1. Title and Scope

1.1. These academic Regulations shall be called “Annamalai University Faculty of Agriculture, Diploma in Agriculture (Dip. Agri) regulations for obtaining Diploma in Agriculture in the Faculty of Agriculture.

1.2. The regulations provided herein shall apply to the students admitted from the academic year 2017-18 onwards.

2. Definitions

2.1. University: University means Annamalai University, Annamalainagar, Tamilnadu.

2.3. Academic year: An academic year is a period during which a cycle of study is completed. It shall commence on or after 1st July of each year. There shall be two semesters in an academic year.

2.4. Semester: A semester shall consist of 105 working days inclusive of the mid-semester and practical examinations.

2.5. Curriculum: It is a series of courses offered to provide learning opportunities to meet the requirements for a degree.

2.6. Course: A course is a unit of instructions, series of classes and work experience extending over a semester. It has a specific Prefix, code number, title and credits. Each course is denoted by specific code number, which has specific meaning.

The first three alphabets stand for the department offering the course. First digit is related to the year; second digit is related to the semester and the third digit is related to course number in a particular semester i.e. “SAC-114 “Soils and their management”. “SAC” stands for the Department of Soil Science and Agricultural chemistry; the first digit (1) stands for the year; second digit (1) stands for the semester and the third digit (2) stands for the serial number of course in a particular semester.

2.7. Credit: It is a measure of quantity of work done in a course. One credit represents one contact hour for theory or two contact hours of laboratory or field work per week. For example, a 1+1 course (2 credits) means 1 hour theory and 2 hours practical per week.

2.8. Credit load: It is the number of credits a student undergoes in a semester.

2.9. Grade Point: “Grade Point” means the total marks in percentage divided by 10 and shall be expressed on 10-point scale upto second decimal place.

2.10. Credit point: A credit point is a product of grade point obtained by a student and number of credits in a course.

2.11. Grade Point Average (GPA): It is a measure of performance of a student in all the courses taken during a semester. The GPA is computed by dividing the total credit points earned by a student in a semester by the total number of credits taken during that semester.

2.12. Overall Grade Point Average (OGPA): It is a measure of the cumulative performance of a student on completion of the second and subsequent semesters of the degree programme. It is computed by dividing the total credit points earned by a student up to the end of a particular semester by the total number of credits. It shall be expressed on 10 point scale up to second decimal place.

2.13. The OGPA shall be rounded off to second digit of decimal point on the basis of third digit. If third digit of decimal point is 5 or more than 5, then second digit will be increased by one. If, however, it is less than 5, it will be ignored. This will be done at the end of each semester while calculating the OGPA.

2.14. Calculation of OGPA
To arrive at the “Overall Grade Point Average (OGPA)” at the end of a semester, the grade point of each course is multiplied by the credit hours of the course to obtain the credit points. Then, the sum of the credit points secured by the student in all the courses taken till the end of that semester is divided by the total number of credit hours of the courses, provided that the credit hours and credit points of courses which are repeated are not counted more than once for this purpose.

For Example

i. Total credit hours till the end of last semester : 18
ii. Total credit points till the end of last semester : 140.50
iii. Total credit hours in the current semester : 22
iv. Total credit points obtained in the current semester : 156
v. Total credit hours including the current semester : (18+22) = 40
vi. Total credit points including the current semester : 140.50 +156.00 = 296.50
vii. Overall Grade Point Average : (296.50/40) = 7.412
viii. Corrected to two decimals : 7.41 / 10.00

2.15. “Transcript Card” is a consolidated report of grades secured by the student in all the semesters, issued by the University.

3. Admission

3.1. Admission of the student to Diploma in Agriculture/Horticulture in the Faculty of Agriculture shall be on the basis of merit and in accordance with the policy and guidelines of the state government and the University. The minimum admission requirement shall be decided by university and issued from time to time. Decision of the University is final in deciding procedure of admission and finalization of number of seats. Reservation rules shall be made applicable as per norms of the state government.

3.2 Tuition fees and scholarships

The various fees payable by the students will be decided by the University from time to time.

a. In case of new admission, the fees for the semester are payable in advance failing which they will not be admitted.

b. In other cases, the fees are payable within seven working days from the commencement of the semester.

c. In the case of default, a fine as per the University rules will be collected.

d. The students who fail to pay the tuition fees within a month of commencement of the semester will not be allowed to attend the classes and their names will be struck off from the rolls. However, if the defaulting students pay the fees along with the fines in addition to a prescribed readmission fee, they will be permitted to attend the classes. The period for which his/her name is struck off from the rolls will be treated as absence for the purpose of calculating the minimum attendance requirements.

e. Students who are away on study tour, camp activities or other extracurricular activities organised by the University or the Faculty at the commencement of the semester may, however, pay their semester tuition fees and other fees within the third working day after they return from such programmes, without fine.

f. A student who has been granted scholarships by the Welfare Departments or by the Government of India or by the State Government will, however, be exempted from the levy of fines, provided the fees are paid on the next day after the scholarship amount is actually disbursed to him/her. The concession referred above will apply to those who have actually been granted scholarships and not to those who have only applied and are expecting sanction.

g. The candidate should obtain a Hall Ticket from the Controller of Examinations through the Dean after clearing all arrears including the hostel dues before the commencement of each semester final examination.
4. Advisory system
4.1. Dean shall nominate a co-coordinator from amongst the teaching faculty.
4.2. Student ward counselors will be nominated soon after the students' admission. The counselor shall be nominated from amongst the teaching faculty.

5. Curriculum and programme of study
5.1. The students admitted in the university shall be required to follow the curriculum as prescribed, revised by the Faculty and approved by the Academic Council from time to time.

6. Award of Diploma, duration and credit requirements
6.1. A student is required to complete the duration and credit requirements for the award of diploma as decided by Academic Council from time to time.

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Diploma</th>
<th>Duration requirements (Semester)</th>
<th>Credit requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Diploma in Agriculture</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

7. Medium of Instruction
7.1. The medium of Instruction in Diploma in Agriculture shall be English.

8. Attendance Requirements
8.1 One hundred per cent attendance is expected from each student. A student who fails to secure 80 per cent of attendance prescribed for a course (subject) of study, separately in theory and practical shall not be permitted to appear for both theory and practical examinations in that course (subject) and shall be given ‘E’ (incomplete) and will be required to repeat the course (subject) when offered again.
8.2 For the first year first semester students, for calculating 80 per cent attendance the number of working days will be calculated only from the date of joining of the student.
8.3 If any student is absent for field trips, the student may be marked absent for all the compensating classes on the day of the field trip in addition to the field trip courses.
8.4 The attendance for mid semester examination will be counted as a theory class.
8.5 Students abstaining from the classes by prior permission from the Dean, Faculty of Agriculture on Official University business, shall be given due consideration in computing attendance requirements.
8.6 However, condonation of attendance deficiency may be considered by the Vice-Chancellor only in case of genuine reasons including indoor hospitalization with evidence in the form of Hospitalization certificate and Discharge summary recommended by the Dean, Faculty of Agriculture. The Vice-Chancellor may decide whether or not a condonation fee is required, based on the reason for condonation.
8.7 The student belonging to a batch will attend classes and earn attendance in the particular batch only as per the time table. No student shall be permitted to attend along with another batch to gain attendance either in theory or in practical.

9. Examinations
Each course shall carry a maximum of 100 marks for the purpose of grading. The distribution of marks shall be as follows.
9.1. Course with both theory and practical Marks
 i) Mid Semester Examination 20
 ii) Practical Examination (Written = 25, Record = 5
 Specimen collection / Assignment = 5 and Viva-Voce = 5) 40
 (The question pattern in written part should be uniform in each department)
 iii) Final Theory Examination
 Total 40
 100
9.2. Course with only Practical* Marks
i) Mid Semester Examination 40
ii) Final Semester Examination 60
Total 100

9.3. Evaluation of course work
The results of the course shall be indicated by grade points ranging from 0 to 10.0. The
minimum grade point to be secured for the successful completion of a course will be 6.00.
Securing a grade point less than 6.00 in a course will be treated as 'RA' and the grade point
will be 0 for calculating the GPA/OGPA. In case of course with theory and practical,
minimum of 50 % mark separately in theory and practical with an aggregate of 60 per cent is
essential. An OGPA of 6.50 shall be the minimum requirement for the award of Degree.

The following symbols shall be used in the grade sheets.
E - Incomplete (due to attendance deficiency)
AB - Absent
RR - Re-registration
RA - Re-appearance
IE - Improvement Examination
EE - Incomplete for reasons other than attendance

9.4. Evaluation pattern for courses with only practical
The evaluation pattern of courses with only practicals is grouped and mark
distribution is furnished below.

A. PED 118 Physical Education (0+1)
The students will be evaluated for 100 marks. The course teacher will evaluate the
performance and behavior of students in the classes and marks will be awarded at the end of
the first semester as detailed below.

<table>
<thead>
<tr>
<th>Particulars</th>
<th>Max marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attendance and routine activities</td>
<td>60</td>
</tr>
<tr>
<td>Behaviour</td>
<td>15</td>
</tr>
<tr>
<td>Participation in tournaments</td>
<td>25</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
</tbody>
</table>

B. ENG 128 / TAM 228

<table>
<thead>
<tr>
<th>Particulars</th>
<th>Mid-semester examination</th>
<th>Final examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written test</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Continuous evaluation</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>Assignment</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>Record</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>Viva voce</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>40</td>
<td>60</td>
</tr>
</tbody>
</table>

C. COM 115

<table>
<thead>
<tr>
<th>Particulars</th>
<th>Mid-semester examination</th>
<th>Final examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written test</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>Continuous evaluation</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>Assignment</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>Record</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>Viva voce</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>40</td>
<td>60</td>
</tr>
</tbody>
</table>
D. Crop Production AGR 212 & AGR 222

<table>
<thead>
<tr>
<th>Particulars</th>
<th>Mid-semester examination</th>
<th>Final examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field evaluation</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Written examination</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>Record</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>Assignment</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>Viva-Voce</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>40</td>
<td>60</td>
</tr>
</tbody>
</table>

Study Tour: AEX 226 (0+1);

The course AEX 226 Study tour is compulsory. The tours will be undertaken during fourth semester. The duration of study tour shall not exceed 15 days. The tours will be arranged by the respective department of the study in consultation with the Dean, Faculty of Agriculture. The final examination will be conducted separately at the end of the semester by the University. The Marks for the tour are to be awarded as follows

<table>
<thead>
<tr>
<th>Particulars</th>
<th>Max marks</th>
<th>Evaluation by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attendance</td>
<td>20</td>
<td>Accompanying staff</td>
</tr>
<tr>
<td>Behaviour</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Final examination</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tour Diary</td>
<td>20</td>
<td>By the organising staff/Examiner</td>
</tr>
<tr>
<td>Tour record</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Viva voce</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

G. Commercial agriculture CAG 217 (0+2) & CAG 227(0+2)

A student can choose a commercial agriculture programme of his/her choice. The maximum number of students allowed to register in a department will be decided by the Dean depending on enrolment. If more number of students opt for a same department the particular subject mark is considered for selecting a student.

Periodical evaluation of the above course will be done by the course teacher during different stages of work. Final evaluation of the above course will be done by the teacher incharge and another examiner. The final examination will be conducted by the University before the commencement of regular final semester examinations. The distribution of marks will be 40 for periodical evaluation and 60 for final examination.

<table>
<thead>
<tr>
<th>Particulars</th>
<th>Max marks</th>
<th>Evaluation by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observation Note book</td>
<td>20</td>
<td>By Teacher in-charge</td>
</tr>
<tr>
<td>Proficiency in skill learning</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Final examination</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skills learned</td>
<td>20</td>
<td>By the Examiners</td>
</tr>
<tr>
<td>Record</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Viva voce</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

10. Mid-semester examination (MSE)

10.1 Writing the mid-semester examination is a pre-requisite for writing the final theory and practical examinations. If a student does not appear for MSE, he/she is not eligible to appear for the final examinations. Such candidate has to reappear for the MSE as and when the respective examinations are conducted only after getting permission from the Dean, Faculty of Agriculture on payment of fee prescribed by the University. MSE will be conducted by the Dean, Faculty of Agriculture. The answer scripts will be shown to the student after valuation, and returned to the course teacher. The Head of the
Department/Division will be responsible to ensure the distribution of answer papers to the students.

10.2 The MSE marks will not be shown separately in the grade sheet but will be combined with the respective final theory and practical marks. MSE marks awarded in a course will be added to the supplementary examinations also.

10.3 The MSE marks will be furnished to the Dean, Faculty of Agriculture through Head of the Department within 10 days after the conduct of MSE. If the student is not satisfied with the award of the marks, he/she shall appeal to the Dean, within three working days after the announcement of marks. The appeal will be considered and the results reviewed by a cell consisting of the Dean and the Head of the Department /Division of Studies concerned. The decision of the Review Cell shall be final. If the Head of the Department himself is the course teacher, one senior member of the department concerned shall be nominated by the Dean.

10.4 The MSE of theory will be one hour duration

For courses with both theory and practical, 20 marks will be apportioned as shown below.

<table>
<thead>
<tr>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Fill up the blanks @ ½ mark for 10 questions out of 12</td>
</tr>
<tr>
<td>ii) Definition @ 1 mark for 5 questions out of 7</td>
</tr>
<tr>
<td>iii) Short notes @ 2½ marks for 2 questions out of 3</td>
</tr>
<tr>
<td>iv) Essay type @ 5 marks for 1 question out of 2</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

10.5 If the student is not able to write the MSE due to deputation by the University, he/she may be permitted to take up missing MSE. Such examination should be completed ordinarily within 15 working days after the respective MSE.

10.6 A student who fails to attend a mid-semester examination due to unavoidable circumstances shall be permitted with prior approval of the Dean to take up missing examination of the particular course, on payment of fee prescribed by the University. Such tests should be completed ordinarily within 15 working days after the respective MSE.

11. Final examinations

11.1. The final theory and practical examinations will be of three hours duration each.

11.2. Theory examinations will be conducted after practical examinations.

11.3. The question papers for the final theory examinations will be set by the external examiners.

The 40 marks will be apportioned as shown below.

<table>
<thead>
<tr>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>i) Fill up the blanks @ ½ mark for 10 questions out of 12</td>
</tr>
<tr>
<td>ii) Definition @ 1 mark for 5 questions out of 7</td>
</tr>
<tr>
<td>iii) Short notes @ 2½ marks for 2 questions out of 3</td>
</tr>
<tr>
<td>iv) Essay type @ 5 marks for 5 questions (either or pattern from each Unit)</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

11.4. Central valuation of answer books will be done by examiners on the advice of the Chairman, Board of Examiners.

11.5. Practical Examination

Practical examinations will be conducted separately towards the end of each semester. Proper maintenance and regular submission of practical records are required. Those who do not bring with them the certified practical records/specimen collection/assignments will not be allowed to appear for the practical examination. The marks awarded for specimen collection
and assignments shall be noted in the record, at the time of first appearance and will be taken into account for subsequent appearances. Such marks awarded by the examiner will be furnished to the Head of the Department.

11.6. Two examiners appointed by the University, nominated by Head of the Department and recommended by the Dean will conduct the practical examination.

12. Re-appearance and improvement examination

12.1. Re-appearance and improvement examinations are permitted only for the final theory and practical examinations (retaining marks obtained in mid-semester examination) at the time of semester examination after the payment of fee prescribed by the university. A student is permitted to write reappearance examination for the failed subjects only three times during n+2 years duration excluding the regular final examination. In the event of a student failing to secure a pass in the three re-examinations permitted, he/she has to reregister the course along with juniors.

12.2 A student who failed in a course (subject) or awarded EE can take up re-examination without undergoing regular classes. A student who has not fulfilled attendance requirement should repeat the course to earn attendance before he/she is permitted to proceed to the next semester.

12.3 The student having an OGPA of less than 6.50 only is eligible to improve the grade point only once in courses completed earlier in which he/she had obtained grade point less than 8.00. In case a student fails to secure higher grade point in the subsequent attempts, the higher grade point secured by the student either in regular or improvement examination will be accounted.

Improvement and re-examination will not be allowed in courses with only practical. Those who fail in the above subjects shall have to repeat the course in the subsequent year/years.

12.4 Those who miss the study tours for any valid reason must undertake the tour along with juniors to complete the diploma programme.

12.5 A continuing candidate cannot appear for more than six subjects in the reappearance examination at a time. The candidate who has completed the tenure of two years in the Diploma Programme (private candidate) cannot appear for more than 12 subjects in the reappearance examination at a time.

12.6 The candidates for the reappearance examinations will submit their applications through the Dean, Faculty of Agriculture who will scrutinize the applications to ensure compliance of regulation 12.1 and 12.3. The attested copy of all grade sheets pertaining to the reappearance examinations should be enclosed along with the applications.

13. Malpractices in examinations

13.1 The Dean, Faculty of Agriculture shall be responsible for dealing all cases of unfair means by students in writing records, assignments and examinations.

13.2 The invigilator or the course teacher concerned shall report each case of unfair means with full details of the evidence and written explanation of the student concerned to the Dean immediately.

13.3 The Dean shall take appropriate steps on receipt of the report and the report will be sent to the Controller of Examinations for appropriate action as prescribed by the University.

14. Regulations of student conduct and discipline

14.1 Ragging Rules: Students found involved in ragging or in any other misconduct, or if a complaint is received from the affected student(s) to that effect, will be immediately expelled from the current semester and the Dean shall further constitute a committee to probe and conduct enquiry into the matter and based on the report of the committee, the Dean shall forward the same to the Registrar to pass the final orders on merit of case within three working days.
14.2 Unlawful Activities: In case of students found involved in any unlawful activities either within or outside the Hostel/College Campus, besides expulsion both from the Hostel and College, at the discretion of the Dean with the knowledge of the Registrar, the matter will be reported to the Police of the jurisdiction to be dealt with, in accordance with the appropriate law in force.

14.3 Ragging – An offence

Extract of Tamil Nadu Government Gazette – Extra ordinary dt. 29.01.1997 (Tamil Nadu Prohibition of Ragging Act, 1997).

In this Act, unless the context otherwise requires, “Ragging” means display of noisy, disorderly conduct, doing any act which causes or is likely to cause physical or psychological harm or raises apprehension or fear or shame or embarrassment to a student in any educational Institution and includes: teasing, abusing or playing practical jokes on or causing hurt to such student or asking the student to so any act or perform something which such student will not, in the ordinary course willingly act or perform. Ragging within or outside any educational institution is prohibited.

Who ever directly or indirectly commits, participates in, abets or propagates “Ragging” within or outside any educational institution, shall be punished with imprisonment for a term which may extend to two years and shall also be liable to fine which may extend to ten thousand rupees.

Any student convicted of an offence under section 4 shall also be dismissed from the educational institution and such students shall not be admitted in any other educational institution.

Without prejudice to the foregoing provision, whenever any student complains of ragging to the head of an educational institution, or to any other person responsible for the management of the educational institution, such head of the educational institution or person responsible for the management of the educational institution shall inquire into the same immediately and if found true shall suspend the student who has committed the offence from the educational institution.

On the recommendation of the Dean, Faculty of Agriculture, The Registrar will have full powers to punish any student who violates the rules by imposing a fine, suspension or expulsion. His decision is final and he need not assign any reason or explanation for the punishment awarded.

These rules will be altered or amended, and further rules may be added if necessary. All the rules for the time being in force should be observed by the students.

15. Award of Diploma

The Diploma namely Diploma in Agriculture shall be awarded under the seal of the University to the students who have successfully completed all the Diploma requirement as detailed below.

The candidates should have undergone successfully the prescribed course of study in the University. They shall further be required to have completed and passed 90 course credits and shall have earned an overall grade point average (OGPA) of 6.50 out of 10 for all courses completed in Diploma in Agriculture programme. In addition to the above, students shall in the judgment of the Faculty, possess good conduct and character.

The University shall issue Provisional Certificate (PC) to the candidates after having passed all provisional examinations.

15.1 Class ranking

In calculation of class equivalent for OGPA the following classification shall be adopted.

<table>
<thead>
<tr>
<th>OGPA</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.00 and above</td>
<td>Distinction</td>
</tr>
<tr>
<td>8.00 to 8.99</td>
<td>I Class</td>
</tr>
<tr>
<td>7.00 to 7.99</td>
<td>II Class</td>
</tr>
<tr>
<td>6.50 to 6.99</td>
<td>Pass</td>
</tr>
</tbody>
</table>

17. Removal of difficulties
If any difficulty arises in giving effect to the provisions of these regulations, based on the recommendations of the Dean, the Vice-Chancellor may issue necessary orders, which appear to him to be necessary or expedient for removing the difficulty.

DIPLOMA IN AGRICULTURE - 2017-18

First Semester

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course No.</th>
<th>Course Title</th>
<th>Credit Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>AGR 111</td>
<td>Principles of agronomy and agricultural meteorology</td>
<td>1+2</td>
</tr>
<tr>
<td>2.</td>
<td>AGR 112</td>
<td>Irrigation and weed management</td>
<td>1+1</td>
</tr>
<tr>
<td>3.</td>
<td>AGM 113</td>
<td>Basic and applied microbiology</td>
<td>1+1</td>
</tr>
<tr>
<td>4.</td>
<td>SAC 114</td>
<td>Soils and their management</td>
<td>1+1</td>
</tr>
<tr>
<td>5.</td>
<td>COM 115</td>
<td>Introduction to computer applications</td>
<td>0+1</td>
</tr>
<tr>
<td>6.</td>
<td>HOR 116</td>
<td>Propagation methods in horticultural crops</td>
<td>0+1</td>
</tr>
<tr>
<td>7.</td>
<td>AEG 117</td>
<td>Farm machinery and post harvest processing</td>
<td>2+1</td>
</tr>
<tr>
<td>8.</td>
<td>PED 118</td>
<td>Physical education</td>
<td>0+1</td>
</tr>
</tbody>
</table>

Total 6+9=15

Second Semester

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course No.</th>
<th>Course Title</th>
<th>Credit Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>AGR 121</td>
<td>Agronomy of Field Crops- I</td>
<td>1+1</td>
</tr>
<tr>
<td>2.</td>
<td>AEN 122</td>
<td>General and Economic Entomology</td>
<td>2+1</td>
</tr>
<tr>
<td>3.</td>
<td>PAT 123</td>
<td>Principles of Plant Pathology</td>
<td>1+1</td>
</tr>
<tr>
<td>4.</td>
<td>AGM 124</td>
<td>Energy and Environment</td>
<td>1+1</td>
</tr>
<tr>
<td>5.</td>
<td>SAC 125</td>
<td>Soil Nutrient Management</td>
<td>1+1</td>
</tr>
<tr>
<td>6.</td>
<td>GPB 126</td>
<td>Breeding of Field Crops I</td>
<td>1+1</td>
</tr>
<tr>
<td>7.</td>
<td>AHS 127</td>
<td>Principles of Livestock and Poultry Management</td>
<td>2+1</td>
</tr>
<tr>
<td>8.</td>
<td>ENG 128</td>
<td>English language for effective communication</td>
<td>0+1</td>
</tr>
</tbody>
</table>

Total 9+8=17

Third Semester

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course No.</th>
<th>Course Title</th>
<th>Credit Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>AGR 211</td>
<td>Agronomy of field crops II</td>
<td>1+1</td>
</tr>
<tr>
<td>2.</td>
<td>AGR 212</td>
<td>Crop Production I</td>
<td>0+2</td>
</tr>
<tr>
<td>3.</td>
<td>AEN 213</td>
<td>Crop Pests and their Management</td>
<td>1+2</td>
</tr>
<tr>
<td>4.</td>
<td>PAT 214</td>
<td>Crop Diseases and their Management</td>
<td>1+2</td>
</tr>
<tr>
<td>5.</td>
<td>GPB 215</td>
<td>Breeding of Field Crops II</td>
<td>1+1</td>
</tr>
<tr>
<td>6.</td>
<td>AEC 216</td>
<td>Agricultural Economics and Marketing</td>
<td>2+1</td>
</tr>
<tr>
<td>7.</td>
<td>CAG 217</td>
<td>Commercial Agriculture I</td>
<td>0+2</td>
</tr>
</tbody>
</table>

Total 6+11=17

Fourth Semester

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course No.</th>
<th>Course Title</th>
<th>Credit Hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>AGR 221</td>
<td>Dry farming and agroforestry</td>
<td>2+1</td>
</tr>
<tr>
<td>2.</td>
<td>AGR 222</td>
<td>Crop production II</td>
<td>0+2</td>
</tr>
<tr>
<td>3.</td>
<td>GPB 223</td>
<td>Seed production techniques</td>
<td>1+1</td>
</tr>
<tr>
<td>4.</td>
<td>HOR 224</td>
<td>Vegetable and Fruit culture</td>
<td>2+1</td>
</tr>
<tr>
<td>5.</td>
<td>AEX 225</td>
<td>Extension methods and audio visual aids</td>
<td>1+1</td>
</tr>
<tr>
<td>6.</td>
<td>AEX 226</td>
<td>Study tour</td>
<td>0+1</td>
</tr>
<tr>
<td>7.</td>
<td>CAG 227</td>
<td>Commercial agriculture II</td>
<td>0+2</td>
</tr>
<tr>
<td>8.</td>
<td>TAM 228</td>
<td>Language for communication</td>
<td>0+1</td>
</tr>
</tbody>
</table>

Total 6 + 10= 16

27+38=65
SYLLABUS
I SEMESTER
AGR 111 - PRINCIPLES OF AGRONOMY AND AGRICULTURAL METEOROLOGY (1+2)

THEORY

Unit I

Unit II

Unit III

Unit IV

Practical

LECTURE SCHEDULE
1. Agriculture – definition – scope of agriculture in India and Tamil Nadu - branches of agriculture – agronomy – art and science of crop production
2. Agronomic classification of crops – their importance, major crops of India and Tamil Nadu Factors affecting crop production - moisture, aeration, light, temperature and nutrients
3. Basic principles of agricultural operations – tillage and tilth, objectives and types of tillage
4. Primary and secondary tillage – intercultural operations, modern concepts of tillage
5. Cropping systems – principles – merits and demerits
6. Seeds and sowing – seed treatment, optimum plant population, crop geometry
7. Nursery – transplanting – after cultivation - gap filling and thinning
8. Weeding and irrigation
9. Mid semester examinations
10. Manures – organic manures, green manures, biofertilizers, fertilizers - methods of application – basal, split and foliar application
11. Harvesting and processing
12. Dry farming, watershed management – definition – concept
13. Organic Agriculture, sustainable agriculture - definition – concept
14. Meteorology – agricultural meteorology - importance of agricultural meteorology for crop production
15. Atmosphere – components and its importance - weather parameters and their role in crop production
16. Rainfall – spatial and temporal variability in Tamil Nadu across seasons - global warming and its impacts
17. Weather forecasting and forewarning of pest and diseases – Agromet services in India - agro climatic zones of Tamil Nadu

PRACTICAL SCHEDULE
1. Identification of crops in low land, irrigated uplands and dryland
2. Preparation of cropping scheme for different ecosystem
3. Acquiring skill in the primary tillage implements
4. Acquiring skill in the secondary tillage implements
5. Practicing the use of special purpose implements (rotary weeders)
6. Estimating the efficiency of tillage implements
7. Practicing implements used in rice cultivation (puddler and conoweeder)
8. Skill learning and practicing nursery bed preparation for low lands
9. Practicing nursery bed preparation for irrigated uplands
10. Practicing trimming and plastering in wet lands
11. Land shaping and lay out of filed for upland irrigated conditions
12. Acquiring skills in seed treatment of plant protection chemicals
13. Learning seed, seedling treatment and soil application of bio-fertilizers
14. Practicing sowing and transplanting
15. Practicing manual weeding and spraying with different formulations
16. Irrigation layout for upland irrigated crops
17. Practicing application of organic manures
18. Practicing application of green manures
19. Study of biofertilizers
20. Inorganic fertilizers – identification of fertilizers – calculation based on fertilizer schedule
21. Practicing various methods of soil application of fertilizers
22. Practicing spray calculation and foliar application of fertilizers
23. Practicing earthing up and understanding its importance
24. Measurement of growth components of major crops
25. Measurement of yield components and yield of major crops
26. Visiting Agro met observatory and getting acquaintance with instruments
27. Handling rain gauge and recording rainfall
28. Handling of maximum, minimum, dry and wet bulb thermometers, assmann psychrometer and its recording
29. Study of wind vane and anemometers, evaporimeter, Bellani’s Pyranometer
30. Analysis of historic rainfall and temperature data and tabulation
31. Computing mean of rainfall data; standard week-wise, month-wise and season-wise
32. Computing mean of temperature data; standard week-wise, month-wise and season-wise
33. Gathering information on forecasts, synoptic chart, crop weather calendar and understanding agro advisories
34. Final practical Examination
REFERENCES:

AGR 112 - IRRIGATION AND WEED MANAGEMENT (1+1)

THEORY
Unit -I

Unit -II

Unit -III

Unit -IV

PRACTICAL

LECTURE SCHEDULE
1. Irrigation – definition – sources of water, area under irrigation in Tamil Nadu
2. Water movement – Soil–plant–atmosphere continuum and importance of water for crop cultivation
3. Soil moisture constants– available soil moisture – field capacity - permanent wilting point and effect of soil moisture stress on crop yield
4. Water requirement of major crops – water use efficiency – critical stages of water requirements
5. Irrigation scheduling
6. Methods of irrigation —check basin, furrow methods, border strip, ring basins, drip, sprinkler, surge and rain guns- merits and demerits
7. Crop water use efficiency under various irrigation methods, management of poor quality irrigation water
8. Erosion – soil erosion due to water and erosion control measures.
9. Mid semester examinations
10. Weeds - definition – scope and importance of weed management in crop production
11. Classification of weeds – biological and agronomical characters for weed dispersal
12. Methods of weed control – manual, mechanical, cultural, chemical and biological methods – advantages and disadvantages
13. Classification of herbicides based on mode of action and method of application
14. Weed management for major crops
15. Management of parasitic, problematic and aquatic weeds
16. Integrated weed management – concepts and practices
17. Economics of weed control – weed control efficiency

PRACTICAL SCHEDULE
1. Measurement of irrigation water
2. Field preparation and layout of surface irrigation methods
3. Planning and layout of drip, sprinkler and surge irrigation methods
4. Study of irrigation methods for different crops
5. Irrigation scheduling for important crops
6. Calculation of water requirement of important crops
7. Study of soil and water conservation practices
8. Working out crop water use efficiency for various irrigation methods
9. Classification and identification of weeds
10. Practicing manual methods of weed control
11. Practicing mechanical methods of weed control
12. Study of sprayers.
13. Calculation of formulated product and spray fluid for herbicide application
14. Identification of herbicides - practicing herbicides application techniques
15. Practicing parasitic and aquatic weed control
16. Practicing management of perennial (Cynodon) and problematic (Parthenium) weeds
17. Final practical examination

REFERENCES

AGM 113 - BASIC AND APPLIED MICROBIOLOGY (1+1)

Aim
This course is designed to give students an understanding of the role of microorganisms in Agriculture and industrial processes pertaining to microbial products. The course encompasses the use of microorganisms in the manufacture of Biological products like biofertilizers, biopesticides, biowaste management using microorganisms – microbial value addition – alcoholic beverages, wine making and preparation of fermented foods.

THEORY
Unit I
Basic Microbiology - an overview

Microorganisms (bacteria, fungi, Algae, yeast) – definitions – importance of microorganisms- Beneficial microbes in Agriculture and industry – Commercially important fermentations – organisms – Mass production methods.
Unit II
Biofertilizer Production

Bacterial biofertilizers types – mass production methods and techniques – operation of Autoclave, fermentor; – Production of liquid and carrier based biofertilizers; – Algal biofertilizers production; – Production of VAM – Packing.

Unit III Biowaste management using microbes

Agricultural wastes - Solid and liquid waste management – composting – Preparation of enriched compost; – Biofuel production using sugarcane molasses.

Unit IV Biocontrol Agents

Antibiotics- Production of penicillin, streptomycin; – Biocontrol agents - Mass production of Pseudomonas

Unit V Fermented foods

Microbiological production of fermented foods – bread; traditional fermented food products; Fermented dairy products - cheese, probiotics, yogurt and other fermented foods - sauerkraut, pickles, Bread making – Wine making – Spirulina production

THEORY SCHEDULE

1. Basic concepts in microbiology – definitions bacteria, fungi, yeast and algae
2. Importance of microorganisms, Beneficial microbes in Agriculture and industry – Commercially important fermentations
3. Mass production methods – Fermentor, solid state and liquid state fermentation
5. Algal biofertilizers production
6. Production of VAM biofertilizer
7. Agricultural wastes, Solid and liquid waste management, composting Preparation of enriched compost
8. Biofuel production using sugarcane molasses.
9. Mid Semester examination
10. Antibiotics - Production of penicillin, streptomycin
12. Microbiological production of fermented foods, traditional fermented food products
13. Fermented dairy products - cheese, probiotics, yogurt
14. Other fermented foods - sauerkraut, pickles,
15. Commercial production of bread and wine
16. Mass production of Spirulina – different types I
17. Mass production of Spirulina – different types II

PRACTICAL

1. Description of glasswares and instruments used in microbiology
2. Types of media and carrier materials for biofertilizer production
3. Preparation of culture media for bacterial biofertilizer. Azotobacter and Phosphobacteria
4. Pilot scale production of bacterial biofertilizer
5. Mass production using fermentor –Visit to biofertilizer production laboratory
6. Mass production of Algal biofertilizers and VAM
7. Production of ethanol from molasses - Visit to distillery unit
8. Production of Enriched compost
9. Mid Semester examination
10. Antibiotics production using fungi
11. Mass production of Pseudomonas biocontrol agent
12. Bread making – Visit to bakery unit
13. Production of wine
14. Production of cheese and youghurt
15. Production of pickles and sauerkraut
16. Spirulina production
17. Practical Examination

REFERENCES

SAC 114 - SOILS AND THEIR MANAGEMENT (1+1)

THEORY

Unit – I – Soil components and physical properties
 Definition of soil – its main components – Soil physical properties – Colour, Texture, Structure, Bulk density, Pore space, Soil water, Soil air, Soil Temperature and their significance in crop production.

Unit – II - Soil chemical and biological properties

Unit – III – Soils of Tamilnadu and problem soils
 Soils of Tamil Nadu. Problem soils- acid, saline and sodic soils- their formation, reclamation and management

Unit – IV – Soil physical constraints
 Physically degraded soils – surface crusting and hardening subsoil hardpan, fluffy soil, slowly and highly permeable soils - Characteristics and management. Management principles for sandy, clayey, red lateritic and dry land soils.

Unit – V – Irrigation water quality
 Quality of irrigation water – Sources of poor quality water – quality parameters-indices and classification. Management of brackish water for irrigation; salt balance under irrigation; Agronomic practices in relation to problematic soils; cropping pattern for utilizing poor quality ground waters.

Practical

THEORY SCHEDULE

1. Definition of soil – its main components
2. Soil physical properties – Colour, Texture, Structure
3. Bulk density, Particle density and Pore space
4. Soil water and its significance in crop production
5. Soil air, temperature and their significance in crop production
8. Soils of Tamil Nadu
9. Mid semester Examination
10. Problem soils – soil physical constraints and their management
11. Problem soils- Acid soils - genesis, reclamation and management
12. Problem soils - Saline soils - genesis, reclamation and management
13. Problem soils – Sodic soils - genesis, reclamation and management
14. Soil physical constraints - surface crusting and hardening subsoil hardpan, fluffy
soil, slowly and highly permeable soils
15. Characteristics and management. Management principles for sandy, clayey, red lateritic and dry land soils.
16. Quality of irrigation water – Sources of poor quality water – quality parameters-indices and classification
17. Management of brackish water for irrigation; salt balance under irrigation; Agronomic practices in relation to problematic soils; cropping pattern for utilizing poor quality ground waters

PRACTICAL SCHEDULE
1. Study of different soils
2. Skill learning in soil sampling
3. Determination of soil texture by feel method
4. Determination of Bulk density, True density and Pore space by measuring cylinder method
5. Determination of Bulk density by Wax coating method
6. Determination of Bulk density by Core sampler method
7. Determination of soil colour
8. Determination of soil moisture by oven dry method
9. Mid Semester Examination
10. Analysis of soil for pH and EC
11. Visit to local problem soil areas
12. Identification of soil ameliorants
13. Identification of acid soils and their management
14. Identification of saline, sodic and saline-sodic soils and their management
15. Determination of Irrigation water quality-pH, EC
16. Interpretation of irrigation water quality using analytical data
17. Final practical examination

REFERENCES

COM 115 - INTRODUCTION TO COMPUTER APPLICATIONS (0+1)
PRACTICAL

PRACTICAL SCHEDULE
2. Operating system – DOS & WINDOWS
3. Internet browsers, internet surfing, and Email
4. Introduction to Microsoft Office applications
5. MS Word – format, insert, paragraph & page layout tools
HOR 116 PROPAGATION METHODS IN HORTICULTURAL CROPS (0+1)

Objectives

Plant propagation is one of the fundamental agricultural operations which involves multiplication and perpetuation of seeds and planting material to achieve uniform stand of crops with high yield potential. This course deals with different methods of plant propagation and strategies for nursery management of various fruit crops. Knowledge of tools and implements is essential to carry out all scientific horticultural operations and also nursery management practices.

Practical

Selection of nursery site and layout of nursery components - media for propagation of nursery plants and pot mixture preparation - containers, tools and implements for nursery - plant propagation structures - methods of sexual and asexual propagation - different methods of cutting, layering, grafting and budding in horticultural crops - special propagation methods in horticultural crops - tissue culture methods of propagation in horticultural crops - hardening and marketing of horticultural crops - hi - tech nursery preparation in horticultural crops - economics of nursery production - visit to commercial nursery production centers.

Practical schedule

1. Selection of nursery site and layout of nursery components
2. Media for propagation of nursery plants and pot mixture preparation
3. Containers, tools and implements for nursery
4. Plant propagation structures
5. Different methods of cutting in horticultural crops
6. Different methods of layering in horticultural crops
7. Raising of rootstocks and scion preparation
8. Different methods of grafting in horticultural crops
9. Mid semester practical examination
10. Different methods of budding in horticultural crops
11. Special propagation methods in horticultural crops
12. Tissue culture methods of propagation in horticultural crops
13. Hardening and marketing of horticultural crops
14. Hi - tech nursery preparation in horticultural crops
15. Economics of nursery production
16. Visit to commercial nursery production centre
17. Orientation for final practical examination

References

Subtropical Horticultural Crops. Naya Prakash 206, Bidhan Sarani, Calcutta, India.

AEG 117 FARM MACHINERY AND POST HARVEST PROCESSING (2+1)

THEORY

UNIT I

UNIT II

Tractors – types and application – matching implement - Power Tiller - Matching Implements - Land forming equipment – rotavator, puddler, bund former, Ridger, Leveller, Manure trampler - Sowing methods - seed cum fertilizer drills - components and functions - Seed metering mechanism – Calibration of seed cum fertilizer drill - Planters - Functions – types -

UNIT III

Pumps for irrigation – centrifugal and submersible - Implements for intercultural operations – weeding and earthing up implements - Sprayers and their functions - classification - Dusters - types and uses - Harvesting tools and equipment - sickles, reapers and combines

UNIT IV

UNIT V

Rice processing – raw and parboiling – advantages and disadvantages - Unit operations in rice processing – dehusking and polishing - Utilisation of wastes and by-products from rice mills - Pulse milling - wet, dry and CFTRI methods of pulse milling - Pulse milling equipments – construction and operation – Fruits and vegetable processing - processed products - Oil extraction methods and machineries

PRACTICAL

Study of two and four stroke IC engines - MB plough and disc plough - measurement of size of cut - Study of secondary tillage implements - calibration of seed-cum-fertiliser drill - Identification of parts of tractor - Learning to operate power tiller - Study of Plant protection equipment - Study of weeders - Moisture content determination using thermo gravimetric method - Determination of properties of food grains - Study of grain drying methods – sun drying- mechanical drying – advantages and disadvantages - Study of
advance drying methods - Parboiling methods – traditional and modern - Design of bag storage structure - Visit to Modern Rice mill

LECTURE SCHEDULE
1. Farm Power - Sources and their use in agriculture - Status of Farm power in India
2. Engine – types - I.C. Engines – classification - Components
3. Principle and working of Two stroke and Four stroke engines – Diesel engine-Petrol engine - Comparison
4. Tillage – objectives- types
5. Primary tillage – objectives- ploughing methods
6. Types of plough – Indigenous plough, Mould board plough, disc plough, chisel plough, subsoiler, Rotary plough - advantages and disadvantages
7. Secondary tillage equipment – cultivators, harrows - types
8. Tractors – types and application – matching implement
9. Power Tiller – Matching Implements
10. Land forming equipment – rotavator, puddler, bund former, Ridger, Leveller, laser leveller
11. Sowing methods - seed cum fertilizer drills - components and functions
12. Seed metering mechanism – Calibration of seed cum fertilizer drill
13. Planters – Functions – types
14. Pumps for irrigation – centrifugal and submersible
15. Implements for intercultural operations – weeding and earthing up - implements
16. Sprayers and their functions- classification – Dusters - types and uses
17. Harvesting tools and equipment- sickles, reapers and combines
18. Mid Semester Examination
19. Post harvest losses – causes and estimates – unit operations of crop processing
20. Moisture content – thermo gravimetric method - wet basis and dry basis.
21. Properties of grains – mass, volume, density, porosity, surface area and sphericity
22. Threshing – threshers for different crops - parts, terminologies
24. Types of screens - air screen cleaner- reciprocating and rotary types
25. Grain drying – principles - advantages - types - batch and continuous, mixing and non mixing
26. LSU drier – construction and operation
27. Storage of food grains – factors affecting storage, traditional methods - types -bag and bulk storage – Storage structures
28. Rice processing – raw and parboiling – advantages and disadvantages
29. Unit operations in rice processing – dehusking and polishing
30. Utilisation of wastes and by-products from rice mills
31. Pulse milling - wet, dry and CFTRI methods, equipments for milling
32. Principles of fruits and vegetable processing
33. Manufacturing of processed products from fruits and vegetables
34. Oil extraction methods and machineries

PRACTICAL SCHEDULE
1. Study of working of two and four stroke IC engines
2. Study of MB plough and disc plough - measurement of size of cut
3. Study of secondary tillage implements
4. Study of calibration of seed-cum-fertiliser drill
5. Identification of parts of tractor
6. Learning to operate power tiller
7. Study of Plant protection equipment
8. Study of weeder
9. Mid Semester Examination
10. Moisture content determination using thermo gravimetric method
11. Determination of properties of food grains
12. Study of grain drying methods – sun drying- mechanical drying – advantages and disadvantages
13. Study of advance drying methods
14. Parboiling methods – traditional and modern
15. Design of bag storage structure
16. Visit to Modern Rice mill
17. Final Practical examination

PED 118 - PHYSICAL EDUCATION (0+1)

PRACTICAL SCHEDULE
Biomotor abilities-strength, agility, co-ordination, flexibility, endurance and speed.
Conditioning exercises, skill development in anyone of the major games games, Badminton, Ball Badminton, Basket Ball, Cricket, Football, , Kabaddi, Kho-Kho, and Volley Ball. Skill development in athletic activities before start, loosening up, standing, sitting and relaxation.Postureand Exercises for good posture.

II SEMESTER
AGR 121- AGRONOMY OF FIELD CROPS - I (1+1)

THEORY
Agronomic Practices including climatic and soil requirement, season and varieties
tercultural operations- Harvesting – Cereals, millets and pulses based cropping systems.
Unit I –Agronomy of cereals
Rice, wheat and maize -origin-geographic distribution, economic importance, soil
and climatic requirements, season and varieties, cultural practices (from land preparation
to harvest) and yield
Unit II - Agronomy of major millets
Sorghum, cumbu and ragi - Origin- Geographic distribution, Economic importance,
Soil and climatic requirements season and varieties, cultural practices (From Land
Preparation To Harvest) and yield
Unit III - Agronomy of minor millets
Varagu, panivaragu, thenai, samai and kudiraivalli - Origin-geographic
distribution, economic importance, soil and climatic requirements, varieties, cultural
practices (from land preparation to harvest) and yield
Unit IV – Agronomy of pulses
Blackgram, greengram, redgram, cowpea, soybean bengal gram and horse gram -
Origin-geographic distribution, economic importance, soil and climatic requirements,
season and varieties, cultural practices (from land preparation to harvest) and yield

PRACTICAL
Preparation of nursery for rice – Various methods of nursery preparation – Varieties
for different seasons – Utilization of Bio-fertilizers for various crops. Seed treatment for
different crops - Cereals, millets and pulses. Practicing field preparation and sowing of
cereals, millets and pulses – Studying cost of cultivation for important crops.
Lecture schedule
1. Agronomic practices for rice.
2. Agronomic practices for rice - continued
3. Agronomic practices for rice based cropping system
4. Agronomic practices for wheat-continued
5. Agronomic practices for wheat
6. Agronomic practices for maize
7. Agronomic practices for sorghum
8. Mid semester examinations
9. Agronomic practices for cumbu
10. Agronomic practices for ragi
11. Agronomic practices for minor millets, tenai, samai, varagu, panivaragu and kudiraivali
12. Agronomic practices for black gram and green gram
13. Agronomic practices for redgram
14. Agronomic practices for cowpea
15. Agronomic practices for soybean
16. Agronomic practices for bengal gram and horse gram
17. Cereals and pulses based cropping system

PRACTICAL SCHEDULE
1. Establishing crop cafeteria involving major crops
2. Identification of crops and varieties of cereals, millets and pulses
3. Working out nursery area requirement for transplanted crops
4. Practicing nursery preparation for irrigated lowland and upland crops
5. Practicing main field preparation for irrigated lowland and upland
6. Practicing transplanting with optimum aged seedling
7. Practicing different sowing methods for irrigated uplands
8. Practicing seed treatment techniques for field crops
9. Estimation of seed rate and plant population per unit area for important crops
10. Study of system of rice intensification (SRI)
11. Practicing foliar nutrition to various crops
12. Practicing manual weeding in irrigated lowland and upland
13. Practicing cono weeder for rice and other types of weeders under upland condition
14. Observation on growth and yield parameters, assessing maturity and estimation of yield of cereals, millets and Pulses
15. Visit to nearby Agricultural research stations
16. Working out cost of cultivation for major crops
17. Final Practical Examination

REFERENCES:

AEN 122 - GENERAL AND ECONOMIC ENTOMOLOGY (2+1)

Aim:
To acquaint the students with elementary knowledge on insect morphology, principles and practices in Sericulture, Apiculture and Integrated Pest Management.

Theory
Unit I
Insects - Definitions - Characters of Insects - Dominance of Insects; Elementary knowledge on Insect morphology - Mouth Parts - Wings - Legs.

Unit II

Unit III
Pest - Definition - Categories of Pests - Pest outbreak - Pest Monitoring - Pest Surveillance - Forecasting - Economic Threshold Level - Economic Injury Level. Pest Management Components - Cultural, Physical, Mechanical, Legal and Integrated Methods - Use of Resistant Varieties, Biological Control - Parasitoids, Predators and Microbial Agents.

Unit IV

Unit V

Practical

Assignment: Students should collect 25 agriculturally important insects and preserve them

Lecture schedule

1. Insects, Characteristics of insects, Dominance of Insects – Factors responsible for dominance.
2. Insect Mouth Parts and their Modifications
3. Insect Wings & Legs and their modifications
4. Economic Classification of Insects and their importance
5. Sericulture – Mulberry cultivation- Mulberry silkworm – races and their characters
7. Pests and diseases of mulberry silkworms
8. Apiculture- Different Bee Castes, Hiving of bees and Apiary Management
9. Bee Keeping Appliances – Handling Bees and Honey Extraction
10. Bee Enemies and Role of Bees in Crop Productivity
11. Beneficial insects-Predators, Parasitoids and Insect Pollinators
12. Pest – Definition – Categories of Pests – Causes of Pest outbreak
14. Economic Threshold Level – Economic Injury Level – principles and practices-Forecasting
15. Integrated Pest Management – Definition – Objectives - Components of Pest Management – Cultural, Physical, Mechanical and Legal Methods
16. Cultural Methods – Definition – Farm level practices and Community level practices
17. Mid Semester Examination
18. Physical Methods – Definition – Use of Heat, Moisture and Light
19. Mechanical Methods – Definition – Mechanical destruction and Mechanical Exclusion Methods
21. Use of resistant varieties for pest management
22. Biological control methods – Definition – Advantages and Disadvantages
23. Classical examples of parasitoids, predator and role of pest management in crop pest
24. Microbial control – Definition – Classical examples for viruses, bacteria, fungi and protozoans in pest management
25. Behavior modifying chemicals and use of pheromones in pest management
27. Classification of insecticides based on mode of entry and mode of action
28. Insecticide groups – OP, OC, Carbamate and SP
29. Insecticide formulations – Dust, Wettable powders, Emulsifiable Concentrates, Granules, Fumigations and their uses
30. Acaricide, Rodenticides, Molluscicides and Nematicides – Mode of Action – Groups and uses
31. Pesticide application methods – Principles and methods of application
32. Pesticide appliances and Uses
33. Hazards in the use of pesticides and environmental pollutions
34. Safe handling of pesticides & Pesticide residue – Resistance – Resurgence

Practical schedule
1. Practicing the different methods of insect collection and preservation
2. Observations and sketching of external features of grass hopper
3. Observation and sketching of mouth parts of grass hopper, bug and butterfly
4. Silkworm rearing – Improved methods and appliances
5. Bee Keeping - Keeping appliances
6. Study of symptoms and types of damage caused by pests
7. Assessment of insect population, damage and crop losses in Rice & Cotton
8. Assessment of insect population, damage and crop losses in Sugarcane and Pulses
9. Mid semester Examination
10. Practicing of various pest control methods – Appliances and uses
11. Mass culturing techniques of predators and parasitoids
12. Practicing the use of pheromone, light, fish meal and yellow sticky traps
13. Pesticides – Groups, formulations, label information and collection of pesticide samples
14. Handling and practicing of spraying, dusting, soil application, whorl application, fumigation techniques
15. Pesticide appliances – Types and use of high volume and low volume sprayers and dusters
16. Preparation plant bio-pesticides (Neem oil, Neem seed kernal extract, Neem cake extract) - Safe handling of pesticides
17. Final Practical Examination

Reference books

PAT 123 - PRINCIPLES OF PLANT PATHOLOGY (1+1)

OBJECTIVES
The subject covers the knowledge on basic concepts of Plant Pathology and Principles of Plant Disease Management.

THEORY

Unit – I

Unit – II
Control exclusion – Eradication – Immunization – Protection – Cultural – Methods of Control – Bio control – *Trichoderma*, PGPR - Economics of the new technologies

Unit – III

Unit – IV
Characteristics of an ideal fungicide – Care in handling fungicides – Major groups – Formulation and Applications – Phytotoxicity – Precautions in using fungicides – Antibiotics in plant disease management.

Unit – V

PRACTICAL
(Students should submit 50 preserved diseases specimens)

THEORY SCHEDULE
1. General characters of Fungi, Bacteria, Virus and *Candidatus Phytoplasma*, Abiotic diseases
2. Categories of plant diseases
3. Symptoms of Bacterial diseases: Wilt, Canker, Soft rot, Streak, Tumour, Gall, Blight and Leaf spot – Mode of entry and transmission
4. Symptoms of viral diseases: Phyllody, Warting, Little leaf and Greening
5. Role of weather factors: Temperature, Rainfall, Humidity
6. Disease Surveillance – Disease Assessment – Disease Forecasting
7. Survival and mode of spread of plant pathogens
8. Exclusion: Quarantine – Diseases introduced from other countries to India – Phytosanitary certificate
9. Mid Semester Examination
10. Eradication – Physical methods and Cultural methods
11. Eradication - Chemical methods and Biological methods
12. Immunization: Immunity by different methods – Resistant varieties
13. Protection: Cultural methods, Crop rotation, Mixed cropping and Chemical protection
14. Classification of fungicide – Copper, Sulphur, Mercury, Systemic Fungicides and Antibiotics
15. Methods of application of fungicides
16. Methods of application of Bio-fungicides
17. Cultivation of Oyster mushrooms

PRACTICAL SCHEDULE
1. Root rots and wilts
2. Downy mildews and powdery mildews.
3. Rusts and White Rust
4. Smuts and sugar disease
5. Leaf spots, Leaf blight and Anthracnose
6. Symptoms of Bacterial Diseases and Viral diseases
7. Methods of Application: Spraying and Dusting, Seed and Soil,
8. Study of various groups of fungicides
9. Corm injection and Root feeding
10. Safety measures to be followed during handling of fungicides.
11. Preparation of fungicides, Bordeaux mixture and Bordeaux paste
12. Methods of Oyster mushroom cultivation
13. Survey and assessment of plant diseases
15. Methods of application of biological agents and commercial formulations
16. Cross protection techniques in plant disease management and Management of crop disease by new products and various formulations
17. Final Practical Examination

REFERENCES

AGM- 124 -ENERGY AND ENVIRONMENT (1+1)

Aim
The emphasis of the course will be on the biosphere resource, sustainable agro ecosystem. To study the solid and liquid waste management and the pollution and environmental protection.

Theory
Energy
Unit -1

Unit -2

Environmental Science
Unit -3
Environment and different ecosystem and its structure, function- Ecosystems – Concepts – Productivity. Biosphere – Components and characteristics -Environmental pollution- Water pollution Sources-Impacts on environment – Waste water treatments-physical, chemical and biological treatments

Unit -4

Unit -5
Solid waste management-sources-Composting and vermicomposting techniques- Maturity indices of composting- Ecological perspectives in Agriculture-Eco safe technologies-Environmental Acts and standards

Practical
Energy

Environmental Science
Biodiversity assessment - Population measures - Flora and Fauna in an Agricultural ecosystem - Collection, sampling and preservation techniques in waste water - Waste water characterisation pH, EC, TDS - Effect of waste water on soil properties and crop growth - Waste water treatment - Physical and chemical methods (Column study and Alum flocculation) - Air pollution - Assessment of particulate matter accumulation in plants - Farm waste management - Composting (windrow, heap and pit method) - Vermicomposting of farm and kitchen wastes

Lecture Schedule
3. Solar photovoltaic system – street light, lantern and water pumping
5. Energy from Biomass – Technologies – Classification and types of Biogas Plants
6. Selection of Site – Biogas from Plant Wastes – Problems related to Biogas Plants - Utilization of Biogas.
7. Biomass gasification - smoklesschulha - Biochar in agriculture
9. Mid Semester Examination
10. Environmental pollution- Water pollution Sources-Impacts on environment – Waste water treatments - physical, chemical and biological treatments
11. Air Pollution – Particulate emission by industries and automobiles – Londen Smog and Delhi smog 2016 – Acid rain – Ozone hole
12. Green house gases - Global Warming – Causes, Effects and Control measures
13. Soil pollution – sources and its impact on environment and management techniques -
14. Solid waste management - sources - Composting techniques
15. Vermicomposting and Maturity indices of composting
16. Ecological Perspective in Agriculture - Traditional farming methods – EcoSafe technologies in agriculture
17. Environmental Acts and standards

Practical schedule
1. Evaluation of solar cooker, solar water heater and solar dryer
2. Study on solar water pumping system
3. Water pumping wind mills
4. Biogas plants – KVIC Model
5. Bio gas plants - DheenaBhandu Model
6. Production of biogas and value added products.
7. Study on biomass gasification
8. Performance & Evaluation of improved chulas
9. Mid Semester Examination
11. Collection, sampling and preservation techniques in waste water
12. Waste water characterisation pH, EC, TDS - Effect of waste water on soil properties and crop growth
13. Waste water treatment – Physical and chemical methods (Column study and Alum flocculation)
14. Air pollution – Assessment of particulate matter accumulation in plants
15. Farm waste management – Composting (windrow, heap and pit method) Vermicomposting of farm and kitchen wastes
16. Visit to a sewage treatment plant
17. Final Practical Examination

SAC 125 – SOIL NUTRIENT MANAGEMENT (1+1)

THEORY
Unit – I – Soil Fertility & Plant Nutrition

Unit – II – Fertilizers
Compatibility of fertilizers and their reactions in soil – losses of nutrients from different fertilizers – fertilizer use efficiency (FUE) techniques to enhance FUE.

Unit – III – Manures
Definition – difference between manures and fertilizers – classification of manures bulky & concentrated - importance of manures in soil fertility management.

Unit – IV – Biofertilizers
Biofertilizers – importance in crop production and nutrient availability – methods of application of biofertilizers.
Plant growth regulators – definition – classification – their functions in plants.

Unit – V – INM & Soil Fertility Evaluation
INM – advantages, site specific nutrient management – effect of INM in maintaining soil health and quality in relation to sustainable agriculture.

PRACTICAL
Identification and application methods of manures, fertilizers and biofertilisers. Working out fertilizer requirement - Foliar application of fertilizers and plant growth regulators - Identification of nutrient deficiencies/disorders in crops - Preparation of enriched FYM and Micronutrient mixtures. Visit to compost yard

THEORY SCHEDULE
1. Soil Fertility – Introduction
2. Plant nutrients – Major nutrients, their forms, functions, deficiency symptoms and correction measures
3. Plant nutrients – Secondary nutrients, their forms, functions, deficiency symptoms and correction measures
4. Plant nutrients – Micro nutrients, their forms, functions, deficiency symptoms and correction measures
5. Sources of nutrients - Manures and fertilizers and their classification
6. Nitrogenous, Phosphatic and Potassic fertilizers
7. Secondary nutrients fertilizers
8. Micronutrient fertilizers
9. Mid-Semester Examination
10. Complex and Mixed fertilizers
11. Losses of nutrients from soil
12. Techniques to enhance use efficiency of fertilizers
14. Plant growth regulators
15. Integrated nutrient management (INM)
16. Soil fertility evaluation approaches
17. Soil testing and fertilizer recommendations

PRACTICAL SCHEDULE
1. Collection and Identification of manures
2. Collection and Identification of fertilizers
3. Collection and Identification of biofertilizers
4. Working out fertilizer requirement for crops using straight fertilizers
5. Working out fertilizer requirement for crops using compound fertilizers
6. Working out fertilizer requirement for INM and organic agriculture
7. Identification of primary and secondary nutrient deficiencies/disorders in crops
8. Identification of micronutrient deficiencies/disorders in crops
9. Mid Semester Examination
10. Foliar spray of nutrients
11. Foliar spray of growth regulators
12. Preparation of enriched FYM
13. Preparation of Micronutrient mixtures
15. Preparation of slow release fertilizers – Neem coated Urea
16. Visit to compost yard/Fertilizer mixing unit
17. Final practical examination

REFERENCE

AGB - 126 BREEDING OF FIELD CROPS – I (1+1)

Unit - I

Unit - II
Self incompatibility – classifications – mechanisms - application – measures to overcome and limitations. Sterility – male sterility

Unit - III

Unit - IV

Unit - V
Field crops – Importance – Classification- Agricultural and Industrial. Breeding methods for Rice, Small millets, Black gram and Greengram and Groundnut
THEORY

PRACTICAL

LECTURE SCHEDULE

1. Objectives and role of plant breeding - historical perspective – activities in Plant Breeding.
3. Mechanisms promoting self and cross pollination in crop plants
4. Self incompatibility – classifications – mechanisms –
5. Self incompatibility - application – measures to over come and limitations.
7. Germplasm conservation and utilization
8. Mid semester Examination
10. Hybridisation and selection
11. Pedigree method and Bulk method
12. Backcross method
13. Field crops – Importance – Classification- Agricultural and Industrial
14. Breeding methods for Rice
15. Breeding methods for Small millets
16. Breeding methods for Black gram and Greengram
17. Breeding methods for Groundnut

PRACTICAL SCHEDULE

1. Identification and Observation on the economic parts of important field crops. Visit to specimen plots
2. Floral structure of Poaceae, Papilionaceae
3. Pollination and reproduction in plants - Alternation of generation and life cycle.
4. Breeder kit and its components – uses
5. Studies on segregating generation and maintenance of records.
6. Layout of different yield trials
7. Breeding techniques in Rice
8. Maintenance of A, B and R lines in Rice
9. Breeding techniques in small millets
10. Mid semester examination
11. Breeding techniques in Blackgram and Greengram
12. Breeding techniques in Groundnut
13. Studies on different wild species in crop plants and wide hybridization.
14. Germplasm preservation – conservation - records maintained in research stations
15. Herbarium collection of important field crops (25 nos)
16. Visit to Ramiah gene bank, TNAU, Coimbatore
17. Final Practical Examination

REFERENCE

AHS 127- PRINCIPLES OF LIVESTOCK AND POULTRY MANAGEMENT (2+1)

OBJECTIVE
To provide hands on training about livestock and poultry management and thereby enabling to apply their technical knowledge at field level. To impart latest technology of livestock industries so as to infuse entrepreneurial attitude among the students.

THEORY
Unit I - Introduction
Significance of livestock and poultry in Indian economy – Common nomenclatures - Various systems of livestock production – extensive, semi intensive, intensive systems of farming – Floor space requirement for livestock and poultry.

Unit II Dairy management

Unit III Sheep and Goat management
Important breeds of sheep and goat - Systems of rearing - Care and management of young and adult stock - Steaming up - Flushing - Prevention and control measures of diseases.

Unit IV Swine management
Important breeds of swine - Care and management of young and adult stock - Creep feeding - Piglet anemia - Prevention and control measures of diseases.

Unit V Poultry management

PRACTICAL

LECTURE SCHEDULE
1. Significance of livestock and poultry in Indian economy.
2. Common nomenclatures used in Animal Husbandry.
4. Floor space requirement for livestock and poultry.
5. Important breeds of cattle – Red Sindhi, Kangeyam, Umblacherry, Jersey and Holstein Friesian.
6. Important breeds of buffaloes - Breed characteristics of Murrah and Surti.
7. Oestrous cycle.
9. Systems of housing - Single row system - Double row system - Head to Head and Tail to Tail - merits and demerits.
10. Care and management of new born calf.
11. Care and management of heifers, pregnant and lactating animals.
12. Clean milk production.
14. Classification of feed stuff – Dry matter requirement for cattle and buffalo.
15. Importance of green fodder.
17. Mid-Semester Examination.
18. Introduction - Important breeds of sheep and goat.
20. Care and management of young and adult stock.
22. Prevention and control measures of diseases.
23. Introduction - Important breeds of swine.
24. Care and management of young and adult stock.
25. Creep feeding – Piglet anemia.
27. Introduction - Important commercial layer and broiler strains.
28. Systems of rearing - All in all out - Multiple rearing – Housing systems - Deep litter and cage systems.
29. Brooder management.
30. Litter management.
31. Broiler management.
32. Layer management
33. Feeding management.
34. Prevention and control measures of diseases.

PRACTICAL SCHEDULE
1. External parts of Cattle.
2. Identification methods of Livestock.
4. Disbudding and deworming.
5. Determination of age in cattle.
6. Study and design of cattle shed.
7. Detection of oestrous in cows.
10. Identification of feed and fodder.
11. Economics of broiler farming.
13. Identification of poultry farm equipments.
14. Vaccination schedule for broiler and layer.
15. Demonstration of dressing of chicken.
16. Visit to poultry farm.
17. Final Practical Examination

Text books

ENG 128 - ENGLISH LANGUAGE FOR EFFECTIVE COMMUNICATION (0+1)

Unit I - LISTENING
 Introduction to Listening - listening vs. hearing – kinds of listening – Active listening - listening comprehension – note taking.

Unit II - SPEAKING

Unit III - READING
 Introduction to reading - types of reading - skimming and scanning - idea reading (reading for information) – note-making – précis writing.

Unit IV - WRITING
 Introduction to basic sentence structure - sentence completion – sentence correction - dialogue writing – paragraph writing – essay writing – letter writing.

Unit V - INTEGRATED SKILLS:
 Presentation skills - Group Discussion – Resume writing.

The Practical Class Schedule for the revised English course is as follows:
1. Introduction to listening - listening vs. hearing - kinds of listening.
2. Active listening – listening comprehension – note taking.
5. Welcome address - vote-of-thanks – telephonic conversation.
6. Introduction to reading - types of reading - skimming and scanning - idea reading (reading for information).
8. Introduction to basic sentence structures.
9. Mid semester Examination.
10. Sentence completion – Sentence correction.
14. Presentation skills
15. Group Discussion.
16. Resume writing.
17. Final Practical Examination
Text Books:
2. Kepmer et al., Writer1, Wadsworth, Boston, USA. 2012.

III SEMESTER
AGR 211 AGRONOMY OF FIELD CROPS – II (1+1)

THEORY

Unit I - Agronomy of Oilseeds
Groundnut, sesame, sunflower, castor - Origin-geographic distribution, economic importance, soil and climatic requirements, season and varieties, cultural practices (from land preparation to harvest) and yield

Unit II - Agronomy of commercial crops
Cotton, Sugarcane, sugar beet, Tobacco and jatropha - Origin-geographic distribution, economic importance, soil and climatic requirements, season and varieties, cultural practices (from land preparation to harvest) and yield

Unit III - Agronomy of Forages
Guinea grass, Cumbu - Napier, Water grass, Buffalo grass, Elephant grass, Kohukkattai grass, Lucerne, Berseem, Desmanthus and cowpea - Economic importance, soil and climatic requirement, season and varieties, cultural practices and yield. Fodder preservation techniques

Unit IV –Agronomy of Green Manure Crops
Daincha, Sunnhemp Sesbania, Kolingi, Glyricidia, Subabul, Pungam, Poovarasu and Neem - Origin, economic importance, soil and climatic requirement, season and varieties, cultural practices and yield. Insitu incorporation of green manures.

PRACTICAL

LECTURE SCHEDULE
1. Agronomic Practices for Groundnut
3. Agronomic Practices for Sesamum and Castor
4. Cropping System involving Oil Seeds
5. Agronomic Practices for Cotton
6. Agronomic Practices for Cotton - Continued
7. Agronomic Practices for Sugarcane
9. Mid Semester Examination
10. Cultivation practices for Sugarbeet
11. Agronomic Practices for Tobacco
12. Tobacco Curing Methods
13. Cultivation practices for Jatropha
14. Cropping System involving Commercial Crops
15. Agronomic Practices for cereal Forage Crops – Guinea grass, Cumbu - Napier, Water grass, Buffalo grass, Elephant grass, Kolukkattai grass
16. Agronomic practices for leguminous forage crops - lucerne, berseem, desmanthus and cowpea
17. Agronomic practices for green manure crops and green leaf manure

PRACTICAL SCHEDULE

1. Establishing crop cafeteria involving major crops
2. Identification of crops and varieties of oilseeds, sugar, fibre, green manures and green leaf manures and forages
3. Working out nursery area requirement for transplanted crops
4. Nursery techniques for major field crops
5. Working out seed rate for major field crops
6. Practicing main field preparation for irrigated lowland and upland
7. Practicing of seed treatment techniques for major field crops
8. Practicing different sowing methods for irrigated uplands
9. Planting techniques for sugarcane
10. Working out plant population for major field crops
11. Work out LAI for major field crops
12. After cultivation practices in cotton
13. After cultivation practices in sugarcane
14. Assessment of maturity for important field crops
15. Observation on growth and yield parameters and estimation of yield of oil seeds, fibres, sugars and commercial crops
16. Working out cost of cultivation for important crops
17. Final Practical Examination

REFERENCES

AGR 212 CROP PRODUCTION- I (0+2)

This course is designed to impart practical aspects of scientific cultivation of rice to the students. The students will learn crop cultivation by doing themselves. Each student will be allotted with a piece of land and do all field operations from field preparation to harvest in the allotted field. Each student will record the observation like germination percentage, plant population, plant height at different stages of the crops, days to 50% flowering, number of grains per panicle, test weight of grains, recording the plot yield and working out the cost of cultivation. The student will maintain cultivation sheet and record of work done with biometric observations and comments on various operations performed and factors of production.

Transplanted rice:

- Rice ecosystems - Climate and weather - Seasons and varieties of Tamil Nadu.
- Preparation of nursery - Application of manures to nursery - seed treatment - Forming nursery beds and sowing seeds - Weed and water management and plant protection to nursery.
• Harvesting, threshing, drying and cleaning the produce – Working out cost of cultivation and economics.
• Value addition and by products utilization.

Practical Schedule
1. Introduction – land allotment
2. Preparation of calendar of operation
3. Lay out and field preparation
4. Application of organic manures and its importance
5. Seed treatment
6. Nursery preparation and techniques
7. Calculation of seed rate
8. Methods of seed treatment and its importance
9. Calculation and application of herbicides for weed management
10. Transplanting
11. Assessment of plant population
12. After cultivation practices
13. Methods of weed management
15. Recording plant bio-metric observation. Viz., plant height, no. of tillers, etc
16. Working out LAI
17. Mid Semester Examination
18. Working out fertilizer requirement
19. Top dressing of fertilizer
20. Disease management
21. Observation of nutrient deficiency symptoms and their management
22. Study of growth phases
23. Assessment of yield parameters
24. Calculation of theoretical yield
25. Assessment of maturity
26. Physiological maturity and senescence
27. Plot wise yield estimation – actual yield
28. Harvesting
29. Threshing
30. Cleaning and winnowing
31. Cost of agricultural inputs
32. Working out cost of cultivation
33. Value addition
34. Final Practical Examination

References:

AEN 213 - CROP PESTS AND THEIR MANAGEMENT (1+2)

THEORY
Damage symptoms, life cycle and management practices of insect and non insect pests of the following crops
Unit I
Rice, Sorghum, Maize, Cumbu, Ragi, Pulses,
Unit II
Groundnut, Castor, Gingelly, Sunflower, Cotton, Sugarcane,

Unit III
Sunnhemp, Sesbania, Glyricidia, Subabal, Brinjal, Tomato, Bhendi, Cucurbits, Crucifers, Amaranthus, Moringa, Curry-leaf, Tapioca

Unit IV
Chillies, Onion, Garlic, Coriander, Mango, Citrus, Banana, Sapota, Guava, Cashew, Pomegranate, Jack, Custard apple, Papaya, Ber, Coconut, Areca nut, Turmeric, Betelvine

Unit V
Coffee, Tea, Cardamom, Pepper, Flower crops, Pests of stored materials and their management.
Rodents and their management

PRACTICAL
Identification of the damage symptoms life stages of important pests in different field crops, horticultural crops and stored products, collection and preservation of important pests of field crops, horticultural crops and stored products. Rodent damage and their management.

IPM Package practice of Rice, Cotton, Sugarcane, Groundnut, Pulses, Vegetables and Fruits, Plantation Crops and Spices. (Students should complete rearing of 10 insect pests).

LECTURE SCHEDULE
Damages, life cycle stages and management of insect and non insect pests (major) of the following crops.
1. Rice – Borers, Foliage feeder and sucking pests.
2. Sorghum, Maize, Cumbu and Ragi
3. Pulses – Red gram, Green gram, Lablab and Black gram
4. Groundnut, Castor, Gingelly and Sunflower
5. Cotton – Boll worms, Sucking pests, Foliage pests, Stem Weevil, Surface and Leaf Weevils
6. Sugarcane – Borers, Sucking and Subterranean pests
7. Sunnhemp, Sesbania, Glyricidia and Subapul
8. Brinjal, Tomato and Bhendi
9. Mid Semester Examination
10. Cucurbits, Crucifers, Amaranthus, Moringa and Curry leaf
11. Tuber crops – Potato, Sweet Potato, Tapioca; Chillies, Onion, Garlic and Coriander
12. Mango, Citrus, Banana, Sapota, Guava and Pomegranate
13. Cashew, Jack, Custard apple, Papaya and Ber
14. Coconut, Areca nut, Turmeric and Betelvine
15. Coffee, Tea, Cardamom, Pepper
16. Rose, Crossandra, Jasmine, Chrysanthemum and Tuberose
17. Stored commodities and scientific method of storage

PRACTICAL SCHEDULE
Field identification of damage symptoms, collection and preservation of important pests of the following crops
1. Rice – Borers and Defoliators
2. Rice – Sucking Pests
3. Sorghum – Maize – Cumbu – Borers and Sucking Pests
4. Red gram – Black gram – Borers and Sucking Pests
5. Green gram – Lablab – Borers and Sucking Pests
6. Groundnut and Sunflower
7. Gingelly and Castor
8. Cotton – Sucking Pests
9. Cotton – Boll Worms and Defoliators
10. Sugarcane – Borers and Sucking
11. Sugarcane – Subterranean Pests,
12. Sunnhemp, Sesbania, Glyricidia and Subapul
13. Brinjal and Tomato
14. Bhendi and chillies
15. Cucubits and Crucifers.
16. Amaranthus, Moringa, and Curry leaf
17. Mid Semester Examination
18. Tubers- Potato, Sweet potato, Tapioca
19. Onion, Turmeric and Garlic
20. Cardamom, Pepper, Coriander and Betelvine
21. Mango and Banana
22. Sapota, Guava and Citrus, Cashew
23. Pomegranate, Jack, Custard apple, Papaya and Ber
24. Coconut and Areacanut
25. Coffee, Tea
26. Rose, Crossandra, Jasmine, Chrysanthemum and Tuberose
27. Rodent damage and their management
28. Storage pests and their management
29. IPM package practice of Rice & Pulses
30. IPM package practice of Cotton & Sugarcane
31. IPM package practice of Oilseeds
32. IPM package practice of Fruits & Vegetables
33. IPM package practice of Plantation crops and spices
34. Final Practical Examination

REFERENCES

PAT 214 - CROP DISEASES AND THEIR MANAGEMENT (1+2)

OBJECTIVE
The subject covers etiology, symptoms, epidemiology, mode of spread, survival and integrated management of important diseases due to fungi, bacteria, viruses, phytoplasma, phanerogamic parasites and non-parasitic causes of the following crops.

THEORY
Unit – I
Cereals - Rice, Sorghum, Maize, Cumbu and Ragi
Pulses - Red gram, Black gram, Green gram, Bengal gram, Cowpea and Lablab
Unit – II
Oil seeds - Groundnut, Gingelly, Sunflower and Castor
Cash crops - Cotton, Sugarcane, Tobacco and Betelvine
Unit – III
Fruits - Mango, Banana, Grapevine, Sapota, Pomegranate and Papaya
Unit – IV
Vegetables - Tomato, Chilllies, Brinjal, Bhendi, Cucurbits, Crucifers, Onion and Garlic
Unit – V
Plantation crops - Coffee, Tea, Rubber, Coconut and Areacanut
Spices - Turmeric, Pepper, Cardamom, Coriander and Ginger
Flowers - Rose, Jasmine, Crossandra and Chrysanthemum

PRACTICAL
(Students should submit 50 preserved plant disease specimens)

THEORY SCHEDULE
1. Rice, Sorghum
2. Maize, Cumbu, Ragi
3. Red gram, Black gram, Green gram, Bengal gram
4. Groundnut, Gingelly
5. Sunflower, Castor, Cotton
6. Sugarcane, Tobacco, Betelvine
7. Mango, Banana, Grapevine
8. Sapota, Pomegranate, Papaya
9. Mid Semester Examination
10. Tomato, Chillies, Brinjal
11. Bhendi, Cucurbits, Crucifers
12. Onion, Garlic, Potato
13. Plantation crops (Coffee, Tea, Rubber)
14. Plantation crops (Coconut, Arecanut)
15. Spices (Turmeric, Pepper, Cardamom, Coriander)
16. Flowers (Rose, Jasmine, Crossandra)
17. Important viral diseases, their vector and control measures

PRACTICAL SCHEDULE
1. Rice
2. Sorghum
3. Maize
4. Cumbu
5. Ragi
6. Red gram
7. Bengal gram
8. Black gram
9. Green gram
10. Cowpea
11. Lablab
12. Groundnut
13. Gingelly
14. Sunflower
15. Castor
16. Cotton
17. Sugarcane
18. Tobacco
19. Mango
20. Sapota
21. Pomegranate
22. Banana
23. Grapevine
24. Papaya
25. Tomato
26. Chilli
27. Brinjal
28. Bhendi
29. Cucurbits
30. Crucifers
31. Potato, Turmeric and Ginger
32. Plantation crops (Coconut and Arecanut)
33. Diseases of major flower crops
34. Final Practical Examination

REFERENCE

GPB 215 - BREEDING OF FIELD CROPS II (1+1)

Unit – I

Unit - II
Synthetics and composites for crops like Maize, Cumbu, Redgram, Cotton, Castor, Sunflower, Coconut. Breeding Methods for vegetatively propagated crops

Unit - III
Clonal Selection – Hybridization and selection for crops like Sugarcane, Tapioca and Potato.

Unit - IV
Mutation in crop improvement – Mutation – types – mutagens – breeding procedure – applications - achievements

Unit - V
Polyploid in Crop Improvement – Wide hybridization – barriers and techniques for overcoming barriers – utilization - Inter Specific Hybridization.

THEORY

PRACTICAL

LECTURE SCHEDULE
1. Field Crops – Importance – Classification – Agricultural and Industrial
2. Breeding Techniques for Cross Pollinated and Often Cross Pollinated Crops
3. Mass Selection
4. Heterosis Breeding
5. Development of Hybrids – Single Cross
6. Double Cross and Poly Cross
7. Synthetics and composites for Maize
8 Synthetics and composites for Cumbu, Redgram, Cotton, Castor, Sunflower,
9 Mid Semester Examination
10. Breeding Methods for vegetatively propagated crops
10. Clonal Selection
11. Hybridization and selection for Sugarcane
12. Hybridization and selection for Tapioca
13. Hybridization and selection for potato
14. Mutation in crop improvement
15. Polyploid in Crop Improvement
16. Polyploid in Crop Improvement
17. Inter Specific Hybridization

PRACTICAL SCHEDULE
1. Identification and Observation on the economic parts of important field crops. Visit
to specimen plots
2. Selfing techniques
3. Emasculation and Pollination techniques in cross pollinated crops
4. Breeding techniques in Sorghum
5. Breeding techniques in Maize
6. Breeding techniques in Cumbu
7. Breeding techniques in Redgram and Blackgram
8. Breeding techniques in Castor
9. Mid Semester Examination
10. Breeding techniques in Sunflower
11. Breeding techniques in Coconut
12. Breeding techniques in Cotton
13. Breeding techniques in Sugarcane
14. Breeding techniques in Tapioca
15. Trails involved in release of a Variety – RYT, PRYT, PYT, MLT, ART
16. Different classes of seeds – Nucleus Seed – Breeder Seed, Foundation Seed and
Certified Seed.
17. Final Practical Examination

REFERENCE
New Delhi.
Publishers, New Delhi.

AEC 216 AGRICULTURAL ECONOMICS AND MARKETING (2+1)

OBJECTIVE
This course aims at imparting knowledge on various aspects of agricultural
economics, farm management, agricultural finance and agricultural marketing. This
course would help the diploma students in using different methods and tools for decision
making in optimizing farm resources and marketing which would facilitate profit
maximization.

THEORY
Unit I: Concepts in Agricultural Economics
Definitions of Economics - Wealth, Welfare, Scarcity and Growth. Divisions of
Economics: Micro economics and Macroeconomics. Agricultural Economics - Meaning,
importance and scope - Importance of agriculture in rural economy - Role of agriculture
in National economy - Problems of rural economy - Sectors of Economy - Primary,
Secondary and Tertiary.
Unit II: Farm Management
Farm Management: Definition and objectives - Scope of farm management - Types
of farming: specialized, diversified and mixed farming. Systems of farming - state farming,
collective farming, cooperative farming, capitalistic farming. Farm planning - Importance -
Characteristics of good farm plan - farm planning procedure. Farm budgeting - Definition and types - Partial budgeting and complete budgeting.

Unit III: Agricultural Finance

Agricultural finance and credit - Definition, importance, nature and scope. Classification of credit - Sources of rural finance - Institutional and non-institutional. Rural financing institutions - Government, cooperatives and nationalized commercial banks, Regional rural banks and Land development banks, private money lenders. Establishment of NABARD and its role - Multi agency approach and Service area approach.

Unit IV: Agricultural Marketing

Unit V: Marketing Functions and Institutions

PRACTICAL

LECTURE SCHEDULE

2. Divisions of Economics: Micro economics and Macroeconomics
3. Agricultural Economics - Meaning, importance and scope.
4. Importance of agriculture in rural economy
5. Role of agriculture in National economy
6. Problems of rural economy - Sectors of Economy - primary, secondary and tertiary
7. Farm Management: Definition and objectives - scope of farm management
8. Types of farming: specialized, diversified and mixed farming.
10. Farm planning - importance - characteristics of good farm plan - farm planning procedure.
11. Farm budgeting - definition and types - Partial budgeting and complete budgeting
12. Agricultural finance and credit - definition, importance, nature and scope.
13. Classification of credit - Sources of rural finance - Institutional and non-institutional.
14. Rural financing institutions - Government, cooperatives
15. Nationalized commercial banks.
16. Regional rural banks and Land development banks, private money lenders.
17. Mid Semester Examination
18. Establishment of NABARD and its role - Multi agency approach and Service area approach.
20. Classification of markets - Market forces - Demand and Supply
21. Marketing channel
22. Marketing costs - Marketing margins - Price spread
23. Marketed surplus and marketable surplus.
24. Role of Commission on Agricultural Costs and Prices - MSP.
25. Price support programmes - Buffer stock operation.
26. Marketing functions - Packaging - Transportation - Grading and standardization
27. Warehousing - Processing - Cold storage.
28. Marketing agencies and institutions - Cooperative marketing societies
29. Role of regulated markets - NAFED - TANFED - NHB.
30. Role of specialized agencies - FCI
31. CWC, SWC in marketing of agricultural commodities.
33. Market information and intelligence - AGMARKNET
34. DEMIC, DMI - Usage of market information

PRACTICAL SCHEDULE
1. Farm visit to assess the resource endowments.
2. Cost of cultivation and cost of production of agricultural crops.
3. Cost of cultivation and cost of production of horticultural crops.
4. Preparation of farm plan and layout
5. Visit to agricultural farm to study Farm Records and Accounts: Usefulness, types of farm records: farm production records and farm financial records.
6. Farm inventory analysis: Valuation of assets by different methods.
7. Depreciation : Methods of computing depreciation.
8. Preparation and analysis of Net worth Statement and Profit and Loss statement
9. Preparation of complete budget and partial budget.
10. Loan repayment methods
11. Visit to a Primary Agricultural Co-operative Bank (PACB) to study its role, functions and procedures for availing loan.
13. Visit to Farmers’ market / Village Shandies/ Commission mundies and study the marketing of agricultural commodities and marketing channel
14. Estimation of marketing costs, marketing margins and price spread
15. Visit to Regulated market / AGMARK
16. Visit to Cooperative Agricultural Marketing Societies
17. State Agricultural Marketing Boards / NAFED / TANFED /FCI

REFERENCES
1. CAG AGR 217- PRODUCTION OF LIQUID ORGANIC MANURES (0+2)

This course is designed to acquire skill in production of different liquid organic manures and its application technique for generating rural employment and enhancing crop productivity. Production technology for liquid organic manure viz., Panchagavya, amirthakarasai, dasagavya, fish amino acid, Jeevamirtham, agniastra, vermiwash, beejamirtha, varagunabajalam, biol, amrut pani.

PRACTICAL SCHEDULE

1. Introduction - concepts of liquid organic manure
2. Scope of liquid organic manure
3. Survey about input availability for liquid organic manure preparation
4. Introduction and collection of raw material for panchagavya
5. Production of panchagavya
6. Introduction and collection of raw material for amirthakarasai
7. Production of amirthakarasai
8. Introduction and collection of raw material for dasagavya
9. Production of dasagavya
10. Introduction and collection of raw material for fish amino acid
11. Production of fish amino acid
12. Introduction and collection of raw material for Jeevamirtham
13. Production of Jeevamirtham
14. Introduction and collection of raw material for agniastra
15. Production of agniastra
16. Introduction and collection of raw material for vermiwash
17. Mid Semester Examination
18. Production of vermiwash
19. Introduction and collection of raw material for beejamirtha
20. Production of beejamirtha
21. Introduction and collection of raw material for varagunabajalam
22. Production of varagunabajalam
23. Introduction and collection of raw material for biol
24. Production of biol
25. Introduction and collection of raw material for amrut pani
26. Production of amrut pani
27. Calculation of stock solution and liquid organic manure requirement
28. Crop performance study
29. Recording the pest and disease occurrence
30. Working out economics
31. Study on quality of produce
32. Visit to nearby liquid organic manure production centre
33. Project preparation
34. Final Practical Examination

2. CAG ENT 217 - COMMERCIAL PRODUCTION OF BIO-CONTROL AGENTS (0+2)
PRACTICAL

Introduction to bio-control agents – Importance – History and development -
classical examples of bio-control agents – Role in pest and disease management –
Categories of bio-control agents.

Setting up a bio-control laboratory. Mass culture of
tobacco caterpillar (**Spodoptera litura**) and gram pod borer (**Helicoverpa armigera**)-
synthetic diet – mass production of **SINPV** and **HaNPV**. Mass production of **Trichogramma**
spp., **Chrsoperla**, coccinellid predators, **Beauveria**, **Metarhizium** and Entomopathogenic
nematodes. Project preparation.

Practical schedule

1. Bio-control – importance – history – successful bio-control programmes
2. Role of bio-control agents in pest management. Basic facilities required for setting
up a bio-control laboratory.
3. Rearing host insects for pathogen production – facilities and materials required for
rearing the insect on natural host and synthetic diet
4. Acquiring mother culture of **Spodoptera litura** and **Helicoverpa armigera**. Conditioning for egg laying
5. Collection of eggs – disinfecting eggs- preparation for hatching
6. Synthetic diet preparation for host insects
7. Releasing hatched out larvae in synthetic diet or natural hosts
8. Maintaining the culture – sanitization and cleanliness of rearing unit
9. Harvesting pupae and preparation of adult emergence cage
11. Acquiring nucleus NPV inoculum – inoculation of NPV in natural host plant/ synthetic diet
12. Culturing the virus-inoculated larvae. Harvesting viroosed larvae
13. Preparation of virus suspension for field application and maintaining nucleus virus culture
14. Mass culturing of **Corcyra cephalonica** preparation of sorghum/ cumbu grain trays
 for feeding the caterpillars. Releasing eggs in the grains in sulphur treated broken grains
15. Preparation of mating cages. Sanitation of rearing unit. Control of parasitoids
16. Collection of adults, releasing in mating cages and collection of eggs
17. Mid semester examination
18. Separation of eggs- cleaning- sterilization – preparation of egg cards. Acquiring nucleus culture of **Trichogramma** spp
19. Parasitizing the egg cards with nucleus culture. Sanitation of culture room
20. Collection of parasitized egg cards – Field release
 of prey insect – field collection of mealy bugs and culturing on pumpkin
22. Insect cages for rearing -release of coccinellids on mealy bugs and culturing the predator
23. Harvesting beetles- field release. Maintaining the mother culture for further culturing
24. Bio-control agents for plant pathogens- **Trichoderma viride** and **Pseudomonas fluorescens**. Laboratory requirement – materials required
25. Acquiring **Trichoderma** culture – aseptic condition for a maintaining pure culture – media preparation
26. Inoculation of nucleus culture in the media. Culture room sanitation and conditioning. Observation on growth characteristics
27. Harvesting the culture- preparation for field application – formulation – field application
28. **Pseudomonas fluorescens**. Acquiring culture- media preparation – inoculation
29. Laboratory sanitation and maintenance of culture. Observation on growth characteristics
30. Harvesting the culture - preparation for field application – formulation – field application
31. Packing the formulations of *Trichoderma viride* and *Pseudomonas fluorescens*. Storage for field use
32. Entomopathogenic nematodes - identification – Acquiring nucleus culture - Method of mass multiplication in insect hosts. Field release procedures
33. Cost analysis - Project preparation for setting a commercial laboratory
34. Final practical examination

3. CAG PAT - 217 COMMERCIAL PRODUCTION OF SPAWN AND MUSHROOM (0+2)

PRACTICAL

Practical Schedule

1. Introduction to mushroom science, importance, contribution from related fields, global production, domestic and international trade for mushrooms and mushroom products
2. Mushroom morphology - Identification of common edible and Poisonous mushrooms
3. Equipments used in mushroom laboratory, physical and chemical sterilization techniques
4. Preparation of culture media
5. Pure culture technique – tissue isolation
6. Sub-culturing
7. Short term and long term preservation of mushroom cultures
8. Mother spawn production - demonstration
9. Mother spawn production – self learning
10. Bed spawn production - demonstration
12. Oyster mushroom cultivation – important species and varieties
13. Oyster mushroom cultivation - Cultural requirements
15. Observation on spawn run, cropping room requirements and maintenance
16. Harvesting and aftercare of oyster mushroom beds
17. Aftercare of oyster mushroom beds
18. Milky mushroom – special features, important species and varieties
19. Milky mushroom production - cultural requirements
20. Substrate preparation – quality analysis
21. Casing soil preparation – Casing soil characters and purpose of casing
22. Milky mushroom production – bed preparation
23. Milky mushroom production – observations on spawn running and cropping
24. Harvesting of milky mushrooms and after care
25. Constraints in mushroom production – weed moulds infesting spawn and
their management
26. Weed moulds mushroom infesting mushroom beds and their management
27. Diseases of oyster and milky mushrooms
28. Abiotic disorders of oyster and milky mushroom
29. Insect pests of oyster and milky mushroom and their management
30. Uses of mushrooms - Nutritional and medicinal value
31. Recipe preparation with oyster and milky mushrooms, drying, caning and value added mushroom products
32. Methods of composting coir pith and other agro-wastes
33. Cost analysis and project preparation - sources of finance -acquisition
34. Final practical Examination

Reference Books

4. CAG GPB - 217 COMMERCIAL SEED PRODUCTION (0+2)

Practical
Male sterile lines in rice – morphological characterization: observations of sterility: inducing sterility – Supplementary pollination – Planting ratio – Planting methods – Recommended package of practices for hybrid rice seed production - Estimation of various types of heterosis in rice – Hybrid seed production in rice – an account on the released rice hybrids; their potential; problems and ways of overcoming it:

Practical Schedule:
Practical schedule

1. Origin and History – Botanical Description
2. Genetic Classification
3. Varietal Identification - Methods
4. Types of rice cultivation
5. Techniques of Hybrid development in rice
6. Male sterile line and its application in rice
7. Morphological characterization of male sterile lines
8. Methods of observation for sterility
9. Methods of inducing sterility
10. Role of supplementary pollination in rice
11. Planting ratio for rice hybrids
15. Synchronization of flowering in hybrid rice.
16. Manures and fertilizers management
17. Mid semester examination
18. Plant Protection measures
19. Seed harvesting and Processing techniques in rice.
20. Roll of seed certification in Hybrid rice production
21. Sampling and testing procedures in hybrid rice.
22. Viability test in hybrid rice
23. Vigour test in hybrid rice.
24. DUS test in hybrid rice.
26. Multiplication ratio and seed replacement rate in hybrid rice
27. Estimation of heterosis in rice.
28. Potential of released hybrids over existing lines.
29. Problem in Hybrid rice production.
30. Ways of overcoming problems in hybrid seed production.
31. Varietal release and notification.
32. Varieties released by state variety releasing committee
33. Varieties released by central variety releasing committee
34. Final practical Examination

5. CAG HOR 217 - NURSERY TECHNOLOGY (0+2)

Objectives
To impart knowledge on different methods of plant propagation and strategies for nursery management in fruit and ornamental crops.

Practical

Practical Schedule
1. Selection of nursery area and layout of nursery components
2. Identification of various tools and implements
3. Media for propagation of nursery plants
4. Study of various containers for nursery plants
5. Preparation of seeds and seed treatment
6. Sowing and raising of root stocks of fruit crops
7. Raising of root stocks of flower crops
8. Application of liquid manures for nursery plants
9. Plant protection measures for nursery plants
10. Potting materials and preparation of pot mixture
11. Potting of root stocks and hardening
12. Selection of scion plants and grafting
13. Aftercare of grafted plants
14. Graft separation and hardening
15. Preparation of cuttings of ornamental plants
16. Preparation of cuttings of fruit plants
17. Mid Semester Examination
18. Mist propagation techniques
19. Treating the cuttings with growth regulators and planting in mist chamber in beds/polybags
20. Potting of rooted cuttings and hardening
21.& 22. Air layering of ornamental crops

48
23 & 24. Air layering of fruit crops
25. Budding of ornamental plants
26. Hardening of budded plants
27. Practices in potting and repotting
28. Maintenance of potted plants
29. Packing of nursery plants
30. Marketing of nursery plants
31. Maintenance of records in nursery
32. Cost analysis
33. Visit to private nurseries
34. Orientation for final practical examination

References

IV SEMESTER
AGR 221 - DRY FARMING AND AGROFORESTRY (2+1)

Unit - I

Unit - II

Unit – III

Unit – IV
Silviculture practices for important agroforestry species viz., Teak, Casuarina, Eucalyptus, Subabul, Tamarind, Ailanthus, Pungam, Neem, Acacia spp and Bamboos – Wastelands – definition – classification – suitable tree species – planting techniques for wastelands – Agroforestry systems for different types of problem soils and wastelands.

Practical
Zonation of Dry farming regions of Tamil Nadu, India and World - Characteristics of ACZs of Tamil Nadu and cropping pattern - Rainfall analysis and crop planning - Study of tools, implements and machineries for drylands. Seed treatment technologies for dryfarming. Preparation of contingency crop plan to mitigate aberrant rainfall situations - Visit to watershed. Identification of trees, seeds and seedlings of important Agroforestry species – Forest nursery – types – layout – nursery technology for important tree species –
visit to different agroforestry systems – visit to social forestry plantations – economics – assessing fodder and fuel requirements of a village.

THEORY SCHEDULE
1. Dry farming and rainfed farming: Definition - concept
2. Characteristics of dry farming and rainfed farming
3. Major crops of dryland in India and Tamil Nadu
4. Significance and scope of dry farming in India
5. History of dryland agriculture
6. Major constraints for crop production in dry land.
7. Rainfall climatology – length of growing period
8. Drought: definition and types- Effects of drought on crop production
9. Drought management strategies and contingent crop planning
10. Mid season correction – mulching - thinning
11. Anti transpirants and anti evaporants – definition, types and role
12. In-situ soil moisture conservation techniques –Mechanical measures
13. In-situ soil moisture conservation approaches – Biological measures
14. Watershed: definition, principles of watershed management
15. classification of watershed
16. Scope and importance of watershed
17. Water harvesting, storage and recycling
18. Mid semester examination
20. Role of forest
21. Agroforestry – components - benefits
22. Classification of agroforestry systems
23. Primary systems – Agrisilviculture – silvipasture – agri silvipasture
24. Social forestry and Agro forestry – definition – concepts
25. Agroforestry Vs social forestry
26. Afforestation – definition – methods
27. Agroforestry – Classification
28. Tree species suitable for agro forestry in soil and water conservation
29. Silviculture practices for Teak, Casuarina – Eucalyptus , Tamarind
30. Silviculture practices for Tamarind , Neem , Acacia
31. Silviculture practices for – pungam- Ailanthus – Bamboo
32. Waste land – Definition – Classification – suitable tree species-
33. Agroforesty systems for different problem soils and waste lands
34. Planting techniques and afforestation for wastelands.

PRACTICAL SCHEDULE
1. Agroclimatic, Agro ecological zones and characteristics. Zonation of dry farming regions of Tamil Nadu and India.
2. Characteristics of ACZs of Tamil Nadu and cropping pattern. Cropping and farming systems in dryland.
3. Rain fall analysis and crop planning
5. Study of tools, implements, and machineries for drylands
6. Drought management technologies to mitigate drought in dryfarming agriculture.
7. Preparation of contingency crop plan for aberrant rainfall situations.
8. Visit to watershed area to study the impact of various soil and moisture conservation methods.
9. Identification and description of seeds and seedlings of Teak, Casuarina, Eucalyptus, Tamarind, Ailanthus, Pungam, Neem, Acacia and bamboo.
10. Seed treatment techniques for agroforestry tree seeds
11. Identification and description of fuel, fodder and green manure trees in the locality.
12. Nursery techniques for eucalyptus – casuarinas – production of stump for Teak
13. Seedling Production and planting techniques for various tree species.
15. Working out economics of cultivation of tree species like Teak, Casuarina, and Eucalyptus.
16. Visit to nearby village and assessing the needs of fodder, fuel and green manure.
17. Practical examination.

REFERENCES
4. Thanunathan. K. and V. Imayavaramban. 2011, Agroforestry and Agronomy of Multipurpose Trees. SCITECH Publication (India) Pvt. Ltd. Chennai – 56 E.mail : scitech@airtelmail.in

AGR - 222 CROP PRODUCTION- II (0+2)

PRACTICAL
This course is designed to impart practical aspects of scientific cultivation of any upland crop (maize / sorghum / pearl millet / finger millet / cotton / sunflower / sesame) to the students and to acquire sound knowledge in detailed aspects of cultivation and to make them competent to suggest appropriate technology to the farmers based on the varying soil and climatic conditions. Each student will be allotted a minimum land area and he / she will do all field operations in the allotted land from field preparation to harvest and processing.
PRACTICAL SCHEDULE
1. Introduction – land allotment
2. Preparation of calendar of operation
3. Lay out and field preparation
4. Application of organic manures and its importance
5. Seed treatment
6. Nursery preparation and techniques
7. Calculation of seed rate
8. Methods of seed treatment and its importance
9. Calculation and application of herbicides for weed management
10. Transplanting
11. Assessment of plant population
12. After cultivation practices
13. Methods of weed management
15. Recording plant bio-metric observation. Viz., plant height, no. of tillers, etc
16. Working out LAI
17. Mid Semester Examination
18. Working out fertilizer requirement
19. Top dressing of fertilizer
20. Disease management
21. Observation of nutrient deficiency symptoms and their management
22. Study of growth phases
23. Assessment of yield parameters
24. Calculation of theoretical yield
25. Assessment of maturity
26. Physiological maturity and senescence
27. Plot wise yield estimation – actual yield
28. Harvesting
29. Threshing
30. Cleaning and winnowing
31. Cost of agricultural inputs
32. Working out cost of cultivation
33. Value addition
34. Final Practical Examination

REFERENCES

GPB 223 - SEED PRODUCTION TECHNIQUES (1+1)

Unit I
Seed – Importance of quality seed – Characteristics of Seed Quality – Generation system of seed multiplication - Classes of Seed – Nucleus, Breeder, Foundation and Certified Seed – Guidelines for Seed Production – Multiplication Ratio.

Unit II
Floral biology – Pollination and Role of Insects, Environmental and Edaphic Factors - Seed Production Techniques for Varieties and Hybrid in Rice, Sorghum, Maize, Cumbu, Pulses – Redgram, Blackgram,

Unit III
Cotton, Oilseeds – Groundnut and Sunflower and Important Vegetables: Tomato, Brinjal, Chillies, Bhendi, Lablab and Cucurbits

Unit IV
Harvesting – Processing - Seed Treatment, types, importance – Storage, factors affecting seed storage, Godown sanitation – Packaging material – Types - Seed Health and Marketing

Unit V
Seed Certification, general certification standards – Phases of seed certification, Field Inspection – Methodology for Certification – Seed Standards.

THEORY

PRACTICAL

LECTURE SCHEDULE
1. Seed – Importance – Seed Quality Characteristics
2. Classes of Seed – Nucleus, Breeder, Foundation and Certified Seed
3. Guidelines for Seed Production – Multiplication Ratio
4. Floral biology – Pollination and Role of Insects, Environmental and Edaphic Factors
5. Seed Production Techniques for Varieties and Hybrids in Rice
6. Seed Production Techniques for Varieties and Hybrids in Maize
7. Seed Production Techniques for Varieties and Hybrids in Sorghum and Cumbu
8. Seed Production Techniques for Varieties and Hybrids in Pulses – Redgram and Blackgram
9. Mid Semester Examination
10. Seed Production Techniques for Varieties and Hybrids in Cotton, Oilseeds – groundnut and sunflower
11. Seed Production Techniques for Varieties and Hybrid in Tomato, Brinjal, Chillies
12. Seed Production Techniques for Varieties and Hybrid in Bhendi, Lablab and Cucurbits.
13. Harvesting, Processing Seed Treatment
15. Seed Certification, General certification standards
16. Seed certification procedure
17. Field Inspection for Certification and Seed Standards

PRACTICAL SCHEDULE
1. Identification of Crop and Weed Seeds
2. Synchronization Techniques
3. Field count
4. Determining Physiological Maturity Status
5. Seed Extraction Methods
6. Visit to Seed Testing Laboratory and Seed Certification Office
7. Sampling of Seed – Purity analysis
8. Germination Test
9. Mid Semester Examination
10. TZ Test – viability and vigour
11. Grow-out Test
12. Seed Health Test
13. Various Seed Processing techniques
14. Seed Treatment – Storage and Packing
15. Seed Blending
16. Cost / Benefit Ratio for Seed Crops
17. Final Semester Examination

REFERENCES

HOR 224 - VEGETABLE AND FRUIT CULTURE (2+1)

OBJECTIVES
To impart knowledge on the scenario of advanced production techniques and production constraints in vegetable and fruit crops.

THEORY
Unit–I: Importance of Vegetable Crops
Importance of vegetables – nutritive value – classification of vegetables – cropping systems in vegetable crops - types of vegetable garden: kitchen garden, truck garden, market garden, roof garden.

Unit–II: Production Technology of Vegetable Crops – I
Soil and climatic requirements, varieties, cultural practices, manuring, irrigation, weeding – use of growth regulators, harvesting, yield and post harvest handling of the following crops:
tomato, brinjal, chillies, bhendi, onion, garlic, cucurbits

Unit–III: Production Technology of Vegetable Crops –II
Cauliflower, cabbage, salad vegetables, root and tuber vegetables, amaranthus and moringa.

Unit–IV: Production Technology of Fruit Crops –I
Scope and importance of tropical, subtropical and temperate fruits – overview – area, and production of fruit crops in Tamil Nadu – climatic zones of Tamil Nadu- soil, climate- varieties, cultural, manurai, horticultural and irrigation practices – physiological and nutritional disorders - training and pruning – role of growth regulators – maturity standards - methods of harvesting – yield and post harvest technology – grading – packing – storage of the following fruit crops:
Mango, banana, grapes, papaya, sapota, guava, citrus, pomegranate

Unit–V: Production Technology of Fruit Crops –II
Ber, annona, amla, jack, apple, pear, peach, plum and pineapple

PRACTICAL

Layout of orchard - methods of planting – sucker treatment in banana - methods of irrigation - methods of fertilizer application - training and pruning of different fruit crops – harvesting of fruits.

LECTURE SCHEDULE
1. Importance of vegetables and its nutritional values
2. Classification of vegetables
3. Cropping systems in vegetable crops
4. Types of vegetable gardens: kitchen, truck, market and roof
5. Cultivation practices of tomato
6. Cultivation practices of brinjal
7. Cultivation practices of chillies
8. Cultivation practices of bhendi
9. Cultivation practices of onion and garlic
10. Cultivation practices of cucurbits
11. Cultivation practices of cauliflower and cabbage
12. Cultivation practices of potato and sweet potato
13. Cultivation practices of tapioca and yams
14. Salad vegetables cultivation practices
15. Cultivation practices of amaranthus
16. Cultivation practices of moringa
17. Mid semester examination
18. Area and production of fruit crops in Tamil Nadu
19. Importance of fruit production and nutritive value of major fruits
20. and 21. Cultural practices of mango
22. and 23. Cultural practices of banana
24. Cultural practices of grapes
25. Cultural practices of papaya
26. Cultural practices of sapota
27. Cultural practices of guava
28. Cultural practices of acid lime, mandarin orange and sweet orange
29. Cultural practices of pomegranate
30. Cultural practices of ber and annona
31. Cultural practices of amla and jack
32. Cultural practices of apple, pear
33. Cultural practices of plum, peach
34. Cultural practices of pineapple

PRACTICAL SCHEDULE
1. Preparation of raised nursery bed, manure application and working out seed requirement
2. Protray seedling production and preparation of main field for vegetables (bed, ridges and furrows)
3. Practicing seed and seedling treatment for various vegetable crops
4. Methods of manuring for transplanted and direct sown vegetable crops
5. Drip and sprinkler irrigation lay out for vegetable crops
6. Practicing herbicide and growth regulators application for direct sown and transplanted vegetable crops
7. Practicing top dressing application
8. Pandal lay out and training of gourds
9. Layout of orchard for different fruit crops
10. Practicing planting of mango, sapota and guava
11. Practicing banana sucker preparation and sucker treatment for planting
12. Working out fertilizer requirement for important fruit crops
13. Study of varieties of mango, banana, papaya, guava and sapota
14. Study of varieties of grapes, pomegranate, ber, annona, amla and jack
15. Fertigation systems: study of components and scheduling
16. Training and pruning of different fruit crops
17. Orientation for final practical examination

REFERENCES

AEX 225- EXTENSION METHODS AND AUDIO VISUAL AIDS (1+1)

THEORY
Unit I - Rural Sociology
Leaders – Classification, role of leaders in extension, identification of leaders.
Unit II – Extension Education
Extension – Definition, need for extension, Teaching - learning process, Adoption – meaning, stages, adopter categories and their characteristics.
Unit III – Extension Teaching Methods
Extension methods - classification based on use and form. Individual contact methods- farm and home visit, office calls, telephone calls, result demonstration. Group contact methods - Method demonstration, group meetings, brain storming, role play, organizing small group training. Mass contact methods-campaigns, exhibition, farmers day, field trip, TV, radio.
Unit IV- Audio-Visual Aids
Unit V- Modern Methods of Communication
Advances in communication technology - Internet, Agri portal, information iosk, kisan call centers, video conferencing, and teleconferencing.
PRACTICAL
Preparation of posters, charts, graphs, flash cards and flannel graphs, leaflets, pamphlets, and folders, practicing public speaking, handling over head projector, LCD projector. Learning Internet, Exposure to farm and home visit, practicing seminar, workshop and to organize meetings, Conducting group discussion and Farmers Discussion Group (FDG) meeting, Conducting method demonstration, organizing campaigns, exhibition, field days and melas. Visit to village to study the adoption pattern of new technologies, visit to office of joint Director of Agriculture/ADA/ADH/ to know the activities, visit to All India Radio to study the functions, Visit to newspaper printing press to know its activities.
LECTURE SCHEDULE
1. Sociology – Rural Sociology – Characteristics of rural society
2. Rural – urban differences
3. Leaders – Classification, role of leaders in Extension
4. Identification of leaders
5. Extension – Definition, need for extension, Teaching - learning process
6. Adoption – Meaning, stages, adopter categories and their characteristics
7. Extension methods classification based on use and form
8. Mid-Semester
9. Individual contact methods-farm and home visit, office calls, telephone calls, result demonstration
10. Group contact methods- method demonstration, group meetings, brain storming, role play,
11. Organizing small group training
12. Mass contact methods-campaigns, exhibition, farmers day, field trip, TV, Radio
14. Farm Publications -Newspaper, magazines, leaflets, folders, pamphlets
15. Advances in communication technology- Internet
16. Agri portal , information Kiosk, Kisan call centre
17. Video conferencing, teleconferencing
PRACTICAL SCHEDULE
1. Preparation of posters, charts and graphs
2. Preparation of flashcards and flannel graphs
3. Preparation of leaflets pamphlets and folders
4. Practicing public speaking
5. Handling of overhead projector, LCD Projectors
6. Learning about Internet
7. Exposure to farm and home visit
8. Practicing seminar, workshop and to organize meetings
9. Mid Semester Examination
10. Conducting group discussion and Farmers Discussion Group (FDG) meeting
11. Conducting method demonstration
12. Organizing campaign, exhibition, field days and melas
13. Visit to villages to study the adoption pattern of new technologies
14. Visit to office of Joint Director of Agriculture / ADA / ADH / to know the activities
15. Visit to All India Radio to study the functions
16. Visit to newspaper printing press to know its activities
17. Final Practical Examination

REFERENCE

AEX 226 - STUDY TOUR (0+1)

PRACTICAL
The students will visit various National and International Level Institutions related to Agriculture and other allied fields, agro-based industries, commercial farms and research stations in various agro-climatic regions of the country. The students will gain first hand knowledge about different agro climatic zones, crops grown and cultivation practices. The duration of the tour will be for 10 days inclusive of days of start and return. Students will maintain a tour diary to record their observations at the places of visit. A tour record has to be submitted after the tour.

CAG 227 Commercial Agriculture – II

<table>
<thead>
<tr>
<th>SNO</th>
<th>SUBJECT CODE</th>
<th>SUBJECT NAME</th>
<th>CREDIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CAG AGR 227</td>
<td>Micro irrigation - micro (pressurized) irrigation (drip / sprinkler)</td>
<td>0+2</td>
</tr>
<tr>
<td>2</td>
<td>CAG AGM 227</td>
<td>Biofertilizer technology</td>
<td>0+2</td>
</tr>
<tr>
<td>3</td>
<td>CAG SAC 227</td>
<td>Fortified organic compost preparation</td>
<td>0+2</td>
</tr>
<tr>
<td>4</td>
<td>CAG HOR 227</td>
<td>Commercial floriculture and landscape gardening</td>
<td>0+2</td>
</tr>
<tr>
<td>5</td>
<td>CAG AHS 227</td>
<td>Broiler, quail and turkey management</td>
<td>0+2</td>
</tr>
</tbody>
</table>

1. CAG AGR 227- MICRO IRRIGATION (0+2)
MICRO (PRESSURIZED) IRRIGATION (DRIP / SPRINKLER)
Practical
This course is designed to acquire skill in selection of suitable irrigation system, layout, system design criteria and installation of drip / sprinkler system. Irrigation scheduling and maintenance of pressurized irrigation system - maintenance of main and sub main pipe lines, laterals and emitters / nozzles - management of clogging and chlorination - super chlorination and acid treatment. Fertigation with water soluble fertilizers. Crop response, water use efficiency and economic evaluation knowledge gaining.
PRACTICAL SCHEDULE
1. Concept of pressurized irrigation
2. Types of pressurized irrigation
3. Merits and demerits of pressurized irrigation
4. Selection of suitable layout - system design criteria and layout.
5. Selection of suitable components - installation of drip / sprinkler system
6. Irrigation scheduling
7. Operations of the system
8. Maintenance of pressurized irrigation system - maintenance of main and sub main pipe lines, laterals and emitters / nozzles
9. Management of clogging and chlorination - super chlorination and acid treatment
10. Fertigation - concept of fertigation
11. Water soluble fertilizers for fertigation
12. Water use efficiency
13. Crop response and economic evaluation
14. Periodical observation should be taken throughout the crop period
15. System as a whole analysis - project preparation for a given resource situation with its economics.
16. Introduction to concept of sprinkler irrigation
17. Mid-Semester Examinations
18. System of sprinkler irrigation
19. Selection of suitable layout
20. Layout of sprinkler irrigation system
21. Selection of suitable components of sprinkler system
22. Installation of sprinkler system
23. Scheduling of sprinkler system
24. Operations of sprinkler system
25. Maintenance of main and sub main pipe lines
26. Maintenance of sprinkler head
27. Management of clogging and chlorination
28. Super chlorination and acid treatment
29. Recording growth parameters of crop
30. Recording yield from crop
31. Economic evaluation
32. Water use efficiency and system as a whole analysis
33. Project preparation for a given resource situation with its economics
34. Final Practical Examination

2. CAG AGM 227- BIOFERTILIZER TECHNOLOGY (0+2)
PRACTICAL
To study in detail about the role of microbial inoculants in sustainable Agriculture and the isolation of bacterial fungal algal inoculants - their mass production and quality control
PRACTICAL SCHEDULE
1. Isolation of Rhizobium
2. Characterization and identification of Rhizobium
3. Isolation of Azospirillum
4. Characterization and identification of Azospirillum
5. Testing the efficiency of nitrogen fixation
6. Isolation of Azotobacter
7. Characterization and identification of Azotobacter
8. Isolation of Acetobacter
9. Isolation of Phosphobacteria
10. Testing the efficiency of Phosphate solubilisation
11. Isolation of blue green algae
12. Isolation of Mycorrhiza
13. Determination of % colonization of mycorrhiza
14. Isolation and enumeration of mycorrhizal spores
15. Screening methods of mycorrhizal inoculants
16. Isolation of silicate solubilizing bacteria
17. Mid- Semester
18. Isolation of zinc solubilizing bacteria
19. Isolation of Pink Pigmented methylotrophs
20. Mass production of carrier based bacterial inoculants
21. Mass production of liquid formulation of bacterial inoculants
22. Testing quality standards of bacterial inoculants
23. Method of application bacterial inoculants
24. Mass production of mycorrhizal inoculants and quality control
25. Mass production of blue green algae and quality control
26. Mass Production of azolla
27. Quality control of algal biofertilizer
28. Method of application of algal biofertilizer
29. ISI standards of various biofertilizer
30. Working out cost / benefit ratio of biofertilizer
31. Constraints of biofertilizer technology
32. Maintenance of Mother cultures
33. Visit to Biofertilizer production centre
34. Final Practical Exam

REFERENCES

CAG SAC 227 - FORTIFIED ORGANIC COMPOST PREPARATION
PRACTICAL
PRACTICAL SCHEDULE
1. Collection of farm residues, crop residues and dairy waste
2. Sampling of organic manures for analysis
3. Preparation of farm yard manure (FYM) by trench method
4. Preparation of farm yard manure (FYM) by heap method
5. Preparation of enriched farm yard manure (EFYM)
6. Preparation of compost by Bangalore method
7. Preparation of compost by Coimbatore method
8. Preparation of rural compost
9. Preparation of urban compost
10. Preparation of phospho – compost
11. Preparation of coirpith compost
12. Collection of earth worms and feeding materials for vermicompost
13. Preparation of vermicompost by pit method
14. Preparation of vermicompost by trench method
15. Collection of sugarcane trash from field
16. Preparation of sugarcane trash compost
17. Mid-semester examination
18. Collection of poultry waste from poultry farm
19. Preparation of poultry manure compost
20. Collection of NPK and micronutrient fertilizers
21. Preparation of nitrogen fortified compost
22. Preparation of phosphorus fortified compost and
23. Preparation of micronutrient fortified compost
24. Preparation of nitrogen, phosphorus and micronutrient fortified compost
25. Preparation of bio-fortified compost
26. Evaluation of maturity of composts
27. Quality standards of compost
28. Estimation of pH and EC in composts
29. Estimation of Total nitrogen in composts
30. Estimation of Total Phosphorus in composts I
31. Estimation of Total Phosphorus in composts II
32. Estimation of Total Potassium in composts
33. Estimation of Total C in composts
34. Interpretation of analytical data of composts

REFERENCES

4. CAG HOR 227 -COMMERCIAL FLORICULTURE AND LANDSCAPE GARDENING (0+2)
PRACTICAL
Cut flowers - Identification of commercial varieties - protected structures – practices in propagation - fumigation, growing media and bed preparation – practices in manuring, weeding, irrigation- practices in special operations: growth regulator application, netting, pinching, disbudding -harvesting and postharvest handling – grading, packaging and storage of cut flowers.
Visit to fields of commercial loose flower crops, green house cultivation units and concrete and dye / pigment extraction units – working out input requirements and cost benefit ratio for loose and cut flowers.
Practical Schedule
1. Identification of commercial varieties – practices in propagation and nursery practices of the following crops: Rose
2. Jasmine
3. Tuberose and Chrysanthemum
4. Marigold and Crossandra
5. Celosia, Nerium and Gomphrena
6. Practices in special operations: training, pruning and pinching
7. Visit to commercial loose flower cultivation fields.
8. Identification of commercial varieties – practices in propagation -fumigation, media and bed preparation – after cultivation practices – special operations : growth regulator application, bending, pruning, netting, harvesting of the following crops: Cut Rose.
9. Carnation
10. Gerbera
11. Chrysanthemum
12. Orchids
14. Lilium
15. Gladiolus, Alstroemeria, Heliconia
16. Practices in postharvest management of cut flowers (precooling, grading, pulsing, storage, packaging and marketing of cut flowers)
17. Mid Semester Examination
18. Visit to green house cultivation units and concrete and dye / pigment extraction units
19. Working out input requirements and cost benefit ratio for loose and cut flowers
20. Study of different plant components in ornamental garden
21. Identification of the following ornamental plant species – Trees
22. Annuals
23. Shrubs
24. Climbers and creepers
25. Ferns, cacti and succulents
26. Palms and cycadesc
27. Practices in establishment and maintenance of non -plant components
28. Practices in establishment and maintenance of plant components
29. Identification of lawn grasses
30. Practices in lawn making methods
31. Practices in nursery production of ornamental plants
32. Exposure visit to industrial garden, institutional garden, residential complex and public garden
33. Project preparation on different types of garden
34. Final practical examination

REFERENCES
Objectives:
- To provide opportunity for the students to learn about all aspects of the broiler farming.
- To acquire hands on training for establishing a small scale commercial poultry enterprise that open avenues for self employment.

Syllabus:

Practical Schedule
1. Broiler Industry in India.
2. Selection of farm site.
3. Selection of broiler chicks.
5. Systems of housing for broiler.
6. Cleaning and disinfection of poultry house and equipments.
7. Identification of broiler farm equipments.
8. Preparation of brooder house to receive the chicks.
10. Litter management.
11. Feeding management
12. Identification of broiler feed ingredients.
13. Disease management and vaccination schedule of broilers.
15. Technical standards in broiler production.
17. Broiler farm integration.
18. Maintenance of farm records.
19. Preparation of broiler project reports.
20. Demonstration of dressing of chicken.
22. Quail farming – brooding and feeding management.
23. Preparation of quail farm project.
24. Demonstration of dressing of quails.
25. Preparation of value added quail egg and meat products.
26. Turkey farming – selection of turkey breeds and housing management.
27. Feeding management of turkey.
28. Disease control and vaccination schedule of turkeys.
29. Demonstration of dressing of turkey.
30. Project report for turkeys.
31. Value added turkey meat products.
32. Visit to quail farm.
33. Visit to feed mill.
34. Orientation to practical examination

Reference books:

