B.F.Sc. Syllabus
(2016 – 2017)
<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>BFSC 101</td>
<td>Taxonomy of Finfish</td>
<td>3 (1+2)</td>
</tr>
<tr>
<td></td>
<td>BFSC 102</td>
<td>Biology of finfish and Shellfish</td>
<td>3 (2+1)</td>
</tr>
<tr>
<td></td>
<td>BFSC 103</td>
<td>Fundamentals of Microbiology</td>
<td>3 (2+1)</td>
</tr>
<tr>
<td></td>
<td>BFSC 104</td>
<td>Fisheries Statistics</td>
<td>2 (1+1)</td>
</tr>
<tr>
<td></td>
<td>BFSC 105</td>
<td>Information and Communication Technology</td>
<td>2 (1+1)</td>
</tr>
<tr>
<td></td>
<td>BFSC 106</td>
<td>Freshwater Aquaculture</td>
<td>3 (2+1)</td>
</tr>
<tr>
<td></td>
<td>BFSC 107</td>
<td>Soil and Water Chemistry</td>
<td>3 (1+2)</td>
</tr>
<tr>
<td></td>
<td>BFSC 108</td>
<td>Aquatic Ecology and Biodiversity</td>
<td>3 (2+1)</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>22 (12 + 10)</td>
</tr>
<tr>
<td>Second</td>
<td>BFSC 201</td>
<td>Taxonomy of Shellfish</td>
<td>3 (1+2)</td>
</tr>
<tr>
<td></td>
<td>BFSC 202</td>
<td>Anatomy of Finfish and Shellfish</td>
<td>3 (2+1)</td>
</tr>
<tr>
<td></td>
<td>BFSC 203</td>
<td>Limnology</td>
<td>3 (2+1)</td>
</tr>
<tr>
<td></td>
<td>BFSC 204</td>
<td>Marine Biology</td>
<td>3 (2+1)</td>
</tr>
<tr>
<td></td>
<td>BFSC 205</td>
<td>Fish Nutrition and Food Technology</td>
<td>3 (2+1)</td>
</tr>
<tr>
<td></td>
<td>BFSC 206</td>
<td>Culture of fish food organisms</td>
<td>2 (1+1)</td>
</tr>
<tr>
<td></td>
<td>BFSC 207</td>
<td>Aquaculture Engineering</td>
<td>3 (2+1)</td>
</tr>
<tr>
<td></td>
<td>BFSC 208</td>
<td>Principles of Biochemistry</td>
<td>3 (2+1)</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>23 (14 + 9)</td>
</tr>
<tr>
<td>Third</td>
<td>BFSC 301</td>
<td>Physiology of Finfish and shellfish</td>
<td>3 (2+1)</td>
</tr>
<tr>
<td></td>
<td>BFSC 302</td>
<td>Ornamental Fish Production and Management</td>
<td>2 (1+1)</td>
</tr>
<tr>
<td></td>
<td>BFSC 303</td>
<td>Fish Genetics and breeding</td>
<td>2 (1+1)</td>
</tr>
<tr>
<td></td>
<td>BFSC 304</td>
<td>Oceanography and Meteorology</td>
<td>3 (2+1)</td>
</tr>
<tr>
<td></td>
<td>BFSC 305</td>
<td>Food Chemistry and fish nutrition</td>
<td>2 (1+1)</td>
</tr>
<tr>
<td></td>
<td>BFSC 306</td>
<td>Fish Canning and Packaging Technology</td>
<td>3 (1+2)</td>
</tr>
<tr>
<td></td>
<td>BFSC 307</td>
<td>Biochemical Techniques and Instrumentation</td>
<td>3 (1+2)</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>18 (9 + 9)</td>
</tr>
<tr>
<td>Fourth</td>
<td>BFSC 401</td>
<td>Inland and Marine Fisheries</td>
<td>3 (2+1)</td>
</tr>
<tr>
<td></td>
<td>BFSC 402</td>
<td>Microbiology of fish and fishery products</td>
<td>2 (1+1)</td>
</tr>
<tr>
<td></td>
<td>BFSC 403</td>
<td>Fish Products and by products Technology</td>
<td>4 (2 + 2)</td>
</tr>
<tr>
<td></td>
<td>BFSC 404</td>
<td>Pharmacology</td>
<td>3 (2 + 1)</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Credits (Lecture + Practical)</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>------------------------------</td>
<td></td>
</tr>
<tr>
<td>BFSC 405</td>
<td>Freshwater Finfish and shellfish breeding and hatchery management</td>
<td>3 (2 + 1)</td>
<td></td>
</tr>
<tr>
<td>BFSC 406</td>
<td>Fish Gear Technology</td>
<td>3 (2 + 1)</td>
<td></td>
</tr>
<tr>
<td>BFSC 407</td>
<td>Fisheries economics</td>
<td>3 (2 + 1)</td>
<td></td>
</tr>
<tr>
<td>BFSC 408</td>
<td>Disaster Management in Fisheries</td>
<td>1 (1 + 0)</td>
<td></td>
</tr>
<tr>
<td>BFSE 409</td>
<td>Rural Sociology and Psychology (Non-credit Compulsory)</td>
<td>1 (0 + 1)</td>
<td></td>
</tr>
<tr>
<td>BFSC 501</td>
<td>Coastal Aquaculture and Mariculture</td>
<td>3 (2 + 1)</td>
<td></td>
</tr>
<tr>
<td>BFSC 502</td>
<td>Marine Finfish and Shellfish breeding and hatchery management</td>
<td>3 (2 + 1)</td>
<td></td>
</tr>
<tr>
<td>BFSC 503</td>
<td>Fish diseases and Management</td>
<td>4 (2 + 2)</td>
<td></td>
</tr>
<tr>
<td>BFSC 504</td>
<td>Fisheries Marketing and Finance</td>
<td>3 (2 + 1)</td>
<td></td>
</tr>
<tr>
<td>BFSC 505</td>
<td>Fishing Craft Technology</td>
<td>2 (1 + 1)</td>
<td></td>
</tr>
<tr>
<td>BFSC 506</td>
<td>Navigation and Seamanship</td>
<td>2 (1 + 1)</td>
<td></td>
</tr>
<tr>
<td>BFSC 507</td>
<td>Fish population dynamics and stock assessment</td>
<td>3 (2 + 1)</td>
<td></td>
</tr>
<tr>
<td>BFSC 508</td>
<td>Fisheries Administration and Legislation</td>
<td>2 (2 + 0)</td>
<td></td>
</tr>
<tr>
<td>BFSE 509</td>
<td>First aid training (Non-credit compulsory)</td>
<td>1 (0 + 1)</td>
<td></td>
</tr>
<tr>
<td>BFSC 601</td>
<td>Fish quality assurance</td>
<td>2 (1+1)</td>
<td></td>
</tr>
<tr>
<td>BFSC 602</td>
<td>Fish freezing Technology</td>
<td>3 (2 + 1)</td>
<td></td>
</tr>
<tr>
<td>BFSC 603</td>
<td>Fisheries Biotechnology and bioinformatics</td>
<td>2 (1 + 1)</td>
<td></td>
</tr>
<tr>
<td>BFSC 604</td>
<td>Refrigeration and Equipment Engineering</td>
<td>3 (2 + 1)</td>
<td></td>
</tr>
<tr>
<td>BFSC 605</td>
<td>Introduction to fish Business Management</td>
<td>2 (1 + 1)</td>
<td></td>
</tr>
<tr>
<td>BFSC 606</td>
<td>Toxicology</td>
<td>2 (1 + 1)</td>
<td></td>
</tr>
<tr>
<td>BFSC 607</td>
<td>Chemotherapy and drugs in Aquaculture</td>
<td>2 (1 + 1)</td>
<td></td>
</tr>
<tr>
<td>BFSC 608</td>
<td>Aquatic Pollution and Coastal Zone Management</td>
<td>3 (2 + 1)</td>
<td></td>
</tr>
<tr>
<td>BFSC 609</td>
<td>Fisheries extension Education</td>
<td>3 (2 + 1)</td>
<td></td>
</tr>
<tr>
<td>BFSE 610</td>
<td>All India Study Tour (Non-credit Compulsory)</td>
<td>1 (0 + 1)</td>
<td></td>
</tr>
<tr>
<td>BFSC 701</td>
<td>ELP in Aquafarming</td>
<td>10 (0 + 10)</td>
<td></td>
</tr>
<tr>
<td>BFSC 702</td>
<td>ELP in Fish Post Harvest Technology</td>
<td>10 (0 + 10)</td>
<td></td>
</tr>
<tr>
<td>BFSC 801</td>
<td>In plant Training</td>
<td>20 (0 + 20)</td>
<td></td>
</tr>
</tbody>
</table>

Total
- Fifth: 22 (14 + 8)
- Sixth: 22 (13 + 9)
- Seventh: 20 (0 + 20)
- Eighth: 20 (0 + 20)

Grand Total: 169 (76 + 93)
BFSC 101. TAXONOMY OF FINFISH (1+2)

THEORY

UNIT I

UNIT II
Major taxa of inland and marine fishes up to family level.

UNIT III
Commercially important freshwater fishes of India and their morphological characteristics

UNIT IV
Commercially important marine fishes of India and their morphological characteristics

UNIT V
Other important groups of aquatic vertebrates. Introduction of modern taxonomic tools: karyotaxonomy, protein analysis and DNA polymorphism.

PRACTICAL
Collection and identification of commercially important inland and marine fishes. Study of their external morphology and diagnostic features. Modern taxonomic tools - Protein analysis and electrophoretic studies; Karyotaxonomy - chromosome preparation and identification. DNA polymorphism; Visit to fish landing centres to identify commercially important fishes and catch composition.
BFSC 102. BIOLOGY OF FINFISH AND SHELLFISH (2+1)

THEORY

UNIT I
Food and feeding habits - Categories / classification of fish food - Fish food preferences - Major fish feeding types - Feeding adaptations in fishes - Detection of food by fishes - Feeding periodicity - Food and feeding habits of important finfish and shellfish species / groups

UNIT II
Gut content analysis - Importance and limitations of gut content analysis - Feeding intensity - Methods of Gut Content Analysis.

Age and growth - Importance of studying age and growth in fishes - Growth model - Methods of age determination by using hard parts and by length frequency analysis.

UNIT IV
Reproductive biology - Different types / modes of reproduction in finfish and shellfish; primary and secondary sexual characters - Maturation and spawning - Different methods of estimation of fecundity - Various reproductive strategies - Parental care - Developmental stages in the life of finfish and shellfish species - General characteristics of eggs and larvae - Different types of eggs / larvae.

UNIT V
Marking and tagging techniques - Purpose of marking and tagging finfish and shellfish species - Group marking techniques - Individual external / internal marking techniques.

PRACTICAL
BFSC 103. FUNDAMENTALS OF MICROBIOLOGY (2+1)

THEORY

UNIT I

UNIT II

UNIT III

– Transformation – Transduction - Transduction – Plasmids - Protoplasts and Spheroplasts
UNIT IV

UNIT V

Immunology - General or Non specific host immune defence mechanisms - Characteristics of Immunoglobulin – Immunity - Immunological methods of detection of Microbial pathgens. Viral types and Diseases - Virus – Host Interactions - Viral interference and interferon - Control of viral infections. Pathogenicity and virulence - Diseases Classification - Portals of Entry: Transmission of infectious agents - Bacterial Human Diseases - Fungal human Diseases

PRACTICAL

BFSC 104. FISHERIES STATISTICS (1+1)

THEORY

UNIT I

Definition of statistics; Fisheries statistics, Basic concepts of population and sample, random sampling; Collection of data, census enumeration and sample surveys, their advantages and disadvantages, preparation of schedules and questionnaires.

UNIT II

Diagrammatic and graphical representation of data – bar diagrams, pie-diagram, histogram, frequency polygon, frequency curve and ogive.

UNIT III

Important measures of central tendency – arithmetic mean, median and mode, relative merits and demerits of these measures; Important measures of dispersion – range, mean deviation, variance and standard deviation, relative merits and demerits of these measures.

UNIT IV

Introduction to statistical inference, general principles of testing of hypothesis - types of errors. Tests of significance based on normal, t, chi-square and F distributions.
UNIT V
Bivariate data, scatter diagram, simple linear correlation, measure and properties; simple linear regression, equation and fitting; relation between correlation and regression. Length weight relationship in fishes; applications of linear regression in fisheries. Methodology for estimation of marine fish landings in India, Estimation of inland fish production in India and problems encountered.

PRACTICAL
Construction of questionnaires and schedules, presentation of data using different diagrams and graphs, computation of different measures of central tendency and dispersion of fisheries data. Test of hypothesis based on normal, t, chi-square and F distributions. Simple correlation and regression. Fitting of length-weight relationship in fishes.

BFSC 105. INFORMATION AND COMMUNICATION TECHNOLOGY (1+1)

THEORY

UNIT I

UNIT II

UNIT III

UNIT IV
Data communication networks - Stand-alone and communication modes – telecommunication – data communication — communication using modem - Computer networks: Local Area network, Wide Area Network, Metropolitan Area Network, intranet - Internet - Client-
server networks - Peer-to-peer networks - Value-added networks - Network topologies: Hierarchical (or tree) topology - Linear bus (or horizontal) topology - Star topology - Ring (or hub) topology - Hybrid (or mesh) topology- Network Protocols and software - Network Applications: Bulletin board service (BBS) - Information services – Telecommuting -Teleconferencing - Workgroup computing - Electronic funds transfer (EFT) - Electronic data interchange (EDI) - Electronic commerce.

UNIT V

PRACTICAL
Exercises on binary number system, algorithm and flow chart; MS Word; MS Excel; MS PowerPoint; Internet applications: Web Browsing, Creation and operation of Email account; Analysis of fisheries data using MS Excel.

BFSC 106. FRESHWATER AQUACULTURE (2+1)

THEORY

UNIT I

UNIT II

UNIT III
Selection criteria of quality seeds – transportation technique of fish seeds – Acclimatization of seeds – Traits of important cultivable fish and shellfish.

UNIT IV
Culture methods – Indian major carps – Exotic carps – Minor carps – culture of air breathing fish species – culture of freshwater prawns- culture of coldwater fishes – culture of

UNIT V

PRACTICAL

BFSC 107. SOIL AND WATER CHEMISTRY (1+2)

THEORY

UNIT I

UNIT II

Water analysis: Collection and preservation of water samples. Measurement of temperature, transparency, turbidity, pH, electrical conductivity, salinity, chlorinity, total solids (TDS, TSS, TVS, TVDS); Determination of dissolved oxygen free CO₂, total alkalinity, total hardness, calcium, magnesium, ammonia, nitrite, nitrate and phosphorus.
UNIT III

UNIT IV

UNIT V

PRACTICAL

BFSC 108. AQUATIC ECOLOGY AND BIODIVERSITY (2+1)

THEORY

UNIT I

UNIT II

Energy Environment; Energy flow, Concepts of Productivity; Measurement of primary productivity; Trophic Levels, and Examples; Ecological Pyramids. Biogeochemical Cycles; Patterns and Basic types, cycling of organic nutrients; Pathways, Limiting factors and governing laws. Ecological Indicators.

UNIT III
Community Ecology; The biotic community, Ecological Dominance; community analysis; species diversity in communities; patterns in communities, ecotones, Population ecology; population group properties, population density and indices of relative abundance. Types of interaction – animal association- Symbiosis, commensalisms, parasitism, etc., Autoecology: Concepts of habitat and ecological Niche; Natural Selection; Artificial Selection.

UNIT IV

UNIT V

PRACTICAL
Visit to a lake, natural pond\estuaries\swamp\marsh\river\flood plain\reservoir and marine protected areas. Study of the habitat, biotic communities, and species diversity and their adaptive characters\associations. Visit to a mangrove forest, collection and identification of mangrove flora and fauna. Visit to a rocky shore to study zonation and physico-chemical conditions. Collection and identification of Rocky shore flora and fauna. Visit to a sandy shore shore to study zonation and physico-chemical conditions. Collection and identification of sandy shore flora and fauna. Visit to a muddy shore to study zonation and physico-chemical conditions. Collection and identification of muddy shore flora and fauna. Visit to marine structures on the coast, collection and identification of Borers and Fouler organisms, assessment of the damages and appraisal of remedial measures. Visit to a marine park/sanctuary. Understanding the steps involved in protecting endangered habitats and species (Horse shoe crab, Marine turtles, sharks and marine mammals.)
II SEMESTER

BFSC 201. TAXONOMY OF SHELLFISH (1+2)

THEORY

UNIT I
Study of external morphology and meristic characteristics of crustacean.

UNIT II
Study of external morphology and meristic characteristics of Mollusca.-Gastropoda, Monoplacophora, Amphineura,

UNIT III
Study of external morphology and meristic characteristics of Mollusca-Bivalvia, Cephalopod, Scaphopoda

UNIT IV
Classification of crustacean up to the level of species with examples of commercially important species.

UNIT V
Classification of mollusca up to the level of species with examples of commercially important species.

PRACTICAL
Study of external morphology. Collection, preservation and identification of commercially important prawns, shrimps crabs, lobsters, bivalves, gastropods, cephalopods from natural habitats. Field visits for collection and identification of commercially important shellfishes.

BFSC 202. ANATOMY OF FINFISH AND SHELLFISH (2+1)

THEORY

UNIT I
External anatomy; Oral region and its associated structure; Digestive system and its associated glands - Cell structure, tissue and body organization - External anatomy of teleost; elasmobranch; crustacean (Eg. Palaemon prawn / penaeid shrimp), gastropod (Eg. Apple snail), bivalve (Eg. Freshwater mussel) and cephalopod (Eg. Cuttlefish) - Oral region and its associated structures; digestive system and associated digestive glands of teleost; elasmobranch; crustacean (Eg. Palaemon prawn / penaeid shrimp), gastropod (Eg. Apple snail), bivalve (Eg. Freshwater mussel) and cephalopod (Eg. Cuttlefish)
UNIT II
Circulatory System - Circulatory system of teleost; elasmobranch; crustacean (Eg. Palaemon prawn / penaeid shrimp), gastropod (Eg. Apple snail), bivalve (Eg. Freshwater mussel) and cephalopod (Eg. Cuttlefish)

UNIT III
Respiratory and Skeletal systems - Respiratory system of teleost; elasmobranch; crustacean (Eg. Palaemon prawn / penaeid shrimp), gastropod (Eg. Apple snail), bivalve (Eg. Freshwater mussel) and cephalopod (Eg. Cuttlefish) - Skeletal system of teleost / elasmobranch.

UNIT IV
Reproductive & Excretory systems (Urino-genital system) and Endocrine system - Reproductive and Excretory systems (Urino-genital system) of teleost; elasmobranch; crustacean (Eg. Palaemon prawn / penaeid shrimp), gastropod (Eg. Apple snail), bivalve (Eg. Freshwater mussel) and cephalopod (Eg. Cuttlefish) - Endocrine systems of teleost; elasmobranch; crustacean (Eg. Palaemon prawn / penaeid shrimp), gastropod (Eg. Apple snail), bivalve (Eg. Freshwater mussel) and cephalopod (Eg. Cuttlefish).

UNIT V
Nervous system and Sense organs - Nervous system of teleost; elasmobranch; crustacean (Eg. Palaemon prawn / penaeid shrimp), gastropod (Eg. Apple snail), bivalve (Eg. Freshwater mussel) and cephalopod (Eg. Cuttlefish) - Sense organs of teleost; elasmobranch; crustacean (Eg. Palaemon prawn / penaeid shrimp), gastropod (Eg. Apple snail), bivalve (Eg. Freshwater mussel) and cephalopod (Eg. Cuttlefish).

PRACTICAL
Dissection of different shellfishes and finfishes to understand their internal organs – digestive, respiratory, excretory, nervous, circulatory and skeletal systems and also on sensory organs. Structure of endocrine glands.

BFSC 203. LIMNOLOGY (2+1)

THEORY

UNIT I
Introduction – Definition, Division, History, Development of Limnology, Early freshwater investigation; Inland water – Types, Identities and distribution, Lotic and lentic environments and their dynamics; Ponds, lakes, streams, rivers; Lakes – Origin, size, depth, Lake margins; Diversity; Famous lakes of the world and India.

UNIT II
Nature of inland water environments – Physical conditions and related phenomena; Morphometry, Physical features of water; Pressure, Compressibility, Density; Mobility, Buoyancy, Movements of water; Surface film, Temperature; Light, Colour of water, Turbidity; Chemical
conditions and related phenomena – Dissolved gases, Dissolved solids; Dissolved inorganic solids, Dissolved organic matter; Hydrogen ion concentration – Acidity, Alkalinity, Neutrality; Biological relations – Influence of physical and chemical conditions on living organisms in inland waters: Shoreline; Productive volume, flotation phenomena, Body form adjustments; Relations of organisms to movements of water, surface film relations, temperature relations, light relations; Relations of dissolved oxygen, relations of carbon dioxide; Relations of other dissolved gases – Methane, Hydrogen sulfide; Nitrogen, Ammonia, Carbon monoxide, Dissolved solids, other elements, dissolved organic matter etc.

UNIT III
Plankton - Planktonic organisms, Classifications of plankton; Distribution of plankton – General geographic distribution; Horizontal distribution, Vertical distribution; Seasonal changes of body form in planktonic organisms; Food of planktonic organisms, Primary productivity; Aquatic plants – Character, Classification, Zonation, Seasonal relations; Quantity produced, Chemical composition, Distribution in different waters, Limnological role

UNIT IV
Nekton – Composition, Distribution, movements; Benthos – Classification of benthic regions, Periphyton, Zonation, Distribution of benthos; Quantitative and qualitative movements and migrations of benthos, Seasonal changes in benthos, Origin and performance of profundal bottom fauna; Biological productivity – Circulation of food material, classification of lakes based on productivity; Laws of minimum, Biotic potential and environmental resistance, Quantitative relations in a standing crop; Trophic dynamics, Successional phenomena, Indices of productivity in Lakes, Artificial enrichment

UNIT V
Lotic environments – Running waters in general, Physical conditions; Water movements, Temperature, Turbidity, Light, Classifications of lotic environments; Biological conditions, Productivity features of lotic environments, Influence of currents, Plant growths; Plankton, Nekton, Benthos, Temporary and head water streams, General ecological succession.

PRACTICAL
Morphometry of lakes, ponds and streams; Determination of physical characteristics of lentic water bodies; Determination of chemical characteristics of lentic water bodies; Determination of physical characteristics of lotic water bodies; Determination of chemical characteristics of lotic water bodies; Collection and identification of freshwater phytoplankton; Enumeration and biomass estimation of freshwater phytoplankton; Estimation of primary productivity in fresh water bodies; Collection and identification of freshwater zooplankton; Enumeration and biomass estimation of freshwater zooplankton; Collection and identification of benthos from lakes and ponds, streams, canals; Enumeration and biomass estimation of benthos from lakes, ponds, streams and canals; Collection and identification of aquatic plants from different freshwater bodies; Methodology for collection and identification of bacteria in freshwater bodies; Enumeration and biomass estimation of bacteria in freshwater bodies.

BFSC 204. MARINE BIOLOGY (2+1)
THEORY

UNIT I
Division of marine environment; General account of major groups of phytoplankton Classification of diatoms and their reproduction; Classification of dinoflagellates and their importance; Major zooplankton groups.

UNIT II
Environmental factors affecting life in the ocean; Primary production and factors affecting primary production; Geographical and seasonal variation in plankton production; Marine food chains; Energy flow and food web, Marine food chains;

UNIT III
Vertical migration of zooplankton; Phytoplankton – Zooplankton relationship. Plankton and fisheries Benthos in rocky, sandy and muddy shore; Inter tidal ecology- Introduction; Ecology of rocky inter tidal zone; Ecology of sandy shore; Ecology of muddy shore; Mud banks;

UNIT IV
Mangroves; Seaweeds – classification and their uses; Coral reefs; Factors affecting coral reef distribution; Boring and fouling organisms; Nektton, outline - composition of nekton, habitats of nektton; Bioluminescence and indicator species; Red tides.

UNIT V
Biology, significance and classification in mammals; Adaptation in pinnipeds and cetaceans for breeding; Different communities of whales and their characteristic features; Adaptation in marine mammals for conserving body heat and submersion for long dive.

PRACTICAL
Study of common instruments used for collection of phytoplankton, zooplankton and benthos. Collection, preservation and analysis of phytoplankton, zooplankton, sea weeds, nektton and benthos.

BFSC 205. FISH NUTRITION AND FEED TECHNOLOGY (2+1)

THEORY

UNIT I
UNIT II

UNIT III
Different Forms of Feeds - Feeds based on life-cycle of fish- Product quality feeds- Larval feeds- Flakes- Farm-made feeds -Feed additives- Binders- Antioxidants-Enzymes-Pigments- Growth promoters -Feed stimulants- Immunostimulants- Non-conventional feed ingredients and anti-nutritional factors- Digestive enzyme, digestibility and factors affecting digestibility- Protein digestion- Fat digestion- Carbohydrate Digestion- Microbial digestion- Factors affecting digestibility.

UNIT IV

UNIT V

PRACTICAL

BFSC 206. CULTURE OF FISH FOOD ORGANISMS (1+1)

THEORY

UNIT I
Candidate species of phytoplankton and zooplankton as live food organisms of fresh water and marine habitats.

UNIT II
Biology and culture of microalgae- blue green algae- spirulina -green algaediatoms- flagellates- harvesting and processing.

UNIT III
Biology- reproduction and feeding habits of zooplankton-culture requirements of important live feed organisms- infusoria-rotifers-cladocerans-tubifex.
UNIT IV
 Artemia- biology- ecological significance- culture for cyst- biomass production-Culture-use of salt pans for artemia culture-

UNIT V
 Culture of chironomids-Culture of earthworms-Bait fish and forage fish- Tropic potentials-of different fish food organisms- proximate composition of fresh water and marine species of live feed.

PRACTICAL
 Methods of isolation and identification of different live feed organisms - Laboratory scale culture (batch and continuous) of selected live feed organism - Evaluation of live feed organisms - Decapsulation technique and hatching method of brine shrimp cysts

BFSC 207. AQUACULTURE ENGINEERING (2+1)

THEORY

UNIT I
 Introduction to aquaculture engineering - Basics of the Aquaculture engineering – the need and the significance - Role of civil and mechanical engineering applications in aquaculture - Calculation and estimations –estimation of area and volume of different shapes.

UNIT II
 Soil parameters, site selection and Surveying - Soil quality and its role in the success of the aquafarms - Soil characters – their importance in the farming - Sampling methods and texture analysis. Classification of soil (based on particle size, chemical properties and biological nature) - Selection of a soil for aquafarm. Estimations and calculating earth work – ponds, dykes and other structures. Factors influencing the selection of sites for the coastal aquafarms. List of site selection criteria - How the individual criterion influences the selection? - Factors that can be rectified and overcome in the farm operation - Tide fed and pump fed farms - Other types of coastal fish farming – farm designing and construction aspects - Different types of surveying and their uses - Interpretation of survey data and preparation of topo sketch - Tools used for the survey and their technical details - Trapezoidal rule and Simpson’s rule.

UNIT III
 Types of farms and their construction - Classification of farms - Based on source water - type of organism - method of culture - management aspects. Different models of aquafarms. (Coastal, freshwater, intensive and open water farms) - Coastal farms and seafarms - Semi-intensive and intensive farm designs. Cage and pen designs. Designing and construction of freshwater fish farms - Different structures in the farm (primary and secondary) - Positioning different structures - Bund classification - Designing of bund structures - Designing and construction of a complete farm - Location, designing and construction of hatcheries, race ways and nursery complexes - Different tanks- their design and construction.

UNIT IV
 Water flow and control devices - Importance of water flow in aqua farms. Types of inlets
and outlets = Design of sluices and gates - Merits and demerits of different water flow controlling devices. Water budgeting and distribution for aquafarms. How to calculate the water requirement for a fish farm? - Factors influencing the water volume in the farm - Types of pumps and their selection for aquafarm.

UNIT V

Mechanical units and Machineries - their application in farms - Water filtration devices and purification methods for aquafarms - Various filtration methods (Physical, chemical and biological methods) - Mechanical filtration devices - Filtration processes in the farm - Water transportation structures in an aquafarm. Their design and construction - Importance of drain canals and drainage systems - Merits and demerits of different water transportation structures - Different pumps and their application in aqua farms - Types of pumps, principles and their use - Operation and maintenance aspects - Selection of pumps for the farms - Aerators, principles, classification and placement. Factors deciding the selection of aerators for the farm - Aeration process in aqua farm - Various types of aerators and their application in aqua farms - Operation, maintenance and placement of aerators – Considerations and implications.

PRACTICAL

Visit to aqua farms – Estimation of soil parameters – observation of soil qualities and seepage parameters - Contour survey and mappings - handling different valves – their operation – shutters and sluices - Designing of fresh and brackish water fin and shellfish farms - Designing of hatcheries - Estimation of construction parameters – determination of bund construction and other features of the ponds – Preparation of lay out of the farm - Cement and FRP nursery and hatchery units - Supply channel and drainage systems, gravitational flow – aerators – their operation and positioning - Estimations in the farm construction - Planning and designing of different farms

BFSC 208. PRINCIPLES OF BIOCHEMISTRY (2+1)

THEORY

UNIT I

UNIT II

Properties and important reactions – amphoteric property. Metabolism of proteins – digestion and absorption of proteins, amino acid catabolism, synthesis of urea by urea cycle. Protein synthesis.
UNIT III

UNIT IV
Nucleic acid – Structure of nucleic acid – ribonucleic acid (RNA), transfer RNA (tRNA), messenger RNA (mRNA), ribosomal RNA (rRNA), difference between DNA and RNA. Recombinant DNA and genetic engineering. Transcription – genetic code, Translation/Protein synthesis – activation of tRNA, elongation, termination. Mutation.

UNIT V

PRACTICAL

III SEMESTER

BFSC 301. PHYSIOLOGY OF FINFISH AND SHELLFISH (2+1)

UNIT I
Physiology - introduction - The Hydrological Cycle or water cycle - Water as a habitat - Physical, chemical and biological properties - Biological Characteristics of water - Water as a major cell constituent.

UNIT II
Introduction - Solubility of gases - Gas diffusion and respiration of water - Classifications of respiration - Mechanism of respiration or Ventilation of gills - Double pump system - Fish blood as a gas carrier - Counter Flow Mechanism - Ram Ventilation
– Oxygen dissociation curve - Carbon dioxide transported in the blood - Accessory respiratory organs in fishes - Physiology of respiration - Circulation - Introduction - General principles - Peristaltic pumps or Chamber pumps - Circulation pattern - Blood and Circulation - Cardio-vascular system - Working of the teleostean heart - Cardiac flow

UNIT III
Importance of reproductive physiological studies - Types of reproduction - Male reproductive system - Female reproductive system - Ovarian follicle - Oogenesis - Sexual differentiation - Maturation and spawning - Modes of reproduction - Hormonal control of reproduction - Life histories vary from the simple to the complex within the different groups of Crustacea - Hormones involved in reproduction and their sources - Transaction of external signal - Muscle physiology - Structure of various muscles - Smooth muscle or non striated muscle - Muscle metabolism and function - Composition and metabolism of dark and white muscle - Specialized muscles - Sound producing muscle - Sense organs - Introduction - Chemoreception - Electro-reception - Photoreception/vision - Pineal gland.

UNIT IV

UNIT V

Metabolism and activity - Categories of stress - Action of stresses - Stress in defence mechanism - Structure and functions of important endocrine glands - Introduction - Major endocrine glands - Pituitary gland - Neuro-endocrine regulation of
the pituitary gland - The thyroid gland - Functions -urophysis (Caudal neurosecretory system) -
Gonads - Gastro-Intestinal hormones - Pineal gland - Pheromones.

PRACTICAL
Estimation of oxygen consumption in fish - Estimation of carbon dioxide output in fish -
Estimation of respiratory quotient in fish - Estimation of ammonia output in fish - Estimation of
ammonia quotient in fish - Blood collection from finfish - Blood collection from shellfish - Red
blood cell differentiation and counting - Histology techniques – collection and fixation of
specimens - Histology techniques – Processing and sectioning - Histology techniques – different
kinds of staining - Histochemistry of pituitary glands - Influence of temperature on metabolic
activity of fish - Influence of salinity on metabolic activity of fish - Estimation of chloride content
in body fluids.

BFSC 302. ORNAMENTAL FISH PRODUCTION AND MANAGEMENT (1+1)

THEORY

UNIT I
Introduction-Benefits of ornamental fish keeping as a hobby-Origin of keeping ornamental
fishes as pets-Status of ornamental fish farming in India-Commercially important ornamental
fishes - exotic species-Indigenous species-Marine Ornamental fishes

UNIT II
Different types of fish tanks-Materials required for construction of tanks-Construction of all
glass aquarium glass tank- Steps involved in setting up of aquarium-Equipments and accessories
needed for small scale unit-Equipment and accessories needed by large scale ornamental fish
production unit-Aerator- Filters- Types of Filter-Canister filter (external or internal type)-Trickle
filter Resource-Submersible power filter (box filter / corner filter) - Uses of Aquatic plants-Types
of plants- Important aquarium plants.

UNIT III
Water quality management- Temperature- pH-Chlorine-Hardness- Carbon di oxide-
Dissolved Oxygen- Live food organisms-Feeds of fry- Infusoria- Daphnia- Tubifex-Blood worms-
Mosquito larvae- Live food feeders – Artificial feed - Types of feeds-Preparation of Artificial feed.

UNIT IV
Breeding of live bearers- Introduction- Sex identification- Conditioning of parent fish-
Breeding- Breeding of egg layers- Egg-scatterers -Egg-depositors- Egg-burriers - Mouth-brooders
Nest-builders- Stimulating spawning- Fry rearing.

UNIT V
Diseases of ornamental fishes- Bacterial diseases -Protozoan diseases- Fungal diseases-
Parasitic diseases- Selective breeding- Selection- Crossbreeding -Hormonal induction of sex reversal- Quarantine- Transportation of ornamental fish- Fish packaging system- Ornamental fish trade

PRACTICAL
Identification of common ornamental fishes -Identification of common ornamental plants -- Fabrication of all glass aquariums -Setting up of aquariums -Aquarium accessories and equipments -Conditioning and packing of ornamental fishes -Feed preparation – Culture of live food organisms- Breeding of live bearers -Breeding of egg layers -Identification of ornamental fish diseases

BFSC 303. FISH GENETICS AND BREEDING (1+1)

THEORY

UNIT I

UNIT II
UNIT III

UNIT IV

UNIT V

PRACTICAL

BFSC 304. OCEANOGRAPHY AND METEOROLOGY (2+1)

THEORY

UNIT I
The earth and the ocean basin, distribution of water and land; relief of seafloor., Major feature of topography and terminology; major divisions. Relief in Indian oceans. ocean waves: Definition and terms, classification; difference between surface and long waves, wave theories, surface wave generation, spreading growth, Beaufort scale, spilling and breaking waves, long waves, Tsunamis, seiches, internal waves.

UNIT II
Ocean tides, definition, tidal phenomenon, elementary tidal definition, tidal inequalities; tide producing forces, types of tides, tidal bores, tide prediction. Ocean currents: definitions and features; measurements of currents; direct and indirect methods forces acting on sea waters, drift currents, Ekman spirals, upwelling, sinking, gradient currents, thermohaline circulation, characteristics; course; and significance of some major ocean currents of world, El Nino.

UNIT III
Physical properties of seawater, salinity and chlorinity, temperature, thermal properties of seawater, Colligative and other properties of seawater; Residence time of constituents in seawater. Properties of sea ice; transmission of sound; absorption of radiation; eddy conductivity; diffusivity and viscosity. General distribution of temperature, salinity and density; salinity and temperature of surface layer (SST), subsurface; distribution of temperature and salinity; The T-S diagram; water masses of Indian oceans.

UNIT IV
Chemistry of seawater: Constancy and composition; elements present in seawater; artificial seawater; dissolved gasses in seawater, CO\textsubscript{2} system and alkalinity; inorganic agencies affecting composition of seawater, distribution of phosphorus, nitrogen compounds, silicates and manganese in the oceans, factors influencing their distribution.

UNIT V
Nature of atmosphere, process of water cycle in the atmosphere, tropical cyclones-Hurricanes, hurricane warning.
PRACTICAL
Operation of oceanographic instruments, Nansen reversing water sampler, Bathymetric graph, Grabs, corers, current meters, tidal gauges, echo-sounder. Determination of DO, COD, Alkalinity, nitrates, phosphates and silicates in seawater.

BFSC 305. FOOD CHEMISTRY AND FISH IN NUTRITION (1+1)

THEORY

UNIT I

UNIT II

UNIT III

UNIT IV
Food additives – types and their chemical nature – enzymes, vitamins and amino acids, emulsifier, antimicrobial additives, sequestrants, flavour enhancer, surface active compounds, non nutritive sweeteners, colour additives.

UNIT V
BFSC 306. FISH CANNING AND PACKAGING TECHNOLOGY (1+2)

THEORY

UNIT I

UNIT II
Thermal processing – heat resistance of microorganisms, heat penetration, graphical method of formulation. Fo-value.

UNIT III
Canning of commercially important fishes, shellfishes and other food products – salient features. Retort pouch packing – principles and techniques; HTST process and aseptic packing – principle and technique.

UNIT IV

UNIT V
Introduction to food packaging – objectives and requirements. Characteristics of various packaging materials – metals, paper and paper board, corrugated fibreboard, plastics, multiplayer and testing of packaging materials and containers.

PRACTICAL

BFSC 307. BIOCHEMICAL TECHNIQUES AND INSTRUMENTATION (1+2)
THEORY

UNIT I
Principles and applications of Spectrophotometry – UV-Vis spectrophotometer and its instrumentation

UNIT II
Basic principles and applications of chromatographic techniques – LC - Gel filtration, Affinity chromatography, Ion exchange chromatography; Thin Layer Chromatography; Gas Chromatography; High Performance Liquid Chromatography

UNIT III
ELISA – Components and Types - Direct, Indirect, Sandwich, Competitive; Radio isotopes - Radio Immuno Assay; Centrifugation – Types, Rotors - Ultracentrifugation

UNIT IV
PCR – its components and application; Blotting- southern, northern, western techniques

UNIT V
Plasmid isolation; Cell culture – Types and manipulations; Hybridoma technology; Cloning – Molecular, Cellular and Organism cloning

PRACTICAL
IV SEMESTER

BFSC 401. INLAND AND MARINE FISHERIES (2+1)

UNIT I
Status of the Capture Fisheries of the World and India - Inland and Marine Environment - FAO’s Major fishing areas of the world - Major fish species composition of the major fishery regions of the world - World inland/marine capture fisheries production - Problems and management of world inland fisheries - Inland and marine capture fisheries resources in India - Potential of Indian EEZ - Status of inland/marine capture fisheries production in India.

UNIT II
Major inland fisheries in India - Riverine Fisheries in India - Ecology, classification and fish production potential of rivers in India - Fish and fisheries of Himalayan/peninsular riverine systems in India - Impacts of dams on riverine fisheries - Impact of inter-river basin linkages on fisheries - Reservoir fisheries in India - Ecology, classification and fish production potential of reservoirs in India - Fish and fisheries of major reservoirs in India - Natural vs Man-Made lakes fisheries - Estuarine/Brackish water lake/Backwater Fisheries in India - Fish and fisheries of estuaries of the east and west coast of India - Fish and fisheries of major brackish water lakes and backwaters in India - Shellfish fisheries of brackish water bodies - Floodplain wetland fisheries in India - Ecology and classification of flood plain wetlands (Beels) of India - Fish and Fisheries of floodplain wetlands (Beels) in India - Cold water fisheries in India - Fish and fisheries of cold water bodies in India - Sport fisheries in India.

UNIT III
Major marine finfish fisheries in India - Pelagic fisheries in India - Demersal fisheries in India - Deep sea fisheries in India - Crustacean fisheries in India - Molluscan fisheries in India.

UNIT IV
Major marine shellfish fisheries in India - Crustacean fisheries in India - Molluscan fisheries in India.

UNIT V
Conservation and management of capture fisheries resources in India - Introduction of exotic fish species and Impacts of exotic fish species on aquatic biodiversity in India - Conservation of inland and marine fisheries resources in India - Application of GIS and Remote sensing System in fisheries.

PRACTICAL
Visit to inland and marine fish landing centres; sampling, collection and familiarization of commercially important groups viz., marine and freshwater teleosts, elasmobranchs, crustaceans, molluscs and seaweeds; observation and analysis of marine catches by major crafts and gears; observation and analysis of species composition of commercial inland fish catches at landing and assembling centres; observation and experimental operations of selected fishing gears in inland / estuarine waters; Maintenance of records of marine and inland fish catch data; GIS and Remote Sensing in capture fishery.

BFSC 402. MICROBIOLOGY OF FISH AND FISHERY PRODUCTS (1+1)
THEORY

UNIT I
Introduction - History of microorganisms in foods; Role and significance of microorganisms in foods

UNIT II
Parameters affecting microbial growth - intrinsic parameters and extrinsic parameters.

UNIT III

UNIT IV
Study of food-borne pathogens involved in infective and intoxication type of food poisoning – Indigenous pathogens – Vibrio parahaemolyticus, V. cholerae, Listeria monocytogenes, Clostridium- Non-indigenous pathogens - Salmonella, Shigella, Staphylococcus, E. coli

UNIT V
Other biological hazards like mycotoxins, parasites, viruses, marine toxins, etc. Faecal indicator organisms – Faecal coliforms, Faecal streptococci

UNIT VI
Study of microorganisms in food by conventional and rapid techniques; Encapsulation – endospores, formation of cell aggregates

PRACTICAL

BFSC 403. FISH PRODUCTS AND BY-PRODUCTS TECHNOLOGY (2+2)
UNIT I

UNIT II

Fish preservation by smoking- chemical composition of wood smoke and their role in preservation. Methods of smoking and equipments used for smoking. Carcinogenic compound in wood and methods to remove them. Hurdle technology in fish preservation and processing. Marinaded and fermented fish products – role of acids in marinades.

UNIT III

Fish and prawn pickles, fish sauce and fish paste, traditional Indian fermented products. Principles and methods of preparation of various fish paste products like fish sausage, fish ham, surimi, fish cake, kamaboko etc. Fish muscle structure, myofibriller protein and their role in elasticity formation. Extruded products – theory of extrusion, equipments used, advantages of extruded products, methods of preparation of extruded products.

UNIT IV

Fish meal and oil. Dry reduction and wet reduction methods. Fish maws, shark leather, chitin, chitosan, fish glue, fish gelatin, isinglass, pearl essence, shark fin rays, beach de mer. Utilization of seaweeds - agar agar, alginin, carrageenan.

UNIT V

Fish protein concentrate. Fish hydrolysate, partially hydrolysed and deodorised fish meat, functional fish protein concentrate and their incorporation to various products. Diversified fish products: battered and braided products – fish finger, fish cutlet, fish wafer and fish soup powder etc and imitation products. Value addition, HACCP in safe products production.

PRACTICAL

BFSC 404. PHARMACOLOGY (2+1)

THEORY

UNIT I
Introduction to pharmacology, pharmacological terms and definitions, sources of drugs. Introduction to considerations for appropriate use of drugs. Drug laws and regulations. Drug delivery routes and methods of application. Water area and dosage calculation. Storage and shelf life of drugs

UNIT II

UNIT III
Pharmacodynamics, concept of drug receptor, Receptors and drug-receptor interactions. Quantitative aspects of drug-receptor interactions dose response relationship, (the dose-response curve), half-life and withdrawal period, threshold dose, therapeutic dose, maximal dose, toxic dose and lethal dose, factors affecting drug effect and dosage, principles of drug safety in terms of species and environment, efficacy of drugs. Factors affecting membrane transport of drugs. Partitioning and transformations of drugs/chemicals in aquatic environment

UNIT IV
Systemic pharmacology, Drugs acting on nervous system; anesthetics. Drug interactions, molecular mechanisms of drug action. Adverse effects of drugs, antibiotics residues. Recent advances in Pharmacology, Role of Biostatics, Pharmaceutical Industry, Drugs used in fish transportation

PRACTICAL
Antibiotic residual assays; Studies on histopathological changes caused due to chemotherapy. Bioassays for clinical evaluation of drugs. Important anesthetics and their mode of action.

BFSC 405. FRESHWATER FINFISH AND SHELLFISH BREEDING AND HATCHERY MANAGEMENT (2+1)

THEORY

UNIT I
Freshwater fish seed resources of the world – freshwater finfish seed resources of India – Freshwater fish seed resources potential and present production in Tamil Nadu – Natural breeding of finfish in freshwater ecosystems – Monsoon and breeding of finfish – Types of breeding in finfish & shellfish. Selection of riverine spawn collection sites – gears used for collection of finfish & shellfish spawn – Method for temporary storage of collected spawn – spawn quality and quantity indices – Advantages and disadvantages of wild seed collection from rivers.
UNIT II
Seed maturity and breeding season of various cultivable freshwater finfish & shellfish species – gonadal stages – gonad development and gamete development in male and female fish – Type of fish eggs and embryonic development-

UNIT III
Methods of breeding of cultivable freshwater finfish & shellfish – Bundh breeding – Wet and dry bundh – Collection of eggs and hatching in bundh breeding – Factors influencing bundh breeding – Advantages and disadvantages of bundh breeding.

UNIT IV
Induced breeding of warm water cultivable finfish & shellfish species – Environmental factors affecting spawning and breeding – Hypophysation of fishes – Fish pituitary gland – its structure, collection, preservation and preparing of pituitary extract and injecting – Dosage calculation of pituitary extract and administration – Brood stoke management and transportation of brood fish – Synthetic hormones used for induced breeding of carps.

UNIT V

PRACTICAL
BFSC 406. FISHING GEAR TECHNOLOGY (2+1)

THEORY

UNIT I
Introduction; classification of fishing gears of world and India; Factors that determine selection of fishing gears. Gears used in relation to fish and fishing area; FAO classification of fishing gears and methods.

UNIT II
Types of gear material - Classification – natural and synthetic- yarns, twines, ropes – their properties and identification methods, meshes, Braiding, Netting – types of knots, knotless netting, braiding ropes, floated ropes. Yarn numbering system - Direct system, indirect system-Tex , Denier, Metric systems; inter conversions, Runnage; Twist in twines and ropes; effect of twist. - Care maintenance of fishing gears - Maintenance and storage of gears and gear materials-different preservation methods.

UNIT III
Shaping of webbing by braiding , baiting, All bar braiding-fly mesh- Shaping of webbing by cutting -tailoring, N cut, T cut ; mounting of webbing – different methods, hanging coefficient, take up ratio; joining-assembling of nets.

UNIT IV
Accessories for fishing gear. Floats – buoys – materials, types, properties and buoyancy; Sinkers – types, materials, properties – negative buoyancy; bobbins, tickler chain; Wire ropes – wires, strands, cores – selection of wire ropes, breaking strength, specification, Thimbles, shackles, rings, Otter board ,types-principle parts-G-links; Kelly’s eye, stopper link , butterfly, Hooks; types, materials, specification numbering system, jigs, spoon hooks.

UNIT V
Design, construction and operation of various fishing gears; Selection of materials for different fishing gears ; Parts of a trawl net, purse seine, gill net and tuna long lines; Modern commercial fishing methods-Operation and classification of trawling, purse seining, lampara net fishing, gill netting, line fishing; light fishing, Squid jigging, electrical fishing- Selective fishing

PRACTICAL
Handling of net braiding tools, making different knots, bends, hitches, net braiding using different knots- shaping, creasing, baiting, fly mesh tailoring – T-cuts, N-cuts, B-cuts. Calculations- joining of netting, lacing, seaming; Mounting methods, direct, indirect methods, related calculations- assembling of netting. mending of net, identification of synthetic and natural fibers twines, ropes, iron wares, fish hooks;
Calculation of buoyancy, . pecification of ropes, wire ropes, rigging materials, methods. Seining, boat seines, beach seines, gill netting, drift set, trammel net fishing; Line fishing – pole and line, tuna long lines, squid jigging; Falling gear – cast nets; Lift nets, Chinese dip nets; Fishing
experience in operation of traditional and modern fishing methods; Familiarization of various fishing accessories on board.

BFSC 407. FISHERIES ECONOMICS (2+1)

THEORY

UNIT I

UNIT III
Farm planning and budgeting: Definition, Objectives, Importance and Types – Farm credit proposals - appraisal techniques – Record keeping – Farm financial management: Basic accounting procedures, double entry and single entry, financial statement analysis for solvency and Liquidity - Profit and Loss account – Income and Expenditure statement - Classification of assets and liabilities – Balance sheet - Profit maximisation – Risk and uncertainty.

UNIT IV

UNIT V

PRACTICAL
Determination of market equilibrium for fish and fishery products, Estimation of price,
income and cross elasticities, Determination of Break-even point for a Fisheries enterprise, Preparation of income statement, Preparation of Balance Sheet, Product curves, Production function analysis in capture fisheries, Production function analysis in culture fisheries, Preparation of enterprise budget.

Field visit:

Data collection on economic analysis of capture fisheries, Data collection on economic analysis of culture fisheries, Estimation of Consumption expenditure for a fisherman’s family, Study on socio economic status of fisherfolk.

BFSC 408. DISASTER MANAGEMENT IN FISHERIES (1+0)

THEORY

UNIT I
Basic concepts - Basic concepts: Hazard, risk, vulnerability, disaster, capacity building. Multi-hazard and disaster vulnerability of India.

UNIT II
Various disasters - Types of natural and manmade hazards in fisheries and aquaculture - cyclones, floods, droughts, tsunami, El-nino, algal blooms, avalanches, pollution, habitat destruction, over fishing, introduction of exotic species, landslides, epidemics, loss of bio-diversity etc. Causes, characteristics and impact of various disasters.

UNIT III
Disaster Management strategies - Management strategies: pre-disaster, during disaster and post-disaster. Pre-disaster: prevention, preparedness and mitigation; different ways of detecting and predicting disasters; early warning, communication and dissemination, community based disaster preparedness, structural and non-structural mitigation measures.

UNIT IV
Response and recovery systems - During disaster: response and recovery systems at national, state and local, coordination between different agencies, international best practices. Post-disaster: Methods for assessment of initial and long term damages, reconstruction and rehabilitation.

UNIT V
Agencies in disaster management - Prevalent national and global management practices in disaster management. Agencies involved in monitoring and early warnings at district, state, national and global levels. Sea safety and health.
V SEMESTER

BFSC 501. COASTAL AQUACULTURE AND MARICULTURE (2+1)

THEORY

UNIT I

UNIT II

UNIT III

UNIT IV
Shrimp Culture - List of commercially important penaeid shrimps - Culture systems - Characteristics of shrimp culture systems - Considerations and Site selection - Grow-out operations - Pond preparation - Selection of shrimp fry (post larvae) - Stocking - Feeding - Water quality management and Aeration and Harvesting. Mud Crab Culture - Culture methods.

UNIT V
Oyster Culture - Culture techniques - Oyster culture in India. Mussel Farming - Grow-out - Seed collection and Growth and production. Culture of Pearl Oysters - Biology - Culture of Seaweeds - Main groups of algae cultivated for food - Culture systems.
PRACTICAL

BFSC 502. MARINE FINFISH AND SHELLFISH BREEDING AND HATCHERY MANAGEMENT (2+1)

THEORY

UNIT I

Introduction to breeding of marine finfish and shellfishes - Marine finfish and shellfish seed resources - Commercially important marine crustaceans and molluscs - their breeding possibilities - Hormonal control of marine crustacean reproduction - Reproductive physiology of marine crustaceans, molluscs and Echinoderms - Natural breeding process and seed availability. Life cycle of Penaeids, Crabs, Lobsters and craw fishes - Life cycle of marine bivalves and gastropods - Life cycle of Holothurians and Seahorses - Sexual maturity and breeding season of different marine finfish and shellfishes - Natural habitats for marine finfish and shellfish seed collection - Collection methods for different marine finfish and shellfish seeds - Identification characters of different marine finfish and shellfish seeds at various stages.

UNIT II

Qualities of different marine finfish and shellfish brooders, identification of sex and health parameters - Collection methods and selection procedure for marine finfish and shellfish brooders - Transportation process and procedure to be followed during the transport of brooders - Captive brood stock development, nutrition and water quality issues in the brooder maintenance - Identification of maturity stages in marine finfish and shellfishes - Maturation diet and importance of live feed in the brooder development - Seasonal factors influencing brooders - Quarantine of the brooders and disinfection processes.

UNIT III

Site selection for the construction of the marine finfish and shellfish hatcheries - Designs and construction of hatcheries for different marine crustaceans - Different tanks, their specifications and utility for the seeds production - Brood stock inducing methods for shrimps, prawns and crabs - Eyestalk ablation techniques and protocols - Different larval rearing techniques for shrimps, prawns, crabs and lobsters - Estimation of hatchability, larval biomass and counting
the larvae - Post larvae settlement, collection, segregation and rearing - Designs and construction of marine hatcheries for different molluscs and holothurians - Brood stock maintenance and different inducing methods for molluscs and holothurians - Different larval rearing techniques - Estimation of hatchability, larval biomass and post larvae settlement and segregation

UNIT IV

Water quality issues for different marine finfish and shellfish species, their management and maintenance - Feeds, selection of feed and feeding management for different marine finfish and shellfishes - Live feed culture, different species of live feeds, their nutritive value and utility in marine finfish and shellfish larval rearing - Health management and different disease conditions in seed production of different marine finfish and shellfishes - Disinfection protocol in hatcheries and water filtration and treatment processes

UNIT V

Genetic aspects and selective breeding in marine crustaceans - Genetic improvement and hybridization in marine crustacean breeding - Feed biotechnology and development of novel feeds for larvae - Economic analysis of various marine finfish and shellfish seed production techniques

PRACTICAL
Collection of information on different marine finfish and shellfish seed resources (Penaeids, Panulurids, Crabs, Molluscs and Holothurians) - Collection of different marine finfish and shellfish seeds from natural waters. Identification of different marine finfish and shellfish seeds - Identification of different larval stages of marine finfish and shellfishes - Visit to shrimp hatchery - Visit to bivalve hatchery - Construction of biofilter - Identification of different live feeds used in the marine shellfish hatchery - Preparation of larval feeds and feeding - Different marine shellfish hatchery models and layout preparations - Preparation of Spirulina based feed for brood stock and larvae - Packing of marine finfish and shellfish seeds and transportation - Visit to live feed production unit in CMFRI - Observation of different disease conditions in brood stock and larvae - Artemia nauplii production and feeding for larvae - Experiments on enrichment of Artemia.

BFSC 503. FISH DISEASES AND MANAGEMENT (2+2)

THEORY
UNIT I
Significance of fish diseases in relation to aquaculture. Disease development process in fish and shellfish. Host, pathogen and environment interaction. Pathophysiology of fish diseases. Systematic pathology of fish and shellfish (Integumentary system, respiratory system, circulatory system, digestive system, excretory system, nervous system, musculoskeletal system, reproductive system, endocrine system).

UNIT II
Infectious diseases (Bacterial, viral and fungal diseases) of cultured finfish and shellfish. Pathogenicity and mechanism of bacterial, viral and fungal infections of finfish and shellfish. OIE listed and notifiable diseases. Principles of disease diagnosis. Case history and clinical signs in diagnosis. Conventional and rapid diagnostic techniques. Microscopical, microbiological, histopathological and biochemical methods. Antibody and nucleic acid based rapid diagnostics

UNIT III
Parasitic diseases of fish and shellfish. Protozoan and metazoan parasites - Morphology, biology and life cycle of parasites. Important disease epizootics of wild fish population. Zoonotic diseases, non infectious diseases (nutritional, genetic, and environmental diseases)

UNIT IV
Defence mechanism in finfish and shellfish- specific and non specific immune system. Role of stress and host defence mechanism in disease development. Principles and methods of vaccine production and fish immunization. Fish vaccines & delivery mechanisms

UNIT V

PRACTICAL

BFSC 504. FISHERIES MARKETING AND FINANCE (2+1)

UNIT I
Market and marketing: Definition – Approaches to the study of marketing: product, functional, participant and decision making – Classification of markets: based on location, time, position of sellers, volume of business transactions and competition – Market structure: product market, factor market – Marketing functions: exchange, physical supply and facilitating.

UNIT II

UNIT III

UNIT IV
Export markets: meaning and definition – Export and import procedures – Pattern and performance of fishery product export from India – Trade liberalisation and fisheries exports – Role of MPEDA in fish and fishery product export development.

UNIT V
Fisheries credit – Classification and types based on repayment period – 3 R’s of credit – Credit requirements of fisherman – Sources of credit / finance: indigenous and institutional – Sources of institutional finance; commercial banks, regional rural banks, financial institutions of state and central.

PRACTICAL
BFSC 505. FISHING CRAFT TECHNOLOGY (1+1)

THEORY

UNIT I
Introduction: History & development of fishing crafts Classification of fishing crafts based on fabrication, dimension, nature of fishing, depth of operation etc. Traditional fishing crafts of India- History & development of mechanization of fishing crafts.

UNIT II
Boat building materials- their preparation, seasoning, preservation & their advantages & disadvantages; Choice of construction material; comparison of mechanical properties; relative advantages and disadvantages.

Basic mathematics & Hydrostatics for designing of fishing vessels -Form co-efficient & proportionality ratios; Calculation of displacement, water plane area. Simpson’s rules-Design procedure: Displacement- weight equation; estimation of light weight ship.

UNIT III
Important terminologies of fishing vessel & related to fabrication; Drawing conventions in naval architecture; Deck layout – trawlers purse seiners, long liners, gill netters and combination fishing

Boat construction methods
Construction of wooden boats steel boats, fiber glass boat, aluminum and Ferro-cement boat; Boat maintenance and common fouling and boring organisms;

Stability of fishing vessel
Longitudinal, transverse; various equilibrium of ships – stable, unstable and neutral; Resistance of boats.

UNIT IV

UNIT V
Stern gear assembly, Propellers basics- types – powering of propellers – efficiency – thrust – propulsive co-efficient – power margin – power rating; Propellers – Types & working, Fixed pitch and variable pitch propellers-Rudder-types, functions
PRACTICAL
Study on Traditional crafts & various boat building materials. Introduction to engineering drawing: Lettering & dimensions; Projection & its styles. Simple projection & complex projection of an object; Drawing of traditional crafts: catamaran & Satpati, etc; Drawing of backbone assembly & U & V bottom hull of boat. Lines plan drawing of small fishing vessel: body plan, profile & half breadth plan; Drawing of deck lay outs of various fishing crafts: trawlers, gill netters, long liners, squid jiggers etc; Designing of fishing vessel from a parent vessel; Study of propeller & stern gear assembly. Study on marine fouler & borers; Visiting harbors, boat building yards & dry docking yard; Basic calculations on marine engineering – Diesel and Petrol engines; Two stroke and four stroke engines – IC engine – Parts of IC engines – various system of marine engines – study of starting system – fuel system – cooling system – lubrication system – propellers-Rudder assembly.

BFSC 506. NAVIGATION AND SEAMANSHIP (1+1)

THEORY

UNIT I
Introduction to Navigation and Seamanship

Navigational Charts
Map Vs chart – importance of charts – types of charts -Definitions of world chart, Ocean chart, coastal charts & Plan charts– chart projection – chart description – chart symbols and abbreviations – chart reading.

UNIT II
Navigational Aids

Pelorus & Azimuth mirror.

UNIT III
Sounding Equipments & speed logs
Lead line: Types – construction and Markings of lead line – operation.
Echo sounder: Working principle – Block diagram – Transducer – Transmitter – Receiver – Recorder / display unit – working of echo sounder – special features such as white line technique & Time Varied Gain (TVG) – Uses of Echo sounder in Fisheries.

SONAR: working principle – Block diagram – parts of SONAR – Uses of SONAR in Fisheries.

Direction Finder: working principle – parts – Advantages and Disadvantages.

UNIT IV

Marine buoyage system: Lateral Marks, cardinal marks, safe water marks, Isolated danger marks, New danger marks, VHF Marine communication system – working principle – importance – utility for fishing vessels.

Unit V: Sea safety and Seamanship

Fire Fighting – Fire triangle – Types of Fire – Types of Fire extinguishers.

Manning regulation in Fishing vessels Anchors - Types & Anchoring, Mooring - Definition and methods Man over Board procedures – Methods Action during stranding Bad weather preparation & weather warning signals.

PRACTICAL
Chart reading – position fixing – chart symbols – Changing from true course to compass and from compass course to true course with or without wind; finding the course to steer time required from and to given positions; Finding position reached after steering a given course and speed. To find the position of the vessel by the different methods and to find compass error and deviation by transit bearing of two shore objects. Magnetic compass – sextant; To study different types of knots and bends and their use at the sea; Operation of echo sounder, V.H.F. SONAR, Radar, Global Positioning System. Signals, Navigational lights – Flag signals, life saving appliances.

BFSC 507. FISH POPULATION DYNAMICS AND STOCK ASSESSMENT (2+1)

UNIT I
UNIT II

UNIT III
Estimation of total, fishing and natural mortality. Monte Carlo simulation model and ECO PATH model.

UNIT IV
The concept of yield, yield in number and yield in weight, Yield per recruit, yield curve. Yield models. The concept of Maximum Sustainable Yield and Maximum Economic Yield. Analytical models of fish stock.

UNIT V

PRACTICAL

BFSC 508. FISHERIES ADMINISTRATION AND LEGISLATION (2+0)

THEORY

UNIT I
Introduction to public administration – Definition – Principles and scope of Administration Public Enterprises – Importance and characteristics units of organisation and organisation chart.

UNIT II
Fisheries Division – Organisation chart – Centrally sponsored fisheries schemes – Ministries dealing Fisheries activities – State Fisheries Department: organisation chart and Implementation details of fisheries schemes – BFDA and FFDA activities.

UNIT III
National Fisheries Development Board- ICAR Institutes – Board – Institutes of Fisheries Division, Government of India – Coastal Aquaculture Authors – State Fisheries Corporation – Cooperative federation and societies.

UNIT IV
Fisheries resources and utilisation – Need for Fisheries legislation – Fisheries legislations - Indian Fisheries Act 1897 – Marine Fishing Regulation Act.
UNIT V

VI SEMESTER

BFSC 601. FISH QUALITY ASSURANCE (1+1)

THEORY

UNIT I

UNIT II

Spoilages and quality indices in chilled fish – microbial, enzymatic, non-enzymatic; Spoilages and quality indices in frozen fish – microbial, enzymatic, non-enzymatic; Spoilages and quality indices in canned and retort pouch processed fish – microbial, enzymatic, non-enzymatic; Spoilages and quality indices in cured fish (salted, dried and smoked) – microbial, enzymatic, non-enzymatic; Spoilages and quality indices in fermented fish and value added fish products – microbial, enzymatic, non-enzymatic.

UNIT III

Assessment of quality of fish and fishery products – sensory/subjective, objective – physical- instrumental, chemical/ biochemical, microbiological, statistical methods

UNIT IV

Concept of Quality Management; TQM, GMP; HACCP; FSMS; Quality standards – National -BIS- EIC – FSSAI; International – ISO, USFDA, EU and Codex

UNIT V

Process water quality; Fish plant sanitation- SSOP- SCP- GHP- Disinfectants, detergents and cleaning schedule. CIP; Waste management in fish processing industries.

PRACTICAL

BFSC 602. FISH FREEZING TECHNOLOGY (2+ 1)

THEORY

UNIT I
Introduction to freezing technology, characteristics of fish and shell fishes: structure and function of fish muscle- lipids, proteins, n – containing extractives, vitamins and minerals - changes in fish after death -changes in raw fresh fish - changes in eating quality - autolytic changes - autolysis and nucleotide catabolism - spoilage of fish, spoilage and pathogenic microorganism - native bacterial flora of fishes - factors that influence the growth of microorganisms.

UNIT II
Handling fresh fish; sanitation in processing plants; principles of low temperature preservation - chilling of fish – methods and equipment for chilling; icing – quality of ice, ice-making; block ice - flake ice - plate ice - tube ice - slurry ice in fish preservation - super chilling - advantages of chilling of fish with ice - chilled storage - storage method - bulking - shelving - boxing - refrigerated or chilled sea water; chilling rate; calculation of the ice requirement for cooling - heat requirements - calculation of the ice requirement for the storage of fish - spoilage of fish during chilled storage; use of antibiotics and chemicals - use of chlorine in fish processing - factor influencing sterilization of water by chlorine.

UNIT III
Freezing of fish – fundamental aspects; heat units; freezing point depression, eutectic point; freezing rate; methods of freezing; types of freezer - cryogenic, immersion freezing, calculation of freezer refrigeration load - freezing time - calculation of freezing times - physio-chemical changes that occurs during freezing – mechanism of ice-crystal formation; preparation of fish for freezing - freezing of fish freezing of prawns (shrimps) - freezing of lobsters, freezing of crab - freezing of cuttlefish and squid - product name - frozen cuttle fish - freezing process of tuna.

UNIT IV
Coding, packing and storage - changes that occur during frozen storage – microbiological, physical and chemical changes; protein denaturation, fat oxidation, dehydration, drip;

UNIT V
protective treatments – polyphosphate, glazing, antioxidants, packaging; thawing of frozen fish – method of thawing - thawing in air - water thawing - thawing between heated plates – HACCP.

PRACTICAL
Sanitation and plant housekeeping; chilling and freezing equipment, instruments; packages and product styles; methods of icing fish; cooling rate; preservation by chilled sea water; freezing and thawing curves; freezing of different varieties of fish and shellfish; estimation of drip; determination of quality changes during frozen storage; inspection of frozen fishery products; visits to freezing plants.
BFSC 603. FISHERIES BIOTECHNOLOGY AND BIOINFORMATICS (1+1)

THEORY

UNIT I

Fields of Biotechnology - Historical events related to biotechnology - Nucleic Acids - Structure, Chemistry & Genetic Code - DNA as genetic material - Evidence that genes are made of DNA (or sometimes RNA) - The chemical nature of Nucleotides - DNA Structure - The Genes made of RNA - Variety of DNA structures - Properties of DNA - Classification of genes - Activities of genes - Mitochondrial DNA - Genetic code

UNIT II

– Northern blot - Western blotting - Food safety of transgenic (GM) fish - Environmental impact of transgenic fish.

UNIT III

Cell culture and Cell lines - Adherent cultures Resource - Suspension cultures

UNIT IV

UNIT V

PRACTICAL

Isolation and quantification of DNA. Electrophoresis. ELISA, Immunodots, PCR, Western blot, immunofluorescence, immunoperoxidase, DNA hybridisation, Setting of biofilters, Bioprocessing of organic wastes. Practicals on genebank sequence database.

BFSC 604. REFRIGERATION AND EQUIPMENT ENGINEERING (2+1)

THEORY

UNIT I

UNIT II
Vapour Compression and vapour Absorption Refrigeration Systems

Types of Compressors – Types of Condensers – Types of Expansions devices, Types of evaporators – oil accumulators and Driers.

UNIT III
Defrosting, Refrigerants and heat load

Methods of defrosting – Refrigerant charging.

Refrigeration – effect, efficiency, COP, Ton of Refrigeration, Heat load calculation.

Insulation Materials – Types – Properties – Advantages and disadvantages – Cork, Thermocole, PUF, Glass wool etc.
UNIT IV

Processing Machineries

UNIT V
Fishing Vessel Machineries

Fishing Vessel general layouts - Power transmission system in fishing vessels – Gears, belt and chain systems.

Winches – Types and Working.

Deck Fittings and Fishing accessories – Net haulers, Line haulers, gurdy, power blocks, Fish pumps, Bilge pumping system.

Drives – Mechanical, Hydraulic, Pneumatic and Electrical Systems.

PRACTICAL
Graphically represented symbols used in refrigeration; Calculation on thermodynamics; temperature scale conversion; handling and operation of refrigerants, compressors, condensers, evaporators and expansion valves; defrosting in refrigeration system; Calculations on refrigeration effect and cooling estimate; Calculation on heat load, wall heat gain load and air change load; Studies on power transmission; Refrigeration machinery maintenance and safety precaution. Ice making and harvesting; Ice requirement calculation; Visit to a processing plant refrigeration unit; Conventional representation of common engineering component and features; Operation and maintenance of ice making machinery, canning machinery, fish products machinery and packing machinery. Study on different types of gallows. Visit to a fish products machinery and packing machinery; Study on different types of gallows. Visit to a fish processing unit to study the equipment used in different types of processing.

BFSC 605. INTRODUCTION TO FISH BUSINESS MANAGEMENT (1+1)

THEORY

UNIT I
UNIT II

UNIT III

UNIT IV
Fisheries project – Definition – Project cycle – 5 stages – Project preparation criteria – Project appraisal and evaluation – undiscouted criteria – SRR and Pay back period – Discounted Criteria – NPV, BCR and IRR.

UNIT V
Fish business – Definition and objectives – Types of small business – Forms of business organizations – steps for starting a small scale business – business location, incentives, subsidies, sickness and insurance – business ethics.

PRACTICAL
Identification of fish business- Guidelines to start a small business- ratio analysis – project appraisal by discounted criteria - project appraisal by undiscouted criteria – Break –even analysis of a small business-visit to successful fish business units- SWOT analysis of a business enterprise.

BFSC 606. TOXICOLOGY (1+1)

THEORY

UNIT I
General toxicology. Toxicity and metabolism: Factors influencing toxicity-environmental, genetic and nutritional; Measurement and evaluation of the ecological effects of toxicants; Metabolism of toxic substances by aquatic organisms - consequences, synergistic and antagonistic effects; Acute poisons and accumulative poisons; Bioaccumulation and biomagnification; Systemic effects of toxic metals, pesticides and herbicides; Effect of select toxicants on aquatic life and detoxification. Toxicity of drugs

UNIT II
Toxicity evaluation: Toxicity Testing - Microcosm and Mesocosm Tests, Dose-Response Relationships, Toxicity Bioassay. Sources of pollutants /toxicants in aquaculture

Unit III
Genotoxicity; adaptation and inheritance. Mutagens and teratogens.
PRACTICAL
Toxicity evaluation of heavy metals on selected organisms by bioassay techniques; Estimation of LD50 and ED50. Demonstration of drug toxicity. Toxicity assessment of pesticides, PCBs and oil on selected organisms; Analysis of heavy metals from aquatic ecosystems; Toxicity testing methods.

BFSC 607. CHEMOTHERAPY AND DRUGS IN AQUACULTURE (1+1)

THEORY

UNIT I
Introduction. General information. Precautions, contraindications. Antimicrobial agents Definitions; factors contributing to treatment success. Age, sex, species and water quality indications

UNIT II
Antibacterial agents: general principles, classification. Antibiotics of different classes, cell wall synthesis inhibitors, inhibitors of protein synthesis, Bacterial DNA gyrase and topoisomerase inhibitors and other miscellaneous antibiotics. (Sulfonamides, Fluoroquinolones, Metronidazole, Penicillins, Cephalosporins, Polypeptide and glycopeptide antibiotics, Aminoglycosides, Tetracyclines, Chloramphenicol & relatives, Macrolides, Nitrofurans). drug-resistance and environmental factors.

Antifungal agents, (Polyene antibiotics, Synthetics) antiprotozoan drugs and antihelmintics, Dyes

UNIT IV
Antiseptics and disinfectants. Herbal formulations, Phytopigments, growth promoters Osmoprotectants.

UNIT V
Immunostimulants, vaccines probiotics and bioremediators – Principles, Mechanism of action, sources development of formulations. Steps in vaccine production and recent advances in vaccine research

PRACTICAL
Antibiogram preparations; Pharmacy Preparation of different drugs, disinfectants and chemicals; Estimation of MIC and MCC. Estimation of different antibiotics in water, blood and tissues. Experiments on withdrawal time from fish tissues.

BFSC 608. AQUATIC POLLUTION AND COASTAL ZONE MANAGEMENT (2+1)

THEORY
UNIT I

UNIT II

Pesticide types and categories; inorganic pesticides, Organi-chlorine compounds, Organophosphorous compounds; Polychlorinated biphenyls (PCBs); Bioaccumulation and impact on aquatic fauna and human health; toxicology. Heavy metals: Interaction of heavy metals with water and aquatic organisms. Bioremediation and phytoremediation. Oil pollution; Crude oil and its fractions; Sources of oil pollution; Treatment of oil spills at sea; Beach Cleaning; Toxicity of Petroleum Hydrocarbons; Ecological Impact of Oil pollution – Case studies.

UNIT III

Microbial pollution: Types of aquatic microbes; autotrophs and heterotrophs; saprotrophs and necrotrophs; Sewage Fungus Complex; Transmission of Human Pathogenic Organisms; Zoonosis; Development of Antibiotic Resistance and its impact; Biofilms and Biocorrosion; Radioactivity and background radiation of earth: Radionuclide polluting, special effects of radioactive pollution. Thermal pollution and its effects, Physical and chemical nature of possible effluents from major industries in India. Monitoring and control of pollution: Biological indicators of pollution.

UNIT IV

Environmental Impact Assessment for fisheries and aquaculture projects. Anthropogenic activities and their impact on coastal zones; aquaculture, waste disposal, property and infrastructure development, ports and shipping, tourism (beach and excavations, water supply projects.

Goals and purposes of CZM. Management methods and information: public awareness and environment policy, general coastal zone programs, shore lands management, coastal water basin protection, coastal water quality protection, harvestable resources, and ecosystem restoration. Coastal Regulation Zone (CRZ) Act. Integrated Coastal Zone Management (ICZM). International treaties and conventions. Preparation of projects bases on the provided Guidelines and Standards for Coastal Projects aquaculture, agriculture, estuarine fold protection, sewage treatment systems, solid waste disposal, Urban run off, Power plants disasters, etc.

PRACTICAL

Physical characteristics of polluted waters; Colour, Odour, Turbidity, Determination of pH, salinity, alkalinity, hardness, BOD, COD, Hydrogen sulphide, Phosphates, Ammonia, Nitrates, Heavy metals and Oil and grease in water. Determination of pH, conductivity, organic carbon,

BFSC 609. FISHERIES EXTENSION EDUCATION (2+1)

THEORY

UNIT I
Introduction to extension education and fisheries extension – concepts, objectives and principles extension education-formal and informal education. History and role of fisheries extension in fisheries development.

UNIT II
Fisheries extension methods-individual, group and mass contact methods and their effectiveness Audio visual aids-definitions advantages and disadvantages Classification and choice of audio visual aids Cone of experiences of experiences and criteria for selection and evaluation of audio visual aids Video conferencing- factor influencing their selection and use

UNIT III
Technology- Characteristics of technology, transfer of technology process. Important TOT Programmes in fisheries. Role of NGO’s and SHG’s in Fisheries. Fisheries co-management

UNIT IV
Adoption and Diffusion of innovation-adoption and diffusion process-adopter categories and barriers in diffusion of fisheries innovations. Communication process-Berlo’s model and barriers to communication

UNIT V
Extension programme planning and evaluation-steps and importance-participatory planning process. Basic concepts in rural sociology and psychology and their relevance in fisheries extension –social change-social control –social problems and conflicts in fisheries Gender issues in fisheries. Theories of learning –learning experience –learning situation

PRACTICAL
Collection of socio economic data from fishing villages. Study of social issues /problems through participatory and rapid rural appraisal techniques. Assessment of development needs of community and role of formal and non formal governmental organizations through stake holders’
NON CREDIT COURSES (COMPULSORY)

BFSE 109. PHYSICAL EDUCATION (0+1)

Introduction to physical education: definition, scientific principles, objectives, scope, history, development and importance; physical culture, training and health; Fartlek training and Circuit training. Body mechanism and body type: Kretchmark's and Sheldon's classification. Theories of learning; Exercises for good posture; exercises to develop physical fitness - components, speed, strength, endurance, power, flexibility, agility, coordination and balance; Test and measurement in physical education: physical fitness test, motor fitness test, cardiovascular efficiency test and physical fitness index; aerobic and anaerobic exercises; Calisthenics, weight training, circuit training, interval training, far trek training, pressure training and resistance training; Importance of Asanas and Surya namaskar. Free hand exercises and Yoga. Recreation: definition, agencies promoting recreation, camping and recreation. Governance of sport in India; Conduct of sporting event, important national events; Drawing of fixtures and organisation tournaments; Rules and regulations, Coaching and skills development of major games; Rules and regulations, coaching and skills development of athletic events.

BFSE 209. SWIMMING (0+1)

History, hazards in water and safety precautions; pool maintenance and water quality control. Learning swimming, understanding and practice of ducking the head, kicking action, holding breath under water and various strokes (free style, breast stroke, butterfly, back stroke); competitive swimming-relays and medleys, lap time practice, swimming and floating aids and their uses; diving -styles of diving, rules, regulations and precautions. Methods of life saving in water; Boating, canoeing and sailing: types, maintenance, skill development, rules and regulations and practice.

BFSE 308. INTRODUCTION TO ENVIRONMENTAL SCIENCES (3+0)

BFSE 309. COMMUNICATION SKILLS (0+1)

Structural and functional grammar; meaning and process of communication, verbal and non-verbal communication; listening and note taking, writing skills, oral presentation skills; field
diary and lab record; indexing, footnote and bibliographic procedures. Reading and comprehension of general and technical articles, précis writing, summarizing, abstracting; individual and group presentations, impromptu presentation, public speaking; Group discussion. Organising seminars and conferences.

BFSE 409. RURAL SOCIOLOGY AND PSYCHOLOGY (1+0)

Rural Sociology : meaning, scope and importance, features of rural society Anthropology, socio - economic and demography of fishers, migration and patterns of settlement Social groups and Social classes. Caste and Class among fishers. Value system - Norms, Customs among fishers and their importance. Social values and Culture among fishers and their importance. Village level institutions - meaning, types and role in fisheries development. voluntary organizations - meaning, types and role in fisheries development. Leadership – meaning, identification and training, qualities and roles of leaders and use of local leaders in fisheries development. Social change and Social control. Social problems and Conflicts in fisheries. Gender issues in fisheries. Psychology: concepts, principles, scope and importance in fisheries extension. Intelligence - meaning, scope , types and importance. Personality - meaning, scope, types and importance. Perception - meaning, scope , types and importance Motivation - meaning, scope , types and importance. Learning, learning experience, learning situation.

BFSE 509. FIRST AID TRAINING (0+1)