DEPARTMENT OF AGRONOMY

Academic Regulations and Syllabi

MASTER OF SCIENCE IN AGRONOMY
(Semesters 1- 4)

Under Choice based credit system (CBCS) with Outcome based Education

2019-2020 Onwards
1. Short title and commencement
1.1. These rules and regulations shall govern the post graduate study leading to the award of degree of Master of Science (Agriculture) Agronomy in the Faculty of Agriculture.
1.2. They shall come into force with effect from the academic year 2019 – 2020 onwards.

2. Definitions
2.1. An “Academic Year” shall consist of two semesters.
2.2. “Semester” means an academic term consisting of 110 working days including mid semester, practical and final theory examinations.
2.3. “Course” means a unit of instruction to be covered in a semester having specific no., title and credits.
2.4. “Credit hour” means, one hour lecture plus two hours of library or home work or two and half hours of laboratory/field practical per week in a semester.
2.5. “Grade Point of a course” means the value obtained by dividing the percentage of marks earned in a course by 10 and the Grade Point is expressed on a 10 point scale.
2.6. “Credit Point” means the grade point multiplied by credit hours.
2.7. “Grade Point Average” (GPA) means the quotient of the total credit points obtained by a student in various courses at the end of each semester, divided by the total credit hours taken by the student in that semester. The grading is done on a 10 point scale and the GPA has to be corrected to two decimals.
2.8. “Overall Grade Point Average” (OGPA) means the quotient of cumulative credit points obtained by a student in all the courses taken from the beginning of the first semester of the year divided by the total credit hours of all the courses which he/she had completed up to the end of a specified semester and determines the overall performance of a student in all courses during the period covering more than one semester. The OGPA has to be arrived at the second decimal place.

3. Eligibility for admission
3.1. Candidates seeking admission to the M.Sc.(Ag.) Agronomy programmes should have completed any one of the following four year degree programmes from Universities recognized by Annamalai University: B.Sc. (Hons.) Agriculture/B.Sc.(Hons.) Horticulture/B.Sc.(Ag.)/B.Sc.(Hort.)/B.Tech.(Hort.)/B.Sc.(Forestry)/B.Tech.(Agri. Bio-tech.) courses of four years duration of a recognized university.
3.2. Candidates who have undergone the programme under conventional system should possess not less than a second class Bachelor’s degree. The candidates under 4 point grade systems should possess a minimum OGPA of 2.5 out of 4.00 and 2.75 out of 4.00 in the course concerned. For those less than 10 point system a minimum OGPA of 6.00 out of 10.00 and 6.50 out of 10.00 in the course concerned is required. However, this will not apply to SC/ST candidates for whom a pass in the degree concerned is sufficient.
3.3. An entrance test will be held separately for each Degree programme. Candidates shall be required to be present on the specified date and time for written test and interview at their own expenses.

4. **Award of Degree, duration and credit requirements**

A student is required to complete the duration and credit requirements for the award of degree as decided by Academic Council from time to time.

4.1. The duration for the M.Sc.(Ag.) Agronomy programme will be of two years with four semesters. A student registered for Full-time M.Sc.(Ag) Agronomy programme should complete the course within four years from the date of his/her admission.

4.2. A student enrolled for the M.Sc.(Ag.) Agronomy programme to earn eligibility for the degree is required to complete 55 credits as detailed below.

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Course</th>
<th>Credit requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>Major Course</td>
<td>20</td>
</tr>
<tr>
<td>ii</td>
<td>Minor Course*</td>
<td>9</td>
</tr>
<tr>
<td>iii</td>
<td>Supporting Course</td>
<td>5</td>
</tr>
<tr>
<td>iv</td>
<td>Seminar</td>
<td>1</td>
</tr>
<tr>
<td>v</td>
<td>Research</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>55</td>
</tr>
</tbody>
</table>

*Minor courses: Minor courses are to be chosen by the students from the related discipline in consultation with the Head of the department and the Chairperson based on their research specialization.

5. **Minimum Grade point requirement**

A postgraduate student should maintain a minimum Grade Point of 6.50 out of 10 to secure a pass in a course. In the courses in whom a student fails, he/she has to reappear for the examination to get a pass in that course.

6. **Attendance requirement**

6.1. One hundred per cent attendance is expected of each student. A student, who fails to secure a minimum of 80 per cent of attendance in each course separately for theory and practical, shall not be permitted to appear for the final examination in that course and will be required to repeat the course when ever offered. In case of new admission, who are permitted to join late due to administrative reasons, the attendance will be calculated from the date of joining of the student. However, for genuine reasons, condonation of attendance deficiency may be considered by the Vice-Chancellor on the recommendation of the Head of the Department and the Dean, Faculty of Agriculture on payment of condonation fee prescribed by the University.

6.2. Students absenting from the classes with prior permission of the Head of the Department/Dean, Faculty of Agriculture on official University business shall be given due consideration in computing attendance.

7. **Advisory Committee**

7.1. Each post-graduate student shall have an Advisory Committee to guide him/her in carrying out the research programme. The Advisory Committee shall comprise a Major Adviser (Chairman) and two members. Of the two members, one will be from the same Department and the other in the related field from the other Departments of Faculty of Agriculture. The Advisory Committee shall be constituted within three weeks from the date of commencement of the first semester.
7.2. For interdisciplinary research requiring expertise from teaching staff of other faculties, due permission need to be obtained from the Dean, Faculty of Agriculture to nominate them as Technical advisors. An official letter in this regard needs to be communicated to the individual concerned. However, they are restrained from the evaluation of Research/Seminar evaluation.

7.3. Major Adviser (Chairman)
Every student shall have a Major Adviser who will be from his/her major field of studies. The appointment of Major Adviser (Chairman) shall be made by the Head of the Department concerned. The chairman in consultation with the Head of the Department will nominate the other two members. In the event of the Major Adviser being away on other duty/leave for a period of more than three months, the member of the Advisory Committee from the same Department will officiate as the Major Adviser.

7.4. Guidelines on the duties of the Advisory Committee
1. Guiding students in drawing the outline of research work
2. Guidance throughout the programme of study of the students.
3. Evaluation of research and seminar credits.
5. Conduct of qualifying and final Viva-Voce examination.
6. The proceedings of the Advisory Committee will be sent to the Head of the Department concerned within 10 working days.
7. Periodical review of the Advisory Committee proceedings will be made by the Head of the Department concerned.

8. Programme of Study
8.1. The student’s plan for the post-graduate work, drawn up by the Advisory Committee, shall be finalized before the end of the first semester.

8.2. The programme shall be planned by the Advisory Committee taking into account his/her previous academic training and interest.

8.3. Programme of research work
The outline of research work of the student, in the prescribed manner and as approved by the Advisory Committee, shall be forwarded by the Chairman to the Head of the Department concerned by the end of the first semester.

9. Evaluation of students’ performance
9.1. Mid-semester examination (MSE)
9.1.1. Every teacher handling a course shall conduct Mid-Semester Examination (MSE) as per the scheme drawn by the Head of the Department concerned /PG coordinator, and evaluate. The answer scripts will be shown to the student after valuation, and returned to the course teacher. The Head of the Department will be responsible to ensure the distribution of answer papers to the students. The marks obtained by the students should be sent to the Controller of Examinations through the Head of the Department concerned within fifteen working days.

9.1.2. Writing the mid-semester examination is a pre-requisite for writing the final theory and practical examinations. If a student does not appear for MSE, he/she is not eligible to appear for the final examinations. Such candidate has to reappear for the MSE as and
when the respective examinations are conducted only after getting permission from the Dean, Faculty of Agriculture on payment of fee prescribed by the University.

9.1.3. The MSE marks will not be shown separately in the grade sheet but will be combined with the respective final theory and practical marks. MSE marks awarded in a course will be added to the supplementary examinations also.

9.1.4. The MSE marks will be furnished to the Head of the Department within 10 days after the conduct of MSE. If the student is not satisfied with the award of the marks, he/she shall appeal to the Dean, through Head of the Department within three working days after the announcement of marks. The appeal will be considered and the results reviewed by a Cell consisting of the Dean and the Head of the Department concerned. The decision of the Review Cell shall be final. If the Head of the Department himself is the course teacher, one senior member of the department concerned shall be nominated by the Dean.

9.1.5. The MSE of theory will be of one hour duration

9.1.6. If the student is not able to write the MSE due to deputation by the University, he/she may be permitted to take up missing MSE. Such examination should be completed ordinarily within 15 working days after the respective MSE.

9.1.7. A student who fails to attend a mid-semester examination due to unavoidable circumstances shall be permitted with prior approval of the Dean to take up missing examination of the particular course, on payment of fee prescribed by the University. Such tests should be completed ordinarily within 15 working days after the respective MSE.

The distribution of marks will be as indicated below.

<table>
<thead>
<tr>
<th>Examination</th>
<th>Courses with Practical</th>
<th>Courses without Practical</th>
<th>Courses without Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid-semester</td>
<td>20</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Final theory</td>
<td>40</td>
<td>70</td>
<td>-</td>
</tr>
<tr>
<td>Final practical</td>
<td>40</td>
<td>-</td>
<td>70</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

The question paper model and distribution of marks for Mid Semester examinations are as follows.

Mid-semester examination

For Courses with practical (20 marks)

1. Objective Type 10 out of 12 (10 X 0.5) 5 Marks
2. Definitions/ Concepts 5 out of 7 (5 X 1) 5 Marks
3. Short Notes 2 out of 3 (2 X 2.5) 5 Marks
4. Essay Type 1 out of 2 (1 X 5) 5 Marks

For Courses without practical (30 marks)

1. Objective Type 10 out of 12 (10 X 0.5) 5 Marks
2. Definitions/Concepts 5 out of 7 (5 X 1) 5 Marks
3. Short Notes 4 out of 5 (4 X 2.5) 10 Marks
4. Essay Type 2 out of 3 (2 X 5) 10 Marks
9.2. Final examinations
9.2.1. The final theory and practical examinations will be of three hours duration each conducted separately by the University.
9.2.2. Theory examinations will be conducted before practical examinations.
9.2.3. The final theory and practical examinations will be evaluated by two examiners (one will be the course teacher and the other will be one among the senior faculty suggested by the head in consultation with the The Dean, Faculty of Agriculture)
9.2.4. The question papers for the final theory examinations will be set by the person selected from the approved panel of question paper setters.
 The question paper model and distribution of marks for final theory examinations are as follows.

Final theory examination

For courses with practical (40 marks)

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Questions</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Definitions</td>
<td>5 out of 7 (5X1)</td>
</tr>
<tr>
<td>2.</td>
<td>Short Notes</td>
<td>5 out of 7 (5X2)</td>
</tr>
<tr>
<td>3.</td>
<td>Essay Type</td>
<td>Either or type (one question from each unit) (5X5)</td>
</tr>
</tbody>
</table>

For courses without practical (70 marks)

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Questions</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Definitions</td>
<td>5 out of 7 (5X2)</td>
</tr>
<tr>
<td>2.</td>
<td>Short Notes</td>
<td>5 out of 7 (5X4)</td>
</tr>
<tr>
<td>3.</td>
<td>Essay Type</td>
<td>Either or type (one question from each unit) (5X8)</td>
</tr>
</tbody>
</table>

9.2.5. Practical Examination
Practical examinations will be conducted separately towards the end of each semester. Proper maintenance and regular submission of practical records are required. Those who do not bring with them the certified practical records/specimen collection/assignments will not be allowed to appear for the practical examination. The marks awarded for specimen collection and assignments shall be noted in the record, at the time of first appearance and will be taken into account for subsequent appearances.

The distribution of marks for final practical examination for courses with theory and practical and only practical is as follows

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Particulars</th>
<th>Courses with theory and practical</th>
<th>Courses only with practical</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Practical part</td>
<td>25</td>
<td>55</td>
</tr>
<tr>
<td>2</td>
<td>Assignment/specimen collection</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Record</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>Viva Voce</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>40</td>
<td>70</td>
</tr>
</tbody>
</table>

9.3. Grading
The student should secure 60 per cent marks separately in theory and practical and 65 per cent marks in aggregate to secure a pass in the course. Students who secure marks below 65 per cent in a course will be treated as Reappearance (RA).
Each course shall carry a maximum of 100 marks for purpose of grading. The grading shall be done as grade point, i.e., the percentage of marks earned in a course is divided by ten. The grade point is expressed on a 10 point scale up to two decimals.

The reappearance examinations for the candidates who fail in a course or courses will be held in the subsequent semester.

Students who did not fulfil the required minimum attendance of **80 per cent** will be awarded ‘E’ grade and has to repeat the course.

9.4. Class ranking

In calculation of class equivalent for OGPA the following classification shall be adopted.

<table>
<thead>
<tr>
<th>OGPA</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.00 and above</td>
<td>Distinction</td>
</tr>
<tr>
<td>8.00 to 8.99</td>
<td>I Class</td>
</tr>
<tr>
<td>7.00 to 7.99</td>
<td>II Class</td>
</tr>
<tr>
<td>6.50 to 6.99</td>
<td>Pass</td>
</tr>
</tbody>
</table>

9.5. Non-Credit Compulsory Courses

For Non-Credit Compulsory courses the evaluation processes will be as that of the regular courses, however, the marks obtained will not be taken into account to calculate the OGPA.

10. Credit Seminar

Seminar is compulsory for all the students and each student should present a seminar of 0+1 credit in the third semester.

10.1 The seminar topic should be only from the major field and should not be related to the area of thesis research.

The seminar topics are to be assigned to the students by the Chairman of the Advisory Committee in consultation with the Head of the Department concerned within 2 weeks after the commencement of the semester.

10.2 Under the guidance and supervision of the Chairman of the Advisory Committee, the student will prepare the seminar paper after reviewing all the available literature and present the seminar 2 weeks after completion of Mid-Semester Examination in the presence of the Head of the Department, Advisory Committee, staff members and PG students.

10.3 The circular on the seminars by the post-graduate students shall be sent to other Departments to enable those interested to attend the same.

10.4 The Chairman will monitor the progress of the preparation of the seminar paper and correct the manuscript containing not less than 25 typed/printed pages with a minimum number of 50 references covering the recent 10 years time. The student will submit 2 copies of the corrected manuscript to the Head of the Department concerned through the Chairman before presentation.

The student will incorporate suggestions and carry out corrections made during the presentation and resubmit three fair copies to the Head of the Department concerned through the Chairman (one copy each to Dept. Library, Chairman and the student) within 10 days after presentation.

10.5 The performance of the student has to be evaluated for 100 marks and Grade Point will be awarded by the Head of the Department concerned along with Advisory Committee. The Grade Point may be given based on the following norms.
11. **Term paper / Special assignment**

 This has to be assigned to the student by the teacher in course with theory and practical. Term papers should cover a wide range of topics within the course limits. The topic should be different from that of the credit seminar. Term papers / special assignments will be evaluated during practical examination.

12. **Qualifying Examination**

 Only those students who successfully completed the qualifying examination will be admitted to candidacy of the degree. The qualifying examination consists of written and oral examination.

 12.1. **Minimum requirement for Qualifying Examination**

 The students who have passed major courses will be permitted to appear for the qualifying examination. The qualifying examination will be conducted during IIIrd semester after mid-semester examination and before the end of the IIIrd semester.

 12.2. **Selection of Examiner**

 A panel of five external examiners for qualifying examinations shall be given by the Head of the Department at the end of II semester to the Controller of Examinations, who will nominate as per need from the panel of the examiner.

 12.3. **Written Examination**

 The written examination consists of one paper covering major courses only. The Controller of Examination will conduct the examination by getting the question paper from external. The external examiner will evaluate the answer papers during his visit to conduct the viva-voce examination.

 The question paper for the written examination will be of 3 hours duration and each question (Essay type) need not be restricted to any particular topic in a course but it should be comprehensive, the written examination will be conducted at the same time in all discipline. Qualifying marks for passing the written examination will be 60.

 12.4. **Qualifying viva-voce Examination**

 The advisory committee shall conduct the qualifying viva-voce examination with the external member, who shall be a specialist in the course from outside the university.

 12.5. **The Heads of departments will monitor and coordinate the conduct of the qualifying viva.**

 The performance of the candidate will be graded as Satisfactory / Unsatisfactory.

 12.6. **Communication of results of qualifying examination**

 The chairman of the advisory committee shall act as chairman for the examination committee and shall be responsible for communicating the results of the examination to the Controller of Examination through Head of the Department in the prescribed format.
12.7. Failure/Absence in Qualifying Examination
When a student fails or absents for the qualifying examination, he/she may apply again for permission to appear for re-examination to the Controller of Examination with the recommendation of the chairman of the advisory committee and Head of the Department. A student, who apply for re-examination should attend written examination and viva-voce. Re-examination shall not take place earlier than three months after the first examination and it will be conducted by the advisory committee as previously indicated. If a student fails in the re-examination, further re-examination will be considered on the recommendation of the Advisory Committee, Head of the Department and Dean, Faculty of Agriculture. If the students fail in the qualifying examination, the research credits registered in the III semester should not be evaluated unless he/she successfully completes the qualifying examination.

12.8. Absence of advisory committee member during qualifying/final viva-voce examination:
1. Conducting qualifying and final viva voce examination in the absence of advisory committee members is not allowed.
2. Under extra-ordinary circumstances if the qualifying/final viva-voce examination to postgraduate student has to be conducted in the absence of one or two advisory committee members, permission to conduct the examination by co-opting another member in such contingencies should be obtained from the Dean in advance through the Head of the Department. The Chairman of the advisory committee in consultation with the concerned member and Head of the Department will co-opt another member.
3. The co-opted member should be from the same department of the member who is not attending the examinations.
4. In the absence of the Chairman of advisory committee, respective Heads of Departments should act as Co-chairman with prior permission of Dean.

13. Research Work
13.1. The topic of thesis research to be carried out by the student will be assigned by the Chairman of the Advisory Committee in consultation with the Head of the Department concerned. After assigning the topic, each student may be instructed to submit a detailed programme of work to be carried out by him/her during the semester in the prescribed proforma. After scrutiny and approval, a copy of the programme may be given to the student for carrying out the work during the semester in the prescribed proforma. The evaluation of research work done by the student should be based on the approved programme.

13.2. The distribution of research credits will be as follows

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Semester</td>
<td>0+ 1</td>
</tr>
<tr>
<td>II Semester</td>
<td>0+ 2</td>
</tr>
<tr>
<td>III Semester</td>
<td>0+ 8</td>
</tr>
<tr>
<td>IV Semester</td>
<td>0+ 9</td>
</tr>
<tr>
<td>Total</td>
<td>0 + 20</td>
</tr>
</tbody>
</table>
14. Evaluation of Thesis Research

14.1. Attendance register must be maintained in the department by Head of the Department/chairman for all the students to monitor whether the student has 80% of attendance in research.

14.2. The student has to submit his/her research observation note book to the major Adviser. The major Adviser will scrutinize the progress and sign the note book with remarks as frequently as possible. This note book will form the basis for evaluation of research progress.

14.3. After completion of 80% attendance for research and on or before the last day of the semester, the advisory committee should evaluate the progress of research work as per the approved programme and monitoring register and award SATISFACTORY OR UNSATISFACTORY depending upon quantity and quality of work done by the student during the semester.

14.4. The procedure of evaluating research credits under different situations is explained hereunder.

Situation - I

The students has completed the research credits as per the approved program and awarded ‘SATISFACTORY’ by the advisory committee. Under the said situation the student can be permitted to register fresh credits in the subsequent semester. If the student is awarded ‘UNSATISFACTORY’ he/she has to register afresh the same block of the research credits in the subsequent semester.

Situation - II

The student who does not satisfy the required 80 per cent attendance shall be awarded grade ‘E’.

Situation-III

The student who could not complete the research work as per the approved programme of work for reasons beyond his/her control such as

- Failure of crop
- Non-Incidence of pests or diseases or lack of such experimental conditions
- Non-availability of treatment materials like planting materials chemicals etc.
- Any other impeding/ unfavourable situation for satisfying the advisory committee

- Under the situations (II&III) grade ‘E’ should be awarded. The student has to re-register the same block of research credits for which ‘E’ grade was awarded in the following semester. The student should not be allowed to register for fresh (first time) research credits.
- In the mark sheet, it should be mentioned that ‘E’ grade was awarded due to lack of attendance or want for favourable conditions.

Situation – IV

The student who fails to complete the research work after repeating the registration for the second time will be awarded ‘Unsatisfactory’ and in the the mark sheet the ‘second time’ should be mentioned.
• For the registration of research credits for the third time permission has to be obtained from the Dean of the Faculty and permission for further registration for the fourth time has to be obtained from the University.
• Re-registration of further research credits shall be decided by the University based on the recommendation of the Advisory Committee, Head of the Department concerned and the Dean, Faculty of Agriculture.

Situation-V

If a student could not complete qualifying examination till the end of the final semester/grace period, ‘E’ grade should be awarded for the final block of the research credits registered in the final semester. He/She has to re-register the same block of research credits in the next semester and attend the qualifying examination when conducted by the Controller of Examinations.

15. Submission of Thesis

15.1. The thesis for his/her Master’s degree should be of such a nature as to indicate a student’s potentialities for conduct of independent research. The thesis shall be on topic falling within the field of the major course and shall be the result of the student’s own work. A certificate to this effect duly endorsed by the Major Adviser (Chairman) shall accompany the thesis.

15.2. The research credits registered in the last semester of post graduate programmes should be evaluated only at the time of the submission of thesis, by the advisory committee. Students can submit the thesis at the end of the final semester. If a post graduate student has completed the thesis before the closure of the final semester, the chairman can convene the advisory committee meeting and take decision on the submission of thesis provided the student satisfies 80 per cent attendance requirement. Two copies of the thesis should be submitted in paper pack for evaluation to the Head of the Department.

16. Grace period

16.1. Students can avail a grace period up to a month for submission of thesis/project report after the closure of final semester by paying necessary fine as prescribed by the University. If a student is not able to submit the thesis within a month grace period, the student has to re-register the credits in the forth coming semester. The student (s) who re-register the credits after availing the grace period will not be permitted to avail grace period.

16.2. Based on the recommendation of advisory committee and the Head of the Department, the Dean, can sanction the grace period. A copy of the permission letter along with the receipt for payment of fine as prescribed by the University should accompany the thesis while submission.

17. Submission of thesis after re-registration

The minimum of 80 per cent attendance requirement for submitting the thesis after re-registration need not be insisted for those students who have fulfilled the minimum academic and residential requirement i.e. 2 years (4 semesters) and completed the minimum credit requirements for getting Degree.
18. Publication of articles
Part of the thesis may also be published in advance with the permission of the Head of the Department. If any part is published the fact should be indicated in the certificate given by the chairman that the work has been published in part/full in the scientific or popular journals, proceedings, etc. The copies are to be enclosed in the thesis at the time of submission.

19. Evaluation of Thesis
19.1. The thesis submitted in partial fulfilment of a Master’s degree shall be evaluated by an external examiner. The external examiner shall be a specialist in the student’s major field of study from outside Annamalai University and shall be appointed by the University as per the recommendation of the Head of the Department.

19.2. The external examiner will send the evaluation report in duplicate one marked to the Controller of Examination and another to the Head of the Department along with the corrected copy of the thesis. If the report is favourable, Viva-Voce will be arranged by the Head of the Department concerned and conducted by the Advisory Committee. The chairman of the advisory committee shall send the recommendations of the examining committee to the Controller of Examinations through Head of the Department after the student duly carries out the corrections/suggestions mentioned by the external examiner (a certificate to be enclosed along with the recommendation). On the unanimous recommendation of the committee and with the approval of the University, the degree shall be awarded to the candidate.

19.3. In case of rejection of the thesis by the external examiner, the Controller of Examinations may on the recommendation of the Head of the Department concerned and Advisory Committee refer the thesis for valuation by a second external examiner chosen by the University. If the second external examiner recommends the thesis for acceptance, Viva-Voce will be conducted.

19.4. If the revision of the thesis is recommended for repeating experiments, field trial etc., resubmission must be done by the candidate concerned after a minimum of six months. The revised version should be sent to the examiner who recommended revision.

19.5. After incorporating the suggestions of the examiners and those received at the time of viva-voce, two hard bound copies of thesis should be submitted to the Department (one to the scholar and one to the chairperson) and two soft copies in CDs to the University. At the time of final submission, the advisory committee members should certify the corrections and suggestions carried out as indicated by the examiners. However, fellowship holder has to submit a hard bound copy also as per the need, 3 copies of abstract of thesis (in 10-15 lines), 2 copies of the summary of the findings both in Tamil and English and also in C.D. form.

20. Revision of thesis
If an examiner recommends for revision of thesis the following norms will be adopted.

20.1. For revision of draft, the thesis should be resubmitted after a minimum of one month from the date of communication from the controller of examination
20.2. At the time of submission, the advisory committee should give certificate for carrying out the corrections/recommendations. The resubmitted copies of thesis should be got corrected carrying out the necessary corrections indicated by the external examiner and necessary certificates obtained from the chairman and Head of the Department before the conduct of the final viva-voce.

20.3. A fine prescribed by the University to be collected from the students at the time of resubmission of thesis.

21.1. If a candidate fails to appear before the examining committee for final viva-voce, on the date fixed by the Head of the Department the following are the time frame and penalty.

21.2. The re-viva-voce must be completed within two years. An amount of fine prescribed by the University must be charged to the candidate.

21.3. After successful completion of thesis final viva-voce if a student fails to submit the corrected version of the thesis within 15 days he/she will be levied a fine prescribed by the University at the time of sending the proposal for result declaration.

22. Result notification

22.1. After the completion of each semester, the student will be given the statement of marks by the Controller of Examinations.

22.2. The transcript will be prepared by controller of examinations. The various courses taken by a student along with the credits and the grade obtained shall be shown on his transcript. Based on the total credits admitted, the final Grade Point Average shall be calculated and given.

23. Award of Medals

Medal should be awarded only if the student secures at least 8.0 OGPA, clears all courses in first attempt and in the programme having a batch of at least three students.

<table>
<thead>
<tr>
<th>PROGRAMME OUTCOMES (PO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO1. Graduate will acquire core knowledge leading to awareness on advancements in the field of agriculture and horticulture including crop production, soil fertility, crop protection, crop improvement, microbiology, biotechnology, agricultural extension and economics.</td>
</tr>
<tr>
<td>PO2. Graduates will have expertise in handling scientific and innovative experimental tools in biological sciences, analytical techniques for plant and soil samples, microbial technologies, biotechnological tools, statistical tools & analysis, research data computation, etc, required for higher learning, research and development.</td>
</tr>
<tr>
<td>PO3. Graduates will be mastering the modern agronomic techniques of crop</td>
</tr>
</tbody>
</table>
production, water, soil & nutrient management, plant protection with respect to insect pest and plant diseases, crop improvement and ecosystem restoration.

PO4. Graduate will be able to design and execute individual research project, write concise & persuasive research articles and communicate effectively with their scientific colleagues, farmers and the general public.

PO5. Graduate will be able to communicate research and educational materials properly and competently.

Abstract of Distribution Pattern of Courses and Credit

<table>
<thead>
<tr>
<th>Semester</th>
<th>Number of Courses</th>
<th>Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>9</td>
<td>10+ 6 =16</td>
</tr>
<tr>
<td>II</td>
<td>8</td>
<td>8+ 7 = 15</td>
</tr>
<tr>
<td>III</td>
<td>6</td>
<td>4 + 11 = 15</td>
</tr>
<tr>
<td>IV</td>
<td>1</td>
<td>0 + 09 = 09</td>
</tr>
</tbody>
</table>

Total credit 22+33 = 55

PO and Co Mapping Matrix

Correlation levels 1, 2 and 3 are as defined below:

1. Low
2. Moderate/ Medium
3. Substantial/ High
DISTRIBUTION OF COURSES
GAGR 21 M.Sc. (Ag.) AGRONOMY

MAJOR – 20 CREDITS

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course No.</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>AGR 611</td>
<td>Modern concepts in crop production</td>
<td>T + P 2+0</td>
</tr>
<tr>
<td>2.</td>
<td>AGR 612</td>
<td>Principles and practices of weed management</td>
<td>T + P 2+1</td>
</tr>
<tr>
<td>3.</td>
<td>AGR 613</td>
<td>Agro meteorology and crop weather forecasting</td>
<td>T + P 2+1</td>
</tr>
<tr>
<td>4.</td>
<td>AGR 614</td>
<td>Agronomy of cereals, pulses, fodders and green manure crops</td>
<td>T + P 1+1</td>
</tr>
<tr>
<td>5.</td>
<td>AGR 621</td>
<td>Principles and practices of water management</td>
<td>T + P 2+1</td>
</tr>
<tr>
<td>6.</td>
<td>AGR 622</td>
<td>Principles and practices of soil fertility and nutrient management</td>
<td>T + P 2+1</td>
</tr>
<tr>
<td>7.</td>
<td>AGR 623</td>
<td>Agronomy of oilseed, fibre, sugar, tuber and narcotic crops</td>
<td>T + P 1+1</td>
</tr>
<tr>
<td>8.</td>
<td>AGR 624</td>
<td>Farming system for Sustainable Agriculture</td>
<td>T + P 1+1</td>
</tr>
</tbody>
</table>

Total 13+7=20

MINOR- 9 CREDITS

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course No.</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>OPC- GPB 621</td>
<td>Concepts of crop physiology</td>
<td>T + P 2+1</td>
</tr>
<tr>
<td>2.</td>
<td>OPC XXXXXX</td>
<td>Minor Course from other discipline</td>
<td>T + P 2+1</td>
</tr>
<tr>
<td>3.</td>
<td>OPC XXXXXX</td>
<td>Minor Course from other discipline</td>
<td>T + P 2+1</td>
</tr>
</tbody>
</table>

Total 6+3=9

SUPPORTING COURSES- 5 CREDITS

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course No.</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>STA-611</td>
<td>Statistical Methods and Design of Experiments</td>
<td>T + P 2+1</td>
</tr>
<tr>
<td>2.</td>
<td>COM-611</td>
<td>Computer Applications for Agricultural Research</td>
<td>T + P 1+1</td>
</tr>
</tbody>
</table>

Total 3+2=5

SEMINAR AND RESEARCH- 21 CREDITS

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course No.</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>AGR -032</td>
<td>Seminar</td>
<td>0+1</td>
</tr>
<tr>
<td>2.</td>
<td>AGR 011,021,031,041 Research 011-0+1; 021-0+2; 031-0+8; 041-0+9</td>
<td>0+20</td>
<td></td>
</tr>
</tbody>
</table>

Grand Total 22+33 = 55

NON CREDIT COMPULSORY COURSE

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course No.</th>
<th>Title</th>
<th>Contact Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>PGS 611</td>
<td>Agricultural Research Ethics and Methodology (Contact hour 0+1)</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>PGS 612</td>
<td>Technical Writing And Communication Skills (Contact hour 0+1)</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>PGS 623</td>
<td>Basic Concepts In Laboratory Techniques (Contact hour 0+1)</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>PGS 624</td>
<td>Library and Information Services (Contact hour 0+1)</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>PGS 715 (e-course)</td>
<td>Intellectual Property and Its Management in Agriculture (Contact hour 1+0)</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>PGS 716 (e-course)</td>
<td>Disaster Management (Contact hour 1+0)</td>
<td></td>
</tr>
</tbody>
</table>
Minor Courses

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit</th>
<th>Departments Offering</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>OPCAGR 711</td>
<td>Organic farming and precision agriculture</td>
<td>2+1</td>
<td>Agronomy</td>
</tr>
<tr>
<td>2.</td>
<td>OPCAGR 712</td>
<td>Dry farming and water shed management</td>
<td>2+1</td>
<td>Agronomy</td>
</tr>
<tr>
<td>3.</td>
<td>OPCENT 711</td>
<td>Productive insects and weed killers</td>
<td>2+1</td>
<td>Entomology</td>
</tr>
<tr>
<td>4.</td>
<td>OPCENT 712</td>
<td>Pest management in organic farming</td>
<td>2+1</td>
<td>Entomology</td>
</tr>
<tr>
<td>5.</td>
<td>OPCPAT 711</td>
<td>Biological control of crop diseases</td>
<td>2+1</td>
<td>Plant Pathology</td>
</tr>
<tr>
<td>6.</td>
<td>OPCPAT 712</td>
<td>Mushroom technology</td>
<td>2+1</td>
<td>Plant Pathology</td>
</tr>
<tr>
<td>7.</td>
<td>OPCAGM 711</td>
<td>Microbial inoculant production technology</td>
<td>2+1</td>
<td>Agricultural Microbiology</td>
</tr>
<tr>
<td>8.</td>
<td>OPCAGM 712</td>
<td>Industrial microbiology</td>
<td>2+1</td>
<td>Agricultural Microbiology</td>
</tr>
<tr>
<td>9.</td>
<td>OPCSSC 711</td>
<td>Soil, Water and air pollution</td>
<td>2+1</td>
<td>Soil science & Agrl. chemistry</td>
</tr>
<tr>
<td>10.</td>
<td>OPCSSC 712</td>
<td>Soil health management</td>
<td>2+1</td>
<td>Soil science & Agrl. Chemistry</td>
</tr>
<tr>
<td>11.</td>
<td>OPCABT 621</td>
<td>Concepts of crop physiology</td>
<td>2+1</td>
<td>Genetics & Plant Breeding</td>
</tr>
<tr>
<td>12.</td>
<td>OPC ABT 711</td>
<td>Bio-instrumentation</td>
<td>2+1</td>
<td>Genetics & Plant Breeding</td>
</tr>
<tr>
<td>13.</td>
<td>OPC ABT 712</td>
<td>Plant tissue culture</td>
<td>2+1</td>
<td>Genetics & Plant Breeding</td>
</tr>
<tr>
<td>14.</td>
<td>OPC GPB 711</td>
<td>Germplasm collection, exchange and quarantine</td>
<td>2+1</td>
<td>Genetics & Plant Breeding</td>
</tr>
<tr>
<td>15.</td>
<td>OPC GPB 712</td>
<td>Fundamentals of genetics</td>
<td>2+1</td>
<td>Genetics & Plant Breeding</td>
</tr>
<tr>
<td>16.</td>
<td>OPC SST 711</td>
<td>Seed production techniques in crops</td>
<td>2+1</td>
<td>Genetics & Plant Breeding</td>
</tr>
<tr>
<td>17.</td>
<td>OPC SST 712</td>
<td>Seed quality testing and certification</td>
<td>2+1</td>
<td>Genetics & Plant Breeding</td>
</tr>
<tr>
<td>18.</td>
<td>OPC HOR 711</td>
<td>Propagation and nursery management of horticultural crops</td>
<td>2+1</td>
<td>Horticulture</td>
</tr>
<tr>
<td>19.</td>
<td>OPC FSC 712</td>
<td>Genetic resources and conservation of fruit crops</td>
<td>2+1</td>
<td>Horticulture</td>
</tr>
<tr>
<td>20.</td>
<td>OPC VSC 712</td>
<td>Hi - tech vegetable production</td>
<td>2+1</td>
<td>Horticulture</td>
</tr>
<tr>
<td>21.</td>
<td>OPCFLA 712</td>
<td>Ornamental horticulture</td>
<td>2+1</td>
<td>Horticulture</td>
</tr>
<tr>
<td>22.</td>
<td>OPCPSM 712</td>
<td>Genetic resources and conservation of medicinal and aromatic plants</td>
<td>2+1</td>
<td>Horticulture</td>
</tr>
<tr>
<td>23.</td>
<td>OPC AEC 621</td>
<td>Natural resource and environmental economics</td>
<td>2+1</td>
<td>Agrl. Economics</td>
</tr>
<tr>
<td>24.</td>
<td>OPC AEC 711</td>
<td>Agribusiness analysis</td>
<td>2+1</td>
<td>Agrl. Economics</td>
</tr>
<tr>
<td>25.</td>
<td>OPC AEC 712</td>
<td>Agricultural insurance and risk management</td>
<td>2+1</td>
<td>Agrl. Economics</td>
</tr>
</tbody>
</table>
FIRST SEMESTER

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Course No.</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>AGR 611</td>
<td>Modern concepts in crop production</td>
<td>2+0</td>
</tr>
<tr>
<td>2.</td>
<td>AGR 612</td>
<td>Principles and practices of weed management</td>
<td>2+1</td>
</tr>
<tr>
<td>3.</td>
<td>AGR 613</td>
<td>Agro meteorology and crop weather forecasting</td>
<td>2+1</td>
</tr>
<tr>
<td>4.</td>
<td>AGR 614</td>
<td>Agronomy of cereals, pulses, fodders and green manure crops</td>
<td>1+1</td>
</tr>
<tr>
<td>5.</td>
<td>STA 611</td>
<td>Statistical Methods and Design of Experiments</td>
<td>2+1</td>
</tr>
<tr>
<td>6.</td>
<td>COM 611</td>
<td>Computer Applications for Agricultural Research</td>
<td>1+1</td>
</tr>
<tr>
<td>7.</td>
<td>AGR 011</td>
<td>Research</td>
<td>0+1</td>
</tr>
<tr>
<td>8.</td>
<td>PGS 611</td>
<td>Agriculture research ethics and methodology</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Contact hour 0+1) (Agronomy)</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>PGS 612</td>
<td>Technical writing and communication skills</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Contact hour 0+1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>10+6=16</td>
</tr>
</tbody>
</table>

SECOND SEMESTER

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Course No.</th>
<th>Courses</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>AGR 621</td>
<td>Principles and practices of water management</td>
<td>2+1</td>
</tr>
<tr>
<td>2.</td>
<td>AGR 622</td>
<td>Principles and practices of soil fertility and nutrient management</td>
<td>2+1</td>
</tr>
<tr>
<td>3.</td>
<td>AGR 623</td>
<td>Agronomy of oilseed, fibre, sugar, tuber and narcotic crops</td>
<td>1+1</td>
</tr>
<tr>
<td>4.</td>
<td>AGR 624</td>
<td>Farming system for Sustainable Agriculture</td>
<td>1+1</td>
</tr>
<tr>
<td>5.</td>
<td>OPC- GPB 621</td>
<td>Concepts of crop physiology (GPB)</td>
<td>2+1</td>
</tr>
<tr>
<td>6.</td>
<td>AGR 021</td>
<td>Research</td>
<td>0+2</td>
</tr>
<tr>
<td>7.</td>
<td>PGS 623</td>
<td>Basic concepts in laboratory techniques</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Contact hour 0+1) (SSAC)</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>PGS 624</td>
<td>Library and information services</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Contact hour 0+1) (LIS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>8+7=15</td>
</tr>
</tbody>
</table>
THIRD SEMESTER

1. OPC-
 XXXXXX Minor Course - Related discipline 2+1
2. OPC-
 XXXXXX Minor Course - Related discipline 2+1
3. AGR 031 Research 0+8
4. AGR 032 Seminar 0+1
5. PGS 715
 (e-course) Intellectual property and its management in
 agriculture (Contact hour 1+0)(Ag.Eco)
6. PGS 716
 (e-course) Disaster management
 (Contact hour 1+0) (Agronomy)
7. PGS 717 Constitution of India (Contact hour 1+0)

Total 4+11 =15

FOURTH SEMESTER

1. AGR 041 Research 0 + 9
 Value Added Course (Contact hour 3+0)

Total 0 + 9

Grand Total 22+33 = 55

SYLLABUS

AGR 611 - MODERN CONCEPTS IN CROP PRODUCTION (2+0)

Learning Objectives

- The students will gain knowledge on advanced concepts of crop growth and productivity in relation to climate change.
- The students will acquire knowledge on modern concepts in tillage and farm mechanization.
- The students will gain knowledge on recent trends in agronomy viz. INRM, IPNS,SHC, EPHM, biotechnology, nano technology.
- The students will aware about interaction of inputs on growth and yield attributes of crops
- The students will acquire knowledge on remote sensing and precision agriculture.

Unit I - Climate change and crop production

Unit II - Importance of tillage, plant population and farm mechanization
Modern concepts in tillage - zero, minimum and conservation tillage - Seed priming - Plant population and crop geometry in relation to soil fertility, solar radiation and available moisture regimes - Farm mechanization - Indigenous technological knowledge (ITK).

Unit III - Recent trends in Crop production

Unit IV - Plant ideotypes and yield maximization

Unit V - Remote sensing and precision agriculture

Precision agriculture - concepts and approach - remote sensing - GIS, GPS, VAT based precision farming - Yield mapping with remote sensing for precision agriculture - Use of hyperspectral data and GI based nutrient delivery systems in precision agriculture - Information technology - GPS and Drone technology.

THEORY LECTURE SCHEDULE

1. Population, food requirement and agronomic techniques for food security, basic concepts in growth and growth analysis, growth curves.
2. Analysis of crop growth: LAI, CGR, RGR, NAR and LAD. Effect of climate change on crop production and climate resilient crops.
3. Physiological basis for crop yield differences.
4. Assimilation - respiration and photorespiration.
5. Agro biodiversity.
6. Stress physiology - crop response to abiotic and biotic stresses.
8. Modern concepts in tillage - zero, minimum and conservation tillage.
10. Solar radiation and available moisture regimes.
11. Farm mechanization.
 Biotechnology in Agriculture - GM crops - Eco restoration.
12. Role of Indigenous Technological Knowledge (ITK) in sustainable agriculture.
13. Integrated Natural Resource Management (INRM).
15. Improved crop nutrition practices - Soil Health Care (SHC).
16. Efficient Post Harvest Management (EPHM).
17. **Mid semester examination**
22. Concept of potential yield- High Yield Varieties (HYV).
23. Yield maximization- stability and high yielding varieties.
24. Concept of ideal plant type and crop modeling for desired crop yield.
27. Precision agriculture- definition, basic concepts, scope and approaches.
29. GIS, GPS, VAT based precision farming.
30. Yield mapping with remote sensing for precision agriculture.
31. Use of hyperspectral data and mapping techniques for precision farming.
32. GI based nutrient delivery systems in precision agriculture.
33. Information technology- GPS and Drone technology.

Course Outcomes:

CO 1: To understand advanced concepts of crop growth and productivity in relation to climate change

CO 2: To gain knowledge on bio-technology in agriculture, eco-restoration and nano technology.

CO 3: To acquire knowledge on modern concepts in tillage and farm mechanization

CO 4: To gain knowledge on principles and components of organic farming, vermi technology, resource conservation technology.

CO 5: To gain knowledge on ideal plant ideotypes and yield maximization.

CO- PO Mapping

<table>
<thead>
<tr>
<th></th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
</tbody>
</table>

REFERENCES

E-RESOURCES

AGR 612 - PRINCIPLES AND PRACTICES OF WEED MANAGEMENT (2 + 1)

Learning Objectives
- The students will be exposed with the concepts and principles of weed management.
- The students will be competent with different scientific advancement in the field of weed science.
- The students will acquire knowledge about mode of action of different herbicides.
- The students will critically assess the value of different weed management options in cropped and non-cropped areas.
- The students will aware about the concept of biotechnology in weed management.

Unit I - Weed Biology and Ecology

Unit II - Weed Control Principles
Methods of weed control – preventive and curative. Mechanical, cultural, biological and chemical control of weeds. Integrated Weed Management - Control of aquatic, parasitic and problematic weeds. Control of weeds in field crops, cropping systems and non-cropped areas - Efficiency indices of weed management techniques. Cost benefit analysis of weed management.

Unit III - Herbicide physiology

Unit IV - Selectivity, safety and compatibility of herbicides

Unit V - Biotechnology in weed management

Practical

THEORY LECTURE SCHEDULE
1. Definition – characteristics and classification of weeds.
2. Losses caused by weeds on crops, aquatic ecosystem and non cropped field and economic values of weeds.
3. Survival mechanism of weeds – Biology of weeds, Weed migration, Weed seed distribution in different ecosystems.
4. Weed seed dormancy, germination, establishment and perennation of weeds in different ecosystems.
5. Crop - weed competition.
6. Allelopathy – concepts, allochemicals, ways of releasing, types, stimulatory effects and use of allelopathy in agriculture.
11. Integrated weed management in major field crops.
12. Management of perennial, noxious and problematic weeds.
14. Weed management in different cropping systems.
15. Weed management in non-cropped areas
16. Evaluation of efficiency indices of weed management
17. Cost-benefit analysis of integrated weed management in different ecosystems.
18. Midsemester examination
19. History and development of herbicides.
20. Classification and characteristics of herbicides.
22. Herbicides and herbicide mixtures and their compatibility and efficiency.
23. Adjuvants, herbicide protectants and antidotes.
24. Low dose herbicides and nano herbicides.
27. Herbicide rotation and its significance on weed management.
28. Herbicide application techniques and equipments.
29. Herbicide selectivity and compatibility.
31. Herbicide resistant weeds and their impact on weed management.
32. Development of transgenic herbicide resistant crops.
33. Weed shift and Invasive alien species.
34. WRA, natural products and biotechnology in weed management.

PRACTICAL SCHEDULE
1. Identification, characterization and classification of terrestrial weeds.
2. Identification, characterization and classification of aquatic weeds.
3. Phytosociological survey of weeds.
4. Assessment of weed seed bank and seed production potential of weeds.
5. Working out herbicides and spray fluid requirements.
6. Herbicide application techniques and equipments.
7. Use of herbicides with different formulations in the field to various crops.
8. Working out economics of herbicide application.
9. Working out weed control efficiencies of different weed management practices.
10. Study on the influence of herbicides on soil microflora.
11. Study on complimentary weed control through cultural practices like mulching and intercropping.
12. Identification and use of bioagents for weed control.
13. Identification and use of natural products for weed control.
14. Methodology for weed research – competition studies and control.
16. Studies and analysis of herbicide residue with Gas chromatography, HPLC etc.
17. Weed management for different farming systems and crops.

Course Outcomes:
CO 1: To understand the knowledge on weed biology and survey of weeds in varied ecosystem.
CO 2: To identify the nature, type and economic uses of weeds in varied habitat.
CO 3: To gain knowledge on herbicide application techniques
CO 4: To evaluate different methods of weed control
CO 5: To formulate integrated weed management practices for different ecosystems

CO- PO Mapping

<table>
<thead>
<tr>
<th></th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
</tr>
</tbody>
</table>

REFERENCES
AGR 613 - AGRO METEOROLOGY AND CROP WEATHER FORECASTING
(2+1)

Learning Objectives

- Students will learn various weather parameters and its effect on crop production
- Students will understand various monsoons of World and India
- Students will gain knowledge on photosynthetic efficiency by various field crops
- Students will know about evapotranspiration and its effect on crop production
- Students will understand weather forecasting and weather in relation to pest and disease management and design crop weather calendar.

Theory

Unit I - Introduction to agro meteorology

Unit II - Solar radiation and rainfall

Unit III - Temperature and relative humidity

Temperature profile in air, soil, crop canopies – Influence of soil and air temperature on plant processes - atmospheric moisture and relative humidity, vapor pressure and their relationships for better crop production - evaporation and evapo-transpiration and meteorological factors determining evapo-transpiration.

Unit IV - Monsoons
Modification of plant environment in open and controlled conditions - artificial rain making: heat transfer, controlling heat load, heat trapping and shading - protection from cold, sensible and latent heat flux, controlling soil moisture - monsoon and their origin, characteristics of monsoon - onset, progress and withdrawal of monsoon. Weather hazards, drought monitoring and planning for mitigation. Principles and systems of climatic classification, different types of clouds and micro-climatology.

Unit V - Weather forecasting

Practical

THEORY LECTURE SCHEDULE

1. Agro meteorology- aim, scope and development in relation to crop environment.
2. Composition of atmosphere.
3. Distribution of atmospheric pressure and wind.
5. Energy balance of atmospheric system.
6. Radiation distribution in plant canopies, radiation utilization by field crops.
10. Environmental temperature- Temperature profile in air, soil, crop canopies.
11. Soil and air temperature effects on plant processes.
12. Regulation of air, soil temperature for protection against frost and hot winds.
15. Evapotranspiration and meteorological factors deciding evapotranspiration.
17. Artificial rain making.
18. **Mid-semester examination**
20. Protection from cold, reduction in sensible and latent heat flux.
22. Onset, progress and withdrawal of monsoon.
23. Weather forecasting in India: short, medium and long range forecasting.
24. Benefits of weather services to agriculture.
25. Forecasting of destructive frost and soil moisture.
26. Phenological forecast, crop yield forecast etc.
27. Aero space science and remote sensing – application in agriculture, present status of remote sensing in India.
28. Atmospheric pollution and its effects on climate and crop production.
29. Climate change, climate variability and its impact on agriculture.
30. Green house effect.
31. Carbon sequestration and carbon trading.
32. Crop weather modeling.
33. Weather in relation to pest and diseases.
34. Crop weather calendar.

PRACTICAL SCHEDULE
1. Visit to agro-meteorological observatory
2. Measurement of air, soil temperature and grass minimum temperature and drawing isoline for weather interpretation
3. Measurement of sunshine hours and solar radiation outside and within plant canopy
4. Humidity measurements – use of wet and dry bulb, Assmannpsychrometer
5. Measurement of wind direction and wind speed
6. Measurement of rainfall - Ordinary and self-recording rain gauges and Dew - dew gauge
7. Measurement of atmospheric pressure - barograph
8. Measurement of Evaporation - Open pan evaporimeter- application of evaporation data
9. Measurement/estimation of evapo-transpiration by various methods
10. Measurement/estimation of soil water balance
11. Rainfall variability analysis
12. Determination of heat-unit requirement for different crops
13. Measurement of crop canopy temperature and soil temperatures at different depths
14. Remote sensing and familiarization with agro-advisory service bulletins
15. Study of synoptic charts and weather reports and preparation of crop weather calendar. Working principle of Automatic Weather Station (AWS)
16. Visit to nearby IMD station.
17. Weather forecasting

Course Outcomes:

CO 1: To acquire knowledge on agrometeorology and its different variables on crop production
CO 2: To understand the onset and withdrawal of monsoon and crop seasons
CO 3: To gain knowledge about evapotranspiration and its effect on crop production
CO 4: To understand weather forecasting and weather in relation to pest and disease management
CO 5: To design crop weather calendar for various agro climatic zones

CO– PO Mapping

<table>
<thead>
<tr>
<th></th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

REFERENCES

E-RESOURCES

Learning Objectives

- The students will gain knowledge of input management in field crops about the integrated approach of plant nutrition and sustainability of soil fertility towards sustainable agriculture.
- The students will acquaint about prevailing cultivation practices for field crops and practices to improve their productivity.
- The students will study the constraints in field crop production and their remedial measure with suitable management practices.
- The students will learn about the recent trends in cultivation of crops.
- The students will acquire knowledge about post harvest management practices and value addition.

Theory

Unit - I
- Cereals – Rice, Maize, Wheat, Barley, Oats, Rye and Triticale

Unit - II
- Millets - Sorghum, Cumbu, Finger Millet and Minor millets

Unit - III
- Pulses – Pigeon pea, Green gram, Black gram, Chick pea, Cowpea, Soybean, Peas and Horse gram

Unit - IV
- Fodders – Cereal, legume and tree fodder – Green manures : Daincha, Sunhemp, Sesbania, Glyricidia, Pillipesara and Cluster bean

Unit - V

Practical

- Laying out observation plots with popular varieties of cereals, millets and pulses - observation on - phenological studies, intercultural operations at different crop growth stages in cereals - millets - pulses - working out growth indices (LAI, CGR, RGR, NAR, LAD). Estimation of quality parameters in cereals and pulse - Assessing of physiological maturity in cereals, millets and pulses - visit to field experiments on cultural, fertilizer, weed control and water management aspects in cereals and pulses - working out harvest index of major crops in cereals, millets and pulses - determination of cost of cultivation of major crops in cereals and pulses - study of seed production techniques in cereals, millets and pulse crops - Estimation of crop yield on the basis of yield attributes for major cereals and pulses - Observation of growth and yield parameters of green manures/ green leaf manures, area, production and its productivity - Silage and hay making – quality and preservation of fodder. Visit to crop research stations and farmer fields.
Origin, history, area and production, classification, prominent and latest varieties, climate, soil, water and cultural requirements, cropping systems, nutrition and quality component, post harvest handling and processing, by-products, value addition and scope for mechanized cultivation. Recent advances in research on cereals, millets, pulses and fodder crops as follows

1. Rice.
2. Rice.
3. Maize.
5. Barley and Oats, Rye, Triticale.
7. Finger millet and Minor millets.
8. Chick pea and Peas.
9. **Mid semester examination**
10. Horse gram and Pigeonpea.
11. Green gram and Blackgram.
12. Cowpea and Soybean.
15. Legume forages – production technologies for Alfalfa, Cluster beans, Sweet clover, Desmanthus, Stylosanthes, Berseem, Cowpea and Minor legumes – Pillipesara and Siratro - Cutting management, nutritive and quality management – cropping system.
17. Present trends and future thrust in cereal and pulse production - Low cost and cost effective technique in cereal production

PRACTICAL SCHEDULE

1. Planning and layout of field experiments in cereals, millets and pulses.
2. Sowing of certain crops for observations on growth and yield parameters in sole and intercrop situations.
3. Practicing nursery field preparation for different crops.
4. Phenological studies, intercultural operations at different crop growth stages in cereals.
5. Phenological studies, intercultural operations at different crop growth stages in millets and pulses.
6. Working out growth indices (LAI, CGR, RGR, NAR, LAD).
7. Assessing of physiological maturity in cereals, millets and pulses.
8. Working out harvest index of major crops in cereals, millets and pulses through estimation of yield parameters.
9. Working out cost of cultivation of major cereal, millet and pulse crops.
10. Study of seed production techniques in cereal, millet and pulse crops.
11. Study of seed production techniques in green manure and fodder crops.
12. Estimation of crop yield on the basis of yield attributes for major cereals and pulses.
15. Estimation of quality parameters in cereals, millets and pulses.
16. In situ incorporation techniques for green manure crops in different farming systems.
17. Visit to nearby crop research stations and farmers field.

Course Outcomes:

CO 1: To have knowledge about the staple food crops and their cultivation practices with post harvest technologies.

CO 2: To assess a nature of the farm site and develop a new cropping system with the available resources.

CO 3: To understand recent crop management practices on crop productivity and resource use efficiency.

CO 4: To gain knowledge about the recent trends in cultivation of crops.

CO 5: To construct post harvest management practices and value addition.

CO – PO Mapping

<table>
<thead>
<tr>
<th></th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>CO5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

REFERENCES

E-RESOURCES

2. http://www.eolss.net/sample-chapters/c10/e5-02-01-04.pdf
AGR 621 - PRINCIPLES AND PRACTICES OF WATER MANAGEMENT (2+1)

Learning Objectives

- The students will gain knowledge on water resources of Tamilnadu and India
- The students will study on soil, water plant relationship, crop water requirement IWM for different crops.
- The students will acquire knowledge on various methods of scheduling irrigation, irrigation design and layout.
- The students will aware about designing of drip and sprinkler irrigation system
- The students will learn about quality of irrigation water and various drainage methods

Theory

Unit I - Water resources and irrigation development

History of irrigation in India - water resources of India and Tamil Nadu - Major and minor irrigation projects of India and Tamil Nadu - Scope for water conservation and storage in India and Tamil Nadu.

Unit II - Soil-water-plant relationship

Water and its properties - soil water concepts - classification of soil water - water movement in soils and plants - absorption and conductance by plants - soil moisture depth concepts.

Unit III - Crop water requirement and irrigation scheduling

Unit IV - Methods of irrigation and water use efficiency

Irrigation methods - surface, sub-surface and pressurized systems - suitability of crops - Design and layout of irrigation systems - WUE - methods to improve WUE - units of expression.

Unit V - Integrated water management

Water management for different crops under excess water and deficit conditions - understanding quality parameters of irrigation water and its management by agronomic practices, management of problems soils - drainage methods.

Practical

Analysis of quality of irrigation water for important salts, determination of soil water constants, estimation of basic and cumulative infiltration rate of different soils, determination of hydraulic conductivity, soil moisture estimation by gravimetric and improved devices, working out irrigation efficiency parameters, calculations on fertigation, working out economics of different method of irrigation and visit to important institutes of irrigation.

THEORY LECTURE SCHEDULE
1. History of irrigation - water resources of India and Tamil Nadu - occurrence of ground water – aquifers.
2. Major and minor irrigation projects of India and Tamil Nadu
3. Scope for water conservation and storage in Indian and Tamil Nadu.
4. Water, its properties and role in plants.
5. Soil water potential concepts.
6. Relationship between different potentials-units of expression.
7. Factors influencing Soil water potential.
8. Physical classification of water.
10. Soil water movement - mechanisms of absorption and conductance in plants - factors responsible.
11. Effective root zone depth - Moisture extraction pattern.
13. Evapotranspiration - factors affecting ET.
14. Water needs of crops - NIR, GIR, NWIR, GWIR concepts.
15. Factors affecting WR of crops.
17. Scheduling of irrigation by various approaches - ET₀ - ETₘ - Kₖ factors.
18. Mid semester examination
20. Pressurized systems - advantages and shortcomings - suitable crops.
22. WUE - factors affecting.
23. Agronomic management practices to increase WUE.
24. Water management for crops and cropping systems.
27. Management of water under constraint situation.
28. Command area development and on farm water management practices.
29. Quality of irrigation water - criteria for determination.
31. Management of saline and brackish water.
32. Water management of problem soils.
33. Excess soil water - factors responsible for water stagnation - remedial measures.
34. Drainage methods - concepts, design, layout and spacing.

PRACTICAL SCHEDULE
1. Determination of soluble salts and Ca²⁺, Mg²⁺ in irrigation water.
2. Determination of CO₃⁻ and HCO₃⁻ and Na in irrigation water.
4. Estimation of soil moisture constants for heavy soils.
5. Standardizing soil moisture curves using different devices viz., tensiometer, pressure plate apparatus.
6. Water flow measurement using different devices at field level.
7. Determination of infiltration rate of soil.
10. Assessment of plant water status - RWC by direct method.
11. Determination of irrigation requirement of crops.
13. Working out various irrigation efficiencies using formulae.
14. Calculation on fertigation for important crops based on its water requirement.
15. Economics of various irrigation systems.
16. Field drainage.
17. Visit to important irrigation institutions.

Course Outcomes:
CO 1: To understand the principles involved in estimating water requirement for different crops.
CO 2: To gain knowledge on various methods of irrigation scheduling and approaches.
CO 3: To acquire knowledge on pressurized irrigation system to economize the water.
CO 4: To construct ideologies pertaining to water management in problem soils.
CO 5: To analyse the quality of irrigation water.

CO– PO Mapping

<table>
<thead>
<tr>
<th></th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

REFERENCES

E-RESOURCES
1. www.agrimoon.com/water-management-including-micro-irrigation-icar-ecourse-pdf-
2. www.umass.edu/.../chartbooks/2015%20chartbook/2015%20Chart%20book%20FIN...
AGR 622 - PRINCIPLES AND PRACTICES OF SOIL FERTILITY AND NUTRIENT MANAGEMENT (2+1)

Learning Objectives

- To prepare students to become experts in soil fertility and nutrient management fields in agriculture.
- The students to develop critical thinking skills and ability to assess and comprehend essentiality of plant nutrients for crop production.
- To prepare students to become outstanding leaders and team players in collaborative and interdisciplinary application of soil fertility to address local, regional, national and/or global problems.
- To upgrade technical knowhow and skills in soil testing and application of Nutrients on basis of report.
- The students will understand about methodologies for soil fertility assessment and methods of fertilizer application

Theory

Unit I - Soil fertility and productivity

Unit II – Essentiality of plant nutrients

Unit III – Nutrient budgeting

Unit IV – Fertilizer and fertilization

Commercial fertilizers - solid and liquid composition- fertilizer mixture and grades – crop response to different nutrients - residual effects and fertilizer use efficiency - different methods of estimating and increasing FUE - nutrient availability- soil moisture and nutrient interaction.

Unit V – Methods of fertilization
Time and methods of manures and fertilizers application; foliar application and its concept - fertigation - soluble nutrients - chelated nutrients - fertilizer related environmental and ground water pollution-carbon sequestration.

Practical

THEORY LECTURE SCHEDULE

1. Soil: origin, formation, dispersion - factors influencing soil formation.
2. Physico-chemical properties of the soil.
3. Problems of supply and availability of nutrients and features of good soil management.
5. Different soils of India - characteristics and functions.
7. Availability of plant nutrients in soil - micro and macro nutrients - criteria of essentiality of nutrients.
8. Essential plant nutrients - their functions - macronutrients - N, P, K.
10. Identification of nutrient deficiency and its symptoms - critical levels.
12. Transformation and dynamics of phosphorus and potassium.
14. IPNS - importance and essentiality - crops and cropping system.
15. Soil health and its importance.
16. Problem soils and their management.
18. Mid semester examination
19. CNC, CNR, DRIS - significance - crop logging.
22. Organic farming - basic concepts and definitions - organic farming in crops and cropping system.
24. Crop response to different nutrients.
25. Residual effects and fertilizer use efficiency.
26. FUE - Agronomic, chemical and physiological methods of estimating FUE.
27. FUE - Techniques for increasing FUE.
28. Fertilizer mixtures and grades - their composition - uses.
29. Nutrient availability - soil moisture and nutrient interaction.
30. Time and methods of manures and fertilizer application - Foliar nutrition - application and its concept - uses.
32. Fertilizer related environmental and ground water pollution.
33. Nutrient budgeting-imbalances - concepts – crops and cropping system.
34. Carbon sequestration - concepts – essentiality - different methods.

PRACTICAL SCHEDULE
2. Estimation of pH, EC in soils.
4. Determination of total N of soil.
5. Determination of available N in soil.
6. Determination of available P$_2$O$_5$ in soil.
7. Determination of available K$_2$O in soil.
9. Working out C: N ratio and fertilizer schedule for different cropping systems.
10. Determination of total N in plants.
11. Determination of total P plants.
12. Determination of total K plants
13. Interpretation of interaction effects.
15. Nutrient budgeting.
16. Diagnosis of nutrient deficiencies for major nutrients and remedial measures.
17. Diagnosis of nutrient deficiencies for minor nutrients and remedial measures.

Course Outcomes:
CO 1: To expand breadth of knowledge and expertise in soil fertility and productivity in crop production.
CO 2: To develop scientific capability in independently assessing, interpreting, and summarizing soil problems.
CO 3: To propose, evaluate or execute experimental protocol regarding nutrient budgeting for crop production.
CO 4: To foster commitment to ethical behavior in fertilization of crops with respect to environment perspectives
CO 5: To gain knowledge about soil fertility assessment and methods of fertilizer application

CO– PO Mapping

<table>
<thead>
<tr>
<th></th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

REFERENCES

E-RESOURCES

1. http://www.fao.org/docrep/x5672e/x5672e03.htm
2. http://www.keralasoilfertility.net/
3. http://www.omafra.gov.on.ca/english/crops/facts/cover_crops01/cover.htm

AGR 623 - AGRONOMY OF OILSEED, FIBRE, SUGAR, TUBER AND NARCOTIC CROPS (1+1)

Learning Objectives
- The students will acquire the knowledge of commercial crops for its distribution in India and World in different agroecosystem.
- The students will acquire the basic knowledge of scientific crop production of major oilseed crops.
- The students will gain knowledge about economic importance, origin, soil and climatic requirement of sugar crops viz., Sugarcane, Sugarbeet and Sweet sorghum
- The students will acquire knowledge about importance of fibre crops and its cultivation practices
- The students will learn about various production technologies for various tuber and narcotics crops.

Theory

Origin, history, area and production, classification, prominent and latest varieties, climate, soil, water and cultural requirements, nutrition and quality component, post harvest handling and processing, by-products, value addition and scope for mechanized cultivation - recent advances in research on commercial crops.

Unit - I
- Major Oilseeds: Groundnut, Sesame, Coconut, Rapeseed and Mustard

Unit - II
- Minor Oilseeds: Sunflower, Safflower, Linseed, Niger, Castor, and Jatropha

Unit - III
- Fibrecrops: Cotton, Jute, Sunhemp, Mesta and Agave

Unit - IV
- Sugar crops: Sugarcane, Sugar beet and Sweet sorghum

Unit - V
Tuber and narcotic crops: Tapioca, Sweet potato, Potato and Tobacco

Practical
Identification of latest crop varieties - Establishing crop cafeteria plots - Phenological study of different crops - Seed and sett treatment methods - Nursery management for crops - Input application to different crops - Determination of oil content in oilseeds and computation of oil yield - Practice on sugarcane cultivation from nursery to harvest - Quality parameters of sugarcane juice - Assessing maturity of crops - Harvest index - Intercultural operations in different crops - Working out canopy measurement and growth indices (LAI, CGR, RGR, NAR, LAD) - Working out cost of cultivation of different crops - Estimation of crop yield on the basis of yield attributes - Studies on value addition of different oilseeds, fibres, sugars and tuber crops - Study of seed production techniques in various crops - Visit to field experiments, Farmer’s fields/ Research institutes.

THEORY LECTURE SCHEDULE

Origin, history, area and production, classification, prominent and latest varieties, climate, soil, water and cultural requirements, cropping systems, nutrition and quality component, post harvest handling and processing, by-products, value addition and scope for mechanized cultivation. Recent advances in research on commercial crops for the following crops:
1. Oilseeds: Introduction - Constraints in oil seed production and measures to improve productivity
2. Groundnut
3. Sesamum
4. Rapeseed and mustard
5. Coconut
6. Sunflower and safflower
7. Linseed, Niger, castor and Jatropha
8. Introduction and economic importance and role of fibre crops - Area, production, productivity, classification - Demand, supply and marketability of fibre crops
9. Mid-semester examination
10. Cotton
11. Jute, Mesta, Sunnhemp and Agave
13. Sugarcane, crop logging, cane ripeners, Sugarcane based cropping system, Harvesting and scope for mechanized cultivation and ratoon management techniques
14. Sugar beet and Sweet sorghum.
15. Tapioca
16. Potato and Sweet potato
17. Tobacco

PRACTICAL SCHEDULE
1. Planning and layout of field experiments.
2. Sowing of certain crops for observation on growth and yield parameters.
3. Study of seed treatment and nursery management for different crops.
5. Study of phenology and growth characters in sugarcane and cotton.
6. Cutting of sugarcane setts, its treatment, methods of planting.
7. On plant inter-cultivation technologies in sugarcane.
8. Determination of cane maturity, calculation on purity percentage, recovery percentage and sucrose content in cane juice, at different growth stages of crop
9. Working out growth indices (LAI, CGR, RGR, NAR, LAD).
10. Judging of physiological maturity in different crops and working out harvest index.
11. Working out cost of cultivation of different crops with intercropping situations.
12. Estimation of crop yield on the basis of yield attributes and Harvest index (HI).
15. Study of seed production techniques in various crops.
16. Studies on value addition of different oilseeds, fibres, sugars and tuber crops
17. Visit to field experiments/Research stations/farmers field to acquire practical knowledge on cultural, fertilizer, weed control and water management aspects.

Course Outcomes:

CO 1: To gain the information and acquire practical knowledge about various commercial crops and its beneficial and economic importance to the farming communities.

CO 2: To gain knowledge about importance of sugar crops and its cultivation practices

CO 3: To formulate different cropping system and production technologies for various fibre crops

CO 4: To construct idea regarding knowledge on growing of tuber crops

CO 5: To create awareness about narcotics crops and its production technologies

<table>
<thead>
<tr>
<th>CO</th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

REFERENCES
AGR 624 - FARMING SYSTEMS FOR SUSTAINABLE AGRICULTURE (1 +1)

Learning Objectives

- The students will study and understand the cropping and farming systems as a tool for enhancing farm productivity.
- The Students will acquire skill on integrated farming system models for different agro ecosystems.
- The students will aware about dry farming and its constraints and mitigation strategies
- The students will gain clear knowledge to incorporate scientific principles of sustainability in LEISA
- The students will familiarize with causes of environmental pollution and its conservation techniques

Unit I - Farming system

Farming system - integrated farming system, alternate farming system - meaning and scope - recycling and crop residue management - natural farming - concept and components - Organic farming - Crop diversification - principles, types and needs - sustainable agriculture - definition, scope and objectives - Socio-economic constraints in adoption of systems approach - location specific IFS models - Crop diversification for sustainability.

Unit II - Cropping system

Cropping system - Definition - scope and importance - intensive agriculture - principles - ecological interactions among crop communities - competition, annidation and allelopathy - resource competition and management in cropping systems. Types of multiple cropping - sequential, relay, inter, mixed and multi-storied - evaluation indices for farming and cropping systems

Unit III - Dryland farming

Definition, concept, significance and dimensions of dryland farming in Indian agriculture, characteristics and classification of dryland farming - delineation of dry farming areas on the basis of moisture deficit index and their characteristics - constraints limiting
crop production in dry land areas; drought management strategies – contingency crop planning for aberrant weather conditions - dry land crop production technologies for sustainable agriculture.

Unit IV - Sustainability through systems Approach

Sustainability concepts in cropping and farming systems – Development, management and allocation of resources – low input sustainable agriculture – Water harvesting- its concepts, techniques and practices - Watershed management- definition, objectives, concepts, problems, approach for sustainable farming - Natural resources - characterization and managementfor crop planning-Sustainable cropping and farming systems in agriculture in relation to environmental degradation -alternate land use pattern.

Unit V - Farming for environmental conservation

Practical

Preparation of cropping scheme for different agroclimatic zones – Designing of cropping system based on rainfall analysis – working out input requirement for crops, cropping systems – preparation of calendar of operation for wetland, irrigated upland and dry land cropping system – working out indices for evaluation of cropping system – study on evaluation indicators on farming system – preparation of integrated farming system models for different eco – systems – on farm field visit – analysis of farming system models.

THEORY LECTURE SCHEDULE

1. Scope of Farming systems and factors influencing the choice of component elements.
2. Integrated Farming Systems – prospects, constraints, resource recycling and crop residue management.
4. Multiple cropping and crop diversification – scope and importance of cropping system and intensive agriculture.
5. Plant interactions – Competition, annidation and allelopathy / teletoxicity.
6. Evaluation of farming and cropping systems based on various indices .
7. Socio- economic constraints for adoption of cropping systems.
8. Resource management and crop planning - Alternate land use systems.
9. Mid semester examination
10. Dry land farming - definition, concept, significance and dimensions of dryland farming in Indian agriculture, and characteristics and classification of dryland farming.
11. Delineation of dry farming areas on the basis of drought indicesand their characteristics and constraints limiting crop production in dry land areas.
12. Drought management strategies, contingency crop planning and preparation of crop plans for dry land areas.
15. Watershed management and water harvesting- its concepts, techniques.
16. Biotechnology – GMO’s and invasive alien species on farm productivity.
17. Restoration of degraded and wastelands and bioremediation and Bio-scavenging

PRACTICAL SCHEDULE
1. Preparation of cropping scheme for different agro climatic zones.
2. Review of cropping system experiments in India and Tamilnadu.
3. Study on Indices for biological and economic evaluation of cropping system.
4. Assessing risks and opportunities with component elements dairy, fishery, poultry, goat rearing, piggery etc.
5. Formulation of Integrated Farming Systems for wetlands.
8. Tracing the role of farming elements in reducing inputs and agrochemical use.
9. Preparation of cropping scheme for different farming systems and working out input requirement.
10. Calendar of operations for wet land and irrigated upland cropping system.
11. Working out indices for evaluating the farming and cropping system - land use, yield advantage, Economics, sustainability.
13. Working out moisture availability index based on rainfall and ET.
15. Designing of cropping system based on rainfall analysis.
16. Visit to watershed and study of various technologies.
17. Visit to dry land agricultural research stations.

Course Outcomes:

CO 1: To prepare cropping schemes and design and evaluate cropping system and workout input requirements for crops.

CO 2: To understand interaction between different farm enterprises.

CO 3: To prepare integrated farming system models for different eco systems.

CO 4: To gain knowledge about drought mitigation strategies

CO 5: To evaluate different resource management techniques in conservation agriculture

CO– PO Mapping

<table>
<thead>
<tr>
<th></th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>-</td>
</tr>
</tbody>
</table>

REFERENCES

MINOR COURSES

OPCAGR 711 - ORGANIC FARMING AND PRECISION AGRICULTURE (2+1)

Learning Objectives
To impart knowledge on the concepts and importance of organic agriculture, precision agriculture and to equip the students with geostatistical techniques and variable crop yield mapping.

THEORY

Unit I - Importance of Organic farming

Unit II - Soil health and organic certification

Unit III - Precision farming

Unit IV - Yield mapping techniques

Unit V - Application of GIS and decision support system tool

PRACTICAL
Aerobic and anaerobic methods of making compost, making vermicompost – Efficient use of biofertilizers – techniques of treating legume seeds with Rhizobium cultures, use of Azotobacter, Azospirillum, and PSB cultures in field - Visit to an organic farm – biodynamic farm – Quality standards, inspection, certification and labeling and accreditation procedures for farm produce from organic farms. Visual image interpretation, Spectral Indices, Thermal indices derived from remote sensing data, Spectroradiometer data analysis,
IR thermometer principles and working, Map projection system. Digital image processing, ERDAS imaging, ARC view, Satellites, Sensors and platforms, Satellite data acquisition and dissemination, Principles of crop modeling.

THEORY LECTURE SCHEDULE
1. Organic Farming – definition, concepts, prospects, opportunities and priorities.
4. Role of Indigenous technological knowledge (ITK) in organic agriculture.
5. Prospects and limitations of organic farming in field crops – Cereals, millets, and pulses.
12. Trade, industry and certification in organic farming – Certification standards, procedures and regulatory mechanisms.
13. Precision farming – concept, approach and relevance to Indian Agriculture.
15. Precision agriculture and cropping system.
16. Soil and land information of precision agriculture.
17. **Mid Semester Examination.**
19. Scope of precision farming in horticulture / plantation crops.
20. Potential and limitation of satellite remote sensing for precision farming.
21. Yield mapping with remote sensing for precision agriculture.
22. Precise water management in agriculture using spatial hydrological models and remote sensing.
23. Use of hyperspectral data for precision farming.
25. GIS based nutrient delivery systems.
27. Remote sensing and GIS applications for management of land and water resources on watershed framework.
30. Spatial and temporal variability of soil physical parameters.
31. DSSAT for variable crop yield mapping.
32. Farm machinery for precise input application.
33. Precision farming in agroforestry.
34. Weather forecast – A decision tool for precision farming.

PRACTICAL SCHEDULE
1. Practicing aerobic methods of making compost.
2. Practicing anaerobic methods of making compost.
3. Practicing vermicomposting methods.
4. Techniques of treating legume seeds with *Rhizobium* cultures, use of *Azotobacter*, *Azospirillum* and PSB cultures in field.

5. Role of Indigenous Technological Knowledge (ITK) in weed, insect and disease management.

6. Visit to sugar industry to study the by-products composting.

7. Visit to an organic farm.

8. Visit to biodynamic farm.

9. Quality standards, inspection, certification and labelling and accreditation procedures for farm produce from organic farms.

10. Visual image interpretation, spectral indices, thermal indices derived from remote sensing data.

11. Spectro radiometer data analysis.

12. Study of IR thermometer principles and working.

13. Practicing map projection system.

15. ERDAS imaging, ARC view, satellites.

17. Satellite data acquisition and dissemination and crop modeling studies.

Course Outcomes

CO 1: To acquire knowledge on concepts of organic agriculture.

CO 2: To gain the information about the impact of organic farming and indigenous practices on environment.

CO 3: To understand the procedure followed for organic certification as per NPOP guidelines namely production standards, labelling and accreditation.

CO 4: To equip students with geostatistical techniques and variables of crop yield mapping.

CO 5: To understand GIS based nutrient delivery system and DSSAT for variable crop yield mapping.

REFERENCES

12. Singh, SP. (Ed.), 1994. Technology for Production of Natural Enemies, Project Directorate of Biological control, Bangalore

E-RESOURCES
1. http://ncof.dacnet.nic.in/Training_manuals/Training_manuals_in_English/Organic_Agriculture_in_India.pdf

OPCAGR712 - DRYFARMINGAND WATERSHEDMANAGEMENT(2+1)

Learning Objective
To impart scientific knowledge on concepts and practices of dry farming, soil moisture conservation and watershed management.

THEORY

Unit I - Principles of dry land agriculture
Dry farming - Definition, concept, characteristics and classification - Significance and dimension of dry farming in Indian agriculture - Production constraints in dry farming areas - Rainfall characterization in dry lands.

Unit II - Drought and mitigation strategies
Drought and its classification - Drought resistance in crops - Mechanism for drought tolerance and crop adaptability to drought situations - Drought-tolerant crops and their varieties - Plant ideotypes for dry land areas - Ephemerals - Shoot and root growth characteristics - Preparation of appropriate crop plans for dry land areas - Midseason correction for aberrant weather situation - Contingent crop planning.

Unit III - Soil moisture conservation techniques in drylands
Soil moisture conservation techniques - Agronomic, Engineering and Biological methods - Moisture retention and availability concepts - Length of Growing Period (LGP) - Water absorption by crops and plants under stress conditions - Water losses through evaporation and transpiration and its management under stress conditions - Effectiveness and economics of soil constraints.

Unit IV - Approaches for Integrated dry farming technology
Agricultural implements and machineries for dry farming - Tillage - Soil and crop management techniques - Seed hardening and efficient fertilizer use - Integrated dry farming technology - Cropping systems, integrated farming systems, organic farming and alternative land uses systems.

Unit V - Watershed management
Watershed management - Concepts, approaches and components - Water harvesting techniques - Scope and application - Rain water management in watershed - Pre and post sowing conservation technologies - Role of organization in promoting watershed - Selection of crops and cropping systems based on rainfall and socio-economic factors - Land capability classification - Rehabilitation of degraded lands in watershed.

PRACTICAL
Mapping of arid and semiarid zones of India and Andhra - climatic zones of India and Tamil Nadu - study of moisture profiles of soils - Rainfall analysis and interpretation - Use of mulches and antitranspirants - Seed hardening techniques - Germination and crop establishment in relation to moisture stress - Estimation of moisture index, aridity index and...
Water-UseEfficiency - Plant root growth studies with reference to stress management - farm mechanization in dry farming - Collection and interpretation of data for water balance equations - Estimation of runoff and soil moisture loss - Crop planning for different drought conditions - Preparation of model watershed program - Visit to dry farming research experiments / exposure visit to research institutes / stations and watersheds.

THEORY LECTURE SCHEDULE

1. Dry farming - Definition, concept, characteristics.
2. Dimensions of dry land farming in Indian agriculture.
3. Dry farming - classification - significance and dimension of dry farming in India.
4. Production constraints in dry farming areas.
5. Rainfall characterization and behaviors.
6. Delineation of dry farming areas on the basis of drought indices and their characteristics.
8. Drought management strategies and preparation of crop plans for dry land areas.
10. Methods of controlling runoff and its significance.
11. Evaporation, evapo-transpiration, mulching, antitranspirants and antievaporants.
13. Drought tolerant crops and their varieties.
14. Plant ideotypes for dryland areas - shoot and root growth characteristics.
15. Preparation of appropriate crop plans for dryland areas.
16. Midseason correction for aberrant weather situation.
17. **Mid-semester examination**
18. Contingent crop planning to mitigate drought.
19. Soil moisture conservation techniques - Agronomic, Engineering and Biological.
20. Moisture retention and availability concepts - Length of Growing Period (LGP) - Water absorption by crop plants under stress conditions.
22. Agricultural implements and machineries for dry farming.
23. Tillage - Soil and crop management techniques - seed hardening and efficient fertilizer use.
24. Integrated dry farming technology - Croppingsystems.
25. Integrated farming systems - significance - location specific IFS - models for wetlands, garden lands and drylands.
26. Organic farming and alternative land use systems.
27. Watershed management: Definition, concepts, problems, approaches and components of watershed.
28. Problems, approach components, development of cropping systems for watershed areas.
29. Resource management and crop planning - alternate land use pattern.
30. Water harvesting techniques - Scope and application - Rain water management in watershed.
31. Pre and post sowing conservation technologies.
32. Role of organization in promoting watershed.
33. Selection of crops and croppingsystems based on rainfall and socioeconomic factors.
34. Classification of land based on LCC and rehabilitation of degraded lands in watershed.
PRACTICAL SCHEDULE
1. Mapping of arid and semiarid zones of Tamilnadu and India.
2. Study of moisture profiles of soils.
3. Rainfall analysis and interpretation.
4. Designing cropping systems based on rainfall analysis
5. Use of mulches and antitranspirants.
6. Seed treatment techniques – hardening, seed priming.
7. Estimation of moisture index, aridity index, and water-use efficiency.
9. Study of farm implements in dry farming.
12. Preparation and methodology for implementation of watershed projects.
13. Preparation of model watershed programme.
14. Visit to nearby watershed.
15. Visit to dry land agricultural and horticultural research stations.
16. Crop planning for different drought conditions.
17. Assessment of biomass production under watershed area.

Course Outcomes:
CO 1: To construct mapping of arid and semi-arid regions
CO 2: To acquire skill on integrated dry farming technologies
CO 3: To gain knowledge on soil and moisture conservation approaches and contingent crop plan to evade risk in dry farming.
CO 4: To formulate IFS model for dry farming region
CO 5: To acquire practical knowledge on rain water harvesting techniques and watershed management principles

References
1. Das, H.P. 2016. Climate change and agriculture implications for global food security. B.S publications, Hyderabad.

E-RESOURCES
1. www.wcainfonet.org/.../soilmoistureconservtion_en_1303_all_1.html
2. www.world-agriculture.com

OPCENT 711 PRODUCTIVE INSECTS AND WEED KILLERS (2+1)

Learning objectives
- To impart knowledge on the basic and commercial aspects of productive insects such as honeybee, silkworm and minor productive insects.
- To know the importance of weed killers.

THEORY

Unit I: Basics of Apiculture

Unit II: Specialized beekeeping methods and bee products

Unit III: Moriculture

Unit IV: Sericulture and minor productive insects

Unit V: Biological control of weeds using insects
examples in India and other parts of the world – Benefits and risks – Damage to non-target plants – Future prospects.

PRACTICALS

THEORY LECTURE SCHEDULE
1. History of bee keeping in India – Honey bee species.
2. Colony organization of Honey bees and Bee behavior.
3. Apiary establishment – Bee Pasturage. – Floral Calendar.
5. Artificial queen rearing – Pests and Diseases of honey bee and their management.
6. Modern techniques of bee keeping –Collapsible hives or Flow hives, Hex hives etc.,
7. Scope of biotechnology in Apiculture and impact of pesticides on honey bees.
8. Organic or Natural bee keeping, Migratory bee keeping and Urban bee keeping.
11. Bee keeping and ancillary industries.
12. SWOT analysis of bee keeping.
15. Importance of mulberry cultivation in sericulture and characteristics of mulberry varieties/ hybrids.
17. Mid semester examination
21. Cultivation of host plants of non- mulberry silkworm.
22. History of sericulture in India – Types of silkworm – Races of silkworm and Grainage technology.
23. Rearing house maintenance and rearing equipments, disinfectants.
25. Pests and Diseases of silkworm and their management.
29. Skill development in sericulture.
30. Minor productive insects.
33. Conservation and augmentation techniques for weed killers – Examples in India and other parts of the world.
34. Benefits and Risks involved – Damage to Non-Target plants – Future prospects.

PRACTICAL SCHEDULE
1. Identification of different species of honey bees, castes of bees.
3. Handling of bees, practicing of hive inspection, apiary management and Queen bee rearing techniques.
4. Identification of pests and non insect pests of bees and diagnosis of bacterial, viral, fungal and protozoan diseases.
6. Identification of different types of silkworms – Identification of different varieties and hybrids of mulberry – Practicing different propagation techniques and planting methods.
7. Nursery management – Practicing different pruning methods.
8. Silkworm egg production – Chawki and late age rearing.
10. Identification of insect and non insect pests and diseases of silkworms – Prevention – Management techniques.
12. Economics of Moriculture and Sericulture.
15. Identification of important weed killers.
17. Mass production techniques for potential weed killer insects.

Course Outcomes
CO1: Capable of identifying the honey bee species, Learn about beekeeping tool and equipment and Apiary management techniques
CO2: Describe beekeeping methods, Migratory beekeeping and Economics of beekeeping
CO3: Practice mulberry plant cultivation and produce good quality of leaf for cocoon production
CO4: Demonstrate rearing method of mulberry and non-mulberry Silkworm and uses minor productive insects.
CO5: Capable of identifying the identification of important weed killers, Mass production techniques of potential weed killer insects and Conservation and augmentation techniques for weed killers

| CO-PO Mapping with POs of Agronomy |
|---|---|---|---|---|---|
| | PO 1 | PO 2 | PO 3 | PO 4 | PO 5 |
| CO1 | - | - | - | - | - |
| CO2 | - | 1 | - | - | - |
| CO3 | 1 | 1 | 1 | - | 1 |
| CO4 | - | - | - | - | - |
| CO5 | - | - | - | - | - |

REFERENCES

E-RESOURCES
3. http://www.csrtimys.res.in/books-0
5. file:///E:/10_459-467.pdf
Learning objectives

- To understand the importance and scope of pest management in organic farming.
- To acquaint with various strategies in organic pest management
- To understand various input certification standards

THEORY

Unit I: Importance of organic farming

Unit II: Cultural and traditional strategies

Unit III: Ecological engineering strategies

Unit IV: Biological, botanical and behavioural strategies

Unit V: Permitted pest management inputs
Organic certification Standards – NPOP, NOP, JAS, and European standards - Permitted inputs for pest management under various standards with emphasis on NPOP – APEDA - Certification agencies – Input approval criteria - Current status of organic pest management inputs in the market – Marketing and scope of certified organic inputs.

PRACTICALS

Introduction to pests and basic principles of pest management excluding chemicals – Various cultural practices for pest management – Studying characters of resistant varieties of important crops – Agro ecosystem survey analysis – Study of various inter cropping and trap cropping systems – Identification of refugia crops in important crop ecosystems and traditional pest management methods – Practicing conservation techniques of natural enemies – Identification of important entomopathogens, predators, parasitoids and insectivorous birds by their common names – Brief mass production procedure for green lace wings, Coccinellids, Trichogramma – Brief mass production procedure for NPV,
mycoinsecticides and Bt - Identification of plants used as insecticides- Preparation of popular botanical insecticides, their application – Traps and pheromones in organic pest management – Studying organic certification standards – Market analysis of certified organic inputs – visit to organic farms practicing pest management.

THEORY LECTURE SCHEDULE

3. Agencies and schemes in relation to organic farming.
4. Importance of pest management in organic farming.
7. Role of crop rotation, crop isolation and soil management.
8. Role of crop residue management, weed management, field localization, tillage.
11. Advantages and disadvantages of cultural practices.
12. Traditional methods of pest management – traditional storage structures
13. Rodent management.
14. Ecological engineering - Definition and importance.
15. Role of conservation of natural enemies in pest management – Beetle bank -Weed strips – Pollen producing ground cover.
17. **Mid semester examination.**
19. Importance of community approach in implementation of ecological engineering.
20. Entomophages and entomopathogens in organic pest control –Different types.
21. General principles of mass production.
22. Application of bacterial, viral and myco insecticides.
23. Application of entomophages.
24. Role of insectivorous birds in pest management.
25. Importance of insecticides of plant origin – Examples.
27. Plant extracts application, Shelf life and storage.
28. Use of pheromones and other traps in pest management – Importance.
30. Permitted inputs for pest management under various standards with emphasis on NPOP.
31. APEDA - Certification agencies.
32. Organic input approval criteria.
34. Marketing and scope of certified organic inputs.
PRACTICAL SCHEDULE
1. Introduction to pests and basic principles of pest management excluding chemicals.
2. Practicing various cultural practices for pest management.
3. Studying characters of resistant varieties of important crops.
4. Agro ecosystem survey analysis.
5. Study of various inter cropping and trap cropping systems.
6. Identification of refugia crops in important crop ecosystems.
7. Studying traditional pest management methods.
8. Practicing conservation techniques of natural enemies.
9. Identification of important entomopathogens, predators, parasitoids and insectivorous birds by their common names.
12. Brief mass production procedure of Bt.
13. Identification of plants used as insecticides.
14. Preparation of popular botanical insecticides, their application.
15. Traps and pheromones in organic pest management.
17. Visit to organic farms.

Course Outcomes
CO1: Understands the scope and importance of organic farming and pest management related challenges in organic farming
CO2: Describe cultural and traditional pest management activities and their impact
CO3: Demonstrate ecological engineering tactics in conservation, augmentation Of natural enemies and deterrence of pests
CO4: Explain bio rational pest management options for organic pestManagement
CO5: Discuss the legislation, certification and agencies involved in organic certification process.

CO- PO Mapping with POs of Agronomy

<table>
<thead>
<tr>
<th></th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>CO4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

REFERENCES

E-RESOURCES

5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2610173/

OPC PAT 711 BIOLOGICAL CONTROL OF CROP DISEASES (2+1)

Learning Objective
To study the principles and application of eco-friendly and sustainable biological management strategies of plant diseases.

THEORY

Unit – I History and importance
Concept of biological control, definitions, importance, principles of plant disease management with bioagents, history of biological control, merits and demerits of biological control.

Unit – II Mechanisms of biocontrol agents
Types of biological interactions, competition, mycoparasitism, exploitation for hypovirulence, rhizosphere colonization, competitive saprophytic ability, antibiosis, induced resistance, mycorrhizal associations, operational mechanisms and its relevance in biological control.

Unit – III Compatibility and management strategies of plant pathogens
Factors governing biological control, role of physical environment, agro ecosystem, operational mechanisms and cultural practices in biological control of pathogens, pathogens and antagonists and their relationship. Comparative approaches to biological control of plant pathogens by resident and introduced antagonists, management of soil-borne, seed bone and foliar diseases. Compatibility of different bioagents.

Unit – IV Mass multiplication and quality control

Unit – V Cross protection and botanicals

THEORY SCHEDULE
1. Introduction to biological control of plant diseases, Biocontrol: concept and definitions.
2. History of Biological control of crop diseases,principles of plant disease management with bioagents.
3. Merits and demerits of biological control of plant diseases.
6. Hypovirulance-Its role in disease management.
7. Competitive saprophytic ability and rhizosphere colonization.
8. Induced systemic resistance and its role in plant disease resistance.
10. Factors governing biological control.
11. Role of environment in the biological control of plant diseases.
12. Comparative approaches to biological control of plant pathogens by resident and introduced antagonists.
13. Comparative approaches to biological control of plant pathogens by resident and introduced antagonists.
14. Biological control of soil-borne diseases.
15. Biological control of seed borne and foliar diseases.
17. Mid-semester Examination.
18. Isolation of *Trichoderma* spp. and *Pseudomonas* spp. from soil.
20. Mass production of VAM.
22. Delivery systems of biocontrol agents.
23. Assessment of survival of biocontrol agents.
24. Significance of PGPR.
26. Induction of defense enzymes in plants by application of biocontrol agents.
27. Quality control systems of bioformulations.
28. Biopesticides available in the market.
29. Commercial aspects of mass production of biocontrol agents.
30. Commercial aspects of mass production of VAM.
31. Pre-immunization technique.
32. Role of plant extracts in plant disease management.
33. Mycoherbicides and entomophagus fungus.
34. Antagonist enriched farmyard manure.

PRACTICAL
Isolation, characterization and maintenance of antagonists, methods of study of antagonism and antibiosis, defense enzymes, application of antagonists against pathogen *in vitro* and *in vivo* conditions. Mass multiplication, commercial formulation and Study of cfu/g. Cross protection, preparation and application of plant extracts, isolation and formulation of mycoherbicides, entomophagus fungus.
PRACTICAL SCHEDULE
1. Introduction to biological control of plant diseases.
2. Isolation and molecular characterization of biocontrol agents.
3. Isolation of VAM.
4. Testing the antagonistic efficacy of fungal and bacteria antagonists.
5. Testing the compatibility among the biocontrol agents.
8. Estimation of defense enzymes in plants by application of biocontrol agents.
10. Fermentation technology and formulation development.
11. Methods of quality control tests.
13. Cross protection technique.
15. Application of mycoherbicides and entomophagous fungus.
17. Visit to Commercial biocontrol units.

Course Outcomes
1. Having updated knowledge of new bio regulators.
2. Having knowledge about the mechanism of Bio control agents.
3. Having knowledge, the Hypovirulence, suppressive soil and compatibility of Bio control agents.
4. Trained in mass production and quality control methods of Bio control agents.
5. Expertise in cross protection techniques and botanical approaches for plant disease management.

CO– PO Mapping with POs of Agronomy

<table>
<thead>
<tr>
<th></th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>CO4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

REFERENCES

E-RESOURCES
1. https://www.apsnet.org/edcenter/advanced/topics/Pages/BiologicalControl.aspx
5. teca.fao.org/read/8372

Journals
1. Biocontrol
2. Biocontrol Science and Technology

OPC PAT 712 MUSHROOM TECHNOLOGY (2+1)

Learning Objectives
To study the various techniques involved in cultivation, maintenance, cropping pattern, harvest, problems due to pest and diseases and its management and also nutritional value and preservation of edible mushroom

THEORY
Unit– I Importance of Mushroom
Mushroom science: Importance, related fields and their contribution - Global production - Morphology and life cycle: Pleurotus, Calocybe, Agaricus, Lentinus and Volvariella. Morphogenesis in mushrooms - Role of enzymes in mycelium and basidioma development; physiology of fruiting body development; poisonous mushrooms and mushroom poisoning.

Unit – II Breeding and techniques
Genetics and breeding of cultivated mushrooms: homothallism and heterothallism, primary and secondary mycelium, parasexuality, homokaryotic fruiting. Approaches to breeding: Selection, mutation and hybridization - Tissue culture, single and multispor isolate - Biotechnological methods for strain improvement; study of strain variability using markers - Allozyme, RFLP, AFLP, RAPD and PCR - Laboratory techniques, equipments, culture media, sterilization, pure culture techniques - Preservation of cultures. Spawn types: mother spawn and bed spawn.

Unit – III Production and constraints
Cultivation: oyster mushroom, milky mushroom, paddy straw mushroom, button mushroom and other edible mushrooms - Outdoor cultivation - Ectomycorrhizal mushrooms. Problems in cultivation: weed moulds, diseases, pests and abiotic disorders.

Unit – IV Mushroom usage
Uses of mushroom as food, nutritional and pharmaceutical values. Post-harvest technology: Methods of preservation and value addition. Mushroom recipes: Cooking methods, value added products, pickling, sauce, ketchup and chutney, instant food mixes, extruded and bakery products, quality and sensory evaluation.
Unit – V Cost- Benefit ratio

PRACTICAL

THEORY LECTURE SCHEDULE

1. Introduction to Mushroom technology.
4. Role of enzymes in mycelium and basidioma development.
5. Role of amylolytic enzymes in mushroom morphogenesis.
6. The physiology of fruiting body development.
7. Poisonous mushrooms.
8. Genetics and breeding of cultivated mushrooms.
10. Study of strain variability using markers: Allozyme, RFLP, AFLP, RAPD and PCR.
11. Laboratory techniques, preservation of cultures.
12. Spawn types, mother spawn and bed spawn.
13. Cultivation of oyster mushroom.
15. Cultivation of paddy straw mushroom.
16. Cultivation of button mushroom.
17. Mid-semester Examination.
18. Cultivation of shiitake mushroom
19. Outdoor visit.
20. Ectomycorrhizal mushroom.
22. Problems in cultivation: pests and abiotic disorder.
23. Uses of mushroom as food (nutritional value).
24. Uses of mushrooms as medicine.
25. Post-harvest technology, method of preservation and value addition
27. Cost analysis in mushroom production.
29. Project preparation.
30. Principles of enterprise management.
31. Market survey.
32. Export procedures.

PRACTICAL SCHEDULE

1. Introduction to mushrooms.
2. Preparation of culture media.
3. Collection, identification and pure culturing of mushrooms.
5. Preparation of mother spawn.
6. Preparation of bed spawn.
7. Maintenance of mushroom shed.
8. Cultivation of oyster mushroom.
10. Harvest, packing and storage of mushroom.
14. Visit to Commercial mushroom production units.

Course Outcomes
1. Updated knowledge about new edible and medicinal mushrooms
2. Trained in isolation and identification of mushroom
3. Awareness about the mushroom production constraints
4. Having knowledge about the uses of Mushroom
5. Expertise in cost analysis in mushroom production and project preparation

<table>
<thead>
<tr>
<th>CO</th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CO4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

REFERENCES

E-RESOURCES
1. www.emushroom.net
2. www.mushroomdays.com.cn
3. https://www.mushroomcouncil.com
4. https://fungiforthepeople.org
5. nrcmushroom.org

Journals
1. Mushroom Research – An International
2. Indian Journal of Mushroom Research
3. International Journal of Medicinal Mushrooms

OPCAGM 711- MICROBIAL INOCULANT PRODUCTION TECHNOLOGY (2+1)

Learning Objective
To study the basic principles and application methodologies of different microbial inoculants in order to improve the soil fertility and productivity.

THEORY
Unit - I- Concepts of microbial inoculants

Unit-II- Nitrogen fixing biofertilizer
Characteristics and classification of *Azospirillum, Azotobacter, Gluconacetobacter.*
Actinorhizal plants (*Frankia*) and Algal biofertilizers - Blue green algae – *Azolla.*

Unit -III- Phosphate solubilizing/mobilizing biofertilizer

Unit -IV- Formulations of biofertilizer
Different formulations of biofertilizers – Types and characters - carrier – beads – pellets and liquid formulation – preservatives and additives-shelf life of different formulations-quality control of different formulations - BIS.

Unit-V- Production technology

PRACTICAL

THEORY LECTURE SCHEDULE
1. Microbial inoculants in Agriculture.
2. Biofertilizers-definition-Development of the concept.
3. Contribution and importance of microorganisms to soil fertility.
4. Different groups of biofertilizers-bacterial,
5. Different groups of algal
6. Different groups of fungal biofertilizers etc.
7. Nitrogen fixing microorganisms-Phosphate solubilising microorganisms etc.
8. Symbiotic nitrogen fixing bacteria-Rhizobium classification-Cross inoculation groups-characteristics.
11. Transfer of fixed nitrogen in symbiotic systems.
15. Actinorhizal association-Frankia-Importance-location, biochemistry and physiology of actinorhizal nodules.
16. Phosphate solublization by microorganisms-bacteria and fungi involved general characters and importance.
17. Algal biofertilizers - Blue green algae-distribution-occurrence.
19. Azolla-Anabaena symbiosis-Importance-Azolla growth behavior-multiplication-sporulation etc.
20. Mid Semester Examination
21. Mycorrhiza-types -Ectomycorrhiza -
23. Role of mycorrhiza in crop production.
24. Microbial inoculants for solublization of potassium sulphur and trace elements.
26. Different formulations of inoculants-carrier, gel, liquid formulations etc.
27. Principles of mass production-Large scale production of bacterial biofertilizers-growth characteristics.
29. Shelf life-quality control of biofertilizers-BIS specifications.
30. Field performance of biofertilizers.
31. Method of application-Economics.
32. Algal multiplication-large scale production-application methods
33. Azolla-Mass multiplication and method of application etc.

PRACTICAL SCHEDULE
1. Isolation of Rhizobium from legume root nodules; purification and characterization of Rhizobium
2. Testing the efficiency-Leonard jar technique and plant infection test.
3. Rhizobium strain identification by immunological methods.
4. Isolation of Azospirillum from roots Rhizosphere.
5. Identification and characterization of Azospirillum.
7. Isolation of phosphobacteria from soil.
8. Quantitative determination of P-solubilization by phosphobacteria.
9. Mass multiplication of bacterial biofertilizers-Fermentor
10. Carrier material-preparation of inoculant packets
11. Quality control-assessment of shelf life and storage methods
12. Methods of application of bacterial biofertilizers-seed, soil
13. Isolation, enumeration and identification of Blue green algae
14. Blue green algae-large scale production and method of application
15. Azolla-large scale production and inoculation methods.
16. Liquid and gel formulations biofertilizers.
17. Different genera of VA mycorrhizae and Mass multiplication of AM fungal-application methods.

Course outcomes:
CO 1 - To make the students to understand the concepts of microbial inoculants and their role on soil fertility and plant growth.
CO 2 - To learn about the isolation and characterization of efficient bioinoculant strains.
CO 3 - To educate about the various formulations of microbial inoculants with improved shelf life and their quality standards.
CO 4 - To know the techniques of mass multiplication, storage and methods of application of bioinoculants.
CO 5 - To make students to analyse the performance of microbial inoculants in field level, their constraints in production technology, marketing and economics.

CO- PO Mapping with POs of Agronomy

<table>
<thead>
<tr>
<th></th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO 1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO 2</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>CO 3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>CO 4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>CO 5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

REFERENCES

E-RESOURCES

OPCAGM 712- INDUSTRIAL MICROBIOLOGY (2+1)

Learning objectives
To teach the students about different fermentations, industrial important microorganisms and the mass production techniques.

THEORY
Unit- I- Introduction of fermentation
History of industrial microbiology - Isolation and screening methods - strain development strategies - fermentation media - raw materials used in media production and antifoam agents - fermentation process - dual and multiple fermentation process - batch and continuous fermentation, solid state and submerged fermentation.

Unit-II- Bioreactors and its types
Bioreactors - basic functions - types, designs and functional characteristics - upstream and downstream processing - automation of bioreactors.

Unit -III- Production of organic solvents organic acids, amino acids and Beverages
Production of organic solvents such as ethyl alcohol and glycerol, organic acids production - butyric acid, citric acid and lactic acid. Amino acid production - lysine and glutamic acid. Beverages production - beer and wine. - Alcohol production

Unit- IV- Production of Antibiotic Vitamin and Enzymes
Industrial production of antibiotics - penicillin, streptomycin and tetracycline production of vitamin B2 (Riboflavin), vitamin B12 and vitamin C. production of enzymes - amylase, protease, cellulase, pectinase and lipase immobilization and its type.

Unit- V- Fermented food products, biofertilizers and biopesticides production techniques

PRACTICAL
Isolation and screening of industrial important microorganisms - preparation of inoculums - bioreactors - fermentation of alcohol, wine making - production of penicillin - antibiotics sensitivity test of penicillin, streptomycin and tetracycline, organic acids, enzymes, production of curd, mass production of bacterial biofertilizers and bio control agents.

THEORY LECTURE SCHEDULE
1. History of industrial microbiology
2. Screening methods
3. Strain improvement of microorganisms
4. Methods of strain improvement
5. Fermentation media and their raw materials
6. Fermentation process of its Types
7. Bioreactors, design and functional characteristics
8. Types of bioreactors
9. Upstream processing
10. Downstream processing - introduction
11. Details of down steam processing
12. Production of organic solvents -ethyl alcohol and glycerol
13. Production of organic acid - Butyric, citric and Lactic acid
14. Production of Amino acid - Lysine and glutamic acid
15. Production of Beverages - Beer and wine alcohol production
16. Production of pencillin, streptomycine and tetracycline
17. Mid semester Examination
18. Production of amylase and protease
19. Production of pectinase, cellulose
20. Production of Lipase
21. Immobilization and its types
22. Milk product – Butter milk and culture milk
23. Yoghurt production
24. Cheese production
25. Bacterial bio fertilizer production – *Azospirillum*
26. *Rhizobium* mass production
27. Phosphobacteria mass production
28. Quality control and method of application
29. Production of bioinsecticides – *Bacillus thuringiensis*
30. Mass production of *Beavriabassiana*
31. Mass production of *Metarhizumanisopila*
32. Mass production of *Pseudomonas fluoresceus*
33. Mass production of *Trichoderma Viridae*
34. Review of Lectures

PRACTICAL SCHEDULE
1. Isolation of industrial important microorganisms from soil and buttermilk/ curd.
2. Strain improvement – Induced mutation of bacteria.
3. Preparation of Inoculum
4. Bioreactors and its functional characteristics
5. Alcohol production from Jaggery
6. Wine making
7. Amylase production
8. Citric acid production by solid waste fermentation
9. Antibiotic sensitivity test – penicillin streptomycin and tetracycline
10. Extra – cellular amylase production
11. Production of penicillin
12. Production of enzymes using immobilization techniques
13. Mass production of *Rhizobium* biofertilizer
14. Mass production of phosphobacteria
15. Mass production of Bioinsecticide *Bacillus thuringiensis* (or) *Beavriabassiana* (or) *Metarhizumanisopila*
16. Mass production of *Pseudomonas fluoresceus* and *Trichoderma Viridae*
17. **Practical Examination**

Course outcome:
- CO 1 - To learn about the important industrial microbes and their products.
- CO 2 - To learn about the strategies to improve the strain efficiency and preservation techniques for future purposes.
- CO 3 - To make the students to understand the concepts and types of fermentation process, types of fermentor, their design and purposes.
- CO 4 - To gain knowledge on the techniques of industrial production of organic acids, antibiotics, enzymes and fermented foods.
- CO 5 - To train the students to develop skills on the techniques of mass production of biofertilizers and bio pesticides.

CO- PO Mapping with POs of Agronomy

<table>
<thead>
<tr>
<th></th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>
REFERENCES

7. Casida L.E. 2016. (Revised) Industrial Microbiology , New age international publisher New Delhi
8. Prescott and Dunn 2000. Industrial Microbiology AVI publishing co; West port Connecticut, USA.

E-RESOURCES

1. https://www.sciencedirect.com/...and.../industrial-microbiolog

OPCSAC 711SOIL, WATER AND AIR POLLUTION (2+1)

Learning Objectives

To make the students aware of soil, water and air pollution and their remediation for the use of agriculture, environment and human health.

THEORY

Unit I - Types of pollution

Pollution- pollutants – introduction, definition- types of pollution -classification of pollution based on the environment - soil, water and air pollution - classification of pollution based on the sources of pollutants – agricultural pollution, automobile pollution and industrial pollution - classification of pollution based on the nature of pollutants – pollution due to fertilizer, pesticides, herbicides, fungicides, weedicides and other agro – chemicals,Plastic pollution, heavy metal pollution, radiation pollution, oil pollution, sewage pollution and etc.,

Unit II - Soil pollution

Unit III - Water pollution
Pure water, contaminated water, polluted water- definitions, quality parameters used to monitor water pollution. Pollution of water resources due to leaching of nutrients and its impact on aquatic eco-system, water pollution due to use of pesticides in agriculture and its impact on aquatic eco-system. Sewage – sludge- sewerage – definition –sewage treatment- eutrophication – important water borne diseases for crops and human beings.

Unit IV - Air pollution
Air pollution – introduction – airborne microbes- classification of air pollutants - global warming, ozone layer depletion and acid rain – emission of green house gaseous- sources - carbon-dioxide , carbon monoxide, methane, CFC, HFC, carbon tetra chloride, nitrous oxide and etc.,

Unit V - Management of pollutions and preventive measures
Reclamation - soil, water and air pollution, biological transformation of heavy metals, bio-mining of metals- solid waste management -bio-remediation. Application of remote sensing in monitoring and management of soil, water and air pollution for the benefit of agriculture, environment and human health.

PRACTICALS
Sampling of sewage water, sewage sludge, sampling of solid and liquid industrial wastes, sampling of polluted soil and polluted plant. Estimation of ammoniacal nitrogen, nitrate nitrogen and phosphorus in polluted soil and plant. Estimation of heavy metals content in polluted soil, plant, water and effluent. Estimation of chemical oxygen demand (COD) and biological oxygen demand (BOD) in polluted water and effluent. Management of contaminants in soil and plants for safeguard of food safety. Air sampling. Determination of particulate matter and oxides of sulphur. Visit to various industrial sites to study the impact of pollutants on soil, water, plant and environment.

THEORY LECTURE SCHEDULE
1. Pollution- pollutants – Introduction, definition- different types of pollution
2. Classification of pollution based on the environment- soil, water and air pollutions
3. Classification of pollution based on sources – agricultural, automobile pollution and industrial pollutions
4. Classification of pollution based on the nature of pollutants – pollution due to fertiliser, pesticides, herbicides, fungicides, weedicides and other agro – chemicals
5. Classification of pollution based on the nature of pollutants – Plastic, heavy metal, radiation, oil pollution, sewage pollution and etc.,
6. Sources and extent of pollution, problems in agriculture, environment and human health due to type pollutions
7. Solid wastes – definition, land application of wastes
8. Mechanism of interaction of waste with soil
9. Agricultural, industrial and urban wastes
10. Soil contamination – introduction - definition- in relation with soil microorganisms
11. Soil contamination due to fertilizers, pesticides, fungicides, weedicides, acid rain, oil spills, plastics and etc.,
12. Industrial effluents – distillery, papermill, tannery effluents – their composition
13. Industrial effluents – textiles and metal finishing industrial effluents – their composition
14. Effects of industrial effluents on soil properties, plant growth and human health
15. Soil as sink for waste disposal
16. Toxic elements – sources, behaviors, nutrient availability, plant growth and human health
17. Mid - semester examination
18. Pure water, contaminated water, polluted water - introduction, definitions
19. Quality parameters used to monitor water pollution
20. Pollution of water resources due to leaching of nutrients and its impact on aquatic eco system
21. Water pollution due to use of pesticides in agriculture and its impact on aquatic eco-system
22. Sewage - sludge- sewerage - definitions -sewage treatment- eutrophication - important water borne diseases
23. Air pollution - introduction - airborne microbes- classification of air pollutants
24. Global warming, ozone layer depletion and acid rain -
25. Emission of green house gaseous- sources - carbon-dioxide , carbon monoxide, methane, CFC, HFC, carbon tetra chloride and nitrous oxide
26. Reclamation of soil contamination for the use of agriculture and
27. Remediation of water pollution
28. Amelioration of air pollution
29. Heavy metal pollution, its effect on human health , biological transformation of heavy metals
30. Bio - mining of metals, bio-remediation of heavy metals
31. solid waste – definition- objectives - classification
32. Solid waste treatment, solid waste management
33. Application of remote sensing in monitoring and management of soil for the benefit of agriculture, environment and human health
34. Application of remote sensing in monitoring and management of water and air pollution for the benefit of agriculture, environment and human health

PRACTICAL SCHEDULE
1. Sampling of polluted soil /plant/water/effluent/ sewage for analysis
2. Estimation of ammoniacal nitrogen in polluted soil or plant
3. Estimation of nitrate nitrogen in polluted soil or plant
4. Estimation of phosphorus in polluted soil or plant
5. Estimation of ammoniacal nitrogen in polluted water of effluent
6. Estimation of nitrate nitrogen in polluted water or effluent
7. Estimation of phosphorus in polluted water or effluent
8. Visit to various industrial sites to study the impact of pollutants on soil, water, plant and environment.
9. Estimation of heavy metals in polluted soil or plant
10. Estimation of heavy metals in polluted water or effluent
11. Estimation of chemical oxygen demand (COD) in polluted water or effluent
12. Estimation of biological oxygen demand (BOD) in polluted water or effluent.
13. Assessment of microorganisms in air
14. Management of contaminants in soil and plants for safeguard of food safety
15. Practical examination

Course Outcomes
Co 1. Scholars gain knowledge on environmental pollution and conservation.
Co 2. Students understand the methods of abatement of various types of pollution towards a safe environment.
Co 3. Scholars will be able to communicate the ill-effects of environmental pollution to farmers.

CO– PO Mapping with POs of Agronomy

<table>
<thead>
<tr>
<th></th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>CO5</td>
<td>-</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>3</td>
</tr>
</tbody>
</table>

REFERENCES

E-RESOURCES

OPCSAC 712 SOIL HEALTH MANAGEMENT (2+1)

Learning Objectives
The main objectives of this course is to impart practical knowledge on soil related constraints, irrigation water quality appraisal guidelines and their efficient management, soil quality and soil quality test kits-soil health card

THEORY

Unit I - Soil related constraints and their management
- Soil resources of India; distribution of wasteland and problematic soils with special reference to Tamil Nadu; soil tilth management; soil crusting and its management; management of soil moisture under different climates. Reclamation and management of acidic, saline and sodic soils, constraints and management of highly and slowly permeable soils; soil erosion, extent, type and effects.

Unit II - Irrigation water quality appraisal and its management
- Effect of water quality on soils and plants; soil aeration problems and management; soil thermal regimes in relation to crops and their optimization. Recycling of agricultural and industrial wastes, waste land and their management.

Unit III - Soil organic matter
- Management practices-Sustainability and soil health management-history and importance of organic matter management- Soil organic carbon conservation and sequestration-Characterisation of soil carbon pools under different land use management systems-Soil quality and resilience in relation to SOC pools

Unit IV - Soil nutrient management

Unit V - Soil quality management
- Soil quality characters-Indicators of soil quality-Non Quantitative- quantitative-Chemical –Physical Biological –Assessment of soil health- Assessment as a monitoring tool-Lab based assessments –Concept of minimum data set –indicator selection interpreting indicators-multifactor sustainability-sustainability index-Indexing soil quality-Soil quality test kits-Soil health card

PRACTICAL
- Determination of saturated hydraulic conductivity, bulk density measurement of soil measurement of water holding and field capacities of soil, measurement of infiltration rate and moisture retention characteristics curve in normal, problematic and reclaimed soils. Preparation of saturation paste and saturation extracts of salt affected soils. Determination of pH, EC, cations and anions in saturation extract. Determination of CaCO3 equivalent of liming material. Estimation of lime requirement of acid soils and gypsum requirement of sodic soils. Measurement of ODR of soil. Estimation of water stable aggregate in soil and field trip to study the areas of problematic soils.

THEORY LECTURE SCHEDULE
1. Soil resources of India; distribution of wasteland and problem soils
2. Soil tilth management, soil crusting and their management
3. Soil water: classification, and its measurement, forces of soil water retention, moisture retention curve
4. Management of soil moisture under different climates
5. Quality of irrigation water: Criteria and classification of poor quality water,
7. Soil air: Composition of soil air, gaseous exchange in soil.
13. Nomenclature, classification and formation of salt affected soils in India and Tamilnadu,
15. Reclamation and management of salt affected soils
16. Highly and low permeable soils: constraints and their management
17. **Mid Semester Examination**
18. Management practices-sustainability and soil health management.
19. History and importance of organic matter management.
21. Characterisation of soil carbon pools under different land use management systems-Soil quality and resilience in relation to SOC pools
22. Tools and techniques to build soil health
23. Biological methods of improving nutrient use efficiency
24. Biological nitrogen fixation-Biological phosphorus mobilization/ immobilisation
25. Microbial inoculants for plant growth promotion
26. Biofertilizer technology; green manures, green leaf manures
27. Composting vermicomposting; nutrient enriched manures
28. Quality standards for organic manures large scale compost production
29. Scope of land use management on carbon trading
30. Soil quality characters-Indicators of soil quality-Non Quantitative-quantitative
31. Chemical –Physical Biological –Assessment of soil health
32. Assessment as a monitoring tool-Lab based assessments
34. Indexing soil quality and soil quality test kits-Soil health card

PRACTICAL SCHEDULE
1. Techniques of reclamation / management of problematic soils
2. Determination of saturated hydraulic conductivity of normal, problematic and reclaimed soil.
3. Determination of bulk density of soil by core sampler method in normal, problematic and reclaimed soil.
4. Determination of soil moisture at 1/3 and 15 bar by pressure plate method in normal, problematic and reclaimed soil.
5. Measurement of water holding capacity and field capacity of soil
7. Preparation and analysis of saturation extract and determination of EC, pH
8. Determination of Ca + Mg and Na in saturation extract and computation of SAR
10. Determination of CaCO3 equivalent of liming material
11. Estimation of lime requirement of acid soils
12. Estimation of gypsum requirement of sodic soils
13. Measurement of ODR of soil in normal, problematic and reclaimed soil
14. Estimation of water stable soil aggregates in normal, problematic and reclaimed soil
15. Soil Health assessment- Determination of Soil Quality indices
16. Preparation of Soil Health card
17. Practical Examination

Course Outcomes
Co 1. Scholars achieve practical knowledge on soil related constraints and management.
Co 2. Scholars gain knowledge on irrigation water quality and their management
Co 3. Scholars become professionals in handling tools on soil health maintenance.

CO– PO Mapping with POs of Agronomy

<table>
<thead>
<tr>
<th>CO</th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>

REFERENCES

E-RESOURCES
5. https://link.springer.com

OPCGPB 621 CONCEPTS OF CROP PHYSIOLOGY (2+1)

Learning Objectives
• To impart knowledge in understanding the physiological processes taking place during growth and development of plants.
• To understand source sink relationship in different groups of plants and also hormonal, environmental and stress physiology in crop plants.

Theory

Unit I - Photo physiology

Unit II - Growth and Development
Growth Vs Development.. Dry Matter Accumulation and Harvest Index – components of Dry Matter Accumulation and Harvest Index and their role in productivity. Growth analysis. Photorespiration and dark respiration.

Unit III - Source sink relationship

Unit IV - Environmental physiology
Green house effect and Global warming. Ozone layer depletion - Causes, effects. CO₂ enrichment and plant productivity. Physiology of crops under high altitude and flooding – air pollution and plant growth – effect of effluent on plant growth.

Unit V - Stress physiology

Practical

THEORY LECTURE SCHEDULE
1. Role of physiology in different branches of agriculture
2. Physiological processes on productivity
3. Photosynthesis – Mechanism of light interaction
4. Photo Physiology
5. Physiological processes influenced by radiation
6. Light and phytochrome mediated processes
7. Utilization of assimilatory power and CH₂O synthesis
8. C₃-C₄ and CAM mechanisms and major differences
9. Photosynthetic measurements
10. Germination, growth and development
11. DMA and HI. Components of DMA and HI.
12. Role of DMA, LAI and HI in crop productivity
13. Growth analysis
14. Photorespiration and dark respiration
15. Oxidative phosphorylation.
17. **Mid-Semester Examination**
18. Interception of solar energy
19. Source-sink relationship
20. Photosynthesize partitioning
21. Mode of partitioning at different stages and different species
22. Role of growth regulators in monitoring source-sink relationship
25. Growth retardants. Role in agricultural and horticultural crops
26. Green house effect and plant productivity.
27. CO₂ enrichment and plant productivity.
28. Physiology of crops under high altitude flooding, air and water pollution
29. Water stress, effect of water stress on various physiological processes
31. Salt stress, classifications and its effects on physiological processes of plant
32. Temperature stress – cold tolerance – adaptation
34. Recent advances in physiological research

PRACTICAL SCHEDULE

1. Leaf area index measurement. Measurement of leaf angle and interception of solar radiation
2. Measurement of photosynthesis
3. Determination of Photosynthetic efficiency of various crop plants
4. Estimation of soluble protein content
5. Estimation of chlorophyll contents
6. Estimation of water potential
7. Determination of chlorophyll stability index
8. Estimation of relative water content
9. Estimation of leaf proline content
10. Measurement of leaf temperature, diffusive resistance and transpiration
11. Growth analysis of field crops
12. Determination of nitrate reductase activity
13. Determination of IAA oxidase activity
14. Estimation of total phenolics
15. Estimation of peroxidase activity
16. Estimation of catalase activity

17. **Final Practical Examination**

Course outcomes

1. Will be able to identify the crop mineral nutrient deficiencies and their symptoms
2. In addition, hands on exposure to preparation of solutions, analysis of pigment composition, estimation of growth analytical parameters,
3. Will be able to diagnose and correct nutrient deficiencies,
4. Will be competent in enzyme assays and application of plant growth regulators.

CO- PO Mapping with POs of Agronomy

<table>
<thead>
<tr>
<th></th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>
OPCABT 711 BIO-INSTRUMENTATION (2+1)

Learning Objectives
• To provide hands on training on basic molecular biology techniques
• To provide the knowledge of various technology in field of molecular biology

Unit I - Spectroscopy & Microscopy
Spectroscopy-Principle, instrumentation and applications of UV - visible spectrophotometry and spectrofluorimetry-luminometry-Atomic spectroscopy- Microscopy-SEM and TEM.

Unit II - Centrifugation
Basic principles of sedimentation-Clinical Bench Centrifuges-High Speed Refrigerated Centrifuges-Continuous flow Centrifuges-Ultracentrifuges-Analytical ultracentrifuge - instrumentation and applications-Preparative ultracentrifuge

Unit III - Chromatography
Principle of chromatography-Types- Column Chromatography-Paper Chromatography-Thin Layer Chromatography-Gas Chromatography-High Performance Liquid Chromatography-Affinity Chromatography-Ion-Exchange Chromatography

Unit IV - PCR and Electrophoresis
PCR-principles. RT-PCR. Real time PCR-DNA/RNA-Agarose gel electrophoresis-Principles-Protein electrophoresis-principles-SDS and Native PAGE, 2D-gel electrophoresis.

Unit V - Blotting techniques
Blotting techniques-Southern-Northern-Western. DNA sequencing techniques, Dot blot analysis-ELISA- Immuno-electrophoresis, RIA, immunoblotting

Practical
Centrifugation techniques - Chromatography - Electron microscopy - Electrophoresis of DNA and proteins-PCR-blotting techniques-DNA sequencing techniques.
THEORY LECTURE SCHEDULE
1. Good lab practices
2. Preparation of buffers and reagents,
3. Principle of centrifugation
4. Analytical and preparative centrifugation
5. Principle involved in Chromatography
6. UV and Nano drop spectrophotometer
7. Ion exchange spectroscopy
8. Atomic absorption spectroscopy
9. Electron microscopy
10. TEM and SEM.
11. Agarose gel electrophoresis
12. Electrophoresis of proteins-principles
13. Native and SDS PAGE
14. Gradient gel
15. Isoelectric focusing
16. 2-D PAGE.
17. **Mid-semester examination**
18. Detection, estimation of proteins
19. Recovery of proteins in gels,
20. Autoradiography
21. PCR- principle and applications
22. Mid semester examination
23. Modified PCR techniques
24. Reverse transcriptase PCR
25. Real time PCR
26. DNA Sequencing
27. Chemical method
28. Enzymatic method
29. Blotting techniques: Southern
30. Northern blotting techniques
31. Western blotting techniques.
32. Immunoelectrophoresis
33. RIA
34. Dot blot technique and immunoblotting.

PRACTICAL SCHEDULE
1. Preparation of stock solutions and reagents.
2. Extraction of plant genomic DNA by Dellaporta method.
3. Extraction of plant genomic DNA by CTAB method.
4. Centrifugation technique
5. Chromatography technique
6. UV- spectrophotometer
7. Restriction digestion of DNA.
8. Southern transfer, labelling of DNA, Southern hybridization.
9. Northern and western blotting procedure
10. Autoradiography.
11. Amplification of DNA with thermocycler with random primers.
12. Analysis of PCR products through agarose gel electrophoresis and gel scanning.
13. Primer designing
14. DNA sequencing.
15. Genomic library construction
16. ELISA
17. Final Practical Examination

Outcomes
1. Ability to understand diagnosis and repair of related equipments
2. Understanding the problem and ability to identify the necessity of an equipment to a specific problem
3. Ability to take measurements involved in some agricultural equipments.

CO– PO Mapping with POs of Agronomy

<table>
<thead>
<tr>
<th></th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>CO4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>CO5</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

REFERENCES

OPC-ABT 712 PLANT TISSUE CULTURE (2+1)

Learning Objectives
- To familiarize the students and provide hands on training on various techniques of plant tissue culture.
- The students will learn how the genes can be cut and pastes from one organism to another and what are its implications

Theory

Unit I - Basic principles
History of plant cell and tissue culture; Culture media- sterile techniques - Media in plant tissue culture-Plant Growth Regulators-Components of a Plant Tissue Culture Medium-Explants-callus-totipotency-Basic concepts Plant tissue culture.

Unit II - Micropropagation method
Basic techniques in plant tissue culture-Techniques in Micropropagation- stages-Organogenesis-somatic embryogenesis-Virus free plants production

Unit III - In vitro culture techniques
Callus culture- Suspension culture- Single cell culture- Organ culture- Seed, embryo, endosperm, nucellus, shoot, root, leaf, anther and ovary. Protoplast culture-somatic hybridization-cybrids.

Unit IV - Haploids production
Embryo rescue techniques-artificial seeds-Haploid production & diploidization-
Somaclonal variation- *In vitro* germplasm conservation- Application of plant cell culture in crop improvement.

Unit V - Genetic engineering

Practical

PCR- Variation in PCR- RT - PCR - PCR - based analysis of tranformants – Primer designing-Induction and analysis of crown gall tumour in intact plant - Isolation of Ti-Plasmid. Isolation of DNA and organelle DNA - *Agrobacterium* mediated transfer

THEORY LECTURE SCHEDULE

1. Laboratory organization-sterile techniques
3. History of plant cell and tissue culture
4. Culture media-Sterile techniques
5. Media in plant tissue culture
6. Plant Growth Regulators
7. Components of a Plant Tissue Culture Medium
8. Explants-callus-totipotency
9. Basic concepts Plant tissue culture.
10. Basic techniques in plant tissue culture
11. Micropropagation stages-Organogenesis-Somatic embryogenesis
12. Virus free plants production
13. Callus culture
14. Midterm examination
15. Suspension culture
17. Mid-semester examination
18. Organ culture
19. Seed, embryo, endosperm, nucellus
20. Shoot, root, leaf culture
21. Protoplast culture
22. Somatic hybridization-cybrids.
23. Embryo rescue techniques
24. Artificial seeds
25. Haploid production-diploidization
26. Somaclonal variation
27. *In vitro* germplasm conservation
28. Application of plant cell culture in crop improvement
29. Plant transformation methods
30. *Agrobacterium* mediated gene transfer
31. Biolistic gun
32. Genetic and molecular analyses of transgenics
33. Genetic engineering for resistance to insect pests
34. Genetic engineering for resistance to herbicides and quality characters.

PRACTICAL SCHEDULE

1. Laboratory set-up.
2. Preparation of nutrient media; handling and sterilization of plant
3. Explant inoculation, subculturing and plant regeneration.
4. Anther and pollen culture.
5. Embryo rescue.
7. Protoplast isolation, culture and fusion.
8. Preparation of microprojectiles, transformation using a particle gun, GUS staining.
9. Leaf disc transformation using *Agrobacterium*, establishment of transgenic plants, and
10. DNA extraction from transgenic plants, DNA estimation
11. Protein extraction
12. Agarose and PAGE electrophoresis
13. Southern blot analysis to prove T-DNA integration
14. PCR
15. RT-PCR to study transgene expression
16. Western blotting to study the accumulation of transgene-encoded protein.
17. **Final Practical Examination.**

Course Outcomes
1. Standardize protocols for the in vitro propagation from ex vitro explants
2. To optimize the culture conditions for rapid propagation and regeneration of agriculturally important plants.
3. Biochemical monitoring of explants proliferation and regeneration
4. Optimization of medium and culture conditions for the enhancement of active principle production
5. Biochemical characterization of regeneration and genetic transformation using *Agrobacterium*.

CO– PO Mapping with POs of Agronomy

<table>
<thead>
<tr>
<th></th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>CO2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>CO5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

REFERENCES
7. Lewin’s Genes XI 2012. Jones and Bartlett Learning, USA

OPCGPB 711 GERMPLASM COLLECTION, EXCHANGE AND QUARANTINE (2+1)

Learning Objectives
• To provide information about collection, germplasm exchange, quarantine, maintenance and use of plant genetic resources including genetically modified plants.

Theory
Unit I - Introduction
History and importance of germplasm exploration; Distribution and extent of prevalent genetic diversity; Phyto-geographical regions/ecological zones and associated diversity; Mapping eco-geographic distribution of diversity, threatened habitats, use of flora.

Unit II - Mating System
Concept of population and gene pool; Variations in population and their classification; Gene frequencies in populations, rare and common alleles; Gene pool sampling in self and cross pollinated and vegetatively propagated species; Non-selective, random and selective sampling strategies; Strategies and logistics of plant exploration and collection; Coarse and fine grid surveys; Practical problems in plant exploration; Use of in vitro methods in germplasm collection.

Unit III - Germplasm Collection
Ethnobotanical aspects of PGR; Crop botany, farming systems, collecting wild relatives of crop plants; Collection and preservation of specimens; Importance and use of herbaria and preparation of herbarium specimens.

Unit IV - Strategies in Collection of Germplasm
Post-exploration handling of germplasm collections; Present status and future strategies in collection of major crops of Indian origin such as rice, maize, sorghum, sesame, Brassica, okra, eggplant, cotton, mango etc; approaches for collection including indigenous knowledge.

Unit V - Plant Quarantine
History, principles, objectives and importance of plant introduction; Prerequisites, conventions, national and international legislations and policies on germplasm collection and exchange; Documentation and information management; Plant quarantine-introduction, history, principles, objectives and relevance; Regulations and plant quarantine set up in India. Post-entry quarantine operation, seed treatment and other prophylactic treatments and facilities; Domestic quarantine; seed certification; International linkages in plant quarantine; weaknesses and future thrust.

Practical
Plant exploration and collection; Techniques of coarse and fine grid surveys; Identification of wild relatives of crop plants- Example of collection, cataloguing and preservation of specimens; Sampling techniques of plant materials; Visiting ports, airports to study the quarantine regulations. Use of visual, qualitative, quantitative, microscopic, molecular and plant growth related techniques(controlled green houses/growth chambers, etc); Study of post-entry quarantine operation, seed treatment and other prophylactic treatments.

THEORY LECTURE SCHEDULE
1. History and importance of germplasm exploration.
2. Distribution and extent of prevalent genetic diversity
3. Phyto-geographical regions/ecological zones and associated diversity
5. Plant exploration and collection;
6. Concept of population and gene pool.
7. Coarse and fine grid surveys.
11. Practical problems in plant exploration.
12. *In vitro* methods in germplasm collection.
13. Ethnobotanical aspects of PGR.
15. Collection, cataloguing and preservation of specimens.
16. Post-exploration handling of germplasm collections.
17. **Mid-semester examination**
18. Present status and future strategies in collection of major crops of Indian origin such as rice, maize, sorghum.
20. History, principles, objectives and importance of plant introduction.
21. Documentation and information management.
22. Importance and use of herbaria.
23. Preparation of herbarium specimens.
24. Sampling techniques of plant materials;
25. Plant quarantine- introduction, history, principles, objectives and relevance.
26. Regulations and plant quarantine set up in India.
27. Quarantine regulations.
29. Study of post-entry quarantine operation.
30. Seed treatment and other prophylactic treatments.
31. Domestic quarantine.
32. Seed certification.
33. International linkages in plant quarantine.
34. Weaknesses and future thrust in plant quarantine

PRACTICAL SCHEDULE

1. Plant exploration and collection.
2. Handling of germplasm collections.
3. Preparation of herbarium specimens.
4. Identification of wild relatives of crop plants.
5. Techniques of coarse and fine grid surveys.
6. Identification of wild relatives of crop plants.
7. Example of collection.
8. Cataloguing of collection.
10. Sampling techniques of plant materials.
11. Visiting ports, airports to study the quarantine regulations.
12. Use of visual, microscopic, molecular and plant growth related techniques (controlled green houses/growth chambers, etc);
13. Qualitative and quantitative related techniques.
15. Seed treatment and other prophylactic treatments.
16. Seed certification.
17. **Practical examination**
Outcomes
1. Students will have knowledge on the conservation of biodiversity
2. They will be able to identify the various *in situ* and *ex situ* conservation techniques
3. They will acquire knowledge on various organizations involved in conservation and their policies
4. The students will have knowledge on plant quarantine regulations.

CO- PO Mapping with POs of Agronomy

<table>
<thead>
<tr>
<th></th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>CO4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

REFERENCES
10. Stace CA. *Plant Taxonomy and Biosystematics* 2nd Ed. Cambridge Univ. Press.

OPC-GPB 712 FUNDAMENTALS OF GENETICS (2+1)

Learning Objectives
The course imparts knowledge to the students about the structure organization, function and transmission of chromosomes and genes and variation among them. It explains the parallelism between the behaviour of chromosomes and genes. It is useful in construction of linkage map and location of genes. It also explains about the molecular genetics of gene organization and function: the effects of mutagens on biological system and evolution of crop plants.

Theory
Unit I - Cytology
Earlier concepts of heredity - cell and cell organelles - Prokaryotes - Eukaryotes - study of mitosis and meiosis - cell cycle - Sporogenesis - Gametogenesis - Fertilization.

Unit II - Mendelian Genetics

Unit III - Linkages

Unit IV - Cytogenetics

Unit V - Genetic at Molecular Level

Practical

THEORY LECTURE SCHEDULE
1. Concept of heredity – Vapour and fluid theory, Magnetic power theory, Preformation theory – Lamarck’s theory, Darwin’s theory, Germplasm theory and Mutation theory.
2. Definition of genetics, heredity and inheritance
3. Definition and Brief history of cytogenetics; structure and functions of cell and organelles – Difference between prokaryotes and Eukaryotes. Physical basis of heredity: Structure and function of cell and cell organelles – Differences between Prokaryotes and Eukaryotes.
5. Study of mitosis and meiosis – Cell cycle.
7. Rediscovery of Mendel’s work, chromosomal theory of inheritance
8. Definitions of gene, alleles, homozygous, heterozygous, genome, phenotype, genotype, monohybrid, dihybrid, polyhybrid, backcross and test cross.
9. Lethal genes, Pleiotrophy with examples; phenocopy, penetrance and expressivity, Allelic interaction – Types – Complete dominance, incomplete dominance, Co-dominance and Over dominance with examples.
10. Non allelic interaction – epistatic and hypostatic genes, types of epistasis – Non – allelic interaction without modifications in Mendelian ratio – Bateson and Punnel’s experiment on fowl comb shape.
11. Epistasis with modification of Mendelian ratio – 1) Dominant epistats, ii) Recessive epistasis, iii) Duplicate and additive epistasis
13. Multiple alleles – characteristic features, study of blood group, coat colour in rabbits and self incompatibility in plants.
15. Linkage - coupling and repulsion - Experiment or Bateson and Punnet – Chromosomal theory of linkage of Morgan – Complete and incomplete linkage,
16. Crossing over – significance of crossing over - cytological proof for crossing over - Stern’s experiment - Strength of linkage and recombination - Two point and three point test cross - Double cross over, interference and coincidence - genetic map.
17. Mid-semester examination
21. DNA, the genetic material – Griffith’s experiment, experiment of Avery, McCleod and McCarthy – confirmation by Hershey and Chase; RNA as genetic material – Frankel, Conrat and Singer experiment.
24. RNA types - mRNA, tRNA, rRNA; genetic code – Characteristic features – Central dogma of life.
26. Regulation of gene expression – operon model of Jacob and Monad; Structural genes and regulator genes.
27. Split genes, exons and introns – modern concept of gene – gene as cistron, muton and recon, complementation testy.
30. Inversion and translocation – genetic and cytological implications.
31. Variation in chromosome number – Euploid, aneuploid – types of euploids.
32. Polyploid – auto and allopolyploids.
33. Role of polyploidy in evolution of crops – wheat, cotton, tobacco and brassica
34. Types of aneuploids and their origin.

PRACTICAL SCHEDULE
1. Principles of dominance, recessive, back cross, test cross, incomplets and co- dominance and lethal factor – principles of Chi-square test.
2. Study on genetic ratios – monohybrid – incomplete dominance and test cross ratios and in combination of one or two of the above.
3. Dihybrid ratio – dominance, incomplete dominance and test cross ration and in combination of one or two of the above.
4. simple interancerio of genes – comb character in fowls and Duplicate recessive epistasis.
5. Dominant epistasis and recessive epistasis.
7. Multiple alleles and polygenic inheritance
8. Estimation of linkage with F2 and test cross data, coupling and repulsion
9. Problems on two point test cross.
10. Three point test cross – working out interference, coincidence and drawing genetic maps.
11. Principles of killing and fixing – preparation of stains and apreservatives
12. Studying the stages of mitosis and meiosis
13. Study of mitotic phases in root tips of onion / Aloe spa and Arabidopsis
14. Procedure for fixing and observing different meiotic phases in the inflorescence of Maize and pearl millet.
15. Repeating the exercise
16. Repeating the exercise with Maize, Pearl millet
17. Procedure for making temporary slides to permanent slides.

Course Outcomes
1. Students will acquire comprehensive understanding of the chemical basis of heredity.
2. The knowledge required to design, execute, and analyze the results of genetic experimentation in Plant Breeding systems.
3. Critical understanding on quantification of heritable traits that provides insight into cellular and molecular mechanisms.
4. The ability to evaluate conclusions that are based on genetic data.

<table>
<thead>
<tr>
<th>CO1</th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>CO4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

REFERENCES

OPCSST 711 SEED PRODUCTION TECHNIQUES IN CROPS (2+1)

Learning Objectives
• To introduce the basic principles of quality seed production

Theory
Unit I - Introduction
Introduction: Seed as basic input in agriculture; Seed multiplication ratios-seed replacement rate, generation system of seed multiplication; variety and causes for its deterioration;

Unit II - Principles
Mode of pollination and reproduction in crop plants and their modification in relation to hybrid seed production. Principles of hybrid seed production, isolation distance, synchronization of flowering, roguing etc. male sterility and incompatibility system in hybrid seed production, role of pollinators and their management.

Unit III - Classes of seeds and their production techniques
Seed multiplication ratio-seed replacement rate, demand and supply; suitable areas of seed production and storage, agronomy of seed production- agro-climatic requirements and their influence on quality seed production; generation system of seed multiplication; maintenance of nucleus seed, production of breeder, foundation and certified seed - criteria involved; life span of a variety and causes for its deterioration; certification standards for self, cross and often cross pollinated and vegetatively propagated crops.

Unit IV - Hybrid seed production
Hybrid seed – methods of development; use of male sterility, self-incompatibility and CHA in hybrid seed production; one, two and three line system; maintenance of parental lines of hybrids; planning and management of hybrid seed production technology of major field crops

Unit V - Seed quality control
Planning of seed production for different classes of seeds for self, cross and often cross pollinated crops, seed quality control system and organization, seed village concept; seed production agencies, seed industry and custom seed production in India

THEORY LECTURE SCHEDULE
1. Seed basic input in agriculture
2. Importance and characteristic of quality seed
3. Different types of cultivars and their maintenance
4. Difference between seed and grain, seed production and crop production
5. Varietal deterioration their maintenance- factors responsible for deterioration
6. Maintenance of genetic purity in seed production
7. Pollination and reproduction techniques and their modifications in relation to hybrid seed production
8. Principles of hybrid seed production- isolation distance-synchronization of flowering, roguing etc.
9. Seed multiplication ratios and seed replacement rate
10. Agronomy of seed production- agro-climatic requirements and their influence on quality seed production
11. Generation system of seed multiplication- maintenance of nucleus and breeder seed
12. Floral structure, breeding and pollination mechanism in cross-pollinated cereals and millets.
13. Methods and techniques of quality seed production in cross-pollinated crop –Rice
14. Methods and techniques of quality seed production in cross-pollinated crop - Maize
15. Methods and techniques of quality seed production in -Sorghum
16. Methods and techniques of quality seed production in-Bajra.
17. Mid semester examination
18. Methods and techniques of quality seed production in pigeonpea.
19. Methods and techniques of quality seed production in Chickpea
20. Methods and techniques of quality seed production in greengram
21. Methods and techniques of quality seed production in blackgram
22. Methods and techniques of quality seed production in soyabean.
23. Methods and techniques of quality seed production in cowpea
24. Floral structure, breeding and pollination mechanism in Oilseeds.
25. Methods and techniques of quality seed production in groundnut.
26. Methods and techniques of quality seed production in castor.
27. Methods and techniques of quality seed production in sunflower
28. Methods and techniques of quality seed production in sesame
29. Methods and techniques of quality seed production in cotton.
30. Methods and techniques of quality seed production in Sugarcane.
31. Seed quality control system and organizations
32. Genetic purity testing- GOT
33. Seed village concept
34. Seed production agencies, seed industry and customs in India

PRACTICAL SCHEDULE

1. Identification of seed structure of agricultural crops
2. Identification of seed structure of agricultural crops
3. Visit to seed production unit
4. Hybrid seed production techniques in agricultural crops
5. Planting design and identification of rogues and off types in varieties and hybrids of agricultural crops
6. Study of supplementary pollination and pollen management techniques in agricultural crops.
7. Identification of physiological maturity for agricultural crops
8. Influence of grading techniques on seed quality characters.
9. Planning seed production for different classes of seeds in varieties of agricultural crops
10. Planning seed production for different classes of seeds in varieties of horticultural crops
11. Visit to seed production field and processing unit
12. Visit to private seed industry
13. Seed enhancement techniques
14. Detasseling in maize
15. Identification of rogues and pollen shedders
16. Gametocide application for hybrid seed production
17. **Practical Examination.**

Course Outcomes

1. To really understand the basic principles of seed production in varieties and hybrids
2. To know the concept of and methods of hybrid seed production
3. To understand the importance of field standards and seed standards in quality seed production

CO- PO Mapping with POs of Agronomy

<table>
<thead>
<tr>
<th>CO</th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>CO3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>CO4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO5</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
REFERENCES

OPCSST 712 SEED QUALITY TESTING AND CERTIFICATION (2+1)

Learning Objectives
• To provide a comprehensive knowledge on all aspects of seed quality evaluation and their relevance to crop performance.

Theory
Unit I - History of Seed Testing
Introduction: Structure of monocot and dicot seeds; seed quality: objectives, concept and components and their role in seed quality control; Instruments, devices and tools used in seed testing. ISTA and its role in seed testing. Seed Sampling sampling in the seed testing laboratory.

Unit II - Testing for purity and Moisture
Physical Purity: definition, objective and procedure, weight of working samples for physical purity analysis; components of purity analysis and their definitions and criteria; pure seed definitions applicable to specific genera and families; multiple seed units; general procedure of purity analysis; calculation and reporting of results, prescribed seed purity standards; determination of huskless seeds

Unit III - Germination, Vigour and Viability testing Test for Genetic purity
Germination: importance; definitions; requirements for germination, instrument and substrata required; principle and methods of seed germination testing; dormancy: definition, importance, causal mechanisms, types and methods for breaking dormancy. Viability and Vigour Testing: definition and importance of viability tests; different viability tests; quick viability test (TZ- test) - advantages, principle, preparation of seeds and solutions, procedure, evaluation and calculation of test results. Vigour testing: Genetic purity testing: objective and criteria for genetic purity testing; types of test; laboratory

Unit IV - Seed legislation in India
Seed legislation and seed law enforcement as a mechanism of seed quality control; The Seed Act (1966), Seed Rules (1968), Seed (Control) Order 1983; Essential Commodities Act (1955); Plants, Fruits and Seeds Order (1989); National Seed Development Policy (1988) and EXIM Policy regarding seeds, plant materials; New Seed Bill-2004. Introduction, objectives and relevance of plant quarantine, regulations and plant quarantine set up in India.

Unit V - Seed Certification aspects
Seed Certification- history, concept and objectives of seed certification; seed certification agency/organization and staff requirement; legal status and phases of seed certification; formulation, revision and publication of seed certification standards; Indian Minimum Seed Certification Standards (I.M.S.C.S.)- general and specific crop standards including

THEORY LECTURE SCHEDULE
1. Seed quality: objectives, concept and components
2. Instruments, devices and tools used in seed testing
3. National and International agencies involved in seed testing
4. ISTA and its role in seed testing.
5. Seed Sampling: definition, objectives and procedure
6. Physical Purity analysis
7. Seed moisture content: importance, principles and methods of moisture estimation
8. Germination: importance; definitions; types - requirements for germination,
9. Methods of seed germination testing for agricultural crops
10. Methods of seed germination testing for horticultural crops
11. Seedling evaluation, calculation and reporting of results for agricultural crops
12. Seedling evaluation, calculation and reporting of results for horticultural crops
13. Dormancy: definition, importance, causal mechanisms, types
15. Quick viability test (TZ- test) - advantages, principle.
16. Vigour testing: concept, historical development, definitions
17. Mid Semester examination
18. Procedures of different methods used for testing vigour.
19. Genetic purity testing : objective, types of test
20. Historical development of Seed Industry in India
21. Seed quality: concept and factors affecting seed quality during different stages of production
22. Seed quality control- concept and objectives
23. Central Seed Certification Board and its function
24. Organizations involved inseed quality control programmes
25. The Seed Act (1966) and Seed Rules (1968)
26. The Seed (Control) Order 1983 and Essential Commodities Act(1955)
27. EXIM Policy regarding seeds, plant materials and New Seed Bill-2004 etc.
28. Introduction, objectives and relevance of plant quarantine.
29. Seed Certification- history, concept and objectives of seed certification
30. Indian Minimum Seed Certification Standards (I.M.S.C.S.)- general and specific crop standards
31. Field Inspection- principles, phases and procedures
32. Pre and post-harvest control tests for genetic purity evaluation (grow-out tests)
33. Post harvest inspection and evaluation
34. Essential features of PPV & FR Act, 2001

PRACTICAL SCHEDULE
1. Identification and handling of instruments used in seed testing laboratory
2. Seed sampling and sampling procedure
3. Physical purity analysis of samples of different crops
4. Estimation of seed moisture content (oven method)
5. Seed dormancy breaking methods
6. Seed germination testing in different agri-horticultural crops
7. Seedling evaluation
8. Viability testing by tetrazolium test in different crops
9. Seed vigour tests
10. Grow out test
11. Varietal identification through electrophorosis
12. Visit to Seed Testing laboratory
13. General procedure of seed certification
14. Field inspection at different stages of a crop and observations recorded on contaminants and reporting of results.
15. Field counting procedure for different crops
16. Preparation of Field Inspection report
17. **Final Practical examination**

Course Outcomes

1. To have a faith in seed certification procedure and importance of IMSCS
2. To sort out the rogues and off types from the seed production area and to understand the importance of seed testing
3. Will be in a position to emphasis on Seed Legislation, certification, labelling of different seed classes and truthfully labelled seeds

<table>
<thead>
<tr>
<th>CO1</th>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>CO4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>CO5</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

REFERENCES

OPCHOR 711 PROPAGATION AND NURSERY MANAGEMENT OF HORTICULTURAL CROPS (2+1)

Learning Objectives

This course deals with different methods of plant propagation and strategies for nursery management of various fruit crops. Knowledge of tools and implements is essential to carry out all scientific horticultural operations and also nursery management practices. The above themes are discussed elaborately in this course and the basic knowledge gained will be useful for the career development of students in commercial nursery business.

Theory

Unit I Principles of plant propagation

Sexual and asexual methods of propagation - principles and factors influencing seed germination-dormancy- hormonal regulation of germination and seedling growth- seed quality- packing- storage- certification and testing.

Unit II Anatomical and physiological aspects of plant propagation

Techniques of cottage - layerage- graftage and budding- compatibility- dwarffing rootstocks of important fruit trees.
Unit III Plant growth regulators and plant tissue culture
 Role of PGR’S in plant propagation- role of nucellar embryony- apomixes- tissue culture techniques- hardening techniques.

Unit IV Planning of a nursery unit and modern propagation structures
 Raising of nursery plants- selection- certification maintenance of mother plants and bud wood and root stock nurseries- use of modern structures- mist chambers- low cost poly houses- tunnel houses.

Unit V Marketing methods of nursery plants and economics
 Media/soil mixtures- containers- use of machinaries- lifting- packing- transport- marketing- economics of raising nursery and management in different fruit crops.

Practical

THEORY LECTURE SCHEDULE

1. Scope and importance of plant propagation.
2. Study of sexual and asexual methods of propagation.
3. Advantages and disadvantages of seed and vegetative propagation.
5. Studies on dormancy, hormonal regulation of germination and seedling growth.
6. Study of seed quality, packing, storage, certification and testing.
7. Study of anatomical and physiological aspects of asexual propagation.
8. Studies on graft compatibility on fruit crops.
9. Dwarfing rootstocks of commercial importance in fruit crops.
10. Role of PGR’s in raising seedlings and rooting of cuttings and layers.
11. Role of nucellar embryony and apomixis.
12. Studies on tissue culture techniques.
15. Techniques of budding and grafting.
17. Mid-semester examination
20. Role of mist chambers in plant propagation.
21. Study of bottom heating techniques.
22. Hardening techniques in nursery.
23. Progeny orchard and scion bank.
25. Media -soil mixture preparation for nursery plants.
26. Study of containers used for nursery.
27. Use of machineries in nurseries.
28. Soil sterilization techniques.
29. Irrigation systems in nursery plants.
30. Lifting and packing of nursery plants.
31. Transportation and marketing of nursery plants.
32. Nursery planning and layout.
33. Economics of raising nursery and management of different fruit crops.
34. Nursery acts.

PRACTICAL SCHEDULE
1. Media/soil mixture, containers and soil sterilization.
2. Use of chemicals for seed treatment and sowing.
3. Preparation of nursery beds, polybags, seedpans, thumbrule for raising seedlings.
4. Stratification and scarification of seeds and use of tetrazolium salts for germination.
5. Identification of nucellar seedlings.
6. Practice of different asexual methods of propagation, viz., cuttage, layering.
7. Budding methods.
8. Grafting methods.
9. Use of plant growth regulators in propagation.
10. Role of mist chambers in plant propagation.
11. Other protected structures uses for plant propagation.
12. Low cost polyhouses, low tunnels.
15. Transportation and marketing of nursery plants.
16. Economics of raising nurseries.
17. Visit to local commercial/private nurseries.

Course Outcomes
CO1- gain knowledge on physiology, principles, factors influencing, media and methods of propagation of Horticultural crops
CO2- gain skill in all propagation methods and technology for commercial scale adoption
CO3- becomes capable of managing commercial nursery business.

<table>
<thead>
<tr>
<th>CO</th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>CO2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>CO4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>CO5</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>

REFERENCES

OPC - FSC 712 GENETIC RESOURCES AND CONSERVATION OF FRUIT CROPS (2+1)

Learning Objectives

Understanding the principles of biodiversity, strategies in conservation and utilization of fruit crop biodiversity and learning about under exploited fruits in India.

Theory

Unit I Importance of biodiversity and methods of conservation

Unit II Role of National institutes in conservation and plant quarantine

Unit III Bio diversity of tropical fruit crops

Unit IV Bio diversity of sub tropical and temperate fruit crops

Biodiversity of major sub tropical- temperate fruit and nut crops - grapes- mandarin- mangosteen- litchi- fig- apple- pear- plum- peach- strawberry- almond- apricot and walnut.

Unit V Bio diversity of under exploited minor fruit crops

Under exploited minor fruits - present status and scope- their origin- distribution- biodiversity conservation and utilization of minor fruits.

Practical

Documentation of germplasm maintenance of passport data and other records of accessions; field exploration trips- exercise on ex situ conservation cold storage- pollen/seed storage- cryopreservation- visits to National Gene Bank and other centers of PGR activities.

THEORY LECTURE SCHEDULE

2. Genetic diversity- occurrence and distribution.
3. Exploration, collection, characterization, documentation and cataloguing of germplasm.
5. Role of national institutes in conservation-TBGRI, NBPGR.etc.
8. Use of GIS and documentation of local biodiversity.
9. Horticultural cropping systems and implication on biodiversity.
10. Impact of climate change on biodiversity.
11. Advances and issues in conservation of biodiversity though recalcitrant and orthodox seeds.
12. Advances and issues in conservation of biodiversity through vegetative propagation.
17. **Mid-semester examination**
24. Status of biodiversity of litchi and fig.
27. Status of biodiversity of strawberry.
30. Under exploited minor fruit crops - present status and scope

PRACTICAL SCHEDULE
1. Field exploration trips- exercise in collection and characterization
2. Visit to field germplasm unit and documentation of germplasm
3. Practices in maintenance of passport data
4. Practical study of *ex situ* conservation methods
5. Practical study of *in situ* conservation methods
6. Methods of seed storage for short and long term conservation
7. Methods of conservation using vegetative propagules
8. *In vitro* conservation protocols
9. Study of species diversity in horticultural cropping system
10. Visit to regional conservation centres
11. Visit to subtropical and temperate zone orchards
12. Characterization of banana germplasm
13. Characterization of papaya germplasm
14. Characterization of mango germplasm
15. Identification of minor fruit crops and their description.
16. Use of molecular tools for characterizing species diversity
17. Estimating extent of diversity through collection and analysis of data

Course Outcomes
CO1: The students will be able to understand the strategies in conservation and utilization of fruit crop biodiversity
CO2: They will be able to demonstrate different techniques in *ex-situ* conservation.
CO3: They will be able to identify underutilized minor fruit crops.
Learning Objectives

To impart latest knowledge in growing of vegetable crops under protected environmental conditions.

Theory

Unit I Importance, scope and principles of Hi-tech vegetable production

Importance and scope of protected cultivation of vegetable crops. Principles used in protected cultivation- energy management- low cost structure- training methods- engineering aspects.

Unit II Environmental factors and its manipulation for vegetable production

Types of green house- poly house/ net house hot- cold framers- effect of environmental factors viz, temp- light - CO₂ and humidity on growth of different vegetables- manipulation of CO₂- and temperature for vegetable production.

Unit III Green house media- containers- heating and cooling systems

Growing media and sterilization- soilless cultivation- hydroponics and aeroponics- types of benches and containers irrigation and fertigation- green house environmental control systems- cooling system- heating system light and photo period manipulation.

Unit IV Techniques of raising vegetables in protected structures

Regulation of flowering and fruting in vegetable crops. Technology for raising tomato- sweet pepper- cucumber and other vegetables in protected structures- training and staking in protected crops- varieties and hybrids for growing vegetables in protected structures.

Unit V Problems and remedies in Hi-tech cultivation

Problem of growing vegetables in protected structures and their remedies- insect and disease management in protected structures- soil-less culture- use of protected structures for seed production.

Practical

Study of different protected structures- cladding materials used- installation and their management study of environment control devices used in protected structures measurement of temperature- RH- light and CO₂- study of growing media and sterilization- study of irrigation and fertigation systems and their management- soilless cultivation- hydroponics and aeroponics- control of insect pest and disease in green house - working out
THEORY LECTURE SCHEDULE
1. History of protected cultivation of vegetables and its scope in India.
2. Present status of Hi-tech cultivation and its importance.
3. Principles involved in Hi-tech vegetable cultivation.
4. Modes of protected cultivation.
5. Nursery raising in protected structures.
7. Site selection, structural designs, styles single span, multi-span.
8. Effect of environmental factors on the growth of vegetables.
9. Manipulation of CO₂, light and temperature for vegetable production.
11. Green house media, natural and synthetic and sterilization.
12. Soilless cultivation, Hydroponics and Aeroponics.
13. Green house beds and benches construction and space use efficiency.
15. Cooling methods, ventilations, evaporative cooling and air conditioning.
16. Types of irrigation in green house, purpose and advantage.
17. Mid-semester examination.
18. Fertigation of vegetable crops under protected cultivation.
19. Pruning of vegetable crops under protected structure.
20. Training, staking and other operations under Hi-tech vegetable production.
21. Regulation of flowering and fruiting of vegetable crops.
22. Hi tech production of tomato.
23. Hi tech production of sweet pepper.
24. Hi tech production of cucumber and other vegetables.
25. Hi tech production of exotic vegetables.
26. Suitable varieties and hybrids for growing vegetables in protected structures.
27. Problems in Hi-tech cultivation and remedies.
28. Insect and disease management in protected structures.
29. Use of protected structures for seed production.
30. Precision Horticulture, principles and concepts.
31. GPS, GIS remote sensing sensors.
32. Variability management in precision farming, mapping, variable rate technology.
33. Precision equipments, computers and robotics in precision farming.
34. Cost - economics of Hi-tech vegetable production.

PRACTICAL SCHEDULE
1. Study of various modes of protected cultivation.
2. Study of environment control devices used in protected structures.
3. Study of growing media and sterilization.
4. Study of irrigation and Fertigation systems.
5. Study of soilless cultivation, Hydroponics and Aeroponics.
7. Designing of covering materials.
8. Designing of cooling systems.
9. Designing of irrigation system.
10. Control of insect pest and disease in green house.
11. Economics of green house cultivation of tomato.
12. Economics of green house cultivation of sweet pepper.
13. Economics of green house cultivation of cucumber.
14. Visit to established green/poly house/ net/ shade house in the region.
15. Visit to export oriented vegetable units.
16. Visit to precision farming unit.
17. Visit to GPS, GIS and remote sensing facility.

Course Outcomes
CO1: The students will be able to demonstrate working principles of protected cultivation.
CO2: The students will be able to establish and manage Hi-Tech vegetable production units.

CO- PO Mapping with POs of Agronomy

<table>
<thead>
<tr>
<th></th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>CO2</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

REFERENCES

OPC-FLA 712 ORNAMENTAL HORTICULTURE (2+1)

Learning Objectives

Familiarization with principles and practices of landscaping and ornamental gardening.

Theory
Unit I Ornamental horticulture- History and principles
Ornamental horticulture-definition- scope and importance- history of ornamental horticulture. types of gardens. styles of garden- formal- informal and free style gardens. beauty components- basic principles of gardening.

Unit II Softscape and Hardscape elements
Garden plant components-basic function and utility- arboretum- shrubbery- fernery-palmatum- edges and hedges -topiary and trophy- climbers and creepers- cacti and succulents- herbs- annuals- flower borders and beds- ground covers- carpet beds- bamboo groves; lawns- establishment and maintenance- production technology for selected ornamental plants .non-plant components.

Unit III Special types of gardens and horticultural crafts
Special types of gardens- vertical garden- roof garden- bog garden- sunken garden-rock garden- clock garden- temple garden and sacred groves. Study on horticultural crafts-bonsai- terrarium and flower arrangement-

Unit IV Landscape drawing
Site analysis- cliental preference- home- institute- industrial garden- public parks-amusements and theme parks- landscape drawing- fundamentals of manual drawing- scale-
symbols- layout- plan view- elevation and perspective diagrams- computer software-
manual and computer aided designing- applications of CAD in landscape garden designing.

Unit V Landscaping for specific situations

Urban landscaping- landscaping for specific situations- hospitals- roadsides- traffic
islands- damsites- it parks- corporates. bio-aesthetic planning- eco-tourism- indoor
gardening- therapeutic gardening- water scaping and xeriscaping.

Practical

Identification of ornamental plants and garden components- study of form- size-
shape- texture- flowering season and description of trees- shrubs- flower bed- foliage bed-
climbers and creeper- hedges- edges cacti- succulents- ferns and palms- evaluation of
different styles of garden- turf- study of types of turf grasses- establishment- care and
maintenance of turf- art of topiary- practices in planning and planting of special types of
gardens- identification- planning and designing of non-living components- principles and
concepts in garden designing- techniques in transplanting of container grow plants-
burlapping- tree transplanting- preparation of landscape plan layout- application of cad in
landscape garden designing- project preparation on landscape execution for home- institute-
industrial- public parks and theme parks. study on horticultural crafts- bonsai- terrarium
and flower arrangement- visit to parks and botanical garden.

THEORY LECTURE SCHEDULE

1. Ornamental horticulture-Definition, scope and importance.
2. History of ornamental horticulture,
3. Types of gardens.
4. Styles of garden, formal, informal and free style gardens
5. Beauty components
6. Basic principles of gardening.
7. Garden plant components, arboretum,
8. Shrubbery, fernery, palmatum, edges and hedges,
9. Climbers and creepers, cacti and succulents and herbs,
10. Annuals, flower borders and beds,
11. Ground covers, carpet beds and bamboo groves,
12. Lawns, Establishment and maintenance,
13. Production technology for selected ornamental plants.
14. Non-plant components-basic function and utility.
15. Special types of gardens, vertical garden and roof garden,
16. Bog garden, sunken garden and rock garden,
17. Mid semester examination.
18. Clock garden, temple garden, sacred groves.
19. Study on horticultural crafts, bonsai and terrarium.
20. Flower arrangement,
21. Site analysis, cliental preference,
22. Home, institute and industrial garden,
23. Public parks, amusements and theme parks,
24. Landscape drawing, fundamentals of manual drawing, scale, symbols and layout,
25. Plan view, elevation and perspective diagrams,
26. Computer software,manual and computer aided designing, applications of CAD in
landscape garden designing.
27. Urban landscaping,
28. Landscaping for specific situations, residents, hospitals, roadsides and traffic
islands,
29. Damsites, IT parks and corporates.
30. Bio-aesthetic planning,
31. Eco-tourism and theme parks
32. Indoor gardening,
33. Therapeutic gardening,
34. Water scaping and xeriscaping.

PRACTICAL SCHEDULE
1. Identification of ornamental plants and garden components.
2- 5. Study of form, size, shape, texture, flowering season and description of trees, shrubs, flower bed, foliage bed, climbers and creeper, hedges, edges cacti, succulents, ferns and palms.
7. Turf - study of types of turf grasses - establishment, care and maintenance of turf. Art of topiary –
9- 11. Identification, planning and designing of non-living components.
12. Techniques in transplanting of container grown plants, burlapping, tree transplanting.
13. Principles and concepts in garden designing.
15. Application of CAD in landscape garden designing.
16. Project preparation on landscape execution for home, institute, industrial, public parks and theme parks.
17. Study on horticultural crafts, bonsai, terrarium and flower arrangement. Visit to parks and botanical garden

Course Outcomes
CO1: The students will be able to demonstrate working principles of protected cultivation.
CO2: The students will be able to establish and manage Hi-Tech vegetable production units.

CO– PO Mapping with POs of Agronomy

<table>
<thead>
<tr>
<th></th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>CO3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO4</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>CO5</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

REFERENCES

OPC-PSM 712 GENETIC RESOURCES AND CONSERVATION OF MEDICINAL AND AROMATIC PLANTS (2+1)

Learning Objectives
Understanding the principles of biodiversity- strategies in conservation and utilization of medicinal and aromatic plants- Biodiversity and learning about under exploited medicinal and aromatic plants in India.

Theory
Unit I Importance of biodiversity and methods of conservation

Unit II Role of National institutes in conservation of plant quarantine
Introduction of germplasm- plant quarantine- role of knowledge, role of national institutes is conservation- TBGRI- NBPGR. intellectual property rights- regulatory horticulture- plant variety protection authority- maintenance of core group using rational knowledge for plant conservation.

Unit III Bio diversity of medicinal plants -I
Senna- coleus- ashwagandha- glory lily- sarpagandha- dioscorea sp. aloevera- phyllanthus

Unit IV Bio diversity of medicinal plants –II
Kalmegh- medicinal solanum- gymnema- isabgol- ipecac- periwinkle- poppy- safedmusli- stevia

Unit V Aromatic plants

Practical
Documentation of germplasm maintenance of passport data and other records of accessions; field exploration trips- exercise on ex situ conservation; cold storage- pollen/seed storage- cryopreservation- visit to National Gene Bank and other centers of PGR activities.

THEORY LECTURE SCHEDULE
1. Bio diversity – introduction- principles, goals and issues in conservation
2. Genetic diversity- occurrence and distribution
3. Exploration, collection, characterization, documentation and cataloging of germplasm
4. Present status of national and international gene banks
5. Role of national institutes in conservation-TBGRI, NBPGR.
6. Germplasm exchange, Material Transfer Agreement and current quarantine protocols
7. Methods for ex situ conservation of germplasm and in situ conservation of germplasm
8. Use of GIS and documentation of local biodiversity
9. Horticultural cropping system and implication on biodiversity
10. Impact of climate change on biodiversity
11. Advances and issues in conservation of biodiversity through recalcitrant and orthodox seeds
12. Advances and issues in conservation of biodiversity through vegetative propagation
13. Intellectual Property Rights, Plant Variety Protection Authority
14. Status of biodiversity of coffee
15. Status of biodiversity of tea, cashew
17. **Mid-semester examination**
18. Status of biodiversity of black pepper and cardamom
19. Status of biodiversity of ginger and turmeric
20. Status of biodiversity of coriander and fennel
21. Status of biodiversity of nutmeg and cinnamon
22. Status of biodiversity of Clove
23. Status of biodiversity of Aloe vera
24. Status of biodiversity of *Coleus forskohlii* and *Dioscorea* sp.
25. Status of biodiversity of *Ocimum* and *Phyllanthus amarus*
26. Status of biodiversity of Geranium and Vettiver
27. Status of biodiversity of Lemon grass
28. Status of biodiversity of Palmrosa and Citronella
30. Under exploited minor fruit crops - present status and scope

PRACTICAL SCHEDULE

1. Field exploration trips- exercise in collection and characterization
2. Visit to field germplasm unit and documentation of germplasm
3. Practices in maintenance of passport data
4. Practical study of *ex situ* conservation methods
5. Practical study of *in situ* conservation methods
6. Methods of seed storage for short and long term conservation
7. Methods of conservation using vegetative propagules
8. *In vitro* conservation protocols
9. Study of species diversity in horticultural cropping system
10. Visit to regional conservation centres
11. Visit to subtropical and temperate zone medicinal & aromatic crop fields
12. Characterization of coffee germplasm
13. Characterization of cardamom germplasm
14. Characterization of *Ocimum* germplasm
15. Identification of minor plantation and spices crops and their description.
16. Use of molecular tools for characterizing species diversity
17. Estimating extent of diversity through collection and analysis of data

Course Outcomes

CO1: The students will be able to identify the genetic resources of underutilized medicinal and aromatic plants

CO2: They will be able to demonstrate conservation techniques followed for underutilized medicinal and aromatic plants.
CO3: They will be able to identify underutilized minor medicinal crops.

CO- PO Mapping with POs of Agronomy

<table>
<thead>
<tr>
<th></th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>CO3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO4</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>CO5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

REFERENCES

OPC AEC 621 NATURAL RESOURCE AND ENVIRONMENTAL ECONOMICS (2+1)

Learning Objectives

To introduce economic principles related to natural resource and environmental economics, explore the concept of efficiency and the efficient allocation of natural resources, understand the economics of environmental problems, explore the concept of pollution control and pollution prevention decisions and understand the environmental policy issues and alternative instruments of environmental policies.

Theory

Unit-I - Basic concepts

Unit-II - Optimal use

- Theory of optimal extraction of renewable resources - economic models of forestry, fisheries - logistic growth curve - maximum sustainable yield and economic yield - theory of optimal depletion of exhaustible resources - efficiency - time path of prices and extraction. Economic models of oil extraction - Hotelling’s rule - Solow Harwick’s rule.

Practical

THEORY LECTURE SCHEDULE

1. Concepts, classification, problems of natural resource economics
2. Economy - environment interaction
3. The material balance principle, entropy law
4. Resources scarcity - limits to growth
5. Measuring and mitigating natural resource scarcity
6. Malthusian and Ricardian scarcity - scarcity indices
7. Resource scarcity and technical change
8. Theory of optimal extraction renewable resources
9. Economic models of forestry
10. Economic models of fisheries
11. Logistic growth curve - maximum sustainable yield and economic yield
12. Theory of optimal extraction of exhaustible resources
13. Efficiency - time path of prices and extraction
14. Economic models of oil extraction
15. Hotelling’s rule, Solow - Harwick’s Rule
16. Efficiency and markets - market failures
17. **Mid semester examination**
18. Externalities - types
19. Property rights - transaction costs
20. Coase’s theorem and its critique
21. Public goods - common property and open access resource management
22. Collective action - environmental regulation
23. Economic instruments
24. Pollution charges - Pigouvian tax
25. Carbon trading
26. Tradable permits
27. Indirect instruments
28. Environmental legislations in India
29. Concept of sustainable development
30. Economic perspective - indicators of sustainability
31. Relationship between development and environmental stress, poverty and environment, Environment Kuznet’s curve
32. Environmental accounting - resource accounting methods
33. International environmental issues - climate change - likely impacts
34. Adaptation and mitigation efforts - international treaties

PRACTICAL SCHEDULE
1. Land use planning
2. Energy use pattern
3. Solid waste management
4. Biodiversity, biopiracy, biosafety issues - case studies
5. Renewable resource management
6. Optimum harvest of forestry/fishery
7. Discount rate in natural resource management
8. Exercise on pollution abatement - I
9. Exercise on pollution abatement - II
10. Concepts in valuing the environment
11. Taxonomy of valuation techniques
12. Productivity change method - substitute cost method
13. Hedonic pricing method - travel cost method
15. Environment impact assessment
16. Visit to Pollution Control Board
17. Social cost, benefit analysis

Course Outcomes

1. Gain knowledge on basic concepts of environmental economics.
2. Identify the optimal extraction level of renewable resources using economic models.
3. Assess the ways to manage common property resources.
4. Understand environmental legislations in India.
5. Analyse economic problems related to natural resource use including climate change problems.

CO – PO Mapping with POs of Agronomy

<table>
<thead>
<tr>
<th></th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CO4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

REFERENCES

E-RESOURCES

2. http://www.valuing-nature.net/
3. www.teebweb.org

OPC AEC 711 AGRI BUSINESS ANALYSIS (2+1)

Learning Objective

The objective of this course is to teach the students the basic concepts, principles and tools of agri/farm business management.

Theory

Unit-I - Agribusiness – basic concepts

Definition - basic concepts - structure of agribusiness - agribusiness sectors - special features of agribusiness - importance of agribusiness in Indian economy - role of farm business management - farm management decisions - farm management problems.
Unit-II - Principles of management
Management - definitions and importance - management functions - nature, roles, skills, levels and functional areas of management. Forms of business organization - sole proprietorship - partnership - private and public limited - cooperatives.

Unit-III - Elements of management

Unit-IV - Approaches in agribusiness management
Approaches to management - Management By Objectives (MBO) - Quality Circle (QC) - profit center approach - Strength, Weakness, Opportunity and Threat (SWOT) - Management Information System (MIS) - agribusiness management - future prospects.

Unit-V - Tools of farm management
Principle of variable proportion - cost principle - factor substitution, opportunity cost principle. Farm business analysis - valuation of farm assets and depreciation - net worth statement - income statement - cash flow statement. Farm planning and budgeting - completer budget, partial budget, enterprise budget. Farm records and accounts - types of farm record. Management of farm resources - land, labour, farm machinery, farm building etc., - break even analysis.

Practical

THEORY LECTURE SCHEDULE
1. Definition - basic concepts - structure of agribusiness
2. Agribusiness sectors - special features of agribusiness
3. Importance of agribusiness in Indian economy
4. Role of farm business management
5. Farm management decision
6. Farm management problems
7. Management - definitions and importance
8. Management functions - nature, roles, skills, levels
9. Functional areas of management
10. Forms of business organization
11. Sole proprietorship, partnership
12. Private and public limited, cooperatives
13. Planning - definition - types of plans
14. Steps in planning - advantages of planning
15. Organizing - structure, departmentation - line and staff functions
16. Centralization and decentralization
17. Mid semester examination
18. Formal and informal organizations
19. Staffing - human resource planning process
20. Directing - concept, principles, techniques, supervision
21. Motivation - communication - leadership
22. Controlling - concept, steps, types, process
23. Approaches to management - Management By Objectives (MBO)
24. Quality Circle (QC) - profit center approach
25. Strength, Weakness, Opportunity and Threat (SWOT)
26. Management Information System (MIS) - agribusiness management - future prospects
27. Principle and variable proportion - cost principle
28. Factor substitution, opportunity cost principle
29. Farm business analysis - valuation of farm assets and depreciation
30. Net worth statement - income statement - cash flow statement
31. Farm planning and budgeting - completer budget, partial budget, enterprise budget
32. Farm records and accounts - types of farm records
33. Management of farm resources, land, labour, farm machinery, farm building
34. Break even analysis

PRACTICAL SCHEDULE
1. Agribusiness opportunities
2. Business project preparation
3. Business project scheduling
4. Inventory management
5. Production management
6. Working capital management
7. Repayment schedule of loans
8. Feasibility control network analysis - project evaluation
9. Visit to agro processing units and agribusiness units
10. Consumer survey - market potential assessment
11. Farm survey - methods of data collection
12. Estimation of cost of cultivation for annual and perennial crops
13. Estimation of cost of production of milk, egg, broiler, fish
14. Valuation of farm assets - depreciation of farm assets - budgeting
15. Farm financial statements - balance sheet - income statement - cash flow statement
16. Complete budgeting and partial budgeting
17. Break even analysis

Course Outcomes
1. Understand special features of agribusiness and its importance in Indian economy.
2. Understand the principles of agribusiness management.
3. Know the ways to communicate information effectively and economically.
4. Analyse the future prospects of agribusiness using different approaches of management.
5. Estimate economic and financial feasibility of agri-business industries.

CO - PO Mapping with POs of Agronomy

<table>
<thead>
<tr>
<th></th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>CO2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>CO4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO5</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
REFERENCES

E-RESOURCES
1. http://ocw.mit.edu/courses/economics
2. https://www.msu.edu/course/ECO/855

OPCAEC 712 AGRICULTURAL INSURANCE AND RISK MANAGEMENT (2+1)

Learning Objective
The aim of this course is to provide the students a thorough knowledge on the principles of insurance, practices of risk management and various insurance policies and schemes available for agri business.

Unit-I - Agricultural finance
Role and importance of agricultural finance. Financial institutions and credit flow to rural/priority sector. Agricultural lending - direct and indirect financing - financing through co-operatives, NABARD, Commercial Banks and RRBs. District Credit Plan- and lending to agriculture/priority sector. The concept of 5 C’s, 7 P’s and 3 R’s of credit.

Unit-II - Classification of risks
The concept of risk - kinds and classification of risks - assessment - the concept of insurance - types of general insurance - agriculture, fire, marine, engineering - insurance of property. Insurance professionals and intermediaries.

Unit-III - Principles of insurance

Unit-IV - Agricultural risks

Unit-V - Agricultural insurance

Practical
Estimation of cost of cultivation for major crops. Procedure on scale of finance for major crops. Estimation of technical feasibility, economic viability of farmers - Repaying

THEORY LECTURE SCHEDULE

1. Agricultural finance
2. Role and importance of agricultural finance
3. Financial institutions and credit flow to rural/priority sector
4. Agricultural lending - direct and indirect financing
5. Financing through co-operatives
6. Role of NABARD, Commercial Banks and RRBs
7. District credit plan and lending to agriculture/priority sector
8. The concept of 5 C’s, 7 P’s and 3 R’s of credit
9. The concept of risk - kinds and classification of risks - assessment
10. The concept of insurance - types of general insurance - agriculture, fire, marine, engineering
11. Insurance of property - insurance professionals and intermediaries
12. Basic principle of insurance - utmost good faith - insurable interest - material facts
13. Economic principles - sharing - subrogation - contribution
14. Legal principles - the Indian contract, 1872
15. Insurable interest - nomination and assignment
16. Financial principles - premium funds - investments
17. **Mid semester examination**
18. Agricultural risks - sources of risk - production and technical risk
19. Output and input price risk
20. Financial risk - political risk - legal risk - personal risk
21. Risk management tools
22. Low risk investments - enterprise diversification
23. Excess - debt capacity - liquid financial reserves off - farm income - shared ownership or leasing
24. Risk transfer insurance products - contracts - hedging and options market
25. Agricultural insurance - importance of agricultural insurance - scope
26. Genesis - crop insurance development in India
27. Comprehensive Crop Insurance Scheme (CCIS) - advantages
28. Livestock insurance - agencies of agricultural insurance
29. General Insurance Corporation. New India Assurance
30. Agricultural insurance corporation
31. National agricultural insurance scheme
32. Business loss estimation - appraisal
33. Claiming and repayment
34. Types of insurance products - stakeholders

PRACTICAL SCHEDULE

1. Estimation of cost of cultivation for major crops
2. Procedure on scale of finance for major crops
3. Estimation of technical feasibility, economic viability of farmers
4. Repaying capacity of borrowers and appraisal of credit proposals
5. Analysis of trend in farm lending and over dues
6. Assessment of farm credit needs
7. Collection of farm level data on yield and crop losses
8. Visit to commercial bank
9. Visit to insurance agency
10. Processes and procedure for agricultural insurance
11. Crop loss assessment
12. Estimation of indemnity
13. Actuarial method of premium calculation
14. Pure risk rate liability
15. Case study on insurance development
16. Case study on problem and prospect of insurance in India
17. Role of government in farm insurance

Course Outcomes
1. Understand the role of financial institutions in agricultural development.
2. Understand kinds of risk in agriculture and allied sectors.
3. Know the principles of insurance and assess the credit need.
4. Analyse different risk management techniques.
5. Discuss the role of agencies involved in agricultural insurance and types of insurance products.

CO - PO Mapping with POs of Agronomy

<table>
<thead>
<tr>
<th></th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>CO2</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

REFERENCES

E-RESOURCES
1. http://pages.stern.nyu.edu/~adamodar/
3. www.microfinancegateway.org
5. www.nabard.org
6. www.rbi.org
Learning Objective

To enable the students to learn about
- Agricultural Journalism and its role in agricultural development
- Skills in script writing for different media.
- Online journalism and Web writing
- Preparation of short films

THEORY

Unit I – PRINT MEDIA

Unit II – MAGAZINES

Unit III – RADIO

Unit IV – TELEVISION

Unit V – WEB WRITING

Understanding and using the Internet – Online journalism – Agricultural News – Agricultural technology – Newspapers online – e-journals and e-magazine – textual – language and style – multimedia support – contents online: informational and educating market information. Content developing using links and text.

PRACTICAL

Writing for the print media preparing and editing news items for Newspapers. Practicing photography and videography, Visit to a newspaper organization. Preparation of leaflets and folders. Designing a cover for farm magazine. Preparing the radio script, practicing the radio script, Visit to FM radio station. Practicing the script writing for television. Designing visuals, graphics and Illustrations for television. Designing a programme on Interview with farmer. Preparation of short film, Visit to local TV channel, Visit to Doordharsan Kendra. Preparation of Interview Schedule to study the preference of farmers towards mass media.

THEORY LECTURE SCHEDULE

1) Journalism, Concept, Types
2) Principles, Scope, Importance
3) Elements / qualities of News
4) Script writing for print media
5) Script writing for news, success stories, features
6) Nature and characteristics of Newspaper – Readers’ perception
7) Photo journalism – scope and importance
8) Photo journalism – functions
9) General magazines – basics of writing farm articles
11) Writing style – pictures and illustrations – features and special articles
12) Tamil Agricultural Magazines– pictures and illustrations - Writing style.
13) Nature and characteristics of Radio
14) Radio for information, education and entertainment.
15) News headlines and highlights – News features
16) Talk shows, interviews.
17) **Mid Semester Examination**
18) Radio audiences – audience participation – language and style
19) Target audience – script writing for radio
20) Nature and characteristics of television
21) Audio and visual elements
22) Script writing for television
23) Time factor – information and educational programmes
24) General and special audience programmes
25) Language and style of presentation
26) Entertainment programmes – audience participation
27) Understanding and using the Internet
28) Online journalism
29) Agricultural News – Agricultural technology – Newspapers online
30) e-journals – textual – language and style
31) e-magazine – textual – language and style
32) Multimedia support – contents online
33) Informational and educating market information
34) Content developing using links and text.

PRACTICAL SCHEDULE
1) Writing for the print media
2) Preparing and Editing news items for Newspapers.
3) Practicing photography.
4) Practicing videography
5) Visit to a newspaper organization.
6) Preparation of leaflets and folders.
7) Designing a cover for farm magazine.
8) Preparing the radio script
9) Practicing the radio script
10) Visit to FM radio station.
11) Practicing the script writing for television.
12) Designing visuals, graphics and Illustrations for television.
13) Designing a programme on Interview with farmer.
14) Preparation of short film
15) Visit to local TV channel
16) Visit to Doordharsan Kendra.
17) Preparation of Interview Schedule to study the farmer preference towards mass media.

COURSE OUTCOMES
CO 1: Develop skills about the art of script writing for different media.
CO 2: Practice and prepare for online journalism and web writing
CO 3: Develop skills to prepare and shoot the video programme.
CO 4: Prepare short films
CO 5: Practice and develop skill on efficient handing of digital camera.
CO – PO Mapping with POs of Agronomy

<table>
<thead>
<tr>
<th></th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>CO3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

REFERENCES

1) G.L. Ray and Sagar Mondal. 2010. Journalism, Farm Journalism and communication skills.
3) C. Bhaskaran & Kishore Kumar 2010. Farm journalism and media management, Agri. Teck, Udaipur.

E-RESOURCES

1. www.farmjournal.com
2. www.agriculturetoday.in
4. www.slideshow.net/handbookoffarmjournalism
5. www.mediacolleg.com

OPCAEX 712 INTRODUCTION TO VISUAL COMMUNICATION AND ADVERTISING TECHNOLOGIES (2+1)

Learning Objective
To enable the students to learn about
- Principles and concepts of visual communication
- Scope, concept and trends of advertising
- Various formats of advertising
- Elements of graphic design

THEORY

UNIT I - VISUAL COMMUNICATION

UNIT II - COLOUR PSYCHOLOGY AND TYPES OF MEDIA

Principles of Visual and other Sensory Perceptions. Colour psychology and theory - Optical / Visual Illusions - Types of Media – Print media, Electronic media and recent media in communication

UNIT: III - GRAPHIC DESIGN

Basic of Graphic Design, Definition, Elements of Graphic Design. The process of developing ideas – Verbal, Visual, Combination and thematic, visual thinking, design execution and presentation.

UNIT IV - IV ADVERTISING

UNIT V - TRENDS AND TYPES OF ADVERTISING

PRACTICAL

Geometrical Shapes - Perspectives - Light and shade - Story Board Colours - Visit to an advanced digital studio - Design ear panels - Design a visual dominant advertisement - Design a souls advertisement - Design an advertisement for a consumer product - Design a corporate advertisement - Design a public service advertisement - Design a testimonial advertisement - Design a comparative advertisement - Design an advertisement for brand promotion - Design an advertisement with emotional appeal - Design an advertisement with fear appeal - Design an advertisement with humor appeal

THEORY LECTURE SCHEDULE

1) Need for and the Importance of Visual Communication.
2) Communication as an expression, skill and process, Understanding Communication
3) Message, Meaning, Connotation, Denotation, Codes
4) Levels of communication, Technical, Semantic and Pragmatic
5) The semiotic landscape: language and visual communication, narrative representation
6) Principles of Visual and other Sensory Perceptions.
7) Colour psychology and theory
8) Optical / Visual Illusions
9) Types of Media
10) Print media, Electronic media
11) Recent media in communication
12) Basics of Graphic Design. Definition, Elements of Graphic Design
13) Design process-research, a source of concept, the process of developing ideas
14) Verbal, visual, combination and thematic
15) Visual thinking, associative techniques, materials, tools
16) Design execution, and presentation.
17) Mid semester Examination
18) Definition, Nature & Scope of advertising
19) Roles of Advertising
20) Societal, Communication, Marketing & Economic functions of advertising
21) Advertising based on target audience, geographic area
22) Corporate and Promotional Advertising
23) Web Advertising
24) Latest trends in advertising
25) Advertisement agency & its types, functions, services
26) Legal aspects & ethical issues in advertising
27) Communication Plan and Brand management
28) Positioning, Brand personality, Brand image, Brand equity
29) Conceptualization, Ideation, Visualization designing and layout
30) Copy writing – types of headlines
31) Slogans– types of slogans
32) Logos and Trademarks
33) Typography and Writing styles, Scripting and Story board
34) Advertising campaign-from conception to execution

PRACTICAL SCHEDULE
1) Practicing Geometrical Shapes in visual designs
2) Practicing Perspectives in visual designs
3) Practicing Light and shade in visual designs
4) Practicing Story Board Colours in visual designs
5) Visit to an advanced digital studio
6) Design ear panels
7) Design a visual dominant advertisement
8) Design a souls advertisement
9) Design an advertisement for a consumer product
10) Design a corporate advertisement
11) Design a public service advertisement
12) Design a testimonial advertisement
13) Design a comparative advertisement
14) Design an advertisement for brand promotion
15) Design an advertisement with emotional appeal
16) Design an advertisement with fear appeal
17) Design an advertisement with humorous appeal

COURSE OUTCOMES
CO 1 : Understand Principles and concepts of visual communication.
CO 2 : Design various formats of advertising.
CO 3 : Design web advertising.
CO 4 : Design various visual designs and develop story board colours.
CO 5 : Develop skill on designing farm advertisements.

CO – PO Mapping with POs of Agronomy

<table>
<thead>
<tr>
<th></th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>CO3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

REFERENCES
3) Practice of Advertising, Adrian R Mackay, Reed Elsevier India Pvt.Ltd, 2005
4) Handbook of Advertising, Christopher Jones, Nabu Press, 2010

E-RESOURCES
1. www.iadtdesign.com
2. www.pinterest.com
3. www.vcgcorporate.com
4. www.blog.bannersnack.com
5. www.wordstream.com
SUPPORTING COURSES
STA 611 STATISTICAL METHODS AND DESIGN OF EXPERIMENTS (2+1)

Learning objectives
- To emphasize the students to learn the principles and methods of statistics to carry out analysis of data obtained through experiments.

THEORY
Unit 1 Concepts in statistics
Population and sample, parameter and statistic - concept of sampling - simple random sampling - concept of probability distribution - binomial, poisson and normal distributions - F and Chi square distribution - estimation - point estimation - interval estimation - degrees of freedom - concept of sampling distribution - standard error - tests of significance based on t, z, (mean and equality of means only) - x^2 test for goodness of fit.

Unit II Correlation and Regression
Definition, types and methods of studying correlation - properties of correlation coefficient - regression - measuring and uses of regression analysis - properties - differences between correlation and regression. regression co-efficient - efficient - simple - linear - multiple linear regression co-efficient - efficient - standard error of estimate - test of significance of observed regression co-efficient and co-efficient of determination - non linear regression - misuses of correlation and regression in agricultural research.

Unit III Basic designs
Agricultural experiments: concepts - field studies - pot-culture - quantitative and qualitative variables - errors: sources of errors and estimate of errors - basic principles of design of experiments - CRD - RBD - LSD layout and their analysis - efficiency.

Unit IV Mean comparison and missing data
Comparison of treatments - least significant difference method - duncan’s multiple range test (DMRT) - missing plot technique in RBD and LSD (one and two missing) - concept of analysis of covariance - data transformation: logarithmic square root and arc sine.

Unit V Factorial experiments
Concept of factorial experiments - 2^r, 3^2 factorial experiments - principle of confounding in factorial experiments - confounding in 2^3 factorial experiments - split-pot design and strip - plot design.

PRACTICAL
Estimation of samples statistic viz., means, sd, se and cv. z-test, t-test and paired t-test - comparison of two variances using F-test-bartlett’s test for homogeneity of variances - Chi-square test for test of goodness of fit and homogeneity of ratio test for independence of attributes. Computation of correlation co-efficient and its significance - fitting of simple linear regression and testing the significance of regression co-efficient - multiple linear regressions fitting and testing - determination of optimum plot size using uniformity trial-analysis of CRD, RBD, LSD and DMRT - analysis of multi-observation data (sampling in rbd) - missing plot technique in RBD with one or two missing values - analysis of factorial experiments conducted in RBD - analysis of split-plot and strip-plot design - analysis of data with transformations.

THEORY LECTURE SCHEDULE
1. Definition of population and sample
2. Difference between parameter and statistic
3. Concept of sampling - simple random sampling
4. Concept of probability distribution - Binominal, Poisson and Normal distributions.
5. F and Chi square distribution
7. Concept of sampling distribution – Standard Error.
8. Tests of significance based on t, z, (mean and equality of means only). \(X^2\) test for goodness of fit.
9. Definition of correlation, significance and types
10. Properties of correlation coefficient
11. Definition of regression – measuring and uses of regression analysis properties.
12. Differences between correlation and regression.
13. Regression co-efficient - simple, linear.
14. Multiple linear regression co-efficient - standard error of estimate.
15. Test of significance of observed regression co-efficient and co-efficient of determination.

17. **Mid-semester examination**
20. Sources of errors and estimate of errors
21. Design of Experiments- Basic principles of CRD
22. Design of Experiments- Basic principles of RBD
23. Design of Experiments- Basic principles of LSD
24. Efficiency of designs -layout and their analysis
25. Comparison of treatments – least significant difference method
26. Duncan’s Multiple Range Test (DMRT).
27. Missing plot technique in RBD and LSD (one and two missing).
28. Concept of analysis of covariance
29. Data transformation: logarithmic square root and arc sine.
30. Concept of factorial experiments
31. \(2^2\), \(3^2\) Factorial experiments,
32. Principle of confounding in factorial experiments
33. Confounding in \(2^3\) Factorial experiments.
34. Split-pot design and strip – plot design.

PRACTICAL SCHEDULE
1. Estimation of samples statistic *viz.*, means, SD, SE and CV.
2. Z-test, t-test and paired t-test.
3. Comparison of two variances using F-test
5. Chi-square test for test of goodness of fit and homogeneity of ratio test for independence of attributes.
6. Computation of correlation co-efficient and it’s significance.
7. Fitting of simple linear regression and testing the significance of regression co-efficient.
8. Multiple linear regressions fitting and testing
10. Analysis of CRD.
11. Analysis of RBD
12. Computation of LSD and DMRT
13. Analysis of multi-observation data (sampling in RBD)
14. Missing plot technique in RBD with one or two missing values.
15. Analysis of Factorial experiments conducted in RBD
17. Analysis of data with transformations.
Course Outcomes
CO1: The students can understand the basic statistical concepts applied in agricultural research
CO2: Can apply statistical tools in design of experiments
CO3: Can acquire skills in analyzing statistical data efficiently

CO – PO Mapping

<table>
<thead>
<tr>
<th></th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>CO4</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

REFERENCES

COM 611 - COMPUTER APPLICATIONS FOR AGRICULTURAL RESEARCH
(1 + 1)

Learning Objectives
1. To understand the basics of Computer and to gain abundant knowledge in information technology.
2. To know how to use office automation tools to increase personal and academic productivity.
3. To get exposed to aspects of internet usage and to propagate the awareness of research facilities using browsing and searching.

Theory
Unit - I Introduction to Computer

Unit –II Word Processor & Spread Sheet Applications

Unit – III Database & Presentation
MS-Access – Creation of database, storing and retrieval - Table form – Adding records - SQL Query – using GUI to design printing layout - Report generation. MS-PowerPoint – Slide
preparation – Components of PowerPoint Ribbon – Adding slides with different layouts –
Design, Custom Animation and Transition effects.

Unit – IV Internet, Webpage Design & Networks
Introduction to Internet – Service providers - Web browser – Search engines – Internet
applications – Cyber Security – Types of Web Pages – HTML webpage design – Usage of
script language – Introduction to Computer Networks- Topologies – Network device -
Current trends in Networks & Internet.

Unit – V Agricultural Statistical Software
SAS, MSTAT, IRRISTAT, AGRES, AGRISTAT, STATISTICA, MANOVA, MANCOVA AND
SPSS.

THEORY LECTURE SCHEDULE
1. Introduction to Computers, Anatomy of Computers.
2. Input and Output devices, Units of memory, Hardware, Software and Classification
 of Computers.
3. Software, Categories of software, Operating System, Types of operating system.
4. Booting sequence of operating system, DOS, Windows, Unix, VIRUS.
5. Word Processor and their components of ribbon.
6. Creating, Editing and printing a document, Features of word Table creation, Insert
 menu option.
7. Creation of spreadsheets and their ribbon components.
8. Creating different types of graphs and working procedure of Aggregate function and
 data analysis.
10. Mid semester Examination
11. Creation, Storing and retrieval of data from database and report generation.
12. PowerPoint preparation, Different layouts, Design Custom Animation and
 Transition effects.
13. Introduction to Internet and its applications
14. Types of WebPages, Service providers, Web browser and Search engines
15. HTML and usage of script language.
17. SAS, MSTAT, IRRISTAT and AGRISTAT.
18. MANOVA, MANCOVA and SPSS.

PRACTICAL SCHEDULE
1. Introduction to Hardware, Software and Operating System.
2. Study of Dos and Unix Commands.
3. MS-Word – Create, Edit and Print a document and Ribbon features.
4. MS-Word – Formatting, Inserting, Table creation and Alignment.
5. MS-Word – Creating a Mail Merge.
6. MS-Excel – Inbuilt Functions, Chart preparations.
7. MS-Excel – Prepare Student mark sheet with Aggregate and draw chart.
8. MS-Excel – Prepare Employee payroll with Income tax and draw chart.
9. MS-Excel – Statistical Function and Data analysis tools.
10. MS-Access – Database Creation.
11. MS-Access – Insert, Update and Delete data from the database.
13. Webpage creation using basic HTML tags.
15. Email – Compose, Attaching, Browsing a webpage.
16. IRRISTAT, AGRESS
17. SPSS – Median, Mode Standard Deviation and Correlation.
18. SPSS – Regression for Linear and Non linear.

19. Model Practical Examination.

Course Outcomes
1. Understand the difference between an operating system and application program, and what each is used for in a computer.
2. Performing common basic functions like editing, formatting, printing, scanning etc using tools.
3. Ability to sort data, manipulate data using formulas and Statistical function and Data analysis tools.
4. Understanding methods and tools to design, implement in web pages and develop Web Application.
5. Gain expertise on application of spss

CO – PO Mapping with POs of Agronomy

<table>
<thead>
<tr>
<th></th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>

REFERENCES

NON CREDIT COMPULSARY COURSES
PGS 611 - AGRICULTURAL RESEARCH ETHICS AND METHODOLOGY (0 + 1)

Learning Objective
• Students will acquire awareness on conducting research with ethics
• To gain familiarity on need based research
• To develop experience on designing of field experiments for various agronomic situations
• To realize good laboratory techniques and practices
• To comprehend about plagiarism, copy right rules and techniques in writing the dissertation

Practical
Agricultural research system - need, scope, opportunities, role in food security, poverty reduction and environmental protection. Research ethics - research integrity, research safety in laboratories, Lab equipments, welfare of animals used in research, computer ethics,
standards and problems in research ethics-Good Laboratory Practices – Plagiarism and Copyright rules.

Research – Fundamental vs. applied research – research prioritization and selection of research problem – Research planning - review of literature - setting of objectives and hypothesis – research design and techniques – data collection - analysis – formulation of tables – interpretation of results and thesis writing – writing of research articles - Type and choice of experiment - Designing research programme for experimentation – Formulation and preparation of research / scheme proposal – Impact factor and citation index – different forms of writing in text - citation and references.

Layout of field experiment - Designing - sampling techniques - Use of experimental tools and equipments for recording observation and analysis – recording biometric observations - data analysis - Computer software - Tabulation and presentation - Guidelines for thesis and technical paper writing – Appraisal of published research articles - Collection of details on research periodicals - Guidelines for oral / poster presentations – Internet in scientific research.

PRACTICAL SCHEDULE

1. Agricultural research system – needs, scope, opportunities in the role of food security and poverty reduction.
2. Research ethics: research integrity, computer ethics, standards and problems in research ethics, plagiarism and copy right rules.
3. Research safety in laboratories, good laboratory practices and welfare of animals used in research and learning the use of various lab equipments required for agronomical research.
4. Research prioritization and selection of research problem, basic principles and objectives of the problem.
5. Designing and planning of research programme for field experimentation.
6. Selection of experimental sites and laying out field experiments for various experimental designs.
7. Recording growth parameters and its analysis.
8. Mid-semester examination
9. Writing review of literature using various sources of information.
10. Practice on writing materials and methods and ethics involved in the use of biological materials in the research.
11. Writing bibliography and references.
12. Practice in the use of various instruments for field research observations.
13. Recording of yield parameters and yield - tabulation, analysis of results and its Interpretation.
15. Practice on discussion of results.
16. Evaluation of research articles on National and International journals with impact factor and citation index.
17. Preparation of research projects/schemes proposal.

Course outcomes

CO 1: The course outcome will convey knowledge on research integrity, ethics and copyright rules
CO 2: The course outcome will augment the knowledge of the students in designing field experiments to address practical need of the farming community
CO 3: The course outcome will able to prioritize the research problem in a specific location
CO 4: The course outcome will assist the scholar in publishing quality research paper in indexed journals
CO 5: The course outcome will fortify the students to lead a research team
CO – PO Mapping with POs of Agronomy

<table>
<thead>
<tr>
<th></th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>CO4</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
</tbody>
</table>

REFERENCES

E-RESOURCES
1. www.onlineethics.org
2. http://ethics.ucsd.edu
3. http://naarm.org.in

PGS 612: TECHNICAL WRITING AND COMMUNICATION SKILLS (0+1)

Learning Objective
- To equip the students with skills Viz., writing of dissertations, research papers, etc. and to communicate and articulate in English.

Practical

Grammar - Tenses, parts of speech, clauses, punctuation marks; Error analysis - Common errors; Concord; Collocation; Phonetic symbols and transcription; Accentual pattern: Weak forms in connected speech; Participation in group discussion; Facing an interview; presentation of scientific papers. Proofreading.

Technical Writing - Various forms of scientific writings- theses, technical papers, reviews, manuals, etc; Structure of thesis and research communications (title page, authorship contents page, preface, introduction, review of literature, material and methods, experimental results and discussion); Writing of abstracts, summaries, précis, citations etc.; commonly used abbreviations in the theses and research communications; illustrations, photographs and drawings with suitable captions; pagination, numbering of tables and illustrations; Writing of numbers and dates in scientific write-ups; Editing and proof-reading; Writing of a review article.

PRACTICAL SCHEDULE
1. Grammar (Tenses, parts of speech)
2. Grammar (clauses, punctuation marks)
3. Error analysis (Common errors); Concord; Collocation;
4. Phonetic symbols and transcription;
5. Accentual pattern: Weak forms in connected speech
6. Participation in group discussion
7. Facing an interview; presentation of scientific papers.
8. Technical Writing- Various forms of scientific writings- theses,
technical papers
9. Mid -semester
10. Technical Writing- reviews, manuals
11. Structure of thesis and research communications
12. Writing of abstracts, summaries, précis, citations etc
13. Commonly used abbreviations in the theses and research communications
14. Illustrations, photographs and drawings with suitable captions
15. Pagination, numbering of tables and illustration, numbers and dates in scientific write-ups
16. Editing and proof-reading
17. Writing of a review article.

COURSE OUTCOMES:
At the end of the course, the students will obtain:
 CO1-Proficiency in the English language to express their views and ideas without any hindrance
 CO2-Competency in communication both written and oral
 CO3- Fluency in the English language.
 CO4-Word power to use the English language effectively.

<table>
<thead>
<tr>
<th>CO – PO Mapping with POs of Agronomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
</tr>
<tr>
<td>CO2</td>
</tr>
<tr>
<td>CO3</td>
</tr>
<tr>
<td>CO4</td>
</tr>
<tr>
<td>CO5</td>
</tr>
</tbody>
</table>

REFERENCES

PGS 623- BASIC CONCEPTS IN LABORATORY TECHNIQUES (0 + 1)
Learning Objectives
- To enlighten the students about the basics of commonly used techniques in laboratory at national and international levels
- To learn the appropriate basics of commonly used techniques and research methodologies adopted to carry out agriculture research problems.
- To learn the knowledge about various concepts and types of research laboratory techniques
- To able to design and follow original laboratory methods and will be able to do concise and persuasive scientific laboratory techniques
• To gain the experience in basic concepts in laboratory techniques and pursue quality research

PRACTICAL
Safety measures while in labs; Handling of chemical substances; use of burettes, pipettes, measuring cylinders, flasks, separator funnel, condensers and micropipettes. Washing, drying and sterilization of glassware; drying of solvents/ chemicals. Weighting and preparation of solutions of different strengths and their dilution; Handling techniques of solutions; preparations of different agro-chemical doses in field and pot applications; preparation of solutions of acids; Neutralisation of acid and bases; preparation of buffers of different strengths and pH values. Use and handling of vacuum pumps, viscometer, thermometer, magnetic stirrer, micro-ovens, incubators, sand bath and water bath. Use and handling of microscope and laminar flow; preparation of media—differential, selective and enriched media. Methods of sterilization—physical methods—dry and moist heat, cold, filtration and radiation, chemical methods and disinfectants.

PRACTICAL SCHEDULE
1. Safety measures in labs and handling of chemical substances.
2. Common laboratory equipments.
3. Calibration and cleanliness of volumetric glass wares.
5. Preparation of primary standard solutions and buffer solutions.
7. Preparation of different agro-chemical doses for field experiments, Preparation of buffer solutions,
8. Mid semester
9. Handling of instruments—vacuum pumps, thermometers, magnetic stirrer.
10. Handling of instruments—ovens, sand bath and water bath.
11. Handling and uses of microscopes and laminar flow.
12. Sterilization by physical methods.
13. Sterilization by chemical methods.
14. Preparation of different media for culturing the micro organisms.
15. Description of flowering plants—seed viability test and pollen fertility test.
16. Aseptic manipulations and media.
17. In vitro culture of different explants.

Course Outcomes
1. Have core knowledge leading to laboratory techniques and agriculture research system
2. To learn the various concept and terminologies for laboratory techniques.
3. Graduates will be acquiring knowledge about various laboratory techniques of national and international level.
4. Graduates will gain accurate and relevant analytical skill of different analytical skills and will have capacity interrupt information
5. Graduates will be able to develop a analytical skill like methods of soil and plant analysis
CO - PO Mapping with POs of Agronomy

<table>
<thead>
<tr>
<th></th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

REFERENCES

E-RESOURCES

2. Analytical chemistry Dr. michaelzehfus www.freebookcentre.net.
5. Short introduction into analytical chemistry Dr. manfredsietz and Dr. Andreassonnenberg www.freebookcentre.net.

PGS 624: LIBRARY AND INFORMATION SERVICES 0+1

Learning Objective

- To equip the library users with skills to trace information from libraries efficiently, to apprise them of information and knowledge resources, to carry out literature survey, to formulate information search strategies, and to use modern tools (Internet, OPAC, search engines etc.) of information search.

PRACTICAL

Introduction to library and its services; Role of libraries in education, research and technology transfer; Classification systems and organization of library; Sources of information- Primary Sources, Secondary Sources and Tertiary Sources; Intricacies of abstracting and indexing services - (Science Citation Index, Biological Abstracts, Chemical Abstracts, CABI Abstracts, etc.); Tracing - information from reference sources; Literature survey; Citation techniques/Preparation of bibliography; Use of CD-ROM Databases, Online Public Access Catalogue and other computerized - library services; Use of Internet including search engines and its resources; e-resources access methods.

PRACTICAL SCHEDULE

1. Introduction to library and its services
2. Role of libraries in education, research and technology transfer;
3. Classification systems and organization of library
4. Sources of information- Primary Sources
5. Sources of information - Secondary Sources and Tertiary Sources
6. Intricacies of abstracting and indexing services
7. Science Citation Index, Biological Abstracts, Chemical Abstracts, CABI Abstracts, etc.);
8. Tracing - information from reference sources; Literature survey
9. Mid- Semester
10. Citation techniques/Preparation of bibliography;
11. Use of CD-ROM Databases,
12. Online Public Access Catalogue and other computerized - library services
13. Online Public Access Catalogue and other computerized - library services
14. Use of Internet including search engines and its resources
15. Use of Internet including search engines and its resources
16. e-resources access methods.
17. e-resources access methods.

Course outcomes:
1. To equip the library users with skills to trace information from libraries efficiently,
2. To apprise them of information and knowledge resources,
3. To carry out literature survey, to formulate information search strategies, and
4. To use modern tools (Internet, OPAC, search engines etc.) of information search.

CO - PO Mapping with POs of Agronomy

<table>
<thead>
<tr>
<th></th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>2</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>CO5</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
</tbody>
</table>

PGS 715 INTELLECTUAL PROPERTY AND ITS MANAGEMENT IN AGRICULTURE
(1+0) (e-course)

Learning Objectives
- To create awareness about intellectual property rights in agriculture
- To explain management of patents, trademark, geographical indications, copy rights, designs, plant variety protection and biodiversity protection
- To understand marketing and commercialization of intellectual properties

THEORY

Unit - I: World trade organization - introduction
World Trade Organization - Agreement on Agriculture (AoA) and Intellectual Property Rights (IPR) - importance of intellectual property management - IPR and economic growth - IPR and bio diversity - major areas of concern in intellectual property management - technology transfer and commercialization - forms of different intellectual properties generated by agricultural research.

Unit - II: Patent document
Discovery versus invention - patentability of biological inventions - procedure for patent protection - preparatory work - record keeping, writing a patent document, filing the patent document - types of patent application - patent application under the Patent Cooperation Treaty (PCT).

Unit - III: Plant genetic resources
Plant genetic resources - importance and conservation - sui generic system - plant varieties protection and farmers’ rights act - registration of extinct varieties - registration and protection of new varieties / hybrids / essentially derived varieties - dispute prevention and settlement - farmers’ rights.

Unit - IV: Trademark
Trademark - geographical indications of goods and commodities - copy rights-designs - biodiversity protection.

Unit - V: Benefit sharing
Procedures for commercialization of technology - valuation, costs and pricing of technology - licensing and implementation of intellectual properties - procedures for commercialization - exclusive and non exclusive marketing rights - research exemption and benefit sharing.

THEORY LECTURE SCHEDULE
1. World Trade Organization - Agreement on Agriculture (AoA) and Intellectual Property Rights (IPR)
2. Importance of intellectual property management - IPR and economic growth - IPR and bio diversity
3. Major areas of concern in Intellectual property management - technology transfer and commercialization
4. Forms of different intellectual properties generated by agricultural research
5. Discovery versus invention patentability of biological inventions
6. Procedure for patent protection
7. Preparatory work - record keeping, writing a patent document, filing the patent document
8. Types of patent application - patent application under the Patent Cooperation Treaty (PCT)
9. Mid semester examination
10. Plant genetic resources - importance and conservation
11. Sui generic system - plant varieties protection and farmers’ rights act - registration of extant varieties
12. Registration and protection of new varieties / hybrids / essentially derived varieties - dispute prevention and settlement - farmers’ rights
13. Trade mark - geographical indications of goods and commodities - copy rights - designs
14. Biodiversity protection
15. Procedures for commercialization of technology - valuation, costs and pricing of technology
16. Licensing and implementation of intellectual properties - procedures for commercialization
17. Exclusive and non exclusive marketing rights - research exemption and benefit sharing

Course Outcomes
CO1: Understand the concepts in international trade.
CO2: Understand the procedure to obtain patent rights.
CO3: Know the way to protect extinct varieties.
CO4: Create awareness about geographical indications of goods and commodities.
CO5: Identify the way to commercialize intellectual properties.
CO – PO Mapping with POs of Agronomy

<table>
<thead>
<tr>
<th></th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>2</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO5</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

REFERENCES

PGS 716 DISASTER MANAGEMENT (1+ 0) (e-Course)

Learning Objectives
- Students will learn key concepts and types of natural disaster
- Students will acquire knowledge about climate change and its impact
- Students will understand about man made disaster and disaster response mechanisms in India
- Students will equip on disaster warning response and preparedness
- Students will acquire knowledge about climate resilient agriculture

THEORY
Unit I – Natural disaster
Natural Disasters - meaning and nature of natural disasters, their types and effects. Floods, drought, cyclone, earthquakes, landslides, avalanches, volcanic eruptions, heat and cold waves.

Unit II – Climate change
Climatic change - Global warming, sea level rise, ozone depletion, Manmade disasters - Nuclear disasters, chemical disasters, biological disasters.

Unit III – Man – made disaster
Building fire, coal fire, forest fire, oil fire, air pollution, water pollution, deforestation, industrial waste water pollution, disaster management- efforts to mitigate natural disasters at national and global levels – India’s key hazards, vulnerabilities and disaster response mechanisms in India.

Unit IV – Disaster warning, response and preparedness
Concept of disaster management, national disaster management framework; financial arrangements, role of NGOs, community-based organizations, and media - central, state, district and local administration. Dissemination of disaster warning, response to natural disasters, national, state, district level, relief – food and nutrition – water – health – mental health services.
Unit V – Rehabilitation

THEORY LECTURE SCHEDULE
1. Natural Disaster - meaning and nature of natural disasters, their types and effects.
2. Flood, drought, cyclone, earthquakes landslides, avalanches, volcanic eruptions, Heat and cold waves.
3. Climatic change- Global warming, sea level rise, ozone depletion
5. Building fire, coal fire, forest fire. oil fire.
6. Air pollution, water pollution, deforestation, industrial wastewater pollution.
7. Disaster management- efforts to mitigate natural disasters at national and global levels.
8. India’s key hazards, vulnerabilities and disaster response mechanism in India.
9. Mid-Semester examination
10. Concept of disaster management, national disaster management framework.
11. Financial arrangements, role of NGOs, community-based organizations and media.
12. Central, state, district and local administration.
13. Dissemination of disaster warning - response to natural disasters, national, state, district level.
17. Preparedness – Emergency Operations Centers (EOCS).

Course Outcomes:
CO 1: To learn different types of natural disasters
CO 2: To understand climate change, global warming and their mitigation
CO 3: To gain knowledge about disaster management and understand the importance of afforestation
CO 4: To acquire knowledge about disaster warnings
CO 5: To understand the importance of climate smart agriculture

<table>
<thead>
<tr>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO2</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
<td>3</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

REFERENCES

E-RESOURCES

2. https://searchworks.stanford.edu/
5. www.wcpt.org

PGS 717 CONSTITUTIONS OF INDIA(1+0)

Learning Objectives
- The main aim of this course is to make the students to understand the history of making of the Indian Constitution.
- This course will enable the students to know the philosophy of the Indian Constitution.
- This course will make the students to understand the nature of Indian Federalism, about the powers and functions of the President and Prime Minister of India.
- This course aims to sensitize the students on the administrative setup at the centre, state and local level.

Theory

Unit - I

Unit - II

Unit - III
Federal structure and distribution of legislative and financial powers between the union and the States-Parliamentary form of Government in India. The Constitution powers and status of the President of India. Amendment of the Constitutional Powers and Procedure.

Unit - IV

Unit - V

THEORY LECTURE SCHEDULE

2. Historical Perspective of the Constitution of India.
4. Scheme of the Fundamental Rights.
5. The scheme of the Fundamental Duties and its legal status.
7. Federal structure and distribution of legislative and financial powers between the union and the States.
8. Parliamentary form of Government in India
9. Mid-Semester Examination
10. The Constitution powers and status of the President of India.
12. The Historical perspectives of the constitutional amendments in India.
14. Local Self-Government – Constitutional Scheme in India.
15. Scheme of the Fundamental Right to Equality.
16. Scheme of the Fundamental Rights to certain Freedom under Article 19.

Course Outcome:
CO 1: Understanding the history of making of the Indian Constitution
CO 2: Understanding the philosophy of the Indian Constitution.
CO 3: Understanding the nature of Indian Federalism, about the powers and functions of the President and Prime Minister of India.
CO 4: Make the students abreast of the administrative setup at the centre, state and local level.

CO – PO Mapping with POs of Agronomy

<table>
<thead>
<tr>
<th></th>
<th>PO 1</th>
<th>PO 2</th>
<th>PO 3</th>
<th>PO 4</th>
<th>PO 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>-</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>CO3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CO4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>CO5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
</tbody>
</table>

REFERENCES
Proforma-1

PROFORMA FOR FORMATION OF RESEARCH ADVISORY COMMITTEE
(To be sent before the end of I Semester)

1. Name of the student :

2. Enrolment number: Reg. No. :

3. Degree :

4. Course :

5. Advisory Committee :

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Advisory Committee</th>
<th>Name, Designation and Department</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Chairperson</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Members</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Additional Member</td>
<td>Reasons for additional Member</td>
<td></td>
</tr>
</tbody>
</table>

Signature of Professor and Head

Additional members may be included only in the allied faculty related to thesis research with full justification at the time of sending proposals (Program of research).
Proforma-1a.

PROFORMA FOR CHANGE IN THE RESEARCH ADVISORY COMMITTEE

1. Name of the student :
2. Enrolment number: Reg. No.
3. Course :
4. Degree :
5. Proposed Change :

<table>
<thead>
<tr>
<th>Advisory Committee</th>
<th>Name and designation</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Existing member</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Proposed member</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. Reasons for change

Chairperson

Signature of Professor and Head
Proforma-2

PROFORMA FOR OUTLINE OF RESEARCH WORK (ORW)

(To be sent before the end of I Semester)

1. Name :
2. Enrolment number: Reg. No.
3. Degree :
4. Course :
5. Date of Joining :
6. Title of the research project :
7. Objectives :
8. Duration :
9. Review of work done :
10. Broad outline of work/methodology :
11. Semester wise break up of work :

Signature of student

Approval of the advisory committee

<table>
<thead>
<tr>
<th>Advisory committee</th>
<th>Name</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chairperson</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Members</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Professor and Head
Proforma-2a

PROFORMA FOR CHANGE IN OUTLINE OF RESEARCH WORK (ORW)

1. Name :

2. Enrolment number: Reg. No

3. Degree :

4. Course

5. Reasons for change :

6. Proposed change in the approved Program of research :

7. Number of credits completed so far Under the approved program :

8. a. Whether already earned credits are to be retained or to be deleted :

 b. if retained, justification :

 Signature of the student

Approval of the Advisory Committee

<table>
<thead>
<tr>
<th>Advisory committee</th>
<th>Name</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chairperson</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Members</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Professor and Head
Proforma 3

DEPARTMENT OF AGRONOMY
PROFORMA FOR EVALUATION OF SEMINAR

1. Name of the candidate :
2. Register Number :
3. Degree programme :
4. Semester :
5. Topic of the seminar and credit :
6. Distribution of marks

<table>
<thead>
<tr>
<th>Distribution of marks</th>
<th>Max Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>i. Literature coverage</td>
<td>40</td>
</tr>
<tr>
<td>ii. Presentation</td>
<td>30</td>
</tr>
<tr>
<td>iii. Use of audio – visual aid</td>
<td>10</td>
</tr>
<tr>
<td>iv. Interactive skills</td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
</tbody>
</table>

Name

<table>
<thead>
<tr>
<th>Designation</th>
<th>H.O.D</th>
<th>Chairperson</th>
<th>Member 1</th>
<th>Member 2</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Grade point

Head of the Department
Proforma-4

PROFORMA FOR REGISTRATION OF RESEARCH CREDITS
(To be given during first week of semester)

PART A: PROGRAM

Semester: Year: Date of registration:

1. Name of the student and
2. Enrolment number: Reg. No.:
3. Total research credits completed so far:
4. Research credits registered during the semester:
5. Program of work for this semester (list out the
 Items of research work to be undertaken during
 the semester):

<table>
<thead>
<tr>
<th>Advisory committee</th>
<th>Name</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chairperson</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Members</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Approval of advisory committee

Approval may be accorded within 10 days of registration

Professor and Head
Proforma-5

PROFORMA FOR EVALUATION OF RESEARCH CREDITS

PART B EVALUATION

(Evaluation to be done before the closure of Semester)

Date of Commencement semester : Date of closure of semester:

Date of evaluation :

1. Name of the student

2. Enrolment number : Reg. No. :

3. Total research credits completed so far:

4. Research credits registered during the semester:

5. Whether the research work has been carried out as per the approved program:

6. If there is deviation specify the reasons :

7. Performance of the candidate : SATISFACTORY / NOT SATISFACTORY

Approval of the advisory committee

<table>
<thead>
<tr>
<th>Advisory committee</th>
<th>Name</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chairperson</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Members</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Professor and Head
Proforma-6

PROFORMA FOR THE PROPOSAL OF QUALIFYING EXAMINATION

1. Name of the student:

2. Enrolment number: Reg. No.:

3. Degree:

4. Course:

5. Whether all major courses have been completed:

6. No. of credits completed:

7. Whether he/she has an overall GPA of above 6.5:

8. Title of thesis:

9. Panel of external examiners:

10. Remarks:

Signature of Chairman with Name and designation

Professor and Head
Proforma-7

PROFORMA FOR COMMUNICATION OF RESULTS OF QUALIFYING EXAMINATION

1. Name of the student:
2. Enrolment number: Reg. No.:
3. Degree:
4. Course:
5. Department:
6. Date of examination:
7. Result (Successful / not Successful*):
8. Remarks:
 (* to be written by the external examiner)

<table>
<thead>
<tr>
<th>Examination committee</th>
<th>Name</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chairperson</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Members</td>
<td></td>
<td></td>
</tr>
<tr>
<td>External Examiner</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Professor and Head

Note if this is the re-exam the date of previous examination may be indicated
Proforma-8

ANNAMALAI UNIVERSITY
FACULTY OF AGRICULTURE
DEPARTMENT OF AGRONOMY
PROFORMA FOR EVALUATION OF THESIS

1. Name of the examiner:
2. Postal Address:
3. Telephone/Mobile:
4. E-Mail:
5. Name of the candidate :
6. Title of the thesis:
7. Date of receipt of the thesis copy:
8. Date of dispatch of the detailed report and thesis by the examiner to the Controller of Examinations:
9. Examiner’s recommendations choosing one of the following based on quality of thesis
 Please give your specific recommendation (select any one decision from the list below) with your signature and enclose your detailed report in separate sheet(s).
 a. I recommend that the thesis entitled __
 __
 --submitted by ___________________________ be accepted for award of the Degree of MASTER OF
 SCIENCE (AGRICULTURE) of Annamalai University, Annamalainagar. (OR)
 b. I do not recommend the acceptance of the thesis entitled
 __
 __
 ----------- submitted by ___________________________ for award of the Degree of MASTER OF
 SCIENCE (AGRICULTURE) of Annamalai University, Annamalainagar. (Please specify reasons)

Date :

Signature with Office Seal:

Note: Please enclose a detailed report in duplicate duly signed by you giving the merits and demerits of the thesis on the choice of problem, review of literature, methods followed, results and discussion, etc.
PROFORMA FOR REPORT OF THE FINAL VIVA VOCE EXAMINATION

The meeting of the Examining Committee for Mr./Ms. ____________________________
M.Sc.(Ag.)./(Hort.)./Agri Business Management Student Reg. No. ____________ majoring in ______
-------------------------------------was held at ______a.m./p.m on ________________

The following members were present:
1. ____________________________ : Chairperson
2. ____________________________ : Members
3. ____________________________

The committee took note of the report of the external examiner Dr. ____________-recommending
the thesis for acceptance.

The final viva voce examination for the candidate was conducted by the members of the Advisory
Committee. The performance of the candidates was Satisfactory/ not Satisfactory.
The Committee recommends/ does not recommend unanimously the award of Degree of
M.Sc.(Ag.)./(Hort.)./Agri Business Management to Mr./Ms.__________________________

1. Chairperson
2. Member
3. Member

The original report from the External Examiner is attached herewith

Chairperson of the Advisory Committee

Professor and Head
CERTIFICATE FOR HAVING CARRIED OUT THE SUGGESTIONS OF THE EXTERNAL EXAMINER AND ADVISORY COMMITTEE

Certified that Mr./ Ms. -- Reg. No. -------------has carried out all the corrections and suggestions as pointed out by the External examiner and the Advisory Committee. He/She has submitted TWO copies of his/ M.Sc.(Ag.)./(Hort.)/Agri Business Management thesis in hard bound cover and two soft copies in CD format, two copies each of the abstract of thesis and summary of the findings both in Tamil and English in CD format.

Chairperson

Professor and Head
ANNAMALAI UNIVERSITY

FACULTY OF AGRICULTURE
DEPARTMENT OF AGRONOMY

CERTIFICATE

This is to certify that the thesis entitled “--” submitted in partial fulfillment of the requirements for the award of the degree of ------------------- to Annamalai University, Annamalainagar is a record of bonafide research work carried out by ---- -------------------, under my guidance and supervision and that no part of this thesis has been submitted for the award of any other degree, diploma, fellowship or other similar titles or prizes and that the work has been published / not been published in part or full in any scientific or popular journals or magazines.

Chairperson

1. Member
2. Member