. Show...
24. Solve....
25. Calculate....
26. Categorize...
27. Distinguish....
28. Test for.....

Part-D (Level-K5)Marks: (1x10=10)

(Answer any ONE of the questions)

29. Discuss....
30. Summarize....

ANNAMALAI UNIVERSITY
 Department of Mathematics
 Pattern of question paper for END semester examinations
 (Based on Revised Bloom's Taxonomy)

Year: III
Programme: M.Sc. Five Year Integrated PG Course Code:

Time: 3 Hrs

Part-A (Level-K1)Marks: (10x2=20)
(Answer ALL of the questions)

1. Define...
2. What \qquad ..?
3. Multiple Choices
a. b.
a.
b.
c. d.
4. Multiple Choices
a. b.
b.
c. d.
5. Multiple Choices
a.
b.
c.
d.
6. Multiple Choices
i-a ii-b iii-c iv-d v-.....
i-a ii-b iii-c iv-d v-.....
7. Match the following
8. Match the following
9. Match the following
10. Match the following
i-a ii -b iii-c iv-d v-.....
i-a ii - b iii - c iv-d v-.....
i-a ii-b iii-c iv-d v-.....

Course Name:
Max.Marks:100
Semester:
$\frac{\text { Part-B (Level-K2)Marks: (5x3=15) }}{\text { (Answer any FIVE of the questions) }}$
11. Explain.....
12. Describe.....
13. Select......
14. Classify....
15. Compare....
16. Outline

Part-C (Level-K3/Level-K4) Marks: (9x5=45)
(Answer any NINE of the questions)
17. Apply....
18. Prepare....
19. Show.....
20. Solve....
21. Illustrate.....
22. Sketch....
23. Infer....
24. Categorize...
25. Analyze...
26. Distinguish....
27. Take part in...

Part-D (Level-K5/ Level-K6)Marks: (2x10=20)

(Answer any TWO of the questions)
28. Discuss....
29. Summarize....
30. Design....

ANNAMALAI UNIVERSITY
 Department of Mathematics

Pattern of question paper for END semester examinations

(Based on Revised Bloom's Taxonomy)

Year: IV
Programme: M.Sc. Five Year Integrated PG Course Code:
Time: 3 Hrs

Semester:
Course Name:

Max.Marks:100

Part-A (Level-K1/ Level-K2)
Marks: (10x2=20)
(Answer ALL of the questions)

1. Define
2. Multiple Choices
a. b.
b. c.
c. d.
3. Multiple Choices
a.
c.
d.
4. Match the following
i-a ii - b
iii - c
iv-d
v-...
5. Match the following
i-a ii-b iii - c iv-d v-.....
6. Explain \qquad
7. Select.....
8. Describe.
9. Classify...
10. Elucidate....

Part-B (Level-K3/ Level-K4)

(Answer any EIGHT of the questions)
11. Prepare.....
12. Solve.....
13. Apply......
14. Show.....
15. Categorize...
16. Analyze...
17. Distinguish....
18. Infer....
19. Compare....
20. Compute

$$
\begin{array}{ll}
\text { Part-C (Level-K5) } \\
\text { (Answer any THREE of the questions) } & \text { Marks: }(3 \times 10=30)
\end{array}
$$

21. Discuss...
22. Summarize....
23. Evaluate.....
24. Disprove....
(Answer any ONE of the questions)
25. Design....
26. Develop...

i. .

ANNAMALAI UNIVERSITY
 Department of Mathematics
 Pattern of question paper for END semester examinations
 (Based on Revised Bloom's Taxonomy)

Year: V
Semester:
Programme: M.Sc. Five Year Integrated PG Course Code:

Course Name:
Time: 3 Hrs
Max.Marks:100

Part-A (Level-K1/ Level-K2)

Marks: (10x2=20)

1. Define
2. Multiple Choices
a.
(Answer ALL of the questions)
3. Multiple Choices
a.
b.
c. d.
4. Match the following
$i-a \quad i i-b$
c.
$i-a \quad i i-b$
iii - c
iv-d v-.....
5. Match the following
iv-d v-.....
6. Explain.......
7. Select.....
8. Describe.
9. Classify....
10. Elucidate....

Part-B (Level-K3/ Level-K4)
(Answer any SIX of the questions)
11. Apply......
12. Show.....
13. Prepare
14. Make use of....
15. Categorize...
16. Analyze...
17. Distinguish....
18. Simplify....

Part-C (Level-K5)
(Answer any THREE of the questions)

Marks: (6x5=30)

Marks: (3x10=30)
19. Discuss...
20. Recommend with
21. Evaluate.....
22. Justify....
23. Optimize...
(Answer any TWO of the questions)
24. Design....
25. Formulate ...
26. Modify

M.Sc. Mathematics (FIVE YEAR) PROGRAMME

[End Semester Examinations]
Bloom's Taxonomy - Questions Conforming to Levels K1 to K6

I Year(Five Year PG)				II Year (Five Year PG)				III Year(Five Year PG)			
Level	Part	Questions \& Marks	Total Marks	Level	Part	Questions \& Marks	Total Marks	Level	Part	Questions \& Marks	Total Marks
K1	A	15×2	30	K1	A	15×2	30	K1	A	10×2	20
K2	B	5×5	25	K2	B	5×5	25	K2	B	5×3	15
K3	C	3×7	21	K3	C	3×7	21	K3	C	5×5	25
K4		2×7	14	K4		2×7	14	K4		4×5	20
K5	D	1×10	10	K5	D	1×10	10	K5	D	1×10	10
			100				100	K6		1×10	10
										100	

IV Year (Five Year PG) I Year (Two/Three year PG)/				V Year (Five Year PG) II/III Year (Two/Three Year PG) /			
Level	Part	Questions \& Marks	Total Marks	Level	Part	Questions \& Marks	Total Marks
K1	A	5×2	10	K1	A	5×2	10
K2		5×2	10	K2		5×2	10
K3	B	4×5	20	K3	B	2×5	10
K4		4×5	20	K4		4×5	20
K5	C	3×10	30	K5	C	3×10	30
K6	D	1×10	10	K6	D	2x 10	20
			100				100

PROGRAMME OUTCOMES (POs)

After the successful completion of the M.Sc. Mathematics (5 year) Degree Programme, the graduates will be able to:

PO1:	Domain knowledge: Demonstrate knowledge of basic concepts, principles and applications of the specific science discipline.
PO2:	Resource Utilisation. Cultivate the skills to acquire and use appropriate learning resources including library, e-learning resources, ICT tools to enhance knowledge-base and stay abreast of recent developments.
PO3:	Analytical and Technical Skills: Ability to handle/use appropriate tools/techniques/equipment with an understanding of the standard operating procedures, safety aspects/limitations.
PO4:	Critical thinking and Problem solving: Identify and critically analyse pertinent problems in the relevant discipline using appropriate tools and techniques as well as approaches to arrive at viable conclusions/solutions.
PO5:	Project Management: Demonstrate knowledge and scientific understanding to identify research problems, design experiments, use appropriate methodologies, analyse and interpret data and provide solutions. Exhibit organisational skills and the ability to manage time and resources.
PO6:	Individual and team work: Exhibit the potential to effectively accomplish tasks independently and as a member or leader in diverse teams, and in multidisciplinary settings.
PO7:	Effective Communication: Communicate effectively in spoken and written form as well as through electronic media with the scientific community as well as with society at large. Demonstrate the ability to write dissertations, reports, make effective presentations and documentation.
PO9:	Environment and Society: Analyse the impact of scientific and technological advances on the environment and society and the need for sustainable development.
PO10:	Ethics: Commitment to professional ethics and responsibilities. Life-long learning: Ability to engage in life-long learning in the context of the rapid developments in the discipline.

PROGRAMME SPECIFIC OUTCOMES (PSOs)

At the end of the programme, the student will be able to

PSO1	Improve the problems solving skills.
PSO2	Collaborate with the other related areas of science.
PSO3	Improve the theoretical knowledge of Mathematical concepts.
PSO4	Creatively applying the knowledge of Mathematics in selected real life situations / Ability to acquire knowledge for studying higher level abstract mathematics.

Semester	19ITAMC11: Part-I Language I	L	T	P	C
	I நவீன இலீ கியீ \circ நாடகீ \circ	3	0	0	3

கீ ீீ தலி நேரீ கீ (Learning Objective (LO))

* தமிழில் தோல்றிய நவஞ்் இலல்கியல்களள்シ வளல்ல்சியைல் ல் றல்.
* சில்கதை, ல்தினல்கல் கால்ல்ல் சல் சல் சில்கல்களைல்ல் கதை உல்திகளைல்ல் வஷ்ல்ல்தல்.
* தமிழில் நல்யாக வளல்ல்ல்ள ல்ல்ல்கவஸ்த வகைமைய எல்ல்ல்ரைல்தல்.
* நவஞ் நாடகல்களை இலல்கிய நாடகல்களோல் ஒல்ய்ல்.
* ஐரோவ்ள்ல் வல்கையால் தமிழில் ஏல்பல்ட மால்றல்களைல்ல் மல்மலல்ல்யை வஷ்ல்ல்தல்.

Course Outcomes

At the end of the course, the student will be able to

1.. ல்.செல்வரால் - பொல்ல்கால் ல்திரை

அலீ -4 நாடகீ

1. இல்ல்லால்

- ஔவை

அலீ - 5 இ கால இலீ கிய வரலfi

ஐரோல்ய்ல்வல்கை - நவஞ் இலல்கியல்கல் அறில் கல் - ல்ல்ல்கவஸ்த - சில்கதை - ல்தினல் ஆகியவல்றில் தோல்றல் ல்வளல்ல்ல்ல் - இலல்கிய ல் ல்னோல்கல் - செல்தில்தால் வல்கை -நாடகல்- தோல்றல் ல்வளல்ல்ல்ல்.

அலீ - 6
(மாணவீ கீ அறி $^{\circ}$ கெரீ வதீ ${ }^{\circ}$ மீ $^{\circ}-$ தேீ $^{\circ}$ கான பீ தி அீ ல)
இலல்கியல்களைல்ல் அவை தொடல்ான இலல்கிய வரலால்றைல்ல் இணைல்ல்ல்பல்ல்தல். நவஞ் இலல்கியல்கல் சல் கட்தைல் படல் பய்ல்ல்ல்கால்ல்வதை சல் கல் கல் ணோல்டல்தோல் அறிதல். நவஞ் இலல்கிய வல்வல்களஊi் வளல்ல் வால்வய்ல் ல்ல்ல் பயல்பல்ல் ல் றையை வஷ்ா்்ல்தல்.

பாL ${ }^{\circ}$

1. ல்ல்மைல்க்்ுல்்

- பால்வல் ணல்பக்シளளை

நில் செல்சல் ல்ண் ஹல்ல், செல்னை
ஐல்தால் பதில்ல்-2015
2. கி.ராஜநாராயணல்

- கதல்

அல்னல் வௌஷ்』ல்,
தல் சால் ல் ஏழால் பதிஷ்ல்-2015
3. ல்.அழகில்சாமி
4. கல் மணல்ணசேகரல்

- ராஜா வல்தில்ல்கிறால்

காலல்ஸ்வல் பதில்கல், நாகஷ்காயய்i
ல் தல்பதில்ம் -2012

- உயఱ่̈ல்தல் ணఱ்̈

தாமரைல்சசல்வல்தில்கல்
செல்னை, ல் தல்பதில்ல் 1997
5. மேலால் மை பொல்ல் ஷ்சாமி
6. பாரதியால்
7. பாரதிதாசல்
8. உவமைல்கவब்ல்ல்ரதா
9. தேவதேவல்
10. அறில்மதி
11. மில்गா
12. ல்.செல்வரால்
13. இல்ல்லால்
14. ச.வே.ல்ธ்ே்்மணஷ்ல்

- பொல்ஷ்கால் ல்திரை

நில் செல் சல்ல்ல்ஹல்ல், செல்னை ல் தல்பதில்ல்-2014

- தேசிய மயா்)

வானதி பதில்கல், செல்னை
ல் தல்பதிஷ்ல்-1997

- பாரதியால்கவக்தைகல்

நில் செல் சல்ல்ஷ்ஹல்ல் , செல்னை
ல் தல்பதில்ல்-2014
இரல் டால் பதில்ல் செல்டல்பல் 2017

- பாரதிதாசல் கவக்தகல்

மணஷ்ாசகல்பதில்கல், செல்னை
ஏழால் பதில்ல்-2016

- ல்றைல் கல்

ல்வாதி பதில்கல்,
அல்பல்ல் ல் செல்னை, ல் தல்பதில்ம் 2010

- அல் தல் மால்திரமே வௌஊ̈̈வல்டல் நில் செல் சல்ல்ண்ஹல்ல் , செல்னை ல் தல்பதில்ல்-2016
- நல்ல்ல்காலல்

கவஷ்ா் பதில்கல், செல்னை எல்டால் பதிட்ம்2005

- மில்ரா கவக்தைகல்

சாரல் வௌஸ்ல், செல்னை
ல் தல்பதில்ல் 1990

- ஔவை

அகரல் பதில்கல், தல்சால் ல்
ஐல்ぁால் பதில்ல் - 2015
-தமில் இலல்கிய வரலால்

மணஸ்ாசகல்பதில்கல்

செல்னை, ஏழால் பதில்ல் 2015
15. சோ.நா. கல்தசாமி
ghu;it E\}y;fs;:

1. வல்லிகல் ணல்
2. க. கைலாசபதி
3. கால்ல்திகேல்சிவதல்பல்
4. ஆல். அழகல்ல்
5. கால்ல்திகேல்சிவதல்பல்
6. ல் சல்திவேல்
-தமில் இலல்கிய வரலால் மணஷ்ாசகல்பதில்கல் செல்னை, ல் தல்பதிஷ்ல் 2004

ல்ஸ்ல்கவஸ்துய்் தோல்றல் ல் வளல்ல்ல்ல் பால்நிலையல், செல்னை-108 ல் தல்பதிட்ல் 2008

தமில் நாவல் இலல்கியல் ல்மரல் பதில்கல் வடபழனல்செல்னை ல் தல்பதில்ல் 1968, மல்பதில்ல் 2010 தமிழில் சில்கதை தோல்றல் ல் வளல்ல்ச்ல், நில்செல் சல், ட்ல்தகநிலையல், செல்னை- 98, ல் தல்பதில்ல் 2013

தமில் நாடகல் தோல்றல் ல் வளல்்்சில்ல் பால் நிலையல், செல்னை, ல் .ப. 2011

இல்பதால் ல் ல்றால் ல்ல் தமில் உரைநடை மணஸ்ாசகல்பதில்கல், சிதல்பரல்

Outcome Mapping

CO/ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4	PSO5
$\operatorname{co1}$	3				2	2			2	2	2	3	3	3	2
$\operatorname{co2}$	3	3				2			3			2	2		
$\operatorname{co3}$		2	3		3	2					3			2	3
$\operatorname{co4}$	3		3			2				2	2	2	2		
\cos	3	2			2				2	2	2			3	2

Semester	19IENGC12: Part - II Language II English Through Literature I: Prose	\mathbf{L}	\mathbf{T}	\mathbf{P}	\mathbf{C}
	I	3	$\mathbf{0}$	$\mathbf{0}$	3

LEARNING OBJECTIVE (LO):

By introducing the course, it is intended to:
LO1: Develop the Language ability of the students
LO2: Enable students to understand the passage, to read fluently, to enrich their vocabulary, and to enjoy reading and writing
LO3: Make the students proficient in the four language skills
LO4: Make the students read with correct pronunciation, stress, intonation, pause, and articulation of voice.
LO5: Develop their inquiry skills.

COURSE OUTCOMES (CO)

At the end of the course, the student will be able to
CO1: Obtain competency in communication, both in written and oral skills
CO2: Acquire fluency in English language
CO3: Become knowledgeable about construction of sentence structures
CO4: Develop English vocabulary to use the English language effectively
CO5: Exhibit profic19IENCy in the four communication skills

Unit I

Stephen Leacock
Winston S. Churchill
Grammar:
Unit II
G.B. Shaw
M.K. Gandhi

Grammar:
Unit III
Robert Lynd
Virginia Woolf
"With the Photographer"
"Examinations"
Parts of Speech: Nouns, Verbs, Adjectives, and Adverbs
"Spoken English and Broken English"
"Voluntary Poverty"
Articles
"On Forgetting"
"Professions for Woman"

Grammar:

Pronouns

Unit IV

A. G. Gardiner
R.K. Narayan

Grammar:

Unit V

Martin Luther King (Jr.)
George Orwell
Grammar:
"On Umbrella Morals"
"A Snake in the Grass"
Prepositions
"I Have a Dream"
"The Sporting Spirit"
Conjunctions \& Interjections

Text Book:

1. Ayyappa Raja, S T. Deivasigamani. N. Saravana Prabhakar, B .Karthikeyan. English through Literature: Prose, Chidambharam, Manibharathi Publishers, 2010.
2. David Green: Contemporary English Grammar: Structures and Composition, Macmillan, 2012.

OUTCOME MAPPING

CO/PO	PO												PSO				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5
CO1				3			3	3		3			3	3			3
CO2				3			3	3		3			3	3			3
CO3	3			2			2	2		2			2	2			3
CO4	3			3			3	3		3			3	3			3
CO5	2			2			2	2		2			2	2			2

*1-LOW *2-MEDIUM *3-STRONG

Semester	19IHIC11.2: Part-I Language Basic Hindi-I	L	T	P	C
		4	1	0	5

Learning Objectives:

* To know the Hindi terms for various professions.
* To gain knowledge of poem and prose
* To help the student to learn the importance of the moral, spiritual and human values
* To study short stories and imbibe morals
* To know about national leaders

Unit - I: Introduction
Mathruvandana(poem) ,peshwar,chalo bazaar chalo, ahimsa kivijay

Unit - Il:Poem ,Prose
Balwanbano, ,Gandhiji keasheram me chor,

Unit - III:vani ka theer ,Bharth, daku se mahatma.

Unit - IV:chandhini,samaykipabandhi, vitamin.

Unit - V:Rajiv Gandhi, titiali(poem),Bangalore.

Current Streams of Thought:The Faculty will impart the current developments in the subject during the semester to the students and this component will not be a part of Examinations. Understanding on Hindi drama basis and concepts and nibandh

Text Books

1. Adharshahindi reader I-DBHPsabha-Chennai.17.
2. ParichyaDBHPS ,Trichi 17.

Supplementary Reading

1. Naveen Hindi Patamala: Part - I , D.B.H.P. Sabha, Chennai - 600017.
2. Hindi prachar vahini.1,DHBS,sabha Chennai 17.

Course Outcomes

At the end of the course, the student will be able to:
C01: Understand the basic structure of poems.
CO2: Knowledge on various common hindi words.
CO3: Describe the basic concepts of moral stories.
CO4: Apply the concepts of in life.
CO5: Analyze thedifference between prose and poem.

Outcome Mapping

COs	PO 1	PO	PO	PO 4	PO 5	PO	PO 7	PO 8	PO	PO 10	PSO 1	PSO 2	PSO	PSO	PSO
CO 1	-	2	3	2	2	3	2	3	3	3	3	3	-	-	-
CO 2	3	-	2	-	3	-	2	2	-	3	-	-	-	-	-
CO	3	2	-	-	2	3	-	2	3	-	-	-	2	-	-
CO 4	3	3	3	3	3	-	3	-	2	2	2	-	-	2	-
CO 5	-	-	3	3	3	3	3	2	2	2	2	-	-	-	3

Semester	19IFREC11: Part-I Language French-I	L	T	P	C
					0

Learning Objective (LO):

LO1	Greet People
LO2	Introduce oneself (Basic 1)
LO3	Identify the things and the persons; spell a word
LO4	Ask about the day, the time and the date
LO5	Asking excuse

Course Outcomes (CO):
At the end of the course, the student will be able to:

CO1	Greet people appropriately, ask how they are, tell them how I am and ask how others are
CO2	Obtain another different culture, the sound of the French language, certain words in French, some famous French symbols/landmarks.
CO3	Understand basic classroom instructions CO4Can use different forms of address to speak to friends, teachers and people I do not know, using formal and informal modes of address and language.
$\mathbf{C O 5}$	Understand when the teacher is speaking to one or more persons in

	class and understand simple commands (mostly passive, receptive language with some active, productive language) and polite language. I can recognise 'tu' and ''vous' forms and help phrases such as 'Pardon', 's'il vous plaît', 'excusez-moi', 'merci'.

Unit I

Aborder quelqu'un; Dire son nom
Identifier une langue, la nationalité et le nombre.
Identifier les choses et les personnes

Unit II

Remplir une fiche de renseignements.
Découvrir la carte postale, un message sur internet et le blog très simples.
Les pays francophones; Les lieux de la ville
Dire si on comprend ; Saluer ; Prendre congé
Dire s'excuser ; Affirmer et nier ; Epeler son nom

Unit III

L'espace francophone ; Découvrir la France et les pays francophones
Exprimer ses gouts ; Identifier les professions
Demander quelque chose à quelqu'un

Unit IV

Comprendre un article de presse sur un portrait d'une personne.
Première approche de la société française (noms, âges, origines, lieux d'habitation) Parler des loisirs ; Faire un projet

Unit V

Proposer-accepter ou refuser une proposition
Demander une explication
Ecrire les cartes et messages d'invitation, d'acceptation ou de refus.
Découvrir la carte de France et les connaissances.

Text Book:

1. J. Girardet et J. Pecheur, (2012), Echo A1 - méthode de français, Langers, Paris

Supplementary Readings:

1. Marie-Noelle Cocton et Emilie Pommier, (2015), Saison A1 - méthode de français, Les Editions Didier, Paris.
2. Angels Campa, Claude Mestreit, Julio Murillo et Manuel Tost, (2001), FORUM Méthode de français, HACHETTE LIVRE, Paris.
3. Mauger Bleu, (2014), Le Cours de langue et de la civilisation française, - Méthode de français, Hachette, Paris
4. Michele Boulares et Jean-Louis Frerot, (1997), Grammmaire Prograssive du Français avec 400 exerices, CLE International, Paris.

COs	P01	PO2	PO3	PO4	PO5	PO6	P07	$\begin{aligned} & \text { PO } \\ & 8 \end{aligned}$	$\begin{aligned} & \text { PO } \\ & 9 \end{aligned}$	$\begin{aligned} & \text { PO1 } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { PSO } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { PS } \\ & \mathrm{O} \end{aligned}$	$\begin{aligned} & \text { PS } \\ & \text { O3 } \end{aligned}$	$\begin{aligned} & \text { PS } \\ & 04 \end{aligned}$	$\begin{aligned} & \text { PS } \\ & 05 \end{aligned}$
CO1	-	2	3	2	2	3	2	3	3	3	3	3	-	-	-
CO2	3	-	2	-	3	-	2	2	-	3	-	-	-	-	-
CO3	3	2	-	-	2	3	-	2	3	-	-	-	2	-	-
CO4	3	3	3	3	3	-	3	-	2	2	2	-	-	2	-
CO5	-	-	3	3	3	3	3	2	2	2	2	-	-	-	3

Semester	19IENSC13: Environmental Studies	L	T	P	C
		3	0	0	3

LEARNING OBJECTIVES:

LO1.To make the student aware of World Environmental System
LO2.To make the student aware of the fundamental Concepts and Principles of Ecosystem and energy-flow.

COURSE OUTCOMES

At the end of the course, the student will be able to
CO1.To evaluate the present condition of environmental pollution
CO2.To understand the nature of the atmosphere
CO3.To be aware of causes of pollution and precautionary measure

UNIT: I ENVIRONMENTAL SYSTEM

(1.1)The Services provided by the Environmental System
(1.2)Ecosystems: Food Chains, Food Webs, Ecological Pyramids
(1.3)Biochemical Cycles: Hydrological Cycle, Carbon Cycle

UNIT: II ENVIRONMENTAL DAMAGE -POLLUTION
Sources and impact of
(2.1) Air Pollution
(2.2) Water Pollution
(2.3) Land Pollution
(2.4) Municipal Solid Waste
(2.5) Noise Pollution

UNIT: III RESOURCE DEPLETION
(3.1) Importance of Forests: Causes and Consequences of Deforestations
(3.2) Bio Diversity: Meaning and Importance - Reasons and Consequences of Biodiversity Decline
(3.3) Consequences of overdrawing Water Resources.

UNIT: IV GLOBAL CLIMATE CHANGE
(4.1) The Science of Climate Change The Green House Effect (4.2) Sources and Impact of Climate Change (4.3) Coping with Climate Change
UNIT:V SUSTAINABLE DEVELOPMENT
(5.1) Concept and Definition of Sustainable Development (Brundtland Commission Definition)
(5.2) Poverty, Population Growth and Environmental Damage
(5.3) Policies for Sustainable Development

* CURRENT STREAM OF THOUGHTS

For Knowledge Purpose and not for Examinations
Current issues in environmental eco system Effects, Climate Change and Global Warming.

TEXT BOOKS

1. Erach Bharucha, Environmental Studies, New Delhi: UGC, 2004
2. Richard Wright and Dorothy F. Boorse, Environmental Science: Toward a Sustainable Future, New Delhi: Prentice-Hall India, 2010

SUPPLEMENTARY READINGS

1. Kumarasamy, K., A. Alagappa Moses and M. Vasanthy, Environmental Studies, Trichy: Bharathidasan University Publications,2004
2. Rajamannar, Environmental Studies, Trichy: EVR College Publications, 2004,
3. Kalavathy, S. (Ed), Environmental Studies, Trichy: Bishop Heber College Publication, 2004

OUTCOME MAPPING
*1-LOW *2-MEDIUM *3-STRONG

CO/PO	PO												PSO				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5
CO1		3					3	2	2	3					3	2	3
CO2		3					2	2	2	3					3	2	3
CO3		3					2	2	2	3					3	2	3

Semester	19IMATC14: Core - 1				
	I	Classical Algebra	L	T	P
		5	0	0	5

Learning Objective (LO):

LO1	In this course students are exposed to topics like Theory of Equations, Summation of Series, Matrices and Elementary Number Theory.
LO2	The stress is on the development of problem solving skills.

Course Outcomes (CO)
On successful completion of the course, the student will be able to:

CO1	Apply the fundamental concept of theory of equations and to find solutions.
CO2	Apply Descarte's rule, Horner's method, Newton Raphson methods for finding approximate solutions.
CO3	Apply summation of series using Binomial, Exponential and Logarithmic series for finding approximations.
CO4	Apply the elementary number theory for highest power of prime number.
CO5	Apply the elementary number theory for Fermat's and Wilson's theorem.

Unit-1: Theory of Equations

Polynomial Equations - Symmetric Functions of roots in terms of Coefficients - Sum of r-th powers of roots - Reciprocal Equations - Transformation of Equations.

Unit-2: Theory of Equations (Contd...)

Descartes Rule of Signs - Approximate Solutions of Polynomials by Horner's method - Newton Raphson method of Solution of a Cubic Polynomial.

Unit-3: Summation of Series

Summation of series using Binomial - Exponential and Logarithmic series (Theorems without proofs) - Approximation using Binomial \& Exponential series.

Unit-4: Elementary Number Theory

Prime Number - Composite Number - Decomposition of a Composite Number as a Product of Primes uniquely (without proof) - Divisors of a Positive Integer - simple problems.

Unit-5: Elementary Number Theory (Contd.)

Congruence Modulo n - Euler Function (without Proof) - Highest Power of a Prime Number p contained in n ! - Fermat's and Wilson's Theorems (statements only).

Text Books:

1. Kandasamy P., Thilagavathy K., (2004), Mathematics for B.Sc., Vol-I, II, III \& IV, S.Chand \& Company Ltd., New Delhi-55.
2. Narayanan S., Hanumantha Rao R., Manicavachagom Pillay T.K. and Kandasamy P. (2009), Ancillary Mathematics, Volume-I, S. Viswanathan (Printers \& Publishers) Pvt. Ltd.,.

Supplementary Reading:

1. Manicavachagom Pillay T.K.,.Natarajan T and Ganapathy K.S., (2004), Algebra, Volume I \& II, S.Viswanathan Printers \& Publishers Pvt. Ltd. Chennai.
2. Arumugam S., (2003), Algebra, New Gamma Publishing House, Palayamkottai.
3. Singaravelu A., (2003), Algebra and Trigonometry, Vol.- I \& II, Meenakshi Agency, Chennai.
4. Sudha S., (1998), Algebra, Analytical Geometry of Two Dimensions and Trigonometry, Emerald Publishers, Chennai.

Outcome Mapping:

$\begin{aligned} & \mathrm{CO} / \mathrm{PO} \\ & \mathrm{PO} \end{aligned}$	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	3						3	3	3	3	3
CO2	3	3	3	3						3	3	3	3	3
CO3	3	3	3	3						3	3	3	3	3
CO4	3	3	3	3						3	3	3	3	3
CO5	3	3	3	3						3	3	3	3	3

Semester	19IPHYA01- Allied PHYSICS-I	L	T	P	C
I		3	0	0	3

Learning Objective (LO):

LO1	To make the interdisciplinary students to understand the elementary concepts of various topics of physics.
LO2	To understand the centre of gravity, behaviour of fluids and laser physics.
LO3	To understand the fundamental principles and ideas of nuclear physics and basic electronics.

Course Outcomes (CO)

By the end of the course, the students will be able to

CO1	Understand the behaviour of fluids and practical applications of the same in real life.
CO2	Understand relativity and its consequences.
CO3	Acquire in depth knowledge of various lasers and diodes used for different applications.
CO4	Knowledge about the different types of nuclear models and detectors.
CO5	Apply the elementary number theory for Fermat's and Wilson's theorem.

Unit - I: Mechanics

Centre of gravity - Definition - Determination of centre of gravity of a hollow hemisphere, solid hemisphere and solid cone.
Streamline and Turbulent flow - Equation of continuity of flow - Energy of a liquid in flowBernouli's theorem - Velocity of efflux of a liquid - Torricelli's theorem - Venturimeter.

Unit - 2: Relativity

Introduction - Definition of Relativity - Special theory and general theory of relativity
Postulates- Newtonian relativity - Frame of reference - Galilean transformation equations - The Michelson - Morley experiment - Lorentz transformation equations - Derivation - Length contraction -Time dilation - Addition of velocity - Variation of mass with velocity - Mass Energy equivalence.

Unit-3: Laser Physics

Introduction - absorption - spontaneous emission - Stimulated emission - Einstein's A and B coefficients - Population inversion - Meta stable state - Pumping- Methods of pumping Components of laser - Ruby laser - Helium - Neon laser - Applications.

Unit- 4: Nuclear Physics

Properties of nucleus (size, mass, binding energy, spin and parity) - Particle detectors G.M.Counter - Wilson cloud chamber - Bubble chamber- Nuclear models - Liquid drop model

- Shell model- Nuclear Energy - Nuclear fission - Fusion - Self sustained chain reaction Nuclear fusion in stars - Carbon - Nitrogen cycle - Proton - Proton cycle - Thermonuclear reaction - Nuclear reactor.

Unit- 5: Basic Electronics

Junction diode- Zener diode- Photodiode- Transistor -CE and CB characteristics- LED and LCD - Applications.

Text Books:

1. R. Murugesan, (2005), Allied Physics, S.Chand \& Co, Ltd.
2. Murugasen and Kiruthiga Sivaprasath, (2016), Modern Physics, S.Chand \& Co Ltd.
3. Pandya M.L. and Yadav P.R.S., (1993), Elements of Nuclear Physics, Kedarnath Ramnath.
4. Metha V.K. and Rohit Mehta, (1980), Principles of Electronics, S.Chand \& Co Ltd.

Supplementary Reading:

1. .Mathur DS and Hemne P.S., (2006), Mechanics, S. Chand \& Co Ltd.
2. Beiser A., (1997), Concepts of Modern Physics, Tata McGraw Hill Publication.
3. Avadhanulu M.N. and Hemne P.S., (2011), An introduction to Lasers theory and applications, S. Chand \& Co. Ltd.

Outcome Mapping:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO 1	3	2	3	2	3	2	3	2	3		2			3		2	3	3
$\mathrm{CO2}$	3	2					3				2			3		2		
CO	2	3	2	3	2	3	2	3	2	2	3		2	3	2	3	2	3
$\operatorname{CO4}$	3	2	3	2	3	2	3	2	3		2			3		2	3	3

Semester	19IMATE15- Elective	L	T	P	C
	I		3	0	0

Learning Objective (LO):

LO1 In this course students are trained to develop skills in finding rank, inverse, Eigen values, Eigen vectors and quadratic forms.

Course Outcomes (CO)

On successful completion of the course, the student will be able to:

CO1	Find the rank and inverse of a matrix.
CO2	Find Eigen Values and Eigen Vectors.
CO3	Diagonalize the matrix using similarity transformation.
CO4	Find the nature of Quadratic forms.

Unit-1:
Rank of the Matrix - Inverse of the Matrix.
Unit-2:
Symmetric - Skew Symmetric - Hermitian - Skew Hermitian - Orthogonal and Unitary matrices.
Unit-3:
Eigen values - Eigen vectors - Cayley Hamilton theorem.
Unit-4:
Diagonalisation by similarity transformation.
Unit-5:
Quadratic Forms - Nature of Quadratic Forms.

Text Book：

1．Narayanan S．，Hanumantha Rao R and Manicavachagom Pillay T．K．， （2009），Ancillary Mathematics，Volume－I，S．Viswanathan（Printers \＆Publishers）Pvt．Ltd．

Supplementary Reading：

1．Vairamanickam K．，Nirmala P．Ratchagar and Tamilselvan S．，（2009），Engineering Mathematics，Scitech Publications（India）Pvt．Ltd．，Chennai．
2．Richard Bellman，（1974），Introduction to Matrix Analysis，Second Edition，T．M．G．Publishing Company Ltd．，New Delhi．

Outcome Mapping：

$\begin{aligned} & \text { CO I } \\ & \text { PO } \end{aligned}$	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	3						3	3	3	3	3
CO2	3	3	3	3						3	3	3	3	3
CO3	3	3	3	3						3	3	3	3	3
CO4	3	3	3	3						3	3	3	3	3

Semester	19ITAMC21：Part－I Language I	L	T	P	C
	II	பக்தி இலக்கியக் க் சிக்றிலக்கியக் க்	3	0	0

கீ 『ீ தலி நேீீ கீ（Learning Objective（LO））
＊பல்தி மல்ல்ல் சில்றிலல்கிய வரையறைகளைல்ல் வகைகளைல்ல் அறில் கல் செல்தல்．
＊தமிழில் தனஊல்ல்வமான பல்தி இலல்கிய வகைமையை ஒல்ஞ்்ல்ல்கால்டல்．
＊சைவ வைணவ இலல்கியல்களఱ்シ தனஞ்ல்வவ்தை எல்ல்ல்ரைல்தல்．
＊கிறில்ல்வ，இல்லாமிய இலல்கியல்களைல்ல் பால் பொல்ல்களைல்ல் வஷ்்ல்ல்தல்．
＊சில்றிலல்கியல் தோல்ற பஷ்シ னண்்ளஷ்i）வழி அல்வஷ்ல்கியல்களை அறிய வைல்தல்．

Course Outcomes

At the end of the course, the student will be able to

C01:	பவ்தி இலல்கியல் சில்றிலல்கியல் வகைமைகளைல்ல் உல்திகளைல்ல் அறில்ல் திறல்.
CO2:	தில்ஞானசல்பல்தல்ல் பல்தில் திறல்தை உணல்ல்.
CO3:	ஆல் டாளఱ்\| பல்தி மால்்கதைல்ல் பாவை நோல்பைல்ல் ல்றில்ல்ல் தௌஸ்ல்.
CO4:	வல்ளலால்ல் உயா்்நநயல் கோல்பால்டை அவசியல் அறிவல்
CO5:	இல்தியல் தல்ல்வ ஞான வரலால்ல்டல் ல் இதிகாசல்கல் டல் தொடல்ல் ஏல்பல்ல்ல்ல்ல்ல்.

அலீ - 2 பீ தி இலீ கியீ
1. ஆல் டால் - தில்ல்ாவை (ல் தல் 5 பாடல்கல்)
2. வல்ளலால் - தில்வல்ல்பா - பஷ்ற்ளைல்சில் வఱ்் ணல்ல்
அலீ - 3 பீ தி இலீ கியீ
1.தேல்பாவணல் - ல்ழவக்ல் வதைல்டலல்
2.சீறாக்ல்ராணல் - மால் ல்ல்ல்பஸ்ண நில்ற படலல்
அலீ - 4 சி றிலீ கியீ

1. ல்ல்றாலல்ல்றவல் சf	-	மலை வளல்(வானரல்கல்... பாடல் ல் தல்)
2. ல் ல்ல் டல்பல்ல்	-	நால்ல் வளல்

அலீ - 5 இலீ கியவரலfீ

பல்தி சில்றிலல்கிய வரலால் - இடைல்காலல்தமிழகல்ல்ழல் - சைவ வைண சமயல்களஷ்i் செல்வால்ல் - சமண பௌல்த சமய இலல்கியல்கல் - கிறில்ல்வ இல்லால் இலல்கியல்கல் - நாயல்கல் காலல்சில்றிலல்கியல்கல் தோல்ற பஞ்் னணல்சில்றிலல்கிய வகை.

```
அலீ -6
```

（மாணவீ \＆ீ அறி ${ }^{\circ}$ கெரீ வதீㄷ மீ $^{\circ}-$ தேீ $^{\circ}$ கான பீ தி サீ ல） இலல்கியல்களைல்ல் அவை தொடல்ான இலல்கிய வரலால்றைல்ல் இணைல்ல்ல்பல்ல்தல்．பல்தி இலல்கிய வளல்ஷ்யக்シ தமில்ல் பல் வல்களஷ்シ ஏல்பல்ட வளல்ஷியையல் ல்ல்ல்ல்கால்ல்தல்．மன்் மனட்தை பல் பல்ல்தல்ல்，சல் க அமைதியை நிலைநால்டல்ல்，உலக நல்லிணல்கல் காணல்ல் பல்தி இலல்கியல் பயல்பல்மால்றை வஷ்க்ல்தல்．

பாடீ ${ }^{\circ}$ ：
1．ச．வே．ல்ல்｜ய்மணள்ல்（ப．ஆ）－பல்னஞ்シ்தில்ல் றைகல்
மணஸ்ாசகல்பதில்கல்，செல்னை ல் ல்றால் பதிட்ம்－ 2010

2．ச．வே．ல்ல்பய்மணள்ல்（ப．ஆ）－நாலாயब்்்தில்ய பब்்ல்தல்கல் ல் ல்லைநிலையல்
செல்னை－17
ல் தல்பதில்ல்－2000，இரல் டால் பதில்ல் 1996
3．சி．எல் ．ல் ல்கேசல்（ப．ஆ）－சில்தல்பாடல்கல்
மணஷ்ாசகல்பதில்கல்்，செல்னை
இரல் டால் பதில்ம்－1996
4．வல்ளலால்

5．வக்ாால் னஸ்ல்
தில்வல்ல்பா，
அல் ணாமலைல் பல்கலைல்கழகல் பதில்ல் அல் ணாமலைநகல்

தேல்பாவணல்
பால் நிலையல்，
செல்னை－ 8
ல் தல்பதில்ல்－2010
6．உமல்ถ்ம்லவல்－சீராட்ஸ்ராணல்
நேல் னல் பதிஷ்கல்
செல்னை
ல் தல்பதிஷ்ல்－2004
7．தில்ல் டராசல்ல்கவச்்ாயல்－ல்ல்றாலல்ல்றவல் சி
பாவை பதில்கல்
செல்னை

இரல் டால் பதில்ம்-2014
8. ல் னைவல்கதில்ல் ல்க(ப.ஆ) -

பரீ வைீ $க ீ$
1.
. ந.வ.இチயராமல்
2. ந.வ.இசயராமல்
3. கோ.கேசவல்
4. ச.வே.ல்ல்பส்மணய்்ல்
5. சோ.நா.கல்தசாமி

ல் ல்ல் டல்பல்ல் பால் நிலையல்
செல்னை -108, மல்பதில்ல்-2015

சில்றிலல்கியல்செல்வல்
மணஸ்ாசகல்பதில்கல், செல்னை.
ல் தல்பதில்ண் 1968.
பல்ல் இலல்ஷியல்
மணஸ்ாசகல்தில்கல், செல்னை.
ல் தல்பதில்ல் 1980 .
பல்ல் இலல்கியல்ஒல் சல் கவள்ல் பாட்வை அல்னல்வௌส்ல், தல்சால் ல் 1981.
ல் தல்பதிஷ்ல்-1981
தமில்இலல்கிய வரலால்
மணஸ்ாசகல்பதில்கல், செல்னை.
ஏழால் பதில்ல்-2010
தமில்இலல்கிய வரலால்
மணஷ்ாசகல்தில்கல், செல்னை.
ல் தல்பதில்ல்-2004

Outcome Mapping

CO/ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4	PSO5
$\operatorname{co1}$	3				2	2			2	2	2	3	3	3	2
$\operatorname{co2}$	3	3				2			3			2	2		
$\operatorname{co3}$		2	3		3	2					3			2	3
$\operatorname{co4}$	3		3			2				2	2	2	2		
\cos	3	2			2				2	2	2			3	2

Semester	19IENGC22: Part - II Language II English Through Literature II: Poetry	L	T	P	C
		3	0	0	3

LEARNING OBJECTIVE (LO)

By introducing the course, it is intended to:
LO1: Develop the ability of the learner to comprehend and appreciate poems in English
LO2: Enhance the competence of the learner in using the English language
LO3: Improve the interest of the learner in human values and perceptions
LO4: Enable students to study and analyze the use of language in poetry
LO5: Provide learners with the theoretical and practical understanding of grammar

COURSE OUTCOMES

At the end of the course, the student will be able to:
CO1: Become competent in communication, both in written and oral skills
CO2: Gain fluency in English language
CO3: Attain knowledge about construction of sentence structures
CO4: Acquire the vocabulary to use the English language effectively
CO5: Acquire the aesthetic sense for appreciating poetry

Unit I

William Shakespeare
William Blake
Robert Burns
Grammar
Unit II
PB Shelley
John Keats
Thomas Hardy
Grammar
"Sonnet 116"
"Lamb"
"A Red, Red Rose"
Finite \& Non-finite verbs
"To Wordsworth"
"Sonnet to Sleep"
"Neutral Tones"
Strong and Weak Verbs, Auxiliaries and Modals

Unit III

Robert Frost
Wilfred Owen
Emily Dickinson
Grammar

Unit IV

Sri Aurobindo
AK Ramanujan
Sarojini Naidu
Grammar
Unit V
Roger Mc Gough
Maya Angelou
Langston Hughes
Grammar
"Stopping By Woods on a Snowy Evening"
"Anthem for Doomed Youth"
"A Narrow Fellow in the Grass"
Transitive, Intransitive Verbs, Active and Passive Voice
"The Tiger and the Deer"
"Obituary"
"Queen's Rival"
Concord
"My Bus Conductor"
"Still I Rise"
"The Negro Speaks of Rivers"
Tenses and their forms

TEXT BOOKS

1. Jack.Hydes, Touched With Fire. London: Cambridge UP, 1985.
2. C. D Narasimhaiah, An Anthology of Common Wealth Literature. New Delhi: Macmillan, 2006.

SUPPLEMENTARY READING

1. Thomas, C.T. Twentieth Century Verse: An Anglo-American Anthology. New Delhi: Macmillan, 2006.
2. Henry Louis, and Y. Nellie McKay.The Norton Anthology of African American Literature. New York: W.W. Norton \& Co, 2004.
3. Ramachandran, C.N. and Radha Achar. Five Centuries of Poetry. New Delhi: Laxmi, 1998.

OUTCOME MAPPING

CO/PO	PO												PSO				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5
CO1	3			3			3	3		3			3	3			3
CO2	2			3			3	3		3			3	3			3
CO3	3			2			2	2		2			2	2			2
CO4	3			3			3	3		3			3	3			3
CO5	2			2			2	2		2			2	2			2

Semester	19IHIC21.2: Part-I Language Basic Hindi-II	L	T	P	C
			4	1	0

Learning Objectives:

* To know the life of National leaders.
* To introduce the Gandhijji's thought.
* To understand the concepts of teaching and learning from Dr.Sarvapalli Radhakrishnan's life.

Unit - I: Introduction
man ki shakti dena ,prathighnapalan, hamaraRajchinga,adhbhudmaya..

Unit - II:Poem ,Prose
sarvapalliradhakrishnan,amedkar, mahaveer, sadakkeniyam,sanghi ka phal(poem),

Unit - III:Stories.
Tyog ka such,bhavansabkaekhai,chirjivan ka jharna, , lob ka parinam.

Unit - IV:dadhakimoorkatha, kuthekipoonchandebarabardhana.

Unit - V:bakri do ghav kha gayi, ,Dhankimagima,

Current Streams of Thought:The Faculty will impart the current developments in the subject during the semester to the students and this component will not be a part of Examinations.

Text Books

1.Naveen Hindi Patamala: Part - II D.B.H.P. Sabha, Chennai - 600017.
2. Manohar Kahaniyam , Part - II D.B.H.P. Sabha, Chennai - 600017.

Supplementary Reading

1.Naveen Hindi Patamala: Part - I , D.B.H.P. Sabha, Chennai - 600017.
2.Hindipracharbodhini-DHBS, Chennai 17

Course Outcomes

At the end of the course, the student will be able to:
C01: Understand the basic structure of poem and prose.
CO2: Classify and compare various poems.
CO3: Describe the basic concepts of moral stories.
CO4: Apply the teachings of various national leaders.
CO5: Understand the spirit of spirituality.

Outcome Mapping

COs	PO 1	PO 2	PO	PO 4	PO 5	PO	PO	PO 8	PO	PO 10	PSO	PSO 2	PSO	PSO 4	PSO5
CO 1	-	3	3	2	2	3	2	3	3	3	3	3	-	-	-
CO 2	3	-	3	-	3	-	2	2	-	3	-	-	-	-	-
CO 3	3	3	-	-	2	3	-	2	3	-	-	-	2	-	-
CO 4	3	3	3	3	3	-	3	-	2	2	2	-	-	2	-
CO 5	-	-	3	3	3	3	3	2	2	2	2	-	-	-	3

Semester	19IFREC21: Language- I: Course -2				
	French-II	L	T	P	C
		3	0	0	3

Learning Objective (LO):

LO1 By introducing the course, it is intended to:
LO2 Talk about their family members
LO3 Engage a simple conversation about family members.
LO4 Talk about your likes and dislikes
LO5 Fill in a simple form

Course Outcomes (CO):

At the end of the course, the student will be able to:

CO1	Understand simple texts providing personal details of others.
CO2	State how many people are in my family and who they are, using vocabulary including family members, possessive adjectives and negatives such as 'je n'ai pas de frères/sœurs'.
CO3	Write a short text to inform others of my likes and dislikes and provide reasons. Ask others about their likes and dislikes, showing that I appreciate diverse viewpoints and personalities e.g. 'Quel est ton ... favori/préféré?'
CO4	Understand in filling up a simple form.
CO5	Write a short introduction about myself, providing personal details and use simple connectors, such as 'et', 'mais' and 'aussi'.

Unit I

Demander /donner des précisions sur le temps
Demander / indiquer l'heure et la date
Demander / dire ce qu'on a fait
Féliciter

Unit II

Comprendre et écrire un journal personnel en français.
Comprendre l'agenda de quelqu'un
Les rythmes de vie en France
Evaluez-vous

Unit III

Evasion en français par l'Internet, la télévision, la radio et la presse.
Découvrir la France dans votre pays

Unit IV

Les voyages et les transports
Comparer les choses ; Montrer ; Indiquer une appartenance
Demander / donner une explication

Unit V

Voyager en France ; Situations pratiques relatives au voyage.
Parler d'un repas.
Situations pratiques à l'hôtel et au restaurant
Les habitudes des Français sur un repas.

Text Book:

1. J. Girardet et J. Pecheur, (2012), Echo A1 - méthode de français, Langers, Paris

Supplementary Readings:

1. Marie-Noelle Cocton et Emilie Pommier, (2015), Saison A1 - méthode de français, Les Editions Didier, Paris.
2. Angels Campa, Claude Mestreit, Julio Murillo et Manuel Tost, (2001), FORUM Méthode de français, HACHETTE LIVRE, Paris.
3. Mauger Bleu, (2014), Le Cours de langue et de la civilisation française, - Méthode de français, Hachette, Paris
4. Michele Boulares et Jean-Louis Frerot, (1997), Grammmaire Prograssive du Français avec 400 exerices, CLE International, Paris.

COs	P01	PO2	PO3	PO4	PO5	PO6	PO7	$\begin{aligned} & \text { PO } \\ & 8 \end{aligned}$	PO 9	$\begin{aligned} & \text { PO1 } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { PSO } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { PS } \\ & \mathrm{O} \end{aligned}$	$\begin{aligned} & \text { PS } \\ & \text { O3 } \end{aligned}$	$\begin{aligned} & \text { PS } \\ & 04 \end{aligned}$	$\begin{aligned} & \text { PS } \\ & \mathrm{O} \end{aligned}$
CO1	-	2	3	2	2	3	2	3	3	3	3	3	-	-	-
CO2	3	-	2	-	3	-	2	2	-	3	-	-	-	-	-
CO3	3	2	-	-	2	3	-	2	3	-	-	-	2	-	-
CO4	3	3	3	3	3	-	3	-	2	2	2	-	-	2	-
CO5	-	-	3	3	3	3	3	2	2	2	2	-	-	-	3

Semester	19ICISC23: Computer Applications - I	L	T	P	C
		3	0	0	3

Learning Objective (LO):

LO1	To Study the Fundamentals Concepts of Computers and Operating Systems.
LO2	To get familiar with basics of the Internet Programming.
LO3	To acquire knowledge and skills for creation of web site considering both client and server side programming.
LO4	To explore different web extensions and web services standards and ability to develop responsive web applications.

Course Outcomes (CO)

At the end of the course, the student will be able to

CO1	Describe the usage of computers and why computers are essential components in business and society.
CO2	Solve common business problems using appropriate Information Technology applications and systems.
CO3	Identify categories of programs, system software and applications. Organize and work with files and folders and utilize the Internet Web resources and evaluate on-line e-business system.
CO4	Design a responsive web site using HTML5 and demonstrate Rich Internet Application.

Unit - 1: Introduction to computers, Applications of computers, Concepts of data and information, A typical computer system, Memory concepts, History of computers, Types of computers. Input, output devices, data storage devices, software, the definition, the role of software, House keeping.

Unit - 2: The computer internals, typical PC configuration, booting, virus, antivirus, vaccine, versions of software. Operating system, definition, classification, basics of MSDOS, introduction to windows operating system, features of windows OS, desktop and desktop icons, starting programs, browsing and managing windows explorer, setting, Taskbars and creating shortcuts.
Unit - 3: Introduction to internet, client sever basics, E-mail, Telnet and Archie, FTR - Gopher, Jug head and Veronica, WAIS and world wide web, fundamentals of HTML, TCP / IP and E Commerce.

Unit - 4: Issues involved in web site management, addressing, designing web sites with front page.

Unit - 5: Multimedia, concept, requirements, applications and future, hardware and software requirements for Multimedia development and delivery platforms, multimedia methodologies fundamental and use of hypertext, hypermedia, sound, images, animation, video. Using multimedia, multimedia interface, planning and development of multimedia projects.

Text Books:

1. Sanjay Saxena, (2015), "A first course in computers", Vikas Publishing House, New Delhi.
2. Alexies Leon and Mathews Leon "Internet in a nutshell" Leon Press, Chennai and Vikas Publishing House, New Delhi.
3. Tay Vaughan (1999), "Multimedia Making it work", Osborne, Tata McGraw Hill.

Reference Books:

1. Ron Mansfield, (1997), "Windows 95 for Busy People", Obsorne, McGraw Hill.
2. Krishnan, "Computer fundamentals and Windows with Internet Technology", Scitech Publications Pvt Ltd, Chennai, India.
3. Krishnan, "Windows and MS-Office 2000 with database concepts", Scitech Publications Pvt Ltd, Chennai, India.

Outcome Mapping:

PO / PO1 CO	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	
CO1	3		1	3	2		2		2	3			3	1		3		2
CO2	3	2	3					3		2						3	1	
CO3		3		3		1						2	3				1	
CO4	3	2		3	2	1		3					3			3	3	

Semester	19IMATC24: Core - 2				
III	Trigonometry	L	T	P	C
		5	0	0	5

Learning Objective (LO):

LO1	This course is a fundamental one for many courses of this Degree Programme.
LO2	This covers topics on the expansions of trigonometric functions, hyperbolic functions, inverse circular, inverse hyperbolic functions and it aims to develop computational skills.

Course Outcomes (CO)

On successful completion of the course, the student will be able to:

CO1	Apply for finding expansions of $\cos n \theta, \sin n \theta$ and $\operatorname{tann} \theta$ and formation of equations.
CO2	Apply for finding $\cos \theta, \sin \theta$ in a series of ascending powers of θ and their approximation.
CO3	Apply for finding Hyperbolic and inverse Hyperbolic functions.
CO4	Apply for resolution into factors and study De-Moivre's property.
CO5	Apply to evaluate the summation of trigonometric series and their differences, Gregory series and Euler series.

Unit-1:

Expansions of $\cos n \theta$, $\sin n \theta-$ Expansion of $\tan n \theta$ in terms of $\tan \theta$ - Expansion of $\tan (\mathrm{A}+\mathrm{B}+\mathrm{C}+\ldots$) - Formation of Equations.

Unit-2:

Powers of sines and cosines of θ in terms of functions of multiples of θ - expansions of $\sin \theta$ and $\cos \theta$ in a series of ascending powers of θ - Approximations.
Unit-3:
Definition - Relation between Hyperbolic Functions - Inverse Hyperbolic Functions.
Unit-4:
Resolution into Factors - simple problems only - DeMoivre's property on the Circle and Cote's Property on the Circle. Logarithm of complex quantities.
Unit-5:
Summation of Trigonometric Series: When the angles are in A.P, C+iS method of summation Method of Differences - Gregory Series - Euler Series.

Text Book:

Narayanan S. and Manicavachagom Pillay T.K., Trigonometry, (2009), S.Viswanathan Printers \& Publishers Pvt. Ltd., Chennai.
Unit- I Chapter III sections 1 to 3
Unit- II Chapter III sections 4 and 5
Unit- III Chapter IV
Unit- IV Chapter V
Unit-V Chapter VI sections 1 to 3

Supplementary Reading:

1. Kandasamy P., Thilagavathy K., (2004), Mathematics for B.Sc., Vol.-I, II, III \& IV, S. Chand \& Company Ltd., New Delhi-55.
2. Duraipandian S. and Laxmi Duraipandian, (1984), Trigonometry, Emerald Publishers, Chennai.
3. Grewal B.S, (2002), Higher Engineering Mathematics, Khanna Publishers. New Delhi.
4..Loney S.L, (1982), Plane Trigonometry, Part II, Cambridge University Press, London.
4. Singaravelu A., (2003), Algebra and Trigonometry, Vol.-I, Meenakshi Agency, Chennai.
5. Vittal P.R, (2004), Trigonometry, Margham Publications, Chennai.

Outcome Mapping:

$\begin{aligned} & \text { CO I } \\ & \text { PO } \end{aligned}$	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	3						3	3	3	3	3
CO2	3	3	3	3						3	3	3	3	3
CO3	3	3	3	3						3	3	3	3	3
CO4	3	3	3	3						3	3	3	3	3
CO5	3	3	3	3						3	3	3	3	3

Semester	19IMATC25: Core - 3				
III	Differential Calculus	L	T	P	C
		5	0	0	5

Learning Objective (LO):

LO1 This course develops problem solving skills in differential calculus and applications of differential calculus.

Course Outcomes (CO)

On successful completion of the course, the student will be able to:

CO1	Apply Leibnitz theorem for $\mathrm{n}^{\text {th }}$ derivative, total differentials in terms of partial derivatives and Jacobians.
CO2	Apply maxima and minima functions for two and three independent variables.
CO3	Apply for finding, angle between vectors, pedal equations and finding solutions.
CO4	Apply for finding radius of curvature and centre of curvature.
CO5	Apply for finding envelope and Asymptotes.

Unit-1:

The nth derivative, Leibnitz theorem and its applications, Total differential, $\frac{d^{2} y}{d x^{2}}$ and $\frac{d y}{d x}$ in terms of partial derivatives of f when $f(x, y)=0$, Jacobians.
Unit-2:
Maxima and minima of functions of two independent variables, Necessary and sufficient conditions, Lagrange's method, Problems on maxima and minima (second order conditions must be verified for maxima and minima).
Unit-3:
Polar coordinates - Angle between radius vector and tangent, Angle of intersection of two curves, Slope of the tangent, Pedal equation of a curve, Simple problems.

Unit-4:

Curvature: Radius of curvature - Cartesian formula for radius of curvature - Parametric formula for radius of curvature - Radius of curvature in polar co-ordinates - Centre of curvature in Polar co-ordinates.

Unit-5:

Envelope of one parameter family of curves - Envelope of two parameter family - Asymptotes Definition - Methods of finding Asymptotes to plane algebraic curves.

Text Book:

Narayanan S. and Manicavachagom Pillay T.K., (1995), Calculus, Volume - I (Differential Calculus), S.Viswanathan Printers \& Publishers Pvt. Ltd., Chennai.

Supplementary Reading:

1. Venkataraman M.K., Engineering Mathematics, The National Publishing Company, Chennai.
2. Kandasamy P., Thilagavathy K. and Gunavathy K., (2006), Engineering Mathematics, S. Chand and Company, Chennai.

Outcome Mapping:

$\begin{aligned} & \text { CO I } \\ & \text { PO } \end{aligned}$	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	3						3	3	3	3	3
CO2	3	3	3	3						3	3	3	3	3
CO3	3	3	3	3						3	3	3	3	3
CO4	3	3	3	3						3	3	3	3	3
CO5	3	3	3	3						3	3	3	3	3

Semester	19IPHYA02 - ALLIED PHYSICS - II	L	T	P	C
		4	0	0	4

Learning Objectives (LO):

LO1	To indoctrinate and stimulate the interdisciplinary students understand the fundamental concepts of various topics of physics.			
LO2	To understand about an atom model and production of X-rays	$	$	To learn photo electric effect and also the particles and wave nature
:---				
of the quantum particles..				

Course Outcomes (CO)
At the end of the course, the student will be able to

CO1	understand the atomic models, production of X-rays andphotoelectric effect with its applications
CO2	understand the various nuclear detectors and particle accelerators.
CO3	understand the phenomenon of polarization.
CO4	acquire basic knowledge about number systems and logic gates.

UNIT - I: ATOMIC PHYSICS

Atom model: Bohr, Sommerfeld's and vector atom models -The Pauli's exclusion principle - Various quantum numbers.

X-Rays: Production and properties of X-rays - Bragg's law - Bragg's X-ray spectrometer - Moseley's law - Compton Scattering.

UNIT - II: MODERN PHYSICS

Photo electric effect - Einstein's photo electric equation - verification of Einstein's photo electric equation by Millikan's experiment - photo electric cells - applications

Wave mechanics: De Broglie matter waves - characteristics and calculation of De Broglie wave length - Experimental study of De Broglie matter wave by G.P.Thomson experiment.

UNIT - III: NUCLEAR PHYSICS

Nuclear detectors - Ionization Chamber - Proportional counter -Scintillation counters.
Particle accelerators - Linear accelerator - Cyclotron - synchro cyclotron - Betatron.

UNIT - IV: POLARIZATION

Polarization - Brewster's Law -Huygen's explanation of double refraction in uniaxial crystals - polarizing prisms - Quarter and half wave plates - Production and detection of a plane, circularly and elliptically polarized light.

Optical Activity - Fresnel's explanation of rotation - Fresnel's experiment - Specific rotation - Determination of Specific rotatory by Laurent's half shade polarimeter.

UNIT- V: DIGITAL ELECTRONICS:

Decimal, binary, octal and hexadecimal number systems - Basic logic gates - OR, AND, NOT - universal gates - Boolean algebra - Demorgans theorem - Verification.

CURRENT STREAMS OF THOUGHT (Not for Final Examinations)

Gamma ray microscope -Nuclear reactor -Electron microscope, Scanning electron microscope - Binary adder and subtractor.

TEXT BOOKS :

1. Murugasen, R, \& KiruthigaSivaprasath, (2016), Modern Physics,S.Chand\& Co Ltd.
2. Murugesan, R, (2005), Allied Physics, S.Chand\& Co, Ltd.
3. SubramaniyamBrijlal, N, and Avadhanulu, M.N, (2018), A Text Book of Optics , S. Chand \& Co Ltd.

SUPPLEMENTARY READING:

1. Saxena, A.K, (2010),Principles of Modern Physics, Narosa Publishing House.
2. Rajam, J. B , (2004), Atomic Physics, S. Chand \& Co Ltd. $20^{\text {th }}$ Edition.
3. Jain, R.P. (2006), Modern Digital Electronics, Tata McGraw Hill .

COURSE OUTCOME MAPPING:

	PO1	PO2	PO3	PO4	PO5	PO6	POT	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
CO1	3	3	3	3	3	3	3	3	3	2	3	3	3	3	1	3	3	3
CO2	3	3	2	2	1	1	3	1	1	2	3	3	3	3	1	3	3	3
$C 03$	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
$C 04$	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	3	3	3

Semester	19IPHYP01 - ALLIED PHYSICS PRACTICAL	L	T	P	C
		3	0	0	3

Learning Objectives (LO):

LO1	To gain depth of knowledge regarding the physics fundamentals and an instrumentation to arrive solution for various problems.
LO2	To study the aspects related to the application side of the experiments
LO3	To understand the usage of basic laws and theories to determine

	various properties of the materials given.
LO4	To providing a hands-on learning experience such as in measuring the basic concepts in properties of matter, sound, heat, optics and electricity.

Course Outcomes (CO)

At the end of the course, the student will be able to

CO1	Apply knowledge of physics fundamentals and an instrumentation to arrive solution for various problems.
CO2	Understand the usage of basic laws and theories to determine various properties of the materials given.
CO3	Understand the application side of the experiments CO4Use of basic laws to study the spectral properties and optical properties of the given prism.

Any Ten Experiments

1. Sonometer - Verification of laws.
2. Spectrometer - Refractive index of a solid prism.
3. Spectrometer - Grating - Normal incidence $-\lambda$ determination.
4. Potentiometer - Low range voltmeter.
5. Potentiometer - Low range Ammeter.
6. Rigidity modulus by torsional pendulum.
7. Young's modulus - Non uniform bending (pin and microscope).
8. Young's modulus - uniform bending (pin and microscope).
9. Drop weight method - Surface tension of a liquid.
10. Coefficient of viscosities- Hare's apparatus.
11. Field along the axis of a circular coil - deflection magnetometer.
12. V-I characteristics of junction diode.
13. Logic gates - Discrete components.
14. Half wave and full wave rectifier.
15. V-I Characteristics of Zener diode.

COURSE OUTCOME MAPPING:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8
$\mathrm{CO1}$	3	3	3	3	3	3	2	3		1	3	2		3		3	3	3
$\mathrm{CO2}$	3	3	3	3	3	3	2	3		1	3	2		3		3	3	3
CO	3	3	3	3	3	3	3	3		3	3	3		3		3	3	3
$\operatorname{CO4}$	3	3	3	3	3	3	3	3	3		3	3	3		3		3	3

Semester	19ITAMC31: Part-I Language I அற இலக்கியக் க் காக்பிய்் ்்	L	T	P	C
III		3	0	0	3

கீ ீீ தலி நேfi \&ீ (Learning Objective (LO))

* தமில் அற இலல்கிய வரலால்றற அறில் கல் செல்ல் வய்ாட்கல்ல்ல்.

* காவ்ய்் இலக்கிய இலல்ஙணல்ல்டல் அதல் வரலால்ல் ல்கல்டல்ய்்்.
* தமிழில் ததால்றில்ல்ள காவ்யவ்ய்களள்். தனய்ய்வ்வ் உணள்ல்தல்ல்ல்.

Course Outcomes

At the end of the course, the student will be able to

CO1:	தில்ல்ல்றல் வழி மனய் மால்வ்களைல்ல் ஒல் ல்கல்களைல்ல் அறில்ல் திறல்.
CO2:	பெல்பவக்களை மதில்ல்ல் மனல்ால்மைல்ல் பஷ்ழல் ல் றாமைல்ல் வளல்ல்.
CO3:	இல்திர வஷ்ா கொல் டால்ய தமிழல்லல் பல் பால்டை உணல்லில்ல்ல்
CO4:	நாயல்மால்ல் வரலால்றைல்ல் பல்தி நெறியைல்ல் பெல்றில்ல்ல்
CO5:	வாலி வதைல் படலல் வழிவஷ்ாத திறல் ஏல்பல்ல்.

அலீ - 1 அற இலீ கியீ

1. தில்ல்ல்றல் - உழல், ஒல் ல்ஆல் டைமை, காலமறிதல், நல்ல்பஊ்மாவ்றாமை
அலீ -2 அற இலீ கியீ
2. நாலல்பால் - பெல்பாரைல்பஸ்ழயாமை
3. பழமொழி நால் ல் - கல்வல்

அலீ - 3 கfi பீ யீ

1. சிலல்திகாரல் - இல்திர வஷ்ல் ஊரெல்ல்த காதை
2. மணف்மகலை - ஆல்ஸ்シிரல் திறல் அறிவக゙்த காதை

1．பெல்ய ல்ராணல்－அல்ல்தி அல்கல்ல்ராணல்
2．கல்பராமாயணல்－வாலி வதைல்டலல்

அலீ－5 இலீ கிய வரலfீ

சல்க மல்வய்य கால அற இலல்கியல்கல்－தில்ல்ல்றளஊ்シ பெல்மை－அற இலல்கியல்களஊ்｜வளல்லி－கால்ய் இலல்ஆணல்－பல்ல்க்கல்－காலல்தோறல் தோல்றிய கால்ய்ல்்கல்－வரலால்．
 அறஇலல்கியல்கல் மனதை நெறில்ல்ல்ல்வதோல் சல் க நடல்தைகளைல்ல் கல்ல்ல்தல்கில்றன．அற இலல்கியல்களఱ்シ தொடல்ால் மாணவக்கல் நல்லவ்கல்ல்ல்களைல் கல்ல்ல்கொல்வதோல் வால்வஷ்i ல் கடைபய்ல்க எல் ல் தல் நல்ல சல் கல் உல்வால்ல்．சல் கல்தில்ல் அறநெறிகளய்் தேவையானவை எல்ல்ல்ரைல்தல்．

பாடீ
 கீ

1．பதில்ாசில்பல்ச．மெல்யல்ல்－

2．ச．வே．ல்ய்வ்்மணส்ல்

3．இளல்கோவல்கல்

4．சீல்தலைல்சால்தனால்

தில்ல்ல்றல் மணஸ்ாசகல்பதில்கல்，செல்னை－ 08. இரல் டால் பதில்ல்－2017

நாலல்யால்பழமொழி நால் ல் மணஷ்ாசகல்பதில்கல்，செல்னை－ 08. இரல் டால் பதில்ல்－2012

சிலல்திகாரல்
டால்டல்உ．வே．சா．பதில்ம்
2，அல்ல் மடல் கடல்கலை சாலை
பெசல்ல் நகல் செல்னை பதினொல்றால் பதில்ம்－2008
மணはமகலலை
டால்ல்உ．வே．சா．பதில்ண்
2，அல்ல் மடல் கடல்கலை சாலை
பெசல்ல் நகல் செல்னை
எல்டால் பதில்ல்－2008
5. சேல்கிழால்
6. கல்பல்
7. ச.வே.ல்ல்ய்்மணส்ல்

பெல்பல்ாாணல்
ல் ல்லை நிலையல், செல்னை
ல் தல்பதிஷ்ல் -2010
கல்பராமாயணல்
அல் ணாமலைல் பல்கலைல்கழகல்
வௌส்ல்,

தமில்இலல்கிய வரலால்
மணஸ்ாசகல்பதில்கல், செல்னை.
ல் தல்பதில்ஸ் 1999
பாட்வை ல் ல்கல்

1. சோ.ந.கஷ்தசாமி
2. க.ப. அறவாணல்

தமில்இலல்கிய வரலால்
மணஸ்ாசகல்பதில்கல், செல்னை.
ல் தல்பதில்ல்-2004
அறஇலல்கியல்களல் சியல்
தமில்ல்கோல்டல்
செல்னை, ல் தல்பதில்ல்-2000

Outcome Mapping

CO1 PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3				2	2			2	2	2	3	3	3	2
C02	3	3				2			3			2	2		
C03		2	3		3	2					3			2	3
$\operatorname{co4}$	3		3			2				2	2	2	2		
\cos	3	2			2				2	2	2			3	2

Semester	19IENGC32: Part - II Language II English Through Literature III: Drama	L	T	P	C
		3	0	0	3

LEARNING OBJECTIVE (LO):

By introducing the course, it is intended to:
LO1: Enhance the conversational competence of the learners by introducing drama in English.
LO2: Make the students the understand characteristics of the Elizabethan Age.
LO3: Make them appreciate Shakespearean drama.
LO4: Make them learn the key elements of sentence structures
LO5: Make the students master the mechanics of writing
COURSE OUTCOMES (CO):
At the end of the course, the student will be able to:
CO1: Obtain a literary acumen to answer MCQs of NET/SET examinations and other competitive examination

CO2: Appreciate conversational English
CO3: Recognize the dramatic elements of Shakespearean dramas
CO4: Use punctuations and capitals effectively in their composition
CO5: Recognize the elements of the spoken discourses

Unit I

William Shakespeare
Grammar

Unit II

William Shakespeare
Grammar

Unit III
William Shakespeare
Grammar

The Tempest (Act I)
"Phrases and Clauses"

The Tempest (Act II)
"Simple, Compound, and Complex Sentences"

The Tempest (Act III)

"Transformation of Sentences"

Unit IV

William Shakespeare
Grammar

The Tempest (Act IV)
"Sequence of Tenses and Reported Speech"

The Tempest (Act V)

"Punctuation and Capitals"

Text Books:

1. Shakespeare, William. The Tempest, New Delhi: S. Chand \& Co., 2008.
2. Green, David. Contemporary English Grammar, Structures, and Composition. Chennai: MacMillan, 2010.

Supplementary Reading:

1. Cahn. L Victor. Shakespeare the Playwright: A Companion to the Complete Tragedies Histories, Comedies, and Romances. London: Praeger, 1996.
2. Crystal, David. Shakespeare's Words: A Glossary and Language Companion. London: Penguin, 2009.
3. Greenbaum, Sidney. Oxford English Grammar. London: Oxford UP, 2005.
4. McCarthy. Cambridge Grammar of English. London: Cambridge UP, 2018.
5. Quirk, Randolph. A Comprehensive Grammar of the English Language. London: Pearson, 2010.
OUTCOME MAPPING

CO/PO	PO												PSO				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5
CO1	3			3			3	3		3			3	3			3
CO2	2			3			3	3		3			3	3			3
CO3	3			2			2	2		2			2	2			2
CO4	3			3			3	3		3			3	3			3
CO5	2			2			2	2		2			2	2			2

Semester	19IHIC31.2: Part-I Language Basic Hindi-III	L	T	P	C

Learning Objectives:

* To study various comedy stories.
* To introduce Indian epics.
* To understand the concepts of drama

Unit - I: Introduction,ekanki.
. Andher Nagari - Bharathendhoo Harishchandra
Unit - II:Mahabharath Ki EkSanj - Bharath BhoosahnAgrwal [Full]

Unit - III:Drama.
3.Ladai - SarveswarDayalSaxeena [Full]

Unit - IV:stories,Tatava-vyanghya

Unit - V:Upstick Ki Muskhan - Vishnu Prabakar [Full]

Current Streams of Thought:The Faculty will impart the current developments in the subject during the semester to the students and this component will not be a part of Examinations.

Text Books

1Andher Nagari - Bharathendhoo Harishchandra, VinodhPustak Mandir, Agra-2
2. PrathinidhiEkanaki - Dr. Dashrath Oojaa, Jawahar Pustakalya, Mathura
3. EkanakiManach - Dr.V.P. Abhithap, Jawahar Pustakalya, Mathura
4. Ladai - SarveswarDayalSaxeena, RajkamalPrakashan, New Delhi

Supplementary Reading

1.Hindi natakuthbhavaurvikas-dashrath ojha-rajpal and saons, new Delhi.7.
2.hindi natakaurrangmanch-pahachanaurparak-Dr. Indranathmadan, newdelhi.7.

Course Outcomes

At the end of the course, the student will be able to:
C01: Understand the basic structure of short stories.
CO2: Knowledge on Mahabharath.
CO3: Describe the basic concepts of human feelings.
CO4: Apply the concepts of comedy in stories.
CO5: Describe the effects of western culture.

Outcome Mapping

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	-	3	3	2	2	3	2	3	3	3	3	3	-	-	-
CO2	3	-	3	-	3	-	2	2	-	3	-	-	-	-	-
CO3	3	3	-	-	2	3	-	2	3	-	-	-	2	-	-
CO4	3	3	3	3	3	-	3	-	2	2	2	-	-	2	-
CO5	-	-	3	3	3	3	3	2	2	2	2	-	-	-	3

Semester	19IFREC31: Language- I: Course -3				
French-III	LII	T	P	C	
		3	0	0	3

Learning Objective (LO):

LO1 Buy some products in a shop
LO2 Ask the news of someone
LO3 Talk about the climate
LO4 Introduce their family
LO5 Talk about their accommodation.

Course Outcomes (CO):
At the end of the course, the student will be able to:

CO1	Ask the price of the product, pay the product.
CO2	Ask about their daily activities
CO3	To give and ask information about the climate
CO4	Describe their family
CO5	Describe their accommodation where they live.

Unit I

Demander des nouvelles de quelqu'un(les activités de la journée)
Choisir, acheter, payer un objet

Unit II

S'informer sur la présence ou l'existence d'une personne ou d'un objet (Parler d'un logement ; s'orienter, Décrire un trajet, Exprimer un besoin)
S'informer sur l'état physique de quelqu'un
Le temps en France et parler du temps

Unit III

Evaluez-vous
Evasion dans la Poésie

Unit IV

Souvenez-vous (Les moments de la vie)
Demander /donner des informations sur la biographie d'une personne (enchainer les idées)

Unit V

Demander /donner des informations sur ses relations amicales ou familiales.
Présenter sa famille.

Text Book:

1. J. Girardet et J. Pecheur, (2012), Echo A1 - méthode de français, Langers, Paris

Supplementary Readings:

1. Marie-Noelle Cocton et Emilie Pommier, (2015), Saison A1 - méthode de français, Les Editions Didier, Paris.
2. Angels Campa, Claude Mestreit, Julio Murillo et Manuel Tost, (2001), FORUM Méthode de français, HACHETTE LIVRE, Paris.
3. Mauger Bleu, (2014), Le Cours de langue et de la civilisation française, - Méthode de français, Hachette, Paris
4. Michele Boulares et Jean-Louis Frerot, (1997), Grammmaire Prograssive du Français avec 400 exerices, CLE International, Paris.

Outcome Mapping:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO	PO	PO1	PSO	PS	PS	PS	PS

Semester	19IMATC33: Core - 4 Analytical Geometry 2D	L	T	P	C
	III	5	0	0	5

Learning Objective (LO):

LO1 Students are exposed to fundamental aspects of Two Dimensional Analytical Geometry and it develops logical and systematic computational skills.

Course Outcomes (CO)
On a successful completion of the course, the students will able to

CO1	Explain the fundamental concepts of analytical geometry in 2D about parabola, Equation of a Parabola, the pole of line with Parabola, Ellipse, equation of an Ellipse, tangent and normal drawn from Ellipse.
CO2	Hyperbola, Equation of Hyperbola, Co-ordinates of a point on the Hyperbola in terms of a single parameter tangent and normal drawn from Hyperbola, Rectangular Hyperbola.
CO3	Transformation of polar co-ordinates into Cartesian co-ordinates and vice versa, parallel straight lines, the polar equation of a conic, general equation of the second degree tracing of conics.

Unit-1: Parabola

Equation of a Parabola, Different forms, The Pole of line with Parabola.
Unit-2: Ellipse
Equation of an Ellipse, Tangents and Normals drawn from ellipse.
Unit-3: Hyperbola
Equation of Hyperbola, with other properties of hyperbola.

Unit-4: Polar Equations

Transformation of polar co-ordinates into Cartesian co-ordinates and vice versa with other properties.
Unit-5: General Equation of the Second degree tracing of conics.

Text Book:

Manickavachagom Pillay T.K. and Natarajan T., (2009), Analytical Geometry, (Part-I - Two Dimensions), S.Viswanathan Printers \& Publishers Pvt. Ltd., Chennai.
Unit - I: Chapter VI (Fully)
Unit-II: \quad Chapter VII (Fully)
Unit- III: Chapter VII (Fully)
Unit- IV: Chapter IX (Fully)
Unit- V: Chapter X (Fully)

Supplementary Reading:

1. Duraipandian P. and Laxmi Duraipandian, (1965), Analytical Geometry-2D, Asia Publishing Company, Bombay.
2. Thomas G.B. and .Finney R.L, (1998), Calculus and Analytic Geometry, $9^{\text {th }}$ Edition, Addison Wesley, Mass. (Indian Print).
3. Vittal P.R., (2003), Coordinate Geometry, Margham Publishers, Chennai.

Outcome Mapping:

| CO 1 |
| :--- | ---: | ---: | ---: | ---: | :--- | :--- | :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| PO | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 |
| ---: | :--- | ---: | ---: | ---: | ---: | ---: |
| PO9 | PO10 | PSO1 | PSO2 | PSO3 | PSO4 | |
| C01 | 3 | 3 | 3 | 3 | | |
| | | | | 3 | 3 | 3 |
| C02 | 3 | 3 | 3 | 3 | | |
| | | | | 3 | 3 | 3 |
| C03 | 3 | 3 | 3 | 3 | | |
| | | | 3 | 3 | 3 | 3 |

Semester	19IMATC34: Core - 5 Vector Analysis	L	T	P	C
III		5	0	0	5

Learning Objective (LO):

LO1	The objective of the module is to introduce and develop the methods of vector analysis.
LO2	These methods provide a natural aid to the understanding of geometry and some physical concepts.
LO3	They are also a fundamental tool in many theories of Applied Mathematics.

Course Outcomes (CO)
On successful completion of the course, the students will be able to:

CO1	explain the fundamental concepts of vectors, direction cosines, direction ratios and workout scalar and vector products of two and three vector.
CO2	differentiate vector functions of a single variable, find the gradient, divergence and curl and prove identities involving them.
CO3	integrate vectors, compute line, surface and volume integrals in a vector field and verify Gauss, Stoke's and Green's theorem.

Unit-1: Vector Algebra

Vectors, Operations with vectors, Space coordinates, Resolution of vectors, Direction cosines and Direction ratios, Section formulae, Products of two vector, Scalars or dot product,
Unit-2: Vector Algebra contd.
Vector or cross product, Physical application, Product of three or more vectors, Scalar product of three vectors, Vector product of three vectors.
Unit-3: Differential Vector Calculus
Differentiation of a Vector - Geometrical Interpretation of the Derivative - Differentiation Formulae - Differentiation of dot and Cross Products - Partial Derivatives of Vectors Differentials of Vectors.

Unit-4: Gradient, Divergence and Curl

Vector Differential Operator Del - Gradient of a Scalar Function - Directional Derivative Geometric Interpretation - Gradient of the sum of Functions; of the product of functions and of a function of function - Operations involving Del - Divergence of a Vector and its Physical Interpretation - Curl of a Vector and its Physical Interpretation - Expansion Formulae for Operators involving Del - Solenoidal and Irrotational.

Unit-5: Vector Integration

The Line Integral - Surface Integral and its Physical Meaning - Surface Integral and the Concept of Divergence of a Vector - Equivalence of two Definitions of Divergence - Statements of Gauss Divergence Theorem and Green's Theorem (only) and Problems - Line Integral - The Concept of the Curl of a Vector - Statement of Stoke's Theorem (only) and Problems.

Text Book:

Grewal B.S., (2014), Chapter 3 and 8 as in the book Higher Engineering Mathematics, Khanna Publishers, New Delhi, (Edition $43^{\text {rd }}$).

Supplementary Reading:

1. Thomas G.B. and Finney R.L., Calculus and Analytic Geometry, (1998) Addison Wesley ($9^{\text {th }}$ Edn), Mass. (Indian Print).
2. Venkataraman M.K., (1992), Engineering Mathematics-Part B, National Publishing Company, Chennai.
3. Vittal P.R., (2004), Vector Calculus, Fourier series and Fourier Transform, Margham Publications, Chennai.
4. Vairamanickam K., Nirmala P. Ratchagar and Tamilselvan S., (2011), Engineering Mathematics - II, Scitech Publications (India) Pvt. Ltd., Chennai.
5. Vairamanickam K., Nirmala P. Ratchagar and Tamilselvan S., (2012), Transforms and Partial Differential Equations, Scitech Publications (India) Pvt. Ltd., Chennai.

Outcome Mapping:

| CO 1 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| PO | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 |
| ---: | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| PO10 | PSO1 | PSO2 | PSO3 | PSO4 | | | |
| C01 | 3 | 3 | 3 | 3 | | | |
| | | | 3 | 3 | 3 | 3 | 3 |
| C02 | 3 | 3 | 3 | 3 | | | |
| | | | 3 | 3 | 3 | 3 | 3 |
| C03 | 3 | 3 | 3 | 3 | | | |
| | | 3 | 3 | 3 | 3 | 3 | |

Semester	19ISTAA01: Allied	L	T	P	C
	Mathematical Statistics - I	4	0	0	4

Learning Objective (LO):

LO1	The objective is to train students in some concepts in mathematical statistics.
LO2	The notion of random variables, distribution function and characteristic functions are introduced.
LO3	Some examples of discrete and continuous random variables are introduced and their properties are studied.

Course Outcomes (CO)

On successful completion of the course, the students will be able to:

CO1	Gains working knowledge related to the problems of theoretical statistics.
CO2	Apply the fundamental concept of statistical methods to solve some real life problems.
CO3	Gains a basic knowledge for study advanced courses in this area.

Unit-1: Random Variables

The concept of a random variable, The distribution function, Random variables of the discrete type and the continuous type, functions of random variables, Multi dimensional random variables, Marginal distributions, Conditional distributions, Independent random variables, Functions of multi dimensional random variables.

Unit-2: Parameters of the distribution of a random variable

Expected values, Moments, The Chebyshev inequality, Absolute moments, Order parameters, Moments of random vectors, Regression of first type, Regression of the second type.
Unit-3: Characteristic Functions
Properties of characteristic functions, The characteristic functions and moments, Emi invariants, The characteristic function of the sum of independent random variables, Determination of the distribution function by the characteristic function, The characteristic function of multidimensional random vectors, Probability generating functions.

Unit-4: Some Probability Distributions

One point and two point distributions, The Bernoulli scheme, The binomial distribution, The Poisson scheme, The generalized binomial distribution, The Polya and hypergeometric distributions, The Poisson distribution.

Unit-5: Some Probability Distributions (Continued)

The uniform distribution, The normal distribution, The gamma distribution, The beta distribution, The Cauchy and Laplace distributions, The multidimensional normal distribution, The multinomial distribution.

Text Book:

Marek Fisz, (1963), Probability Theory and Mathematical Statistics, John Wiley, Third Edition, New York.
Unit - \quad Chapter 2: Sections 2.1 to 2.9.
Unit - II Chapter 3: Sections 3.1 to 3.8.
Unit - III Chapter 4: Sections 4.1 to 4.7.
Unit - IV Chapter 5: Sections 5.1 to 5.5 .
Unit - V Chapter 5: Sections 5.6 to 5.12 .

Supplementary Reading:

1.Cramer H., (1970), Random variables and probability distributions, University Press, Cambridge.
2. Cramer H., (1999), Mathematical methods in Statistics, Princeton University Press, Princeton.
3. Samuel S. Wilks, (2018), Mathematical Statistics, John Wiley \& Sons, Read Books Ltd.

Outcome Mapping:

| CO 1 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| PO | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 |
| ---: | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| PO10 | PSO1 | PSO2 | PSO3 | PSO4 | | | |
| C01 | 3 | 2 | 3 | 2 | | | |
| | | | 3 | 2 | 3 | 2 | 3 |
| C02 | 2 | 3 | 2 | 2 | | | |
| | | | 2 | 3 | 2 | 2 | 3 |
| C03 | 2 | 3 | 2 | 2 | | | |
| | | 2 | 2 | 3 | 2 | 2 | |

Semester	19IMATE35: Elective Integral Calculus	L	T	P	C
	III	3	0	0	3

Learning Objective (LO):

LO1	In this paper the student is exposed to the idea of integration and different methods of integration.
LO2	The application of integration to the evaluation of areas and volumes is also introduced.

Course Outcomes (CO)

On successful completion of the course, the students will be able to:

CO1	Solve problems using the different methods of integration.
CO2	Solve problems in double and triple integrals.
CO3	Apply double and triple integrals in finding area and volume.

Unit-1:
Introduction, Definite integral, Methods of integration, Integrals of the form
$\int \frac{f^{(x)}}{f(x)} d x$
$\int F(f(x)] f(x) d x$
$\int \frac{d x}{a x^{2}+b x+c} d x$
$\int \frac{l x+m}{a x^{2}+b x+c} d x$
Unit-2:
Integration by parts, Bernoulli's formula, Reduction formula for the following types
$I_{n}=\int x^{n} e^{a x} \quad S n \rightarrow+$ ve integer
$I_{n}=\int \cos ^{\mathrm{n}} x d x \mathrm{n}$, positive integer
$I_{n}=\int \sin ^{n} x d x$
$I_{m n}=\int \sin ^{n} x \cos ^{n} x d x$

Unit-3:
Change of order of integration - Properties of definite integrals.
Unit-4:
Double integrals - Double integrals in Polar coordinates - Triple integrals.
Unit-5:
Application of double and triple integrals - area, volume.

Text Book：

Narayanan S．and Manicavachogam Pillay T．K．，（2003），Calculus（Major），Vol．II， S．Viswanathan Printers \＆Publishers Pvt．Ltd．，Chennai．

Supplementary Reading：

Thomas G．B．and Finney R．L．，（1998），Calculus and Analytic Geometry，${ }^{\text {th }}$ Edition，Addison Wesley，Mass Indian Print．
Venkataraman M．K．，（1992），Engineering Mathematics－Part B，National Publishing Company， Chennai．

Outcome Mapping：

$\begin{gathered} \text { col } \\ \text { PO } \end{gathered}$	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
C01	3	3	3	3						3	3	3	3	3
CO2	3	3	3	3						3	3	3	3	3
CO3	3	3	3	3						3	3	3	3	3

Semester	19ITAMC41：Part－I Language I சக் க இலக்கியக் க் செக்மொழிவரலாக் க்	L	T	P	C
IV		3	0	0	3

＊தமில்ல் செல்மொழி இலல்கியல்கல் ல்றில்ல் அறில் கல் செல்தல்．．
＊செல்மொழி வரலால்ல்டல் அதல் தல்திபால்கல் வ்கான வரையறைகல் ல்ல்டல்ல்ல்．
＊சல்க அக，ல் இலல்கியல்களఱ்̈ தனఱ゙ジதல்மைகளை உணல்ல்தல்．
＊பல்ல்ல்ாா்ல் இலல்கியல்களஸ்シ நெல்நல்வாடை வழில் பல் பால்டைல் ல்ல்ல்ல் கால்டல்．
＊தமிழில் பயல்பால்ல் தேவைல்ல் எல்ல்ல்ல்கால்ல்கல் டல் வஷ்ால்ல்தல்．

Course Outcomes

At the end of the course，the student will be able to

CO1：	சல்க அக இலல்கியல்களைல் திணை அல்ல்படயய்்）ஆரால்ஷ்ல் கல்ல்ல் திறல்
CO2：	
CO3：	நெல்நல்வாடை வழி இலல்கியல்களஞï இயல்கைல் பெல்மிடல்தைல் ல்ல்ல்வல்
CO4：	சல்க இலல்கியல்களஞ்シ வகைமை，வல்வல்，உல்ளடல்கல் ல்றில்த அறிவைல் பெல்றில்ல்ல்
C05：	தொல்கால்山்ல் எல்ல் ல் தனய்ல்வமான இலல்கணல்தை வஷ்ல்ல்ல்ல் திறல்

1.	ல்ல்ல்தொகை	-	$125,128,177,303,397$	(நெல்தல்)
2. நல்றிணை	-	$206,217,304,334,383$	(ல்றில்சி)	
3. ஐல்ல்ல்ல் ல்	-	$17,18,71,75,96$,	(மல்தல்)	
4.	அகநால் ல்	-	$147,303,371$	(பாலை)
5.	கலில்தொகை	-	104,105	(ல் ல்லை)

அலல் - 2 ல்ற இலல்கியல்கல்

1. ல்றநால் ல்

பெல் பால்ல்ゅவவ்கல்
$66,83,112,140,187$,
226, 269,271, 278,290
அலீ - 3 பீீ $\mathrm{uff}^{ீ}$

1. நெல்நெல்வாடை

அலீ - 4 fீ க இலீ கிய வரலரீ
தொல்கால்ஸ்ல் - சல்க காலல் - ல் ல்சல்கல்கல் - பால்ல்ல் தொகைல்ல் தொல்ல்க்ஷ் றை - தனஷ்̈தல்மைகல்.

அலீ - 5 பயீ $ப$ 土i $^{\circ}$ தமி ${ }^{\circ}$ சீ மொழி வரலரீ

மொழி வஷ்ல்கல் - மொழில்ல்ல்ல்பல்கல் - உலகல் செல்மொழிகல் - இல்தியல் செல்மொழிகல் - செல்மொழில் தல்திகல் - வரையறைகல் - வால் ல் செல்மொழில் தமில் தமிழில் தொல்மை - தமிழில் சிறல்க்க்கல் - தமில்ல்செல்மொழி ல் ல்கல் - தமில் செல்மொழி அறில்தேல்ல் - பல்திமால்கலைஞல் ல் தல் தல்கால அறிஞல்லல் வரை (அறிஞல்லல் அமைல்க்கல் - நில்வனல்கல் - இயல்கல்கல் தொடல்ல் யல்சிகல் - அறல்பேரால்டல்கல் - உலகல் தமில்ல்செல்மொழி மாநால், கோவை-2010)
அலீ - 6
(மாணவீ கீ அறி ${ }^{\circ}$ கெரீ வதீ ${ }^{\circ}$ மீ $^{\circ}$ - தேீ ${ }^{\circ}$ கான பீ தி ףீ ல) பல் டைய தமில் மரஷ்களைல்ல் சல் க அமைல்க்களைல்ல் வஷ்ற்ல்தல், தமில் மொழியஷ்் தனஊi்ல்வல்தைல்ல் செல்மொழி இயல்வ்களைல்ல் சல்க இலல்கியல்களஊ்் ல்ணைல்கொல் ல் வஷ்ா்ல்தல். சல்கல் பல் வல்களஊ்் பொல்மைல்தல்மையைல்ல் அவல்றில் சிறல்ஷ்ல்ல்களைல்ல் வஷ்ல்ல்தல்.
பாடீ :

1. ச.வே.ல்ம்ப்்மணஷ்ல் (ப.ஆ) - ல்ல்ல்தொகை, நல்றினை, ஐல்ல்ல்ல் ல், " அகநால் ல், கலில்தொகை, மணஷ்ாசகல்தில்கல், செல்னை இரல் டால் பதில்ல்-2011
2. ச.வே.வ்ல்ส்மணส்ல்
(ப.ஆ) -
ல்நால் ல்,
மணஸ்ாசகல்பதில்கல், செல்னை
இரல் டால் பதில்ல் -2011
3. ச.வே.ல்ய்வ்்மணள்ல் (ப.ஆ) - பல்ல்ல்ால்ல் (நெல்நல்வாடை) மணஸ்ாசகல்பதில்கல், செல்னை
இரல் டால் பதில்ல்-2011
4. தெ.பொ.மன்ால்சி ல்த்தரல்

- சல்க மொழி வரலால் நில்செல்சல் ஷ்ல்தக நிலையல்

ல் தல்பதில்ல் -2018
5. மணவை ல் ல் தபா - செல்மொழி உல்ல் ல் ல்ல் ல்

சீதை பதில்கல், செல்னை
ல் தல்பதில்ல்-2010
6. ச.வே.ல்ல்வส்மணब்ல்

சல்க இலல்கியல்
மணஸ்ாசகல்பதில்கல், செல்னை
இரல் டால் பதில்ல்-2011
7. ல் .வரதராசல்

Outcome Mapping

CO/ PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4	PSO5
$\operatorname{co1}$	3				3	3			3	3	3	3	3	3	2
$\operatorname{co2}$	3	3				3			3			3	2		
$\operatorname{co3}$		2	3		3	3					3			3	3
$\operatorname{co4}$	3		3			2				3	2	2	3		
\cos	3	2			2				2	3	2			3	2

Semester	19IENGC42: Part - II Language II English Through Literature IV: Short Story	L	T	P	C
	IV	3	$\mathbf{0}$	$\mathbf{0}$	3

LEARNING OBJECTIVE

By introducing the course, it is intended to:
LO1: Develop the communicative competence of learners in the English Language through training them in the skills of listening, speaking, reading, and writing
LO2: Enable the students to know about the origin and development of short story
LO3: Write objectively, avoiding vagueness, prejudice, and exaggeration
LO4: Enable the learner to function through the written mode of English language in all situations including classroom, library, laboratory etc
LO5: Discover an author's purpose, and draw conclusions about certain events, evaluating cause and effect, and understanding point of view

COURSE OUTCOMES

At the end of the course, the student will be able to:
CO1: Use more vocabularies while writing
CO2: Ensure about the history and development
CO3: Develop a flow in writing
CO4: Come up with new ideas while reading stories from different perspectives
CO5: Write in a style appropriate for communicative purposes

Unit I

1. O' Henry
2. Ken Liu

Grammar
Unit II

1. Flora Annie Steel
2. Oscar Wilde

Grammar

Unit III

1. R. K. Narayan
2. Mahasweta Devi

Grammar

> "The Gift of The Magi"
> "The Paper Menagerie"
> Synonyms and Antonyms

"Valiant Vicky"
"Happy Prince"
Words often confused

"The Martyr's Corner"
"Draupati"
Paragraph-Writing

Unit IV

1. Leo Tolstoy
2. Somerset Maugham Grammar

Unit V

1. Langston Hughes
2. Premchand Grammar
"How much Land Does a Man Need?"
"The Verger"
Letter-Writing
"On the Road"
"Bakthi Marg"
Precis-Writing

TEXT BOOKS

1. Srinivasa Iyengar, K.R.. Indian Writing in English. New Delhi: Sterling Pub., 1996.
2. Michael Swan, Practical English Usage, New Delhi: Oxford University Press, 2016. SUPPLEMENTARY READING:
3. Frank Robert Palmer,. Grammar: (by) Frank Palmer. New Delhi: Penguin Books, 1975.
4. Browns, Julie, ed., Ethnicity and the American Short Story, New York: Garland, 1997.
5. Patea, Viorica. Short Story Theories: A Twenty-First-Century Perspective. Amsterdam [etc.]: Rodopi, 2012.

OUTCOME MAPPING

CO/PO	PO												PSO					
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	2	3	4	5
CO1	3			3			3	3		3			3		3			3
CO2	2			3			3	3		3			3		3			3
CO3	3			2			2	2		2			2		2			2
CO4	3			3			3	3		3			3		3			3
CO5	2			2			2	2		2			2		2			2

Semester	19IHIC41.2: Part-I Language Basic Hindi-IV	L	T	P	C
			4	1	0

Learning Objectives:

* To learn the important poems of famous Hindi poets.
* To imbibe the knowledge of writing in Premchand stories.
* To understand the relation between poems and stories.
* To gain knowledge on stories of BeeshmaSahini

Unit - I: Introduction, Poem
.Kabeer - 1 To 10 DohasTulasi - 1 To 10 Dohas.

Unit - II:Rahim - 1 To 10 Dohas

Unit - III: Edgaah - Premchand. Madhuva -Jayashankar Prasad.

Unit - IV:stories,
Chief Ki Daavat - BeeshmaSahinl

Unit - V:7. HANUMAN JI ADHALATH ME - HARISHAKNA PARSAYE

Current Streams of Thought:The Faculty will impart the current developments in the subject during the semester to the students and this component will not be a part of Examinations.

Text Books

1PADHYA MANJARI - DR. T.NIRMALA \& DR.S.MOHANRajkamalPrakashan, New Delhi
2.premchand kipradhinikahaniya,rajkamalprakshan,new Delhi.7.
3.kahani:nayikahani: namvirsingh,RajkamalPrakashan, New Delhi.
4.bihari-ompraksh.vaniprakshan,newdelhi 110002.

Supplementary Reading

1. Nayikahani:prakrutiaurpaat:surendrachowdari.
2.Naveen ekanki , D.B.H.P. SABHA, madras17.
3.Bihari ki kavya sruti:jayapraksh.

Course Outcomes

At the end of the course, the student will be able to:
C01: Understand the concepts of Hindi poems.
CO2: Knowledge on stories of Premchand.
CO3: Describe the basic concepts of hindi stories.

CO4: Apply the concepts of writings of Jai sankar Prasad.
CO5: Understand the writing style of BeeshmaSahini.
Outcome Mapping

COs	PO 1	PO 2	PO	PO 4	PO 5	PO	PO 7	PO 8	PO 9	PO 10	PSO 1	PSO 2	PSO	PSO 4	PSO5
CO 1	-	3	3	2	2	3	2	3	3	3	3	3	-	-	-
CO 2	3	-	3	-	3	-	2	2	-	3	-	-	-	-	-
CO 3	3	3	-	-	2	3	-	2	3	-	-	-	2	-	-
CO 4	3	3	3	3	3	-	3	-	2	2	2	-	-	2	-
CO 5	-	-	3	3	3	3	3	2	2	2	2	-	-	-	3

TEXT BOOK

1. PadhyaManjari - Dr. T.Nirmala\&Dr.S.Mohan,RajkamalPrakashan, New Delhi.

Semester	19IFREC41: Language- I: Course -2	L	T	P	C
	French-IV	3	0	0	3

Learning Objective (LO):

L01 Draw a France map and name its regions and cites.
LO2 Fix an appointment
LO3 Draw a person physically and name its parts.
LO4 Talk about the qualities and defects of the person
LO5 Talk about their health problems

Course Outcomes (CO):

At the end of the course, the student will be able to:

CO1	Describe a country
CO2	Take an appointment with a doctor or with friends, etc.
CO3	Express in which part of the body they have pain.
CO4	Describe a person physically and mentally
CO5	Ask others about how they are feeling using expressions such as 'Qu'est-ce que tu as? Où est-ce que tu as mal?'

Unit I

Faire un bilan du sondage
Aborder quelqu'un (Parler de moyens de communication)

Unit II

Faire valoir son droit
Exprimer une opinion sur la vérité d'un fait.
Savoir-vivre en France

Unit III

Donner un conseil
Téléphoner /Prendre rendez-vous

Unit IV

Exposer un problème/ réagir
Parler du corps et des problèmes de santé

Unit V

Parler des qualités et des défauts des personnes
Demander / donner une explication
décrire une personne
Evaluez-vous

Text Book:

1. J. Girardet et J. Pecheur, (2012), Echo A1 - méthode de français, Langers, Paris

Supplementary Readings:

1. Marie-Noelle Cocton et Emilie Pommier, (2015), Saison A1 - méthode de français, Les Editions Didier, Paris.
2. Angels Campa, Claude Mestreit, Julio Murillo et Manuel Tost, (2001), FORUM Méthode de français, HACHETTE LIVRE, Paris.
3. Mauger Bleu, (2014), Le Cours de langue et de la civilisation française, - Méthode de français, Hachette, Paris
4. Michele Boulares et Jean-Louis Frerot, (1997), Grammmaire Prograssive du Français avec 400 exerices, CLE International, Paris.

Outcome Mapping:

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO							
$\mathbf{8}$	$\mathbf{P O}$	PO10	PSO1	PS	PS	PS	PS								
CO1	-	2	3	2	2	3	2	3	3	3	3	3	-	-	-
CO2	3	-	2	-	3	-	2	2	-	3	-	-	-	-	-
CO3	3	2	-	-	2	3	-	2	3	-	-	-	2	-	-
CO4	3	3	3	3	3	-	3	-	2	2	2	-	-	2	-
CO5	-	-	3	3	3	3	3	2	2	2	2	-	-	-	3

Semester	19IMATC43: Core - 6				
	Statics	L	T	P	C
		5	0	0	5

Learning Objective (LO):

L01 This course aims to provide basic skills and problem solving techniques in forces acting at a point, coplanar forces, moment of a set of concurrent forces, couples, reduction of coplanar system of forces, friction and equilibrium of strings and chains.

Course Outcomes (CO)

On successful completion of the course, the student will be able to:

CO1	Apply the fundamental concept of statics to a. demonstrate the application of vectors for the analysis of static equilibrium ; b. \quadanalyze static equilibrium to particles and rigid bodies and apply the principles of equilibrium for analyzing beams. CO2 Solve equations involving frictional, statistical, dynamical and limiting frictions.
CO3	Illustrate the mathematical aspects that provide the skills and problem solving in forces acting at a point, coplanar forces and equilibrium of strings and chains.

Unit-1:

Forces acting at a point, Resultant and components, Parallelogram of forces, Analytical expression for the resultant of two forces acting at a point, Triangle of forces, The polygon of forces, Lami's theorem, An extended form of the Parallelogram law of forces, Resolution of a force, Components of a force, Resultant of any number of forces acting at a point, Conditions of equilibrium of any number of forces acting upon a particle.

Unit-2:

Parallel forces and Moments, The resultant of two like and unlike parallel forces acting on a rigid body, Resultant of a number of parallel forces acting on a rigid body, Conditions of equilibrium of three coplanar parallel forces, Centre of two parallel forces, Moment of a force, Varignon's theorem of moments, Generalized theorem of moments.
Couples, Definition, Equilibrium of two couples, Equivalence of two couples, Couples in parallel planes, Representation of a couple by a vector, Resultant of a coplanar couples, Resultant of a couple and a force.

Unit-3:

Equilibrium of three forces acting on a rigid body, Rigid body subjected to any three forces, Three coplanar forces, Conditions of equilibrium, Procedure to be followed in solving any statical problem, Two trigonometrical theorems, Some artifices, Problems on parallel forces.

Unit-4:

Coplanar forces, Reduction of coplanar forces in general, Reduction of any number of coplanar forces, Conditions and alternative conditions for a system of forces to reduce to a single force or to a couple, Change of the base-point, Equation to the line of action of the resultant, Equation to the line of action of the resultant, General conditions of equilibrium.

Unit-5:

Friction, Statical, Dynamical and Limiting frictions, Laws of friction, Coefficient of friction, Angle of friction, Cone of friction, Numerical values, Equilibrium of a particle on a rough inclined plane, Equilibrium of a body on a rough inclined plane.

Text Book:

Venkataraman M.K., (1986), A Text Book of STATICS, Agasthiar Book Depot, Trichy.

Unit I	-	Chapters 2 all sections.
Unit II	-	Chapter 3 Sections 1 to 13 and Chapter 4 all sections.
Unit III	-	Chapter 5 Sections 1 to 7.
Unit IV	-	Chapter 6 Sections 1 to 13.
Unit V	-	Chapter 7 Sections 1 to 13.

Supplementary Reading:

1. Varma R.S., Text book on STATICS, Pothishala Pvt. Ltd., Allahabad.
2. Dharmapadam A.V., (1973), STATICS, S.Viswanathan Printers \& Publishers Pvt. Ltd., Chennai.

Outcome Mapping:

$\begin{aligned} & \mathrm{CO} / \\ & \mathrm{PO} \end{aligned}$	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	3						3	3	3	3	3
CO2	3	3	3	3						3	3	3	3	3
CO3	3	3	3	3						3	3	3	3	3

Semester	19IMATC44: Core - 7	L	T	P	C
	IV	Fourier Series and Fourier Transform	5	0	0

Learning Objective (LO):

LO1	$\begin{array}{l}\text { Introduce the Fourier series and its application and the concepts of Fourier } \\ \text { transforms. }\end{array}$

Course Outcomes (CO)

On successful completion of the course, the student will be able to:

CO1 Find the Fourier series representation of a function of one variable.
CO2 Find the solution of the wave, diffusion and Laplace equations using the Fourier series.

CO3 Demonstrate the use of Fourier Transform to connect the time domain and frequency domain.

Fourier Series:

Unit-1:

Introduction, Dirichlet conditions, Euler's Formulae for Fourier Series, Theorem for the convergence of Fourier series, Fourier Series for functions of period 2π.Examples.

Unit-2:

Change of Interval -Fourier Series for functions of period 21, Dirichlet's conditions, Examples. Fourier Series of a function with its periodic extension.
Unit-3:
Half Range Fourier Series: Construction of Half range Sine Series, Construction of Half range Cosine Series. Examples.

Fourier Transform:

Unit-4:

Fourier Integral Theorem, Fourier sine and cosine integrals, Complex form of Fourier Integral, Inversion formula for complex Fourier transform, Properties of Fourier Transform: Linearity, Shifting, Change of scale, Modulation, Fourier Transform of Derivatives Examples.

Unit-5:

Theorem Fourier Cosine \& Sine Transforms and their properties, Parseval's Identity for Fourier Transform, Convolution Theorem for Fourier Transform, Examples.

Text Books:

1. Dr. Venkataraman M. K. and Manorama Sridhar, (2001), Calculus and Fourier Series, The National Publishing Company, Chennai.

Unit- I, II, III: Chapter 1
2. Dr. Vittal P. R., (2006), Differential equations, Fourier and Laplace Transforms, Probability, Margham Publications, Chennai.

Unit- IV \& V: Chapter 8

Supplementary Reading:

1. Narayanan S. and Manicavachagom Pillay T.K., (2008), Calculus Volume-III, S.Viswanathan Printers \& Publishers Pvt. Ltd., Chennai.
2. Venkataraman M.K., (1992), Engineering Mathematics-Part B, National Publishing Company, Chennai.
3. Dr. Grewal B. S., (2014), Higher Engineering Mathematics, $43^{\text {rd }}$ Edition, Khanna Publishers, New Delhi.
4. Vairamanickam K., Nirmala P. Ratchagar and Tamilselvan S., (2011), Engineering Mathematics - II, Scitech Publications (India) Pvt. Ltd., Chennai.
5. Vairamanickam K., Nirmala P. Ratchagar and Tamilselvan S., (2012), Transforms and Partial Differential Equations, Scitech Publications (India) Pvt. Ltd., Chennai.

Outcome Mapping:

| CO 1 |
| :--- | ---: | ---: | ---: | ---: | :--- | :--- | :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| PO | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 |
| ---: | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| PO10 | PSO1 | PSO2 | PSO3 | PSO4 | | | |
| C01 | 3 | 3 | 3 | 3 | | | |
| | | | 3 | 3 | 3 | 3 | 3 |
| C02 | 3 | 3 | 3 | 3 | | | |
| | | 3 | 3 | 3 | 3 | 3 | |
| C03 | 3 | 3 | 3 | 3 | | | |
| | | 3 | 3 | 3 | 3 | 3 | |

Semester	19ISTAA02: Allied	L	T	P	C
	Mathematical Statistics - II	4	0	0	4

Learning Objective (LO):

LO1	The objective is to train students in some concepts in mathematical statistics.
LO2	The theory of sample moments, significant test, sampling theory and analysis of variance are introduced. Practical problems are solved.
LO3	

Course Outcomes (CO)
On successful completion of the course, the students will be able to:

CO1	Gains working knowledge related to the problems of theoretical statistics.
CO2	Apply the fundamental concept of statistical methods to solve some real life problems.
CO3	Gains a basic knowledge for study advanced courses in this area.

Unit-1: Sample Moments and their Functions

The notion of a sample- The notion of a statistic - the distribution of the arithmetic mean of independent normally distributed random variables - The x2 distribution - The distribution of the statistic (X, S) -Student's t-distribution
Unit-2: Sample Moments and their Function (Contd...)
Fisher's Z-Distribution - The distribution of X for some non-normal populations - The distribution of sample moments and sample correlation coefficients of a two-dimensional normal population - The distribution of regression coefficients - Limit distributions of sample moments.

Unit-3: Significance Tests

The concept of a statistical test - Parametric tests for small samples - Parametric tests for small samples - Parametric tests for large samples - The x^{2} test - Independence tests by contingency tables.

Unit-4: Theory of sampling

Preliminary notions - Consistent estimates - Unbiased estimates - The sufficiency of an estimate - The efficiency of an estimate.

Unit-5: Analysis of variance

One-way classification - Multiple classification - A modified regression problem.

Text Book:

Marek Fisz, (1963), Probability Theory and Mathematical Statistics, Third Edition, John Wiley \& Sons, Inc.,.
Unit - \quad Chapter 9: Sections 9.1 to 9.6.
Unit - II Chapter 9: Sections 9.7 to 9.11.
Unit - III Chapter 12: Sections 12.1 to 12.4 \& 12.7.
Unit - IV Chapter 13: Sections 13.1 to 13.5.
Unit - V Chapter 15: Sections 15.1 to 15.3 .

Supplementary Reading:

1. Cramer H., (1970), Random variables and probability distributions, University Press, Cambridge.
2. Cramer H., (1999), Mathematical methods in Statistics, Princeton University Press, Princeton.
3. Samuel S. Wilks, (2018), Mathematical Statistics, John Wiley \& Sons, Read Books Ltd.

Outcome Mapping:

$\begin{aligned} & \mathrm{CO} / 1 \\ & \mathrm{PO} \end{aligned}$	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
CO1	3	2	3	2						3	2	3	2	3
CO2	2	3	2	2						2	3	2	2	3
CO3	2	3	2	2						2	2	3	2	2

Semester	19IMATC51: Core - 8 Real Analysis - I	L	T	P	C
V		5	0	0	5

Learning Objective (LO):

LO1 \quad To understand various limiting behavior of sequences and series to explore the various limiting processes viz.continuity, uniform continuity, differentiability and integrability and to enhance the mathematical maturity and to work comfortably with concepts.

Course Outcomes (CO)

Students will be introduced to and have knowledge of many mathematical concepts

CO1	examples and counter examples
CO2	proof techniques
CO3	problem solving
	studied in real analysis such as
	• Real Valued Functions
	• Convergence Sequence
	• Cauchy Sequence
	- Series of Real Numbers

Unit-1: Functions \& Sequences

Functions - real valued functions - equivalence - countability and real numbers - least upper bound - definition of sequence and subsequence - limit of a sequence - convergent sequence.
Unit-2: Sequences [Contd...]
Divergent sequences - Bounded sequences - Monotone sequence - Operations on convergent sequences - Operations on divergent sequences - Limit superior and Limit inferior - Cauchy sequences

Unit-3: Series of Real Numbers

Convergence and Divergence - Series with non negative terms - Alternating series conditional convergence and Absolute convergence - Test for Absolute convergence.
Unit-4: Series of Real Numbers [Contd...], Limits and Metric Spaces
Series whose terms form a non increasing sequence - The class l2-Limit of a function on the real line - Metric spaces - Limits in Metric spaces.
Unit-5: Continuous Functions on Metric Spaces
Functions Continuous at a point on the real line - Reformulation - Functions Continuous on a Metric Spaces - Open Sets - Closed Sets.

Text Book:

Goldberg R., (2000), Methods of Real Analysis, Oxford \& IBH Publishing Co., New Delhi.
Unit - I Chapter 1 Sections 1.4 to 1.7, 2.1 to 2.3
Unit - II Chapter 2 Sections 2.4 to 2.10
Unit - III Chapter 3 Sections 3.1 to 3.4 and 3.6
Unit - IV Chapter 3 Sections 3.7, 3.10, 4.1 to 4.3
Unit - V Chapter 5 Sections 5.1 to 5.5

Supplementary Reading:

1. Tom M.Apostol, (1974), Mathematical Analysis, $2^{\text {nd }}$ Edition, Addison-Wesley, New York.
2. Bartle. R.G. and Shebert, (1976), Real Analysis, John Wiley and Sons Inc., New York.
3. Malik, S.C. and Savita Arora, (1991), Mathematical Analysis, Wiley Eastern limited, New Delhi.
4. Sanjay Arora and Bansi Lal, (1991), Introduction to Real Analysis, Satya Prakashan, New Delhi.

Outcome Mapping:

| CO 1 |
| :--- | ---: | ---: | ---: | ---: | :--- | :--- | :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| PO | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 |
| ---: | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| PO10 | PSO1 | PSO2 | PSO3 | PSO4 | | | |
| C01 | 3 | 3 | 3 | 3 | | | |
| | | 3 | 3 | 3 | 3 | 3 | |
| C02 | 3 | 3 | 3 | 3 | | | |
| | | | 3 | 3 | 3 | 3 | 3 |
| C03 | 3 | 3 | 3 | 3 | | | |
| | | 3 | 3 | 3 | 3 | 3 | |

Semester	19IMATC52: Core - 9 Differential Equations and Applications	L	T	P	C
V		5	0	0	5

Learning Objective (LO):

LO1	This course aims to provide logical skills in the formation of differential equations, to expose to different techniques of finding solutions to these equations and in addition stress is laid on the application of these equations in geometrical and physical problems.
LO2	It also aims to provide logical skills in the formation and solutions techniques of partial differential equations.

Course Outcomes (CO)

On successful completion of the course, the student will be able to:

CO1	Explain the fundamental concepts of ordinary differential equations and their role in modern mathematics.
CO2	Use ordinary differential equations to model simple electric circuits, population growth and mass-spring systems, as well as other applications.
CO3	Demonstrate accurate and efficient use of the Laplace transforms and their applications in the solution of ordinary differential equations.

CO4 Apply problem-solving using concepts and techniques from ordinary differential equations and Laplace transforms relevant to diverse situations in physics, engineering, financial mathematics and in other mathematical contexts.

Unit-1: Ordinary Differential Equations

Bernoulli Equation - Exact Differential Equations - Equations Reducible to Exact Equations Equations of First order and Higher degree: Equations solvable for p , Equation solvable for x and Equations Solvable for y - Clairaut's Equation.

Unit-2: Ordinary Differential Equations [Contd...]

Method of Variation of Parameters - 2nd order Differential Equations with Constant Coefficients for finding the P.I's of the form $e^{a x} V$, where V is $\sin (m x)$ or $\cos (m x)$ and x^{n} - Equations reducible to Linear equations with constant coefficients - Cauchy's homogeneous Linear Equations Legendre's Linear Equations - Linear Dependence of Solutions - Simultaneous Equations with Constant Coefficients.

Unit-3: Laplace Transform

Laplace Transform, Inverse Laplace transform, Application to the first and second order linear differential equations and Simultaneous linear differential equations, Simple problems.

Unit-4: Partial Differential Equations

Partial differential equations: Formation of P.D.E. by eliminating arbitrary constants and arbitrary functions, Complete, Singular and General integral. Solution of equations of standard types: $f(p, q)=0, f(x, p, q)=0, f(y, p, q)=0, f(z, p, q)=0, f(x, p)=f(y, q)$, and Clairaut's form. Lagrange's equation $P p+Q q=R$, Simple problems.

Unit-5: Series Solution

Series solutions of first order equations, Second order linear equations, Ordinary points, Regular Singular Points and Legendre polynomials, Properties of Legendre polynomials and Bessel functions and their differential equations.

Text Books:

1. Vittal P.R., (2016), Differential Equations, Fourier and Laplace Transforms, Probability, Margham Publications, Chennai, Reprint.
Unit I - Chapter 2.
Unit II - Chapter 3.
Unit III - Chapter 7.
Unit IV - Chapter 5.
2. George F. Simmons, (2003), Differential equations with applications and historical notes, Second Edition, Tata McGraw Hill Pub. Co., New Delhi.
Unit V - Chapter 5 Sections 26 - 29
Chapter 8 Sections 44, 45 and 46
(except Gamma function)

Supplementary Reading:

1. Raisinghania M.D. and Aggarwal R.S., (1983), Ordinary and partial Differential equations, Sultan Chand and Company Ltd.
2. Raisinghania M.D., (2006), Ordinary and Partial Differntial Equations, S. Chand.
3. Grewal B.S., (2002), Higher Engineering Mathematics, Khanna Publishers, New Delhi.

Outcome Mapping:

CO 1 PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	3						3	3	3	3	3
C02	3	3	3	3						3	3	3	3	3
C03	3	3	3	3						3	3	3	3	3

Semester	19IMATC53: Core - 10 Dynamics	L	T	P	C
V		5	0	0	5

Learning Objective (LO):

LO1	This course aims to provide basic skills and problem solving techniques in kinematics of point and Newton's laws of motion.
LO2	Projectiles and simple harmonic motions are studied in detail. Problems in moment of inertia are also considered.
LO3	The course enhances the problem solving skill of the student.

Course Outcomes (CO)

On successful completion of the course, the student will be able to:

CO1	Apply the fundamental concept of dynamics to a. demonstrate their understanding of the principles of kinematics and kinetics of particles and planar rigid bodies;
b. analyze planar rigid body kinematics and kinetics.	

Unit-1:

Kinematics, Speed, Displacement, Velocity, Composition of velocities; Parallelogram law , Resolution of Velocities, Components of a velocity along two given directions, Triangle of velocities, Theorem, Polygon of velocities,Theorem , Resultant of several simultaneous coplanar velocities of a particle, Relative velocity, Angular velocity, Angular velocity of a particle, Relative angular velocity, Change of velocity, Acceleration, Variable acceleration, Parallelogram law of accelerations, Relative acceleration, Motion in a straight line under uniform acceleration, Motion in a straight line with variable acceleration, Space-times graph, Velocity-time curve, Velocity-space graph, To derive graphically the equations of motion of a particle under constant acceleration, Acceleration of falling bodies, Vertical motion under gravity, Bodies freely falling downward, Motion of a particle down a smooth inclined plane, Theorem, Lines of quickest descent, Theorem.

Unit-2:

The laws of motion: Momentum, Newton's laws of motion, Composition of forces: Conservation of linear momentum, Force of friction, Presssure of a body resting on a moving horizontal plane, Motion of connected particles, Tension in the inextensible string, Atwood's machine, Work, Tension in an elastic string, Work done in stretching an elastic string, Power, Energy, Kinetic Energy, The Principle of work-Energy, Potential Energy, The principle of conservation of energy, Verification of the principle of energy in the case of a freely falling body, Velocity and acceleration of the centre of interia of a system of particles.

Unit-3:

Projectiles: Two fundamental principles, Path of a projectile, Characteristics of the motion of a projectile, The horizontal range, The velocity at time t , Range on an inclined plane.

Unit-4:

Simple harmonic motion: Simple harmonic motion in a straight line, General solution of the S.H.M. equation, Geometrical representation of a simple harmonic motion, Change of origin, Composition of two simple harmonic motions of the same period and in the same straight line, Composition of two simple harmonic motions of the same period in two perpendicular directions, Force necessary to produce simple harmonic motion, Motion of a particle suspended by a spiral spring, Horizontal oscillations of a particle tied to an elastic spring.

Unit-5:

Moment of Inertia: The definition of parallel axes, The theorem of perpendicular axes, Moments of inertia in some particular cases, Dr. Routh's rule, Equimomential systems.

Text Book:

Venkataraman M.K., (1985), Dynamics, Agasthiar Book Depot, Trichy.
Unit I - Chapter 3 all sections
Unit II - Chapter 4 all sections
Unit III - Chapter 6 sections 1 to 15
Unit IV - Chapter 10 sections 1 to 10
Unit V - Chapter 12 all sections

Supplementary Reading:

1. Duraipandian P. and Laxmi Duraipandian, (1979), Mechanics, S. Chand and Co., New Delhi.
2. Dharmapadam A.V., (1996), Dynamics, S. Viswanathan (Printers and Publishers) Pvt. Ltd., Chennai.

Outcome Mapping:

Semester	19IMATC54: Core - 11				
	Astronomy	L	T	P	C
		5	0	0	5

Learning Objective (LO):

L01 The prime aim of this paper is to enrich the knowledge of movements of celestial objects using mathematical concepts.

Course Outcomes (CO)

On successful completion of the course, the student will be able to understand

CO1	the concepts of Celestial movements,
CO2	application of Spherical Trignomentry,
CO3	application of three dimensional geometry.

Unit-1: Spherical Trigonometry - Spherical Triangle - The fundamental formulae of Spherical Trigonometry, the sine, cosine, four parts and Napier formulae (without proof).
The Celestial Sphere: Celestial coordinators - Diurnal motion - Rising and setting of a star Sidereal time - Circumpolar star - Morning and Evening stars - Twilight - Earth - Length of the day.
Unit-2: Refraction - Tangent Formula - Cassini's formula - Effects of Refraction - Geocentric Parallax - Effects of Geocentric Parallax - Heliocentric Parallax - Effects of Heliocentric Parallax - Aberration - Its Effects.

Unit-3: Kepler's Laws - Verification of Kepler's Laws - True anomaly, Mean Anomaly - Eccentric Anomaly, Relation between them - Time - Equation of Time - Seasons - Converson of Time.
Unit-4: Moon - Sidereal Month, Lunation and Relation between them - Phases of the Moon Lunar Libration - Surface of the Moon - Metonic Cycle - Tides - Eclipses - Shadow Cone Minimum and Maximum number of Eclipses.

Unit-5: Planetary Phenomena - Bodes law - Elongation - Sidereal Period, Synodic period and the relation between them - Phase - Stationary Points - Solar System - Stellar Universe - A brief history of Astronomy - Astronomical Instruments.

Text Book:

Kumaravelu. S and Susheela Kumaravelu, (2005), Astronomy for degree classes, Rainbow Printers, Nagarcoil.

Supplementary Reading:

1. Ramachandran. G.V., A Text Book of Astronomy,(1951), St. Josephs Industrial School Press, Trichy.
2.George.O.Abell, Exploration of the Universe, Brooks/Cole; 7th Revised edition Second Edition.

Outcome Mapping:

| CO 1 |
| :--- | ---: | ---: | ---: | ---: | :--- | :--- | :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| PO | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 |
| ---: | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| PO10 | PSO1 | PSO2 | PSO3 | PSO4 | | | |
| C01 | 3 | 3 | 3 | 3 | | | |
| | | 3 | 3 | 3 | 3 | 3 | |
| C02 | 3 | 3 | 3 | 3 | | | |
| | | | 3 | 3 | 3 | 3 | 3 |
| C03 | 3 | 3 | 3 | 3 | | | |
| | | 3 | 3 | 3 | 3 | 3 | |

Semester	19IMATC55: Core - 12 Numerical Methods	L	T	P	C
V		5	0	0	5

Learning Objective (LO):

LO1	The roll of numerical analysis is to develop and analyze the numerical techniques.
LO2	In this paper, different methods for finding the roots of algebraic and transcendental equations, solutions of simultaneous equations, solutions of differential equations are concentrated.
LO3	Numerical solutions of partial differential equations such as Elliptic, Poisson and Laplace equations are discussed. Numerical differentiation and integration are also evaluated.

Course Outcomes (CO)

On successful completion of the course, the students will be able to:

CO1	explain finite difference operator, solve the first and second order linear difference equations with constant coefficients and non homogenous equations of the same kind.
CO2	interpolate using Newton's and Legrangian formulae, do numerical differentiation and integration, find solutions to algebraic and transcendental equation using bisection method ,approximation method, regula falsi method, Newton Raphson method and Bairstow method.
CO3	solve ODE and PDE using the methods mentionable in the syllabus.

Unit-1: Finite Differences and Difference Equations

Finite difference operator: E-Solution of first and second order linear difference equations with constant coefficients, Non-homogeneous linear difference equations with constant coefficients.

Unit-2: Interpolation, Numerical Differentiation and Integration

Interpolation, Gregory - Newton forward and backward interpolation formula, Newton's divided difference formula, Lagrange's interpolation formula for unequal intervals, Gauss interpolation formula, Numerical differentiation, Numerical Integration, Trapezoidal rule.

Unit-3: Numerical solution of algebraic and transcendental equations

Numerical solution of algebraic and transcendental equations, Bolzano's bisection method, Successive approximation method, Regula falsi method, Newton-Raphson method, Bairstow method. Numerical solution of simultaneous linear algebraic equations, Gauss elimination method, Gauss-Jordan elimination method, Gauss - Seidel iteration method, Crout's method.
Unit-4: Numerical solution of ordinary differential equation
Numerical solution of ordinary differential equations of first and second order simultaneous equations, Taylor series method, Euler's method, Improved Euler's method, Modified Euler's method, Runge-Kutta Method of second and fourth order, Milne's Predictor - corrector method - Picard's method.

Unit-5: Numerical solution of partial differential equation

Numerical solution of partial differential equations, Elliptic equation, Poisson's equation, Laplace equation, Liebmann's iterative method, Relaxation Method, Hyperbolic equations.

Text Book:

Venkataraman M.K., (2001), Numerical methods in Science and Engineering, National Publishing Co., Chennai.
Unit I - Chapter V and X.
Unit II - Chapters VI and IX.
Unit III - Chapters III and IV.
Unit IV - Chapter XI.
Unit V - Chapter XII.

Supplementary Reading:

1. Sastry S.S., (1998), Introductory Methods of Numerical Analysis, $3^{\text {rd }}$ Edition, Prentice Hall of India Pvt. Ltd., New Delhi.
2. Sankara Rao K.,(2001), Numerical Methods for Scientists and Engineers, Second Edition, Prentice Hall of India Pvt. Ltd., New Delhi.

Outcome Mapping:

CO 1 PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
C01	3	3	3	3						3	3	3	3	3
C02	3	3	3	3						3	3	3	3	3

Semester	19IMATC56: Core - 13 Extension Activities	L	T	P	C
	V		0	0	2

Extension activities are the activities that provide a link between the University and the community such as lab-to-land, literacy, population education, and health awareness programmes. These are integrated within the curricula with a view to sensitise the students about Institutional Social Responsibility (ISR).

Semester	19IMATE57: Elective	L	T	P	C
	V Analytical Geometry 3D	3	0	0	3

Learning Objective (LO):

L01 This paper aims to understand the fundamental concepts of Analytical Geometry in Three Dimension.

Course Outcomes (CO)

On successful completion of the course, the students will able to:

CO1 explain fundamental concepts of analytical geometry in 3D, about direction cosines of a line and the plane, equation and plane.
CO2 The straight line, symmetric form of equation of a line, equation of a line passing

Unit-1: Rectangular Cartesian Co-ordinates: Direction Cosines of a line.
Unit-2: The Plane.
Unit-3: The Straight Line.
Unit-4: The Sphere.
Unit-5: The Central Quadrics and Cone.

Text Book:

Manickavachagom Pillay T.K. and Natarajan T., (2009), Analytical Geometry, (Part-II - Three Dimensions), S. Viswanathan Printers \& Publishers Pvt. Ltd., Chennai.
Unit - I: \quad Chapter 1 (Fully)
Unit-II: \quad Chapter 2 (Fully)
Unit- III: \quad Chapter 3 (Fully)
Unit- IV: Chapter 4 (Fully)
Unit- V: \quad Chapter 5 (Fully)

Supplementary Reading:

1..Duraipandian P and Laxmi Duraipandian, (1975), Analytical Geometry-3D, Emerald Publishers, Chennai.
2. Thomas G.B. and .Finney R.L, (1998), Calculus and Analytic Geometry, $9^{\text {th }}$ Edition, Addison Wesley, Mass, (Indian Print).
3. Vittal P.R., (2003), Coordinate Geometry, Margham Publishers, Chennai.

Outcome Mapping:

| CO 1 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| PO | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 |
| ---: | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| PO10 | PSO1 | PSO2 | PSO3 | PSO4 | | | |
| C02 | 3 | 3 | 3 | 3 | | | |
| 3 | 3 | 3 | 3 | | | | |
| 3 | | 3 | 3 | 3 | 3 | | |
| C03 | 3 | 3 | 3 | 3 | | | |
| | | | 3 | 3 | 3 | 3 | 3 |

19IXXXV50	VALUE EDUCATION	L	T	P	C
		2			2

LEARNING OBJECTIVES

LO1.This paper focuses on Value Educations among the young minds.
LO2.To nurture the rational ethics among the students community.
LO3.To understand the importance of Human Freedom as responsibility.
LO4.To taught about Lifestyle, Equality and Fraternity.
LO5.To include the ethical values to the students and develop the ethical culture.

COURSE OUTCOMES

At the end of the course, the student will be able to
C01.The students may lead a life in ethical way and also able to take ethical based rational decision in their life.

CO2.Better understanding of moral consciousness of day to day life.
UNIT - I
Value education - Meaning - Nature and Purpose
Importance of Value Education
UNIT - II
Basic Features of Rational Ethics- Moral consciousness and conscience
Love - the ultimate moral norm
UNIT - III
Morality and Freedom - Human Freedom and Moral Responsibility- God, Religion and Morality Sanction for Moral Life.

UNIT - IV
Social Ethics: Value of life and human beings
Liberty. Equality and Fraternity
UNIT - V
Ethical Issues Today: Religious Ethics- Family Ethics- Political Ethics - Business Ethics- Ethics and Culture.

TEXT BOOKS

1. Heroled Titus, Ethics for Today. New Delhi: Eurasia Publishing House, 1964.
2. Madan, G.R., Indian Social Problems, New Delhi: Allied Publishers, 1966.

SUPPLEMENTARY READINGS

1. Sharma, R.N., Principles of Sociology, Meerut: Educational Publishers, 1968
2. Willam, K., Ethics , Delhi: Prentice Hall of India, 1999
3. Arumugam, N., Value based Education, Madras: Saras, 2012

Outcome Mapping																		
CO/PO	PO $\mathbf{1}$	PO $\mathbf{2}$	PO $\mathbf{3}$	PO $\mathbf{4}$	PO $\mathbf{5}$	PO $\mathbf{6}$	PO $\mathbf{7}$	PO $\mathbf{8}$	PO $\mathbf{9}$	PO $\mathbf{1 0}$	PO $\mathbf{1 1}$	PO $\mathbf{1 2}$	PSO $\mathbf{1}$	PSO $\mathbf{2}$	PSO $\mathbf{3}$	PSO $\mathbf{4}$	PSO $\mathbf{5}$	PSO $\mathbf{6}$
CO1	3					1					2				1			2
CO2		3		1		1		2		2		2		1				
CO3		2			2					1				2			2	
CO4	1		2			1						1			2		3	
CO5	3			3			2		1		3		3		2			2

Semester	19IMATC61: Core - 14 Real Analysis - II	L	T	P	C
VI		5	0	0	5

Learning Objective (LO):

LO1	To understand Integration process of Riemann to develop the understanding of point wise and uniform convergence of sequence and series of functions.
LO2	To enhance the mathematical maturity and to work comfortably with concepts.

Course Outcomes (CO)

On successful completion of the course, the students will be able to:

CO1	Describe fundamental properties of matric spaces that lead to the formal development of matric spaces.
CO2	Demonstrate an understanding of a set of measure zero and how that are used in Riemann integral.
CO3	Differentiate point wise convergence and uniform convergence of a sequence of functions and series of functions.

Unit-1: Connectedness, Completeness

Open Sets - Connected Sets - Bounded Sets and Totally Bounded Sets - Complete Metric Spaces.

Unit-2: Compactness

Compact Metric Space - Continuous Functions on Compact Metric Spaces - Continuity of Inverse Functions - Uniform Continuity.

Unit-3: Riemann Integration

Sets of measure zero - Definition Riemann Integral - Properties of Riemann Integral Derivatives.
Unit-4: Riemann Integration [Contd...]
Rolle's Theorem - The law of mean - Fundamental theorems of calculus - Taylor's theorem.
Unit-5: Sequences and Series of Functions
Pointwise convergence of sequences of functions - Uniform convergence of sequences of functions - consequences of uniform convergence - Convergence and uniform convergence of series of functions.

Text Book:

Goldberg R., (1970), Methods of Real Analysis, Oxford \& IBH Publishing Co., New Delhi.
Unit - I Ch. 6.1 to 6.4
Unit - II Ch. 6.5 to 6.8
Unit - III Ch. 7.1, 7.2 7.4, 7.5
Unit - IV Ch. 7.6 to 7.8 and 8.5
Unit - V Ch. 9.1 to 9.4

Supplementary Reading:

1. Tom M.Apostol, (1974), Mathematical Analysis, $2^{\text {nd }}$ Edition, Addison-Wesley Publishing Company Inc., New York.
2. Bartle.R.G. and Shebert, (1976), Real Analysis, John Wiley and Sons Inc., New York.
3. Malik, S.C. and Savita Arora, (1991), Mathematical Analysis, Wiley Eastern Limited, New Delhi.
4. Sanjay Arora and Bansi Lal, (1991), Introduction to Real Analysis, Satya Prakashan, New Delhi.

Outcome Mapping:

| CO 1 |
| :--- | ---: | ---: | ---: | ---: | :--- | :--- | :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| PO | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 |
| ---: | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| PO10 | PSO1 | PSO2 | PSO3 | PSO4 | | | |
| C01 | 3 | 3 | 3 | 3 | | | |
| | | | 3 | 3 | 3 | 3 | 3 |
| C02 | 3 | 3 | 3 | 3 | | | |
| | | | 3 | 3 | 3 | 3 | 3 |
| C03 | 3 | 3 | 3 | 3 | | | |
| | | 3 | 3 | 3 | 3 | 3 | |

Semester	19IMATC62: Core - 15 Complex Analysis	L	T	P	C
VI		5	0	0	5

Learning Objective (LO):

LO1	This paper is an introduction to the theory of analytic functions of one complex variable.
LO2	Properties of analytic functions, results on linear transformations, problems on complex integration are discussed.
LO3	Calculus of residues are also studied.

Course Outcomes (CO)

Students will be introduced to and have knowledge of many mathematical concepts

CO1	examples and counter examples
CO2	proof techniques
CO3	problem solving studied in complex analysis such as Analytic function, Some mappings, Complex integration, Power series.

Unit-1:

Analytic function: Introduction, Laws of algebra, Functions of a complex variable, Continuous functions, Analytic functions, Cauchy-Riemann equations.

Unit-2:

Conformal mapping, Bilinear transformation, Special bilinear transformation, Stereo graphical projection.

Unit-3:

Integration in the complex plane, Complex integration, Cauchy's integral theorem, Extension of Cauchy's integral theorem, Cauchy's integral formula, Derivatives of analytic functions, Morera's theorem, Cauchy's inequality, Liouville's theorem, Fundamental theorem of algebra, Maximum modulus theorem.

Unit-4:

Expansion of functions in power series, Taylor's theorem, Laurent's theorem, Singular points; Pole, essential singularity and removable singularity, Weirstrass theorem, Meromorphic function, Argument principle, Rouche's theorem.

Unit-5:

Residues-Evaluation of definite integrals, Evaluation of residue at a pole, Residue theorem, Evaluation of definite integrals, Jordan's lemma.

Text Book:

Narayanan S. and Manicavachagom Pillay T.K., Complex Analysis, S. Viswanathan (Printers and Publishers) Pvt. Ltd., Chennai - 31.
Unit I - Chapter 1 and 2 all sections
Unit II - Chapter 3 all sections
Unit III- Chapter 4 all sections
Unit IV- Chapter 5 all sections
Unit V - Chapter 6 all sections

Supplementary Reading:

1. Conway J.B., (1973), Functions of one Complex Variable, Springer-Verlag, New Delhi.
2. Ponnusamy S., (1995), Foundations of Complex Analysis, Narosa Publishing House, New Delhi.
3. Ahlfors L.V., (1979), Complex Analysis, McGraw Hill, New Delhi.

Outcome Mapping:

$\begin{aligned} & \mathrm{CO} / \\ & \mathrm{PO} \end{aligned}$	P01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	3						3	3	3	3	3
CO2	3	3	3	3						3	3	3	3	3
CO3	3	3	3	3						3	3	3	3	3

Semester	19IMATC63: Core - 16				
VI	Algebra	L	T	P	C
		5	0	0	5

Learning Objective (LO):

LO1	Modern algebra plays a major role in other branches of Mathematics.
LO2	Properties of analytic functions, results on linear transformations, problems on complex integration are discussed.
LO3	Homomorphism of groups and rings, automorphisms of groups are discussed.
LO4	The properties of rings, ideals, quotient rings and Euclidean rings are discussed.

Course Outcomes (CO)

On successful completion of the course, the students will be able to:

CO1	explain the fundamental concepts of algebra such as groups, subgroups, quotient groups, homomorphism, automorphisms and using these ideals, Cayley's theorem and permutation groups.
$\mathbf{C O 2}$	demonstrate accurate and efficient use of a ring with examples, some classes of a ring, homomorphism of a ring, ideals, quotient rings and integral domain.
$\mathbf{C O 3}$	solve problems in the above related topic.

Unit-1: Group Theory

Definition and examples of groups, Some preliminary Lemmas, Subgroups.

Unit-2: Group Theory (continued)

A Counting principle, Normal subgroups and Quotient groups, Homomorphisms.

Unit-3: Group Theory (continued)

Automorphisms, Cayley's theorem, Permutation groups.

Unit-4: Ring Theory

Definition and examples of rings, Some special classes of rings, Homomorphisms, Ideals and quotient rings.
Unit-5: Ring Theory (continued):
More on ideals and quotient rings, The field of quotients of an integral domain.

Text Book:

I.N. Herstein, (1999), Topics in Algebra, John Wiley and Sons, New York.

Unit I - Chapter 2: Sections 1 to 4.
Unit II- Chapter 2: Sections 5 to. 7 .
Unit III- Chapter 2: Sections 8 to10.
Unit IV- Chapter 3: Sections 1 to 4.
Unit V- Chapter 3: Sections 5 and 6.

Supplementary Reading:

1. Balakrishnan R. and Ramabhadharan N., (1994), A textbook of Modern Algebra, Second Revised Edition, Vikas Publishing House, New Delhi.
2. Fraleigh J.B., (1999), A first course in Abstract Algebra, Fifth Edition, Addison-Wesley, New Delhi.

Outcome Mapping:

| CO 1 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| PO | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 |
| ---: | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| PO10 | PSO1 | PSO2 | PSO3 | PSO4 | | | |
| C01 | 3 | 3 | 3 | 3 | | | |
| | | | 3 | 3 | 3 | 3 | 3 |
| C02 | 3 | 3 | 3 | 3 | | | |
| | | 3 | 3 | 3 | 3 | 3 | |
| C03 | 3 | 3 | 3 | 3 | | | |
| | | 3 | 3 | 3 | 3 | 3 | |

Semester	19IMATC64: Core - 17				
VI	Discrete Mathematics	L	T	P	C
		5	0	0	5

Learning Objective (LO):

LO1	Students must understand mathematical reasoning in order to read, comprehend and construct mathematical arguments.
LO2	Mathematical logic, which serves as foundation for subsequent discussion is discussed.
LO3	Discrete structures such as sets and permutations are studied.
LO4	Discrete probability, recurrence relations, conquer relations and principles of inclusion and exclusion are studied.

Course Outcomes (CO)

Students will be introduced to and have knowledge of many mathematical concepts

CO1	examples and counter examples
CO2	Proof techniques
CO3	problem solving
	studied in Discrete Mathematics such as
	Logic
	Relations
	Functions
	Some Algebraic structure

Unit-1: Logic and Counting

Propositions and logical operations, Conditional statements, Methods of Proof, Mathematical Induction. Permutations, Combinations, Pigeonhole Principle, Elements of Probability, Recurrence Relations.

Unit-2: Relations and Digraphs

Product sets and partitions, Relations and Digraphs, Paths in Relations and Digraphs, Properties of relations, Equivalence Relations, Computer Representation of Relations and Digraphs, Operations on Relations, Transitive Closure and Warshall's Algorithm.

Unit-3: Functions

Functions, Functions for Computer Science, Growth of Functions, Permutation Functions.

Unit-4: Order Relations and Structures

Partially Ordered Sets, Extremal Elements of Partially Ordered Sets, Lattice, Finite Boolean Algebras, Functions on Boolean Algebra, Circuit Designs.

Unit-5:

Languages and Finite State Machine.

Text Book:

Bernard Kolman, Robert C. Busby and Sharon Cutler Ross, (2002), Discrete Mathematical Structures, Prentice - Hall of India, Private Limited, New Delhi.
Unit I Chapter 2 Sections 1 to 4, Chapter 3 Sections 1 to 5.
Unit II Chapter 4 Sections 1 to 8.
Unit III Chapter 5 Sections 1 to 4 .
Unit IV Chapter 6 Sections 1 to 6.
Unit V Chapter 10 Sections 3 to 5.

Supplementary Reading:

1. Goodaire E.G. and Paramenter M.M., (1998), Discrete Mathematics with Graph Theory, Prentice Hall International Editions, New Jersey.
2. Matonsek J. and Nesetril J., (1998), Invitation to Discrete Mathematics, Clarendon Press, Oxford.
3. Tremblay J.P. and Manohar R., (1997), Discrete Mathematical Structures with Applications to Computer Science, Tata McGraw Hill Publication Company, New Delhi.

Outcome Mapping:

$\begin{aligned} & \mathrm{CO} / \\ & \mathrm{PO} \end{aligned}$	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	3						3	3	3	3	3
CO2	3	3	3	3						3	3	3	3	3
CO3	3	3	3	3						3	3	3	3	3

Semester	19IMATC65: Core - 18	L	T	P	C
	Olimization Techniques	5	0	0	5

Learning Objective (LO):

LO1	Mathematical programming finds applications in diverse fields including Engineering, Management Sciences, Computer Science and Economics.
LO2	In this course, the general linear programming problem, simplex computation procedure, revised simplex method, duality problems in linear programming and some nonlinear programming problems are covered.

Course Outcomes (CO)

On successful completion of the course, the student will be able to:

CO1	Apply for finding solutions of general linear programming by Simplex computational procedure
CO2	Apply for finding feasible solutions by Artificial technique and by Perturbation technique.
CO3	Apply for finding solutions using revised simplex method and duality problems.
CO4	Apply for finding solutions by additional computational technique and transportation problems.
CO5	Apply for finding solutions of Non-linear programming.

Unit-1:

The General Linear Programming problem:, The linear programming problem, properties of solution to the linear programming problem, Generating extreme - point solutions. The Simplex Computational procedure: Development of a minimum feasible solution, computational procedure.

Unit-2:

The Artificial - Basis Technique: A first feasible solution using slack variables, Geometric Interpretation of the simplex procedure.
Degeneracy and anticycling procedure: Perturbation Techniques, The lowest - Index Anticycling Rules, Example of Cycling.

Unit-3:

The Revised Simplex method: The General form of the inverse, The Product form of the inverse, Computational considerations.
The Duality problems of linear programming: The unsymmetric Primal - Dual problems, the symmetric primal-dual problems, Economic Interpretation of the Primal, Dual problems.

Unit-4:

Additional computational Technique: Determining a first feasible solution, The dual simplex method, Integer programming.
The Transportation problem: The General Transportation problem, Computational procedure for solving the transportation problem, Variations of the transportation problem.

Unit-5:

Non-Linear Programming: The General problem of mathematical programming, Mathematical background, the convex programming problem, Quadratic programming, Separable programming.

Text Book:

Gass Saul I., (1994), Linear Programming - methods and applications, Fifth Edition, McGraw Hill, New Delhi.
Unit I - Chapter 3 Sections 1, 2 and 3 and Chapter 4 Sections 1 and 2
Unit II - Chapter 4 Sections 3, 4 and 5 and Chapter 7 Sections 1, 2 and 3
Unit III - \quad Chapter 5 Sections 1, 2 and 3 and Chapter 6
Sections 1,2 and 3
Unit IV - \quad Chapter 9 Sections 1, 2 and 3 and Chapter 10
Sections 1, 2 and 3
Unit V - Chapter 12 Sections 1 to 5

Supplementary Reading:

1. Taha H.A., (1998), Operations Research - An Introduction, Macmillan publishing Co., New York.
2. Hadley G., (1962), Linear Programming, Oxford and IBH Pub. Co., New Delhi.
3. Kambo N.S., (1991), Mathematical Programming, Affliated East-West Press, New Delhi.
4. Sharma J.K., Operations Research, Trinity (Laxmi Publications), New Delhi.

Outcome Mapping:

CO I PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	3	-	-	-	-	-	3	3	3	3	3
CO2	3	3	3	3	-	-	-	-	-	3	3	3	3	3
CO3	3	3	3	3						3	3	3	3	3
CO4	3	3	3	3						3	3	3	3	3
CO5	3	3	3	3						3	3	3	3	3

Semester	19IMATC66: Core - 19 Experiential Learning	L	T	P	C
VI		0	0	4	2

Experiential learning provides opportunities to students to connect principles of the discipline with real-life situations.
In-plant training/field trips/internships/industrial visits fall under this category.
Experiential Learning is a process of learning through experience. It is specifically defined as "learning through reflection on doing".

Semester	19IMATC71: Core - 20	L	T	P	C
	VII	Advanced Abstract Algebra - I	5	0	0

Learning Objective (LO):

L01 This course aims to provide a first approach to the subject of algebra, which is one of the basic pillars of modern mathematics.

LO2 The focus of the course will be the study of certain structures called groups and some related structures.

LO3 Some advanced concept of groups, Dihedral groups are introduced. Homomorphsims and Isomorphisms, cyclic groups, permutation groups, Sylow's theorem, direct and semi-direct products are studied.

Course Outcomes (CO)

At the end of the course, the student will be able to:
C01 give examples and counter examples
CO2 understand techniques
CO3 solve problems
of various concepts in:

- Groups,
- Quotient Groups,
- Homomorphism of Groups,
- Group Actions,
- Direct products of Groups.

Unit-1: Introduction to groups:

Dihedral groups - Symmetric groups - Matrix groups - Homomorphisms and Isomorphisms Group actions.

Subgroups: Definition and Examples - Centralizers and Normalizers, Stabilizers and Kernels.

Unit-2: Subgroups (Continued):

Cyclic groups and Cyclic subgroups of a group.
Quotient Groups and Homomorphisms: Definitions and Examples - More on cosets and Lagrange's Theorem - The isomorphism theorems - Transpositions and the Alternating group.

Unit-3: Group Actions:

Group actions and permutation representations - Groups acting on themselves by left multiplication - Cayley's theorem - Groups acting on themselves by conjugation - The class equation - Automorphisms.

Unit-4: Group Actions (Continued):

The Sylow theorems - The simplicity of An.
Further topics in group theory: p-groups, Nilpotent groups and Solvable groups.
Unit-5: Direct and semi-direct products and abelian groups:
Direct Products - The fundamental theorem of finitely generated abelian groups - Table of groups of small order - semi direct products.

Text Book:

1. David S. Dummit and Richard M. Foote, (2004),Abstract Algebra, Third Edition, Wiley Student Edition, ISBN 0-471-4334-9.

Unit I: Chapter 1: (Sections 1.2, 1.3. 1.4, 1.6, 1.7) and
Chapter 2: (Sections 2.1, 2.2)
Unit II: Chapter 2: (Section 2.3) and
Chapter 3: (Sections 3.1, 3.2, 3.3, 3.5)
Unit III: Chapter 4: (Sections 4.1, 4.2, 4.3, 4.4)
Unit IV: Chapter 4: (Sections 4.5, 4.6) and
Chapter 6: (Section 6.1)
Unit V: Chapter 5: (Sections 5.1, 5.2, 5.3, 5.5)

Supplementary Reading:

1. Herstein I.N., (2007), Topics in Algebra, Second Edition, John Wiley \& Sons, New Delhi, Third Reprint.
2. Jacobson N. and Van D., (1951), Lectures in Abstract Algebra, Nostrand Co., Vol. I, New York.
3. Anderson M. and Feil T., (2005), A First Course in Abstract Algebra - Rings, Groups, and Fields, Chapman \& Hall/CRC.
4. Artin M., (2015), Algebra, Prentice Hall of India, New Delhi.

Outcome Mapping:

$\begin{aligned} & \mathrm{CO} / \\ & \mathrm{PO} \end{aligned}$	PO1	PO2	PO3	PO4	PO5	PO6	PO7	P08	PO9	PO10	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	3						3	3	3	3	3
CO 2	3	3	3	3						3	3	3	3	3
CO3	3	3	3	3						3	3	3	3	3

Semester	19IMATC72: Core - 21 VII	L	T	P	C
		5	0	0	5

Learning Objective (LO):

L01 The concept of derivatives of real valued functions and their properties are studied.
LO2 Properties of monotonic functions, functions of bounded variations are also introduced.

LO3 The concept of Riemann-Stieltjes integral and its properties are studied.
LO4 The notion of convergence and uniform convergence of real valued functions and infinite series of functions are also studied.

Course Outcomes (CO)

At the end of the course, the student will be able to introduced to and have knowledge of many mathematical concepts

C01 of proof techniques
CO2 of problem solving
CO3 studied in real analysis such as

- Functions of bounded variations,
- Riemann -Stieltjes Integral,
- Sequence of functions,
- Multivariate Differential Calculus.

Unit-1:Functions of Bounded Variation:

Properties of monotonic functions, Functions of bounded variation, Total variation, Additive property of total variation, Total variation on $[a, x]$ as a function of x, Functions of bounded variation expressed as the difference of increasing functions, Continuous functions of bounded variation.

Riemann-Stieltjes Integral: The definition of the Riemann-Stieltjes integral, Linear properties, Integration by parts.

Unit-2:Riemann-Stieltjes Integral (Continued) :

Change of variable in a Riemann-Stieltjes integral, Reduction to a Riemann integral, Step functions as integrators, Reduction of a Riemann-Stieljes integral to a finite sum, Euler's summation formula, Monotonically increasing integrators, Upper and lower integrals, Additive and linearity properties of upper and lower integrals, Reimann's condition, Comparison theorems, Integrators of bounded variation.

Unit-3:Riemann-Stieltjes Integral (Continued):

Sufficient conditions for existence of Riemann-Stieltjes integrals, Necessary conditions for existence of Riemann-Stieltjes integrals, Mean value theorems for Riemann-Stieltjes integrals, The integral as a function of the interval, Second fundamental theorem of integral calculus, Change of variable in a Riemann integral, Second mean-value theorem for Riemann integrals, Riemann-Stieltjes integrals depending on a parameter, Differentiation under the integral sign, Interchanging the order of integration.

Unit-4:Sequence of functions:

The Taylor's series generated by a function, Bernstein's theorem, Abel's limit theorem, Tauber's theorem.

Multivariable differential calculus: The directional derivative, directional derivatives and continuity, the total derivative, the total derivative expressed in terms of partial derivatives.

Unit-5:Multivariable differential calculus (Continued):

The Jacobian matrix.
Implicit functions: Functions with non-zero Jacobian determinant, the inverse function theorem, the implicit function theorem.

Text Book:

Tom. M. Apostol, (1974), Mathematical Analysis, Second Edition, Narosa Publishing House, New Delhi.

Unit - I	Chapter 6 Sections 6.1 to $6.8 ;$
	Chapter 7 Sections 7.1 to $7.5 ;$
Unit - II	Chapter 7 Sections 7.6 to $7.15 ;$
Unit - III	Chapter 7 Sections 7.16 to $7.25 ;$
Unit - IV	Chapter 9 Sections $9.19 ; 9.20,9.22$, and $9.23 ;$
	Chapter 12 Sections 12.1 to $12.5 ;$
Unit - V	Chapter $12:$ Section $12.8 ;$
	Chapter 13 Sections 13.1 to 13.4.

Unit - VI Chapter 14 Sections 14.1 to 14.3

Supplementary Reading:

1. Walter Rudin, (2013), Principles of Mathematical Analysis, McGraw-Hill International Book Company, New Delhi.
2. Malik S.C and Arora, S., (1991), Mathematical Analysis, Wiley Eastern Ltd., New Delhi.

Outcome Mapping:

$\begin{aligned} & \mathrm{CO} / \\ & \mathrm{PO} \end{aligned}$	PO1	PO2	PO3	PO4	$\begin{aligned} & \mathrm{PO} \\ & 5 \end{aligned}$	PO6	PO7	$\begin{aligned} & \text { PO } \\ & 8 \end{aligned}$	PO9	$\begin{aligned} & \mathrm{PO} 1 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { PSO } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { PSO } \\ & 2 \end{aligned}$	$\begin{aligned} & \text { PSO } \\ & 3 \end{aligned}$	$\begin{aligned} & \text { PSO } \\ & 4 \end{aligned}$
CO1	3	3	3	3						3	3	3	3	3
CO 2	3	3	3	3						3	3	3	3	3
CO 3	3	3	3	3						3	3	3	3	3

Semester	19IMATC73: Core - 22	L	T	P	C
	VII	Advanced Differential Equations	5	0	0

Learning Objective (LO):

LO1 This Course aims to provide problem solving techniques in ordinary differential equations with variable coefficients and some special partial differential equations of Mathematical Physics such as Elliptic and Parabolic equations.

Course Outcomes (CO)
On successful completion of the course, the student will be able to:
CO1 Apply the fundamental concept of ordinary and partial differential equation to demonstrate their understanding of how physical phenomena are modelled by second order differential equations and dynamical systems; and perform operations with Bessel, Hermite and Legendre differential equations along with the corresponding recurrence formulas of different functions.

CO3 Illustrate the mathematical aspects that contribute to the solution of heat, wave and diffusion equations.

Unit-1: Linear Equation with Variable Coefficients

Initial value problems - Existence and uniqueness theorems - Solutions to solve a nonhomogeneous equation - Wronskian and linear dependence - reduction of the order of a homogeneous equation - homogeneous equation with analytic coefficients -The Legendre equation.

Unit-2: Linear Equation with Regular Singular Points

Euler equation - Second order equations with regular singular points - Exceptional cases Bessel Equation.

Unit-3: Existence and Uniqueness of Solutions to First Order Equations

Equation with variable separated - Exact equations - method of successive approximations - the Lipschitz condition - convergence of the successive approximations and the existence theorem.

Unit-4: Elliptic Differential Equations

Derivation of Laplace and Poisson equation - BVP - Separation of Variables - Dirichlet Problem and Newmann Problem for a rectangle - Interior and Exterior Dirichlet problems for a circle Interior Newmann problem for a circle - Solution of Laplace equation in Cylindrical and spherical coordinates - Examples.

Unit-5: Parabolic Differential Equations

Formation and solution of Diffusion equation - Dirac-Delta function - Separation of variables method - Solution of Diffusion Equation in Cylindrical and spherical coordinates - Examples.

Text Books:

1. Coddington E.A.,(1987) An Introduction to Ordinary Differential Equations, Prentice Hall of India, New Delhi.

Unit-I Chapter 3: Sections 1 to 8 [Omit Section 9]
Unit-II Chapter 4: Sections 1 to 4 and 6 to 8 [Omit Sections 5 and 9]
Unit-III Chapter 5: Sections 1 to 6 [Omit Sections 7 to 9]
Unit - VI Chapter 6: Sections 2 and 3
2. Sankar Rao S., (2005), Introduction to Partial Differential Equations, $2^{\text {nd }}$ Edition, Prentice Hall of India, New Delhi,.

Unit-IV Chapter 2: Sections 2.1, 2 2, 2.5 to 2.13 (omit Sections 2.3 and 2.4)
Unit-V Chapter 3: Sections 3.1 to 3.7 and 3.9 (omit Section 3.8)
Unit - VI Chapter 4: Sections 4.1 to 4.3

Supplementary Reading:

1. George F. Simmons, (2004),Differential equations with applications and historical notes, Second Edition, Tata McGraw Hill Publishing Company, New Delhi.
2. Hildebrand, F.B., (1976) Advanced calculus for applications, Prentice - Hall. Inc.
3. Sneddon I.N., (2006), Elements of Partial Differential Equations, McGraw Hill, New Delhi.
4. Raisinghania, M.D., (2001), Advanced Differential Equations, S.Chand \& Company Ltd., New Delhi.
5. King A.C., Billingham J. and Otto S.R., (2006), Differential Equations, Cambridge University Press.

Outcome Mapping:

$\begin{aligned} & \mathrm{CO} / \\ & \mathrm{PO} \end{aligned}$	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	3						3	3	3	3	3
CO 2	3	3	3	3						3	3	3	3	3
CO3	3	3	3	3						3	3	3	3	3

Semester	19IMATC74: Core - 23 VII	Lifferential Geometry	T	P	C
		5	0	0	5

Learning Objective (LO):

L01 To introduce space curves, surfaces, curves on surfaces and study some of their properties.

LO2 To study the notion of geodesic and its properties.
LO3 To understand some type of special surfaces such as developables and minimal surfaces.

Course Outcomes (CO)

After successful completion of the course the student will be able to:
CO1 understand the concept of a space curve in 3D and compute the curvature and torsion of space curves;
understand the fundamental existence theorem for space curves;
find geodesics equations on a surface;

CO4
understand surfaces of constant curvature (Minding's theorem) and Gaussian curvature;

CO5 determine the second fundamental form and developables associated with space curves.

Unit-1: Space curves

Space curves, Arc length, Tangent, normal and binormal, Curvature and torsion of a curve given as the intersection of two surfaces.

Unit-2: Space curves (continued)

Contact between curves and surfaces, Tangent surface, involutes and evolutes, Intrinsic equations, Fundamental existence theorem for space curves, Helices.

Unit-3: Metric

Surface, Curves on a surface, Metric, Direction coefficients, Geodesics, Canonical geodesic equations, Normal property of geodesics, Geodesic curvature.

Unit-4: Metric (continued)

Gauss-Bonnet theorem, Gaussian curvature, Surfaces of constant curvature, Conformal mapping, Only statements of Dini's theorem and Tissot's theorem.

Unit-5: Second Fundamental form

Second fundamental form, Developables, Developables associated with space curves, Developables associated with curves on surfaces, Minimal surfaces.

Text Book:

1. Willmore, T.J., (1959), An Introduction to Differential Geometry, Oxford University Press, New Delhi.

Unit-I Chapter 1 Sections 1 to 5
Unit-II Chapter 1 Sections 6 to 9
Unit-III Chapter 2 Sections 1, 2, 5, 6, 10, 11, 12 and 15
Unit-IV Chapter 2 Sections 16 to 20
Unit-V Chapter 3 Sections 1, 4, 5, 6, 7.

Supplementary Reading:

1. Struik, D.T., (1950), Lectures on Classical Differential Geometry, Addison-Wesley Press.
2. Andrew Pressley, (2001), Elementary Differential Geometry, Springer.
3. Heinrich, W. Guggenheimer, (1977), Differential Geometry, Dover Publications Inc., New York.

Outcome Mapping:

$\begin{aligned} & \mathrm{CO} / \\ & \mathrm{PO} \end{aligned}$	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	3						3	3	3	3	3
CO 2	3	3	3	3						3	3	3	3	3
CO3	3	3	3	3						3	3	3	3	3
CO4	3	3	3	3						3	3	3	3	3
CO 5	3	3	3	3						3	3	3	3	3

Semester	19IMATC81: Core - 24	L	T	P	C
	VIII	Advanced Abstract Algebra - II	5	0	0

Learning Objective (LO):

L01 This course aims to provide a continuation of Advanced Abstract Algebra-I.
LO2 The focus of the course will be the study of Rings, Polynomial rings, Euclidean ring, Unique factorization domains, Module Theory, Field theory and Splitting fields..

Course Outcomes (CO)

Students will be introduced to and have knowledge of many mathematical concepts of

CO1 abstract structures

CO2 proof techniques

CO3 problem solving studied in Abstract Algebra such as

- Rings,
- Irreducibility,
- Modules, a generalization of vector spaces,
- Fields.

Unit-1: Introduction to Rings:

Examples: Polynomial rings - Matrix rings and group rings - Ring Homomorphisms and quotient rings - Properties of Ideals - Rings of fractions - The Chinese remainder theorem.

Unit-2: Rings (continued):

Euclidean domains, principal ideal domains and unique factorization domains.
Polynomial rings: Definitions and basic properties - Polynomial rings over fields.
Unit-3: Polynomial rings (continued):
Polynomial rings that are unique factorization domains - Irreducibility criteria - Polynomial ring over fields. Introduction to Module Theory: Basics definitions and examples - Quotient modules and Module homomorphism.

Unit-4: Field theory:
Basic Theory of field extensions - Algebraic Extensions.
Unit-5: Field theory (continued):
Splitting fields and Algebraic closures - Separable and inseparable extensions - Cyclotomic polynomials and extensions.

Text Book:

1. David S. Dummit and Richard M. Foote, (2004), Abstract Algebra, Third Edition, Wiley Student Edition.

Unit I: Chapter 7: (Sections 7.2,7.3,7.4,7.5,7.6)
Unit II: Chapter 8: (Sections 8.1,8.2,8.3) and
Chapter 9: (Sections 9.1,9.2)
Unit III: Chapter 9: (Sections 9.3,9.4,9.5),
Chapter 10: (Sections 10.1,10.2)
Unit IV: Chapter 13: (Sections 13.1,13.2)
Unit V: Chapter 13: (Sections 13.4,13.5,13.6)

Supplementary Reading:

1. Hersteinl.N., (2007), Topics in Algebra, Second Edition, John Wiley \& Sons, New Delhi, Third Reprint.
2. Jacobson N. and Van D.,(1951), Lectures in Abstract Algebra, Nostrand Co., Vol. I, New York.
3. Anderson,M. and Feil T., (2005), A First Course in Abstract Algebra - Rings, Groups, and Fields, Chapman \&Hall/CRC,.
4. Artin, M., (2015), Algebra, Prentice Hall of India, New Delhi.

Outcome Mapping:

$\begin{aligned} & \mathrm{CO} / \\ & \mathrm{PO} \end{aligned}$	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	3						3	3	3	3	3
CO 2	3	3	3	3						3	3	3	3	3
CO3	3	3	3	3						3	3	3	3	3

Semester	19IMATC82: Core - 25				
	Measure Theory and Integration	L	T	P	C
		5	0	0	5

Learning Objective (LO):

L01 The concept of Lebesgue measure is introduced.
LO2 Measure space and integration with respect to a measure are introduced
LO3 Convergence in measure and properties of L^{p} space are discussed.

Course Outcomes (CO)

Students will be introduced to and have knowledge of many mathematical concepts of

CO1 measures and spaces

CO2 proof techniques

CO3 problem solving
studied in Measure theory \& Integration such as

- Measurable sets and Measurable functions,
- Integration with respect to Measure,
- \quad Convergence in Measure.

Unit-1:

Lebesgue Outer measure, Measurable sets, Regularity, Measurable functions, Borel and Lebesgue measurability.

Unit-2:

Integration of nonnegative functions, General integral, Integration of series, Riemann and Lebesgue integrals.

Unit-3:

Continuous non-differentiable functions, Lebesgue differential theorem (statement only), Differentiation and Integration, Lebesgue set, Convergence in measure, Almost uniform convergence.

Unit-4:
Measures and outer measures, Extension of a measure, Uniqueness of the extension, Completion of a measure, Measure spaces, Integration with respect to a measure.

Unit-5:
L^{p} spaces, Convex functions, Jensen's inequality, The inequalities of Holder and Minkowski, Completeness of $L^{p}(\mu)$.

Text Book:

1. G. de Barra, (2005), Measure Theory and Integration, New Age International Publishers, Chennai.

Unit - \quad Chapter 2: Sections 2.1 to 2.5
Unit - II Chapter 3: Sections 3.1 to 3.4
Unit - III Chapter 4: Sections 4.2, 4.4 to 4.6 and
Chapter 7: Sections 7.1,7.2
Unit - IV Chapter 5: Sections 5.1 to 5.6
Unit - V Chapter 6: Sections 6.1 to 6.5.
Unit - VI Chapter 7: Sections 7.1 to 7.3

Supplementary Reading:

1. Royden, (1968), Real Analysis, MacMillan Publishing Company, New York.
2. Ganapathy lyer, V., (1977), Mathematical Analysis, Tata McGraw Hill Publication Co. Ltd., New Delhi.
3. Halmos, P.R., (1950), Measure Theory, Van Nostr and Princeton, New Jersey.
4. Michael E. Taylor, (2006), Measure Theory and Integration by Graduate Studies in Mathematics, Indian Edition, Volume 76, American Mathematical Society.

Outcome Mapping:

CO 1 PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	3						3	3	3	3	3
CO2	3	3	3	3						3	3	3	3	3
CO3	3	3	3	3						3	3	3	3	3

Semester	19IMATC83: Core - 26	L	T	P	C
	AdiII	5	0	0	5

Learning Objective (LO):

L01 This course aims to train the students to get essential knowledge in functions of a complex variable.

LO2 Analytic functions and their properties, Residue theorem and its applications, Riemann mapping theorem are discussed in detail.

Course Outcomes (CO)

After successful completion of the course the student will be able to
C01 use Cauchy's integral theorem or formula to compute complex line integrals;
CO2 compute the Taylor's theorem, to determine the nature of the removable singularities;
CO3 explain the convergence of power series and develop analytical capabilities in Taylor or Laurent series in a given domain;
determine the concept of conformal mapping of polygons, to find Schwarz - Christoffel formula.

Unit-1:Complex integration:

Line integrals, Rectifiable arcs, Line integrals as functions of arcs, Cauchy's theorem for a rectangle, Cauchy's theorem in a Disc.

Cauchy's integral Formula:
The index of a point with respect to a closed curve, The integral formula, Higher derivatives.

Unit-2:Local Properties of Analytic Functions:

Removable Singularities, Taylor's theorem, Zeros and poles, The Local Mapping and The Maximum Principle.

The General Form of Cauchy's Theorem:
Chains and cycles, Simple connectivity, Locally exact differentials, Multiply connected regions.

Unit-3:Harmonic Functions:

Definition and basic properties, The mean-value property, Poisson's Formula, Schwarz's theorem, The Reflection principle.Power Series Expansions:Weierstrass's Theorem, The Taylor series, The Laurent Series.

Unit-4:Partial Fractions and Factorization:

Partial fractions, Infinite products and Canonical products. Normal Families: Equicontinuity, Normality and Compactness, Arzela's Theorem, Families of Analytic Functions, The classical definition.

Unit-5:The Riemann Mapping Theorem:

Statement and Proof Conformal mapping of Polygons: The behaviour at an angle, The Schwarz-Christoffel formula, Mapping on a rectangle, The triangle functions of Schwarz. A Closer look at Harmonic Functions: Functions with the Mean-value Property, Harmack's Principle.

Text Book:

1. AhlforsL.V., (2014), Complex Analysis, Third Edition, McGraw Hill Inc., New Delhi.

Unit-I Chapter 4 Sections 1 \& 2.
Unit-II Chapter 4 Sections 3, 4 (4.1, 4.2, 4.6 and 4.7 only).
Unit-III Chapter 4 Section 6; Chapter 5 Section 1.
Unit-IV Chapter 5 Section 2 (2.1, 2.2 and 2.3 only).
Chapter 5 Section 5.
Unit-V Chapter 6 Sections 1 (1.1 only), 2 and 3

Supplementary Reading:

1. Conway J.B., (1973), Functions of One Complex Variable, Springer-Verlag.
2. Silverman H., (1975), Complex Variables, Hughton Miffin Company.
3. Ponnusamy S., (2005), Foundations of Complex Analysis, Second Edition, Narosa Publishing House, New Delhi,
4. James Ward Brown and Ruel V. Churchill, (2014), Complex Variables and Applications, McGraw Hill Education (India), New Delhi.

Outcome Mapping:

$\begin{aligned} & \mathrm{CO} / \\ & \mathrm{PO} \end{aligned}$	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	3						3	3	3	3	3
CO 2	3	3	3	3						3	3	3	3	3
CO3	3	3	3	3						3	3	3	3	3
CO 4	3	3	3	3						3	3	3	3	3

Semester	19IMATC84: Core - 27 C++ Computer Practical	L	T	P	C
VIII		0	0	4	2

Learning Objective (LO):
L01 The objective are acquire the practical knowledge to solve problems including the fields of optimization, number theory and matrix theory.

Course Outcomes (CO)

By the end of the course,
C01 the students will be able to gain knowledge between theory and practical.

1. Solution of Linear Programming Problem.
2. Deterministic Inventory Models.
i. Single-item Static Model.
ii. Single-item Static Model with Price Breaks.
iii. Multi-item Static Model with Storage Limitation.
3. Number Theory:
i. Reversing of an integer series.
ii. Generating Fibonocci series.
iii. Average and Standard Deviation of numbers.
iv. Identification of Prime, Even and Odd integers.

4. Matrix Theory

i. Determinant of a matrix.
ii. Rank of a matrix.
iii. Inverse of a matrix.
iv. Product of matrices.

Text Books:

1. Hamdy A. TAHA, (2014), Operations Research - An Introduction, Macmillan Publishing Company, New York.
2. Ivan Niven, Herbert S.Zuckerman and Hugh L. Montgomery, (2015), An Introduction to the theory of Numbers, Wiley, New Delhi.
3. Grewal, B.S.,(2014), Higher Engineering Mathematics, $40^{\text {th }}$ Edition, Khanna Publications, New Delhi.

Supplementary Reading:

1. Premkumar Gupta and D.S.Hira, (2016), Operations Research, S.Chand Publications, New Delhi.

Outcome Mapping:

CO 1 PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
CO1	2	3	3	2	3	2				3	2	3	2	3

Semester	19IMATC91: Core - 28	L	T	P	C
Topology	3	0	0	5	

Learning Objective (LO):
L01 The idea and method of topology have transformed large parts of geometry and analysis.

LO2 This subject is of interest in its own right, and it also serves to lay the foundations for future studies in analysis and geometry.

LO3 In this course we teach the basics of topology including connectedness, compactness, countability, separation axioms, Tychonoff theorem and complete metric spaces.

Course Outcomes (CO)
Students will be introduced to and have knowledge of many mathematical concepts of,
CO1 spaces
CO2 proof techniques
CO3 problem solving studied in Topology such as

- Connectedness
- Compactness
- Completeness
which are studied in Real Numbers.

Unit-1:

Topological spaces, Basis for a topology, The order topology, The product topology on $\mathrm{X} \times \mathrm{Y}$.
Unit-2:

The subspace topology, Closed sets and limit points, Continuous function, The product topology.

The metric topology, Connected spaces, Connected subspaces of the real line, Components and Local connectedness.

Unit-3:

Compact spaces, Compact subspaces of the real line, Limit point compactness, Local compactness.

Unit-4:

Countability axioms, The separation axioms, Normal spaces, Urysohn Lemma, Urysohn metrization theorem, Tietze extension theorem.

Unit-5:

The Tychonoff Theorem, Stone-Cech compactification, Complete metric spaces, Compactness in metric spaces.

Text Book:

1. James R. Munkres, (2000), Topology, Second Edition, Prentice Hall of India, New Delhi.

Unit - I Chapter 2: Sections 12 to 15.
Unit - II Chapter 2: Sections 16 to 21 and
Chapter 3: Sections 23 to 25.
Unit - III Chapter 3: Sections 26 to 29.
Unit - IV Chapter 4: Sections 30 to 35.
Unit - V Chapter 5: Sections 37 and 38;
Chapter 7: Sections 43 and 45 only.

Unit - VI Chapter 4: Sections 36
Chapter 6: Sections 41

Supplementary Reading:

1. Hu, S.T., (1964), Elements of General topology, Holden-Day Inc, San Francisco.
2. Hocking, J.G. and Young,G.S., (1961), Topology, Addison-Wesley Pub. Com.
3. Simmons, G.F., (1963), Introduction to Topology and Modern Analysis, McGraw Hill International Edition, Singapore.
4. Kumaresan ,S., (2005), Topology of Metric Spaces, Narosa Publishing House, New Delhi.

Outcome Mapping:

$\begin{aligned} & \mathrm{CO} / \\ & \mathrm{PO} \end{aligned}$	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	3						3	3	3	3	3
CO 2	3	3	3	3						3	3	3	3	3
CO3	3	3	3	3						3	3	3	3	3

Semester	19IMATC92: Core - 29	L	T	P	C
	IX	Linear Algebra	4	0	0

Learning Objective (LO):
L01 This course aims learning the students to solve systems of linear equations using multiple methods, echelon Matrices, matrix operations, including inverses and invertible matrix using determinants.

LO2 Applying principles of matrix algebra to linear transformations, double dual, commutative rings, Characteristic values, Annihilating polynomials and Decompositions of Invariant Direct sums are studied.

Course Outcomes (CO)

Students will be introduced to and have the knowledge of many mathematical concepts of
problem solving in (studied in Linear Algebra such as)
- Systems of linear Equations,

- The algebra of linear transformations,
- Determinant functions,
- Diagonalization,
- Decompositions.

Unit-1: Linear Equations and Vector spaces

Systems of linear Equations - Matrices and Elementary Row operations - Row-Reduced echelon Matrices - Matrix Multiplication - Invertible Matrices - Vector spaces - Subspaces Bases and Dimension - Computations concerning Subspaces.

Unit-2: Linear Transformations

The algebra of linear transformations - Isomorphism of Vector Spaces - Representations of Linear Transformations by Matrices - Linear Functionals - The Double Dual - The Transpose of a Linear Transformation.

Unit-3: Determinants

Commutative rings - Determinant functions - Permutations and the uniqueness of determinants - Classical Adjoint of a (Square) matrix - Inverse of an invertible matrix using determinants.

Unit-4: Canonical Forms

Characteristic values - Annihilating polynomials, Invariant subspaces.

Unit-5: Canonical Forms (continued)

Simultaneous triangulation and simultaneous Diagonalization - Direct-sum Decompositions Invariant Direct sums - The Primary Decomposition Theorem.

Text Book:

1. Kenneth Hoffman and Ray Kunze, (1971) Linear Algebra, Second Edition, Prentice Hall of India Private Limited, New Delhi.

Chapters 1 to 3, Chapter 5 (5.1 to 5.4) and Chapter 6.

Supplementary Reading:

1. Hersteinl.N., (2007) Topics in Algebra, Second Edition, Third Reprint, John Wiley \& Sons, New Delhi.
2. Rao,A.R. and Bhimasankaram, P., (2000). Linear Algebra, Second Edition, TRIM series 19, Hindustan Book Agency, New Delhi.
3. Charles W. Curtis, (1984). Linear Algebra - An Introductory Approach, Springer.
4. Keith Nicholson. W., (2006). Linear Algebra with Applications, Fifth Edition, Mc Graw Hill.

Outcome Mapping:

CO / PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	3					3	3	3	3	3	
CO2	3	3	3	3					3	3	3	3	3	
$\operatorname{CO3}$	3	3	3	3					3	3	3	3	3	

Semester	19IMATC93: Core - 30	L	T	P	C
	Probability Theory	4	0	0	5

Learning Objective (LO):

L01 The objective are

(i) acquire quantative skills and an understanding of rigorous concepts and methods in probability theory through measure theoretic approach
(ii) acquire understanding of diverse characteristics like convergence, law of large numbers and central limit theorems.
(iii) Acquire the ability to solve widely varied problems.

Course Outcomes (CO)

By the end of the course, students will be able to gain
C01 knowledge related to probability problems
CO2 a basic knowledge for studying advanced courses in this area like stochastic processes.
Unit-1: Distribution Function:
Monotone functions, Distribution functions, Absolutely continuous and Singular distributions.
Measure Theory:
Classes of sets, Probability measures and their distribution functions.
Random variable, Expectation, Independence:
General definitions, Properties of mathematical expectation, Independence.
Unit-2: Convergence Concepts:

Various modes of convergence, Almost sure Convergence; Borel-Cantelli lemma, Vague Convergence, Continuation.

Unit-3:Law of Large Numbers. Random series:

Simple limit theorems, Weak law of large numbers, Convergence of series, Strong law of large numbers.

Unit-4:Characteristic Function:

General properties; Convolutions, Uniqueness and inversion, Convergence theorems, Simple applications.

Unit-5:Central limit theorem and its Ramifications:

Liapounov's theorem, Lindeberg-Feller theorem, Ramification of the central limit theorem.

Text Book:

1. Chung,K.L., (1974). A Course in Probability Theory, Second Edition, Academic Press, New York.

Unit - \quad Chapter 1 (Sections 1 to 3).
Chapter 2 (Sections 1 and 2).
Chapter 3 (Sections 1 to 3).
Unit - II Chapter 4 (Sections 1 to 4).
Unit - III Chapter 5 (Sections 1 to 4).
Unit - IV Chapter 6 (Sections 1 to 4).
Unit - V Chapter 7 (Sections 1 to 3).

Supplementary Reading:

1. Bhat, B.R., (2018) Modern Probability Theory, New Academic Science, UK.
2. Sheldon M. Ross, (2010). A first Course in Probability, Eight Edition, Pearson Education Ltd, London.
3. Burril, C.W., (1972) Measure, Integration and Probability, McGraw Hill, New York.

Outcome Mapping:

CO	PO 1	PO 2	PO	PO 4	PO 5	PO	PO	PO	PO	PO 10	PSO 1	PSO	PSO	PSO

| PO | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Semester	19IMATC94: Core - 31 Numerical Methods Practical (Using C++ language)	L	T	P	C
	IX	0	0	4	2

Learning Objective (LO):
L01 The objectives are acquire the practical applicability of C++ Programming to some of the problems in numerical mathematics.

Course Outcomes (CO)

By the end of the course:
C01 students will be able to gain knowledge between theory and practical.

1. Solution of transcendental and polynomial equations in one variable:
i. Method of Bisection
ii. Method of Regula Falsi
iii. Newton's Method
2. Solution of Linear Equations:
i. Jacobi's Iterative Method
ii. Gauss-Seidal Iterative Method
3. Numerical Solution of Ordinary Differential Equations:
i. Euler's Method.
ii. Modified Euler's Method
iii. Runge-Kutta Method of order four
4. Numerical Integration:
i. Simpson's one third rule
ii. Simpson's three eighth rule
iii. Weddle's rule.

Text Book:

1. Krishnamoorthy, E.V. and Sen, S.K., (1996) Numerical Algorithms, Second Edition, Affiliated East West Press Pvt. Ltd., New Delhi.

Outcome Mapping:

CO 1 PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
CO1	3	3	2	2	2	3			2	3	2	3	3	

Semester	19IPSC090: CONSTITUTION OF INDIA	L	T	P	C
			2	0	0

Learning Objectives:

Students will be able to:

LO 1. To understand the basic features of Indian Constitution.
LO 2. To grasp about the basic Rights \& duties of Indian Citizenry
LO 3. To ponder over the form of Indian Political System.
LO 4. To have broad understanding about the pivotal provisions related with liberty, Equality and fraternity.

Course Outcomes:

After the successful completion of the course, the students will be able to:
CO 1. Imbibed about the basic features of Indian Political System.
CO 2. Enlighten with the rights \& duties of Indian Citizens.
CO 3. Understand the significance of rule of law.
CO 4. Inculcated with basic liberties.

Unit I : Introduction

Meaning of the Constructional law and Constitutionalism - Historical Perspective of the Constitution of India - Salient features Characteristics of the Constitution of India

.Unit II : Rights and Duties

Scheme of the Fundamental Rights - The scheme of the Fundamental Duties and its legal status - The Directive Principles of State Policy-Its importance and implementation

Unit III : Centre State Relationship

Federal Structure and distribution of legislative and financial powers between the union and the states- Parliamentary form of Government in India - The Constitution powers and status of the president of India.

Unit IV : Amendments and Provisions

The Historical perspectives of the constitutional amendments in India - Emergency Provision: National Emergency, President Rule. Financial Emergency Unit V: Institutions

Judiciary -Judiciary Activism - Amending Procedures- Recent Trends -Rights to InformationLokpal and LokAyukta

Text Books :

1. Bipan Chandra, Mridula Mukherjee, Adility Makherjee 2016., India after Independence 19472000, Penguin Publishers, New Delhi.
2. Durga Das Basu,2018., Introduction to the Constitution of India Prentice Hall, New Delhi.
3. Jogendra Yadav 2000, Transforming India: Dynamics of Democracy, Oxford University Press New Delhi

Supplementary Readings:

1. The Constitution of India 1950 (Bare Act), Government Publications.
2. Busi S.N Ambedkar B.R 2015 Framing of Indian Constitution
3. Jain M.P 2014 Indian Constitution Law Lexis Nexis
4. Paul R.Brass 1999 The politics of India Since Independence Cambridge University Press
5. Granvila Austin 2006 The Indian Constitution: Cornerstone of a Nation, Oxford University Press, New Delhi

CO/PO	PO												PSO				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5
CO1		3	3		2					2			3	3			
CO2		3	2		3	2							3			3	2
CO3	3	2		3	2					2					3	2	2

Semester	19IMAC101: Core - 32 Functional Analysis	L	T	P	C
		4	0	0	4

Learning Objective (LO):

L01 There are many domains in the broad field of topology.
LO2 The following are the few viz, the theory of Banach and Hilbert Spaces and their operators and Banach algebras.

LO3 In this course we teach some results on Banach spaces, Hilbert spaces, operator theory and Banach algebras.

LO4 Each of these subjects starts from the fundamental knowledge and develops its own methods of dealing with its own characteristic problems.

Course Outcomes (CO)

In the board field of topology, students gain knowledge related to
CO1 examples and counter examples to the corresponding theory

Unit-1: Linear transformations and Banach spaces

Linear transformations, Banach spaces, Continuous linear transformations, The Hahn-Banach theorem.

Unit-2: Banach spaces (continued)

The natural embedding of N into $\mathrm{N}^{* *}$, The open mapping theorem, The conjugate of an operator.

Unit-3: Hilbert spaces

Hilbert space, Orthogonal complements, Orthonormal sets, The Conjugate space H^{*}, The adjoint of an operator, Self adjoint operators, Normal and Unitary operators.

Unit-4: Finite dimensional Spectral theory

Matrices, Determinants and Spectrum of an operator, The spectral theorem.

Unit-5: Banach algebras

Definition and some examples, Regular and singular elements, Topological divisors of zero, The spectrum, The formula for the spectral radius.

Text Book:

1. Simmons, G.F., (2015) Introduction to Topology and Modern Analysis, McGraw Hill Book Company, New Delhi.

Unit-I Chapter 8: Section 44 only and
Chapter 9: Sections 46, 47 and 48.
Unit-II Chapter 9: Sections 49, 50 and 51.
Unit-III Chapter 10: Sections 52 to 58.
Unit-IV Chapter 11: Sections 60, 61 and 62.
Unit-V Chapter 12: Sections 64 to 68.
Unit-VI Appendices 1,3

Supplementary Reading:

1. Limaye, B.V.(1996),Functional Analysis, Prentice - Hall of India, New Delhi.
2. Bachmann and Narishi,(2000) Functional Analysis, Academic Press, Cambridge.
3. Karen Saxe, (2002) Beginning Functional Analysis, Springer.
4. Goffman, C. and Padrick, G., (1974) A First Course in Functional Analysis, Chelsea Publishing Company, New York.

Outcome Mapping:

CO 1 PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	3						3	3	3	3	3
CO2	3	3	3	3						3	3	3	3	3
CO3	3	3	3	3						3	3	3	3	3

Semester	19IMAC102: Core - 33 Stochastic Processes	L	T	P	C
		4	0	0	4

Learning Objective (LO):
L01 The objectives are to
(i) acquire the skill of advanced level of mathematical sophistication and enhancing the horizons of knowledge.
(ii) acquire understanding of applicability of different concepts of stochastic processes on some physical situation.
(iii) to familiarize the students with the use of stochastic models in different areas.

Course Outcomes (CO)

By the end of the course, students will be able to gain
CO1 working knowledge related to the problems of uncertainty.
CO2 a basic knowledge for doing research in this area.

Unit-1: Stochastic Processes:

Introduction, Specification of Stochastic Processes, Stationary Process, Martingales.
Markov Chains:

Definition and Examples, Higher Transition Probabilities, Generalization of independent Bernoulli Trials: Sequence of Chain Dependent Trials, Classification of States and Chains.

Unit-2: More on Markov Chains:

Determination of Higher Transition Probabilities, Stability of a Markov System, Markov Chain with Denumerable Number of States, Reducible Chains.

Unit-3: Markov Processes with Discrete State Space: Poisson Process and its Extensions:
Poisson Process, Poisson Process and Related Distributions, Generalization of Poisson Process, Birth and Death Process, Markov Process with Discrete State Space (Continuous Time Markov Chains).

Unit-4: Markov Chains and Markov Processes with Continuous State Space:
Markov Chains with Continuous State Space, Introduction, Brownian Motion, Wiener Process, Differential Equations for a Wiener Process, Kolmogorov Equations, First Passage Time Distribution for Wiener Process.

Unit-5: Renewal Processes and Theory:

Renewal Process, Renewal Processes in Continuous Time, Renewal Equation, Stopping time: Wald's Equation, Renewal Theorems, Delayed and Equilibrium Renewal Processes.

Text Book:

1. Medhi.J., (1994) ,Stochastic Processes, Second Edition, New Age International (P) Limited, Publishers, New Delhi. .

Unit-I Chapter 2: Sections 1 to 4 and
Chapter 3: Sections 1 to 4.
Unit-II Chapter 3: Sections 5,6,8 and 9.
Unit-III Chapter 4: Sections 1 to 5.
Unit-IV Chapter 3: Section 11
Chapter 5: Sections 1 to 5.
Unit-V Chapter 6: Sections 1 to 6.
Unit-VI Chapter 10: Sections 1,2 and5.

Supplementary Reading:

1. Karlin S. and Taylor H.M., (2011) A First Course in Stochastic Processes, Second Edition, Academic Press, New York.
2. Ross, S.M., (2008) Stochastic Processes, Second Edition, Wiley India Pvt., Ltd, New Delhi.

Outcome Mapping:

CO 1 PO	PO 1	PO 2	PO	PO 4	PO 5	PO 6	PO	PO	PO	PO 10	PSO 1	PSO 2	PSO	PSO 4
CO 1	3	3	3	3						3	3	3	3	3
CO 2	3	3	3	3					3	3	3	3	3	

Semester	19IMAC103: Core - 34	L	T	P	C
X	Fluid Dynamics	4	0	0	4

Learning Objective (LO):

L01 This course aims to discuss kinematics of fluids in motion, Equations of motion of a fluid, three dimensional flows, two dimensional flows and viscous flows.

Course Outcomes (CO)

On successful completion of the course, the student will be able to,
C01 Identify and obtain the values of fluid properties and relationship between them and understand the principles of continuity, momentum, and energy as applied to fluid motions.

CO2 Recognize these principles written in form of mathematical equations.
CO3 Apply dimensional analysis to predict physical parameters that influence the flow in fluid dynamics.

Unit-1:Kinematics of Fluids in Motion:

Real fluids and ideal fluids - Velocity of a fluid at a point stream lines - path lines - Steady and unsteady flows - Velocity potential - The velocity vector - Local and particle rates of changes Equations of continuity - Examples.

Unit-2: Equation of Motion of a fluid:

Pressure at a point in a fluid at rest - Pressure at a point in a moving fluid - Condition at a boundary of two invicid immersible fluids. Euler's equation of motion - Discussion of the case of steady motion under conservative body forces.

Unit-3: Some three dimensional flows:

Introduction - Sources - Sinks and doublets - Images in rigid infinite plane - Axis symmetric flows - Stokes stream function.

Unit-4:Some two-dimensional flows:

Two dimensional flows - Meaning of two dimensional flow - Use of cylindrical polar coordinates - The stream function - Complex potential for two dimensional - Irrational incompressible flow - Complex velocity potential for standard two dimensional flows Examples.

Unit-5:Viscous flows:

Viscous flows - Stress components in a real fluid -Relation between Cartesian components of stress - Translation motion of fluid elements - The rate of strain quadric and principle stresses - Further properties of the rate of strain quadric - Stress analysis in fluid motion - Relation between stress and rate of strain - The coefficients of viscosity and Laminar flow - The Navier Stokes equations of motion of a viscous fluid.

Text Book:

1. Chorlton, F., (1985), Fluid Dynamics, CBS Publication, New Delhi.

Unit - I Chapter 2: Sections 2.1 to 2.8
Unit - II Chapter 3: Sections 3.1 to 3.7
Unit - III Chapter 4: Sections 4.1 to 4.3 and 4.5
Unit - IV Chapter 5: Sections 5.1 to 5.6
Unit - V Chapter 8: Sections 8.1 to 8.9.
Unit - VI Chapter 9: Sections 9.1 to 9.4

Supplementary Reading:

1. Batchaelor, G.K., (1994) An Introduction to Fluid Mechanics, Foundation Books, New Delhi.
2. Yuan, S.W., (1976) Foundations of Fluid Mechanics, Prentice Hall of India Pvt. Ltd., New Delhi.
3. Rathy, R.K., (1976) An Introduction to Fluid Dynamics, IBH Publ. Comp. New Delhi.
4. Pijush K. Kundu, Ira M. Cohen and David R. Dowling, (2010) Fluid Mechanics, Fifth Edition, Academic Press, New York.

Outcome Mapping:

$\begin{aligned} & \mathrm{CO} / \\ & \mathrm{PO} \end{aligned}$	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	3						3	3	3	3	3
CO 2	3	3	3	3						3	3	3	3	3
CO 3	3	3	3	3						3	3	3	3	3

Semester	19IMAC104: Core - 35 Graph Theory	L	T	P	C
		4	0	0	4

Learning Objective (LO):

L01 Graph Theory is an integral part of Discrete Mathematics.
LO2 It has applications to many fields, including Computer Science, Physics, Chemistry, Psychology and Sociology.

LO3 In this course we teach basic topics in graph theory such as Trees, Connectivity, Euler tours, Hamilton cycles, Matchings, Colourings, Planar graphs.

Course Outcomes (CO)

Students will be introduced to and have knowledge of many mathematical concepts
C01 to give examples and counter examples corresponding to the theory
CO2 proof techniques
CO3 problem solving

Unit-1: Basic Concepts:

Graphs - Subgraphs - Degrees of vertices - Paths and connectedness - Automorphism of a simple graph, Line Graphs. Connectivity: Vertex cuts and Edge cuts - Connectivity and edgeconnectivity, Blocks.

Unit-2: Trees:

Trees - Characterization and Simple properties. Independent sets and Matchings: Vertex Independent sets and Vertex Coverings - Edge-Independent Sets - Matchings and Factors, Matchings in Bipartite Graphs (except the proof of Tutte's 1-factor theorem).

Unit-3:

Eulerian Graphs. Hamiltonian Graphs.

Unit-4 :Graph Colorings:

Vertex Colorings - Critical Graphs - Brooks' Theorem.
Edge Colorings of Graphs - Vizing's Theorem - Chromatic Polynomials.
Unit-5: Planarity:
Planar and Nonplanar Graphs - Euler's Formula and its Consequences - K_{5} and K_{33} are Nonplanar graphs - Dual of a Plane Graph - The Four Color Theorem and the Heawood FiveColor Theorem - Hamiltonian plane graphs.
Note: Theorems, Propositions and results which are starred are to be omitted.

Text Book:

1. Balakrishnan R. and Ranganathan K., (2012), Second Edition, A Textbook of Graph Theory, Springer, New York.

Unit - I Chapter 1: 1.1 to1.6; Chapter 3: 3.1 to 3.3;
Unit - II Chapter 4: 4.1, 4.2; Chapter 5: 5.1 to 5.5 ;
Unit - III Chapter 6: 6.2, 6.3;
Unit - IV Chapter 7: 7.1, 7.2, 7.3
(except 7.3.2 and 7.3.3), 7.6, 7.9;
Unit - V Chapter 8: 8.1 to 8.6; 8.8.

Supplementary Reading:

1. Bondy J, A. and Murty, U.S.R., (2008) Graph Theory, Springer, New York.
2. Douglas B. West, (2011), Introduction to Graph Theory, PHI Learning Private Ltd, New Delhi.
3. Chartrand, G., Linda Lesniak and Ping Zhang, (2011), Graphs and Digraphs, Fifth Edition, CRC Press.

Outcome Mapping:

$\begin{aligned} & \mathrm{CO} \text { / } \\ & \mathrm{PO} \end{aligned}$	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
CO1	3	3	3	3						3	3	3	3	3
CO 2	3	3	3	3						3	3	3	3	3
CO3	3	3	3	3						3	3	3	3	3
CO4	3	3	3	3						3	3	3	3	3

Semester	19IMAC105: Core - 36	L	T	P	C
	Calculus of Variations and Integral Equations	$\mathbf{4}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{4}$

Learning Objective (LO):
LO1 The aim of the course is to introduce to the students the concept of calculus of variations and its applications.

LO2 Various types of integral equations have been introduced and method of solving these equations are given.

Course Outcomes (CO)

On Successful completion of the course student will be able to
C01 Recognize the difference between Volterra \& Fredholm integral equations, First kind \& second kind, homogeneous and non-homogeneous etc.

CO2
understand the fundamental concepts related to the space of admissible variations and concepts of a weak and a strong relative minimum of an integral.

Unit-1:

Calculus of Variations and Applications:
Maxima and Minima - The Simplest case-Illustrative examples-Natural boundary conditions and transition conditions - The variational notation-The more general case.

Unit-2:

Constraints and Lagrange multipliers-Variable end points - Sturm- Liouville problems-Hamilton's principle- Lagrange's equations.

Unit-3:
Integral Equations: Introduction - Relations between differential and integral equations - The Green's function - Alternative definition of the Green's function.

Unit-4:

Linear equation in cause and effect: The influence function - Fredholm equations with separable kernels - Illustrative example.

Unit-5:

Hilbert - Schmidt theory - Iterative methods for solving equations of the second kind Fredholm theory.

Text Book:

1. Francis B. Hildebrand, (1965), Methods of Applied Mathematics, Second Edition, Prentice Hall, N.J.

Unit I: \quad Chapter 2: Sections 2.1 to 2.6
Unit II: \quad Chapter 2: Sections 2.7 to 2.11
Unit III: \quad Chapter 3: Sections3 1 to 3.4
Unit IV: \quad Chapter 3: Sections3.5 to 3.7
Unit V: \quad Chapter 3: Sections3.8 to 3.9 and 3.11

Supplementary Reading:

1. Ram.,P. Kanwal, (1971) Linear Integral Equations Theory and Practice, Academic Press, New York.
2. ElsgoltsL., (2003) Differential equations and the calculus of variations, University Press of the Pacific, U.K.
3. Mikhlin, S.J, (1960) Linear Integral Equations (translated from Russian), Hindustan Book Agency, New Delhi.
4. Snedden Ian N., (1966) Mixed Boundary Value Problems in Potential Theory, North Holland.
5. Lev D. Elsgole, (2007) Calculus of Variations, Dover Publications Inc, New York.
6. Rahman M., (2007) Integral Equations and their Applications, WIT Press, Boston.

Outcome Mapping:

CO 1 PO	PO 1	PO	PO	PO 4	PO 5	PO	PO	PO	PO	PO 10	PSO 1	PSO 2	PSO	PSO
CO 1	3	3	3	3						3	3	3	3	3
CO 2	3	3	3	3						3	3	3	3	3

Elective Courses (DE):

Semester	19IMATE86-1: Programming Language C++	L	T	P	c
VIII		3	0	0	3

Learning Objective (LO):
L01 The language C++ is a Object Oriented Programming Language.
LO2 First the syntax of the language C++ is introduced.
LO3 This is followed by Control statement, Arrays, Functions, Pointers, Structures and Classes.

LO4 Many problems are solved after writing algorithms and programs in C++.

Course Outcomes (CO)

C01 On Successful completion of C++ course, the students gathered computer knowledge in C++ to write programmes for various types of mathematical problems.

Unit-1: C++ Programming Basics:

Basic Program Construction: Functions, Program Statements, White Space. Output Using Cout: String Constants. Preprocessor Directives: The \# include Directive, Header Files. Comments: Comment Syntax, When to Use Comments, Alternative Comment Syntax. Integer variables: Defining Integer Variables, Declarations and Definitions, Variable Names, Assignment Statement, Integer Constants, Output variations. Character Variables: Character Constants, Initialization, Escape Sequences. Input with Cin: Variables Defined at Point of Use, Cascading, Expressions, Precedence. Type float: Floating-Point Constants, The Const Qualifier, The \# define Directive. Manipulators: The end L Manipulator, The set W Manipulator, Type Long, Cascading the Insertion Operator, Multiple definitions, The IOMANIP.H Header File. Variable Type Summary: Unsigned data types. Type Conversion: Automatic Conversions, Casts. Arithmetic operators: The Remainder Operator, Arithmetic Assignment operators, Increment Operators. Library Functions: Header Files, Library Files, Header Files and Library Files, Two Ways to Use \# include.

Unit-2: Loops and Decisions:

Relational operators. Loops: The for Loop, Using Turbo C++ Debugging Features, for Loop Variations, The while Loop, Precedence: Arithmetic and Relational Operators, The do loop, When to Use Which Loop. Decisions: The if Statement, The if...else Statement, The else...if Construction, The Switch Statement. The Conditional Operator. Logical Operators: Logical OR Operator, Logical AND Operator, The Logical NOT Operator, Precedence Summary, Other Control Statements, The break Statement, The continue Statement, The GOTO Statement.

Unit-3: Structures:

A simple structure, Specifying the structure, Defining a structure variable, Accessing structure members.

Functions:

Simple Functions: The Function Declaration, Calling the Function, The Function Definition, Comparison with Library Functions, Eliminating the Declaration. Passing Arguments to Functions: Passing Constants, Passing Variables, Passing by Value, Passing Structure Variables, Names in the Declaration. Returning Values from Functions: The return Statement, Returning structure Variables. Reference Arguments: Passing Simple Data Types by Reference. Overloaded Functions: Different Numbers of Arguments, Different Kinds of Arguments. Inline Functions: Default Arguments, Variables and Storage Classes: Automatic Variables, External Variables, Static Variables, Storage, Returning by Reference.

Unit-4: Arrays:

Array Fundamentals. Defining Arrays, Array Elements, Accessing Array Elements, Averaging Array Elements, Initializing Arrays, Multidimensional Arrays, Passing Arrays to Functions, Arrays of Structures. String: Variables, Avoiding Buffer Overflow, String Constants, Reading Embedded Blanks, Reading Multiple Lines,Copying a String the Hard Way, Copying a String the Easy Way, Arrays of Strings, Strings as Class Members, A User-Defined String Type.

Unit-5: Pointers:

Addresses and Pointers, The Address of Operator \& Pointer Variables, Accessing the Variable Pointed To, Pointer to void. Pointers and Arrays: Pointer Constants and Pointer Variables. Pointers and Functions: Passing Simple Variables, Passing arrays, Sorting Array Elements. Pointers and Strings: Pointers to String Constants, Strings as Function Arguments, Copying a String Using Pointers, Library String Functions, Arrays of Pointers to Strings.

Text Book:

1. Robert Lafore, (1996),Object-Oriented Programming in TURBO C++, Galgotia Publications Pvt. Ltd., New Delhi.

Unit-I Chapter 3
Unit-II Chapter 4
Unit-III Chapters 5 and 6
Unit-IV Chapter 8
Unit-V Chapter 12

Supplementary Reading:

1. Balagurusamy, E., (2006), Programming in ANSI C, Seventh Edition, Tata McGraw Hill Publishing Ltd., New Delhi.
2. Kanthane, A. N., (2006), Object Oriented Programming in ANSI \& Turbo C++, Pearson Education, New Delhi.

Outcome Mapping:

CO 1 PO	PO 1	PO 2	PO	PO4	$\mathrm{PO5}$	PO 6	PO	PO	PO	PO 10	PSO 1	PSO2	PSO3	PSO4
C01	3	2	3	2	3	2				3	2	3	3	2

Semester	19IMATE96-1: Number Theory	L	T	P	C
	IX		3	$\mathbf{0}$	$\mathbf{0}$

Learning Objective (LO):
L01 The prime aim of this paper is to enrich the knowledge of Number Theory.
LO2 The concepts of primes, congruences, prime power moduli, power residues, quadratic residues, greatest integer function, Mobius inversion formula are introduced.

LO3 Diophantine equations and their positive solutions are discussed.
Simple continued functions are also considered.

Course Outcomes (CO)

On successful completion of the course, the student will be able to understand the concepts

C01 to give examples and counter examples corresponding theory

CO2 proof techniques
CO3 problem solving of

- Divisibility relation,
- Congruence relation,
- Special number theoretic functions,
- Diophantine equations and
- Algebric numbers.

Unit-1: Divisibility and Congruences
Divisibility, Primes, Congruences, Solutions of Congruences, The Chinese Remainder Theorem.

Unit-2: Congruences (continued)

Prime power moduli, Prime modulus, Primitive Roots and Power Residues, Congruences of degree two, Prime Modulus.

Quadratic Reciprocity and Quadratic Forms:
Quadratic Residues, Quadratic reciprocity and the Jacobi symbol.

Unit-3: Some functions of Number Theory

Greatest integer function, Arithmetic functions, The Mobius inversion formula, Recurrence Functions, Combinatorial Number Theory.

Unit-4: Some Diophantine Equations

The equation $a x+b y=c$, Simultaneous Linear Equations, Pythagorean Triangles, Assorted Examples, Ternary Quadratic Forms.

Unit-5: Simple Continued Fractions

The Euclidean Algorithm, Uniqueness, Infinite Continued Fractions, Irrational Numbers, Approximations to Irrational Numbers.

Text Book:

1. Ivan Niven, H.S. Zuckerman and Hugh L. Montgomery (1991). An Introduction to the Theory of Numbers, . Fifth Edition, Wiley Eastern Limited, New Delhi.

Unit - I Chapter 1 Sections 1 to 3 and Chapter 2 Sections 1 to 3

Unit - II Chapter 2 Sections 6 to 9 and
Chapter 3 Sections 1 to 3
Unit - III Chapter 4 Sections 1 to 5
Unit - IV Chapter 5 Sections 1 to 5
Unit - V Chapter 7 Sections 1 to 5

Supplementary Reading:

1. Tom M. Apostal, (2013), Introduction to Analytic Number Theory, Narosa Publishing Company, New Delhi.
2. Hsiung C.Y., (1995), Elementary Theory of Numbers, World Scientific, Singapore.
3. Hardy G.H. and Wright E.M., (1989), An Introduction to the Theory of Numbers, . Fourth Edition, Clarendon Press, U.K.

Outcome Mapping:

$\begin{aligned} & \mathrm{CO} / \\ & \mathrm{PO} \end{aligned}$	P01	PO2	PO3	PO4	P05	PO6	P07	P08	PO9	PO10	PSO1	PSO2	PSO3	PSO4
CO1	3	2	3	2						3	2	3	2	3
CO2	3	2	3	2						3	2	3	2	3
CO3	3	2	3	2						3	2	3	2	3

Semester	19IMATE96-2: Fuzzy Sets and their Applications	L	T	P	C

Learning Objective (LO):

L01 This course aims to offer fuzzy sets, fuzzy relations, fuzzy logic, fuzzy composition and applications.

Course Outcomes (CO)

On successful completion of the course, the student will be able to identify the basic concepts
CO1 to give examples and counter examples corresponding theory

CO2 Proof techniques

CO3 problem solving on

- characteristics of fuzzy logic,
- a cuts,
- operations on fuzzy sets,
- extension principles,
- fuzzy norms,
- lattice of fuzzy numbers.

Unit-1:Fuzzy sets:

Fuzzy sets - Basic types - Basic concepts - Characteristics - Significance of the paradigm shift

- Additional properties of α - Cuts.

Unit-2: Fuzzy Sets Versus CRISP Sets:

Representation of Fuzzy sets - Extension principle of Fuzzy sets - Operation on Fuzzy Sets Types of Operation - Fuzzy complements.

Unit-3: Operations on Fuzzy Sets:

Fuzzy intersection - t-norms, Fuzzy unions - t conorms - Combinations of operations Aggregation operations.

Unit-4: Fuzzy Arithmetic:

Fuzzy numbers - Linguistic variables - Arithmetic operation on intervals - Lattice of Fuzzy numbers.

Unit-5: Constructing Fuzzy Sets:

Methods of construction: An overview - Direct methods with one expert - Direct method with multiple experts - indirect method with multiple experts and one expert - Construction from sample data.

Text Book:

1. Klir G.J. and Bo Yuan, (2005), Fuzzy Sets and fuzzy Logic: Theory and Applications, Prentice Hall of India Ltd., New Delhi.

Unit - I Chapter 1: Sections 1.3 to 1.5 and
Chapter 2: Sections 2.1
Unit - II Chapter 2: Sections 2.2 to 2.3 and
Chapter 3: Sections 3.1 to 3.2
Unit - III Chapter 3: Sections 3.3 to 3.6
Unit - IV Chapter 4: Sections 4.1 to 4.4
Unit - V Chapter 10: Sections 10.1 to 10.7

Supplementary Reading:

1. Zimmermann H.J., (1996), Fuzzy Set Theory and its Applications, Allied Publishers, Chennai.
2. Kaufman A., (1975), Introduction to the Theory of Fuzzy Subsets, Academic Press, New York.
3. Novak V., (1969), Fuzzy Sets and Their Applications, Adam Hilger, Bristol.

Outcome Mapping:

$\begin{aligned} & \mathrm{CO} / \\ & \mathrm{PO} \end{aligned}$	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
CO1	3	2	3	2						3	2	3	2	3
CO 2	3	2	3	2						3	2	3	2	3
CO 3	3	2	3	2						3	2	3	2	3

