Course code ETES203

Category Engineering Science Course
Course title Programming for Problem Solving
Scheme and L T P | Credits
Credits 3 0 0 3

Unit 1: Introduction to Programming, Introduction to components of a computer system
(disks, memory, processor, where a program is stored and executed, operating system,
compilers etc.), Idea of Algorithm: steps to solve logical and numerical problems.
Representation of Algorithm: Flowchart/Pseudocode with examples. From algorithms
to programs; source code, variables (with data types) variables and memorylocations,
Syntax and Logical Errors in compilation, object and executable code. (8 lectures)

Unit 2: Arithmetic expressions and precedence, Conditional Branching and Loops,
Writing and evaluation of conditionals and consequent branching, Iteration and loops.

(14 lectures)

Unit 3: Arrays: Arrays (1-D, 2-D), Character arrays and Strings, Basic Algorithms:
Searching, Basic Sorting Algorithms (Bubble, Insertion and Selection), Finding roots of
equations, notion of order of complexity through example programs (no formal
definition required). (12 lectures)

Unit 4: Function: Functions (including using built in libraries), Parameter passing in
functions, call by value, Passing arrays to functions: idea of call by reference, Recursion:
Recursion, as a different way of solving problems. Example programs, such as Finding
Factorial, Fibonacci series, Ackerman function etc. Quick sort or Merge sort. (10
lectures)

Unit 5:

Structure: Structures, Defining structures amd Array of Structures, Pointers: |dea of
pointers, Defining pointers, Use of Pointers in self-referential structures, notion oflinked
list (no implementation). File handling (only if time is available, otherwise should be
done as part of the lab). (6 lectures)

Suggested Text Books
() Byron Gottfried, Schaum's Outline of Programming with C,McGraw-Hill

(i) E. Balaguruswamy, Programming in ANSI| C, TataMcGraw-Hill

Suggested Reference Books
() Brian W. Kernighan and Dennis M. Ritchie, The C Programming
Language, Prentice Hall oflndia

Scanned with CamScanner

Scanned with CamScanner

MODULE -1
COMPONENTS OF A COMPUTER

Computer is a combination of hardware and software. Hardware is the physical component of a
computer like motherboard, memory devices, monitor, keyboard etc., while software is the set of
programs or instructions. Both hardware and software together make the computer system.
Functional components of a computer

Every task given to a computer follows an Input- Process- Output Cycle (IPO cycle). It needs
certain input, processes that input and produces the desired output. The input unit takes the input,
the central processing unit does the processing of data and the output unit produces the output.

The memory unit holds the data and instructions during the processing.

4=

i
i
]

Control Unit _-': '

P ——

e ———]

¥ AU |
Input Uit [<-¢- T i >| Output Unit
; ﬂ?éfn’ﬂ?; “i]| == Data Path
E ‘_* J| =--- Control Path
1Y | -
v Main Memory |

v

Secondary Storage |

-

1, Input Unit

Input unit is used to feed any form of data to the computer, which can be stored in the memory
unit for further processing. Example: Keyboard, mouse, light pen, joy stick etc.

2. Central Processing Unit

CPU is the major component which interprets and executes software instructions. It also controls
the operation of all other components such as memory, input and output units. It accepts binary
data as input, process the data according to the instructions and provide the result as output. The
CPU has three components which are control unit, arithmetic and logic unit (ALU) and memory

unit.

Scanned with CamScanner

Scanned with CamScanner

2.1 Arithmetic and Logic Unit

The ALU is a part of the CPU where various computing functions are performed on data. The
ALU performs arithmetic operations such as addition, subtraction, multiplication, division and
logical operations. The result of an operation is stored in internal memory of CPU. The logical
operations of ALU promote the decision-making ability of a computer.

2.2 Control Unit

The control unit controls the flow of data between the CPU, memory and 1/0O devices. It also
controls the entire operation of a computer.

2.3. Memory Unit

The Memory Unit is of two types which are primary memory and secondary memory. The
primary memory is used to temporarily store the programs and data when the instructions are
ready to execute. The secondary memory is used to store the data permanently. The Primary
Memory is volatile, that is, the content is lost when the power supply is switched off. The
Random Access Memory (RAM) and ROM are the examples of a main memory. The Secondary
memory is non volatile, that is, the content is available even after the power supply is switched
off. Hard disk, CD-ROM, DVD-ROM etc are examples of secondary memory.

3. Output Unit

An Output Unit is a hardware component that conveys information to users in an understandable

form. Example; Monitor, Printer, Plotter

FUNDAMENTALS OF C

C Programming is a general-purpose, procedural, imperative computer programming language
developed in 1972 by Dennis M. Ritchie at the Bell Telephone Laboratories to develop the
UNIX operating system. Dennis Ritchie is known as the founder of the ¢ language.

Basic Structure of C Language:
The program written in C language follows a basic structure. It should have one or more sections

but the sequence of sections is to be followed.

Scanned with CamScanner

Scanned with CamScanner

Section Name Description

Documentation | Consists of comments, some description of the program, programmer
name and any other useful points that can be referenced later.
/* Program for addition*/

Link Provides instruction to the compiler to link functions from the library file
e.g. #include <stdio.h>

Definition Consists of symbolic constants.
#define PI 3.14

Global Consists of function declaration and global variables.

declaration Anti;

main() Every C program must have a main() function which is the starting point

{ of the program execution.

It has two sections

! 1. Declaration section: In this the variables are declared.

2. Executable section: This has the part of program which actually
performs the task we need.

Subprograms User defined functions.

COMPILATION PROCESS IN C
Compilation is a process of converting the source code into object code.

#include<stdio.h> 01000000000000
main() 011111111111111
{ N 01010101101010
printf("Hello javaTpoint"); -_— v 00000011111111
return 0; 00000111111111
H 00000010101011

The compilation process in C can be divided into four steps, i.e., Pre-processing, Compiling,
Assembling, and Linking.

1. Preprocessing

The source code is the code which is written using a text editor by a programmer. The source
code file i1s saved with an extension ".c". This source code file 1s first passed to the preprocessor.
Preprocessor removes all the comments from the source code. Then the preprocessor takes the
preprocessor directive and interprets it. For example, if #include <stdio.h> directive is available
in the program, preprocessor replace this directive with the content of the 'stdio.h' file. Thus the

code is expanded and is passed to the next step. The extension of the expanded file is “.i’

Scanned with CamScanner

Scanned with CamScanner

2. Compiling

The code which is expanded by the preprocessor is passed to the compiler. The compiler
converts this code into assembly code which contains mnemonics. The extension of the
assembly file is *.s’

3. Assembling

The assembly code is converted into object code by using an assembler. Object code will
contain only “0" and “1”". The extension of object file is ".obj’

4. Linking

All programs in C use library functions. These library functions are pre-compiled, and the object
code of these library files is stored with ".lib' extension. The main working of the linker is to
combine the object code of library files with the object code of source program. For example, if
we are using printf{) function in a program, then the linker adds its associated code with the
object code of our program. The output of the linker is executable code. The extension of the
executable file is'.exe’,

Flow Diagram

Source code

Preprocessor

expanded code

assembly code
Assembler

Other object object code

files

Libraries

executable code

Example

Compilation process of hello.c source code file

Scanned with CamScanner

Scanned with CamScanner

o Firstly, the input file, i.e., hello.c, is passed to the preprocessor, and the preprocessor
converts the source code into expanded source code file hello.i.

o The expanded source code is passed to the compiler, and the compiler converts this
expanded source code into assembly code file hello.s.

o This assembly code is then sent to the assembler, which converts the assembly code into
object code which is in the form of 0 and 1. The name of the object code file would
be hello.obj.

o Afler the creation of an object code, the linker creates the executable file hello.exe. The
loader will then load the executable file for execution.

Difference between Source Code and Object Code

Created by the programmer Created by the Compiler
| Text rich document | Binary digits make up the Object Code
| Human Readable Machine Readable
Not system specific System specific
| Serves as input to the compiler It is the output of the compiler
| Source code is not executable Object code is executable
TOKENS

The smallest individual units in a program are known as tokens.

Classification of tokens in C

Tokens in C language can be divided into the following categories:
o Keywords
o Identifiers
o Operators
o Constants
o Special Characters

Scanned with CamScanner

Scanned with CamScanner

1. Keywords

Keywords in C can be defined as the pre-defined or the reserved words having its own

importance, and each keyword has its own functionality. Since keywords are the pre-defined

words used by the compiler, they cannot be used as the variable names. C language supports 32

keywords given below:

auto Double int struct
break Else long switch
case Enum register typedef
char Extern return union
const Float short unsigned
continue For signed void
default Goto sizeof volatile
do If static while

2. ldentifiers

Identifiers in C are used for naming variables, functions, arrays, structures, etc. Identifiers in C

are the user-defined words. It can be composed of uppercase letters, lowercase letters,

underscore, or digits, but the starting letter should be either an underscore or an alphabet.

Keywords cannot be used as identifiers. Rules for constructing identifiers in C are given below:

o The first character of an identifier should be either an alphabet or an underscore, and then
it can be followed by any of the character, digit, or underscore.

o It should not begin with any numerical digit.

o In identifiers, both uppercase and lowercase letters are distinct. Therefore, we can say
that identifiers are case sensitive.

o Commas or blank spaces cannot be specified within an identifier.

o Keywords cannot be represented as an identifier.

o The length of the identifiers should not be more than 31 characters.

o Identifiers should be written in such a way that it is meaningful, short, and easy to read.

Example of valid identifiers

total, sum, average, _m _, sum_], etc.

Example of invalid identifiers

o

2sum (starts with a numenical digit)

Scanned with CamScanner

Scanned with CamScanner

o int(reserved word)
o char (reserved word)
o m+n (special character, i.e., '+')
3. Operators
An operator in C 1s a special symbol used to perform the functions. The data items on which the
operators are applied are known as operands. Operators are applied between the operands.
Depending on the number of operands, operators are classified as follows;
i) Unary Operator ---- Contain I operand
ii) Binary Operator ---- Contain 2 operands
4. Constants
A quantity that does not vary during the execution of a program is known as a constant. C
supports three types of constants
1. Numeric constants - Eg 52, 8...
2. Character constants. - Eg. ‘a’, ‘b’...
3. String constant - Eg. “apple”,
Strings in C
Strings in C are always represented as an array of characters having null character \0' at the end
of the string. This null character denotes the end of the string. Strings in C are enclosed within
double quotes, while characters are enclosed within single characters. The size of a string is a
number of characters that the string contains.
Eg. char a[10] = "hello"; // The compiler allocates the 6 bytes to the 'a' array.
There are two ways of declaring constant:
1. Using const keyword
2. Using #define pre-processor
1) const keyword
The const keyword is used to define constant in C programming.
const float PI=3.14;
The value of PI variable can't be changed.

If we try to change the value of PI, it will render compile time error.

Scanned with CamScanner

Scanned with CamScanner

#include<stdio.h>

int main()

{

const float PI=3.14;

PI=4.5;

printf("The value of PI is: %f",PI);
}

Output:

Compile Time Error: Cannot modify a const object

2) C #define preprocessor
Syntax:
#define value

Example
#include <stdio.h>
#define P13.14

void main()

i

printf("%f",PI);

}

Output:

3.140000

5. Special characters

Some characters used in C have a special meaning which cannot be used for another purpose.

o Square brackets |]: The opening and closing brackets represent the single and

multidimensional subscripts.

o Simple brackets (): It is used in function declaration and function calling. For example,

printf{) is a pre-defined function.

o Curly braces { }: Itis used in the opening and closing of blocks of code.

Scanned with CamScanner

Scanned with CamScanner

o Comma (,): It is used for separating variables, separating function parameters in a
function call.

o Hash/pre-processor (#): It is used to specify pre-processor directives.

o Asterisk (*): This symbol is used to represent pointers and also used as an operator for
multiplication.

o Tilde (~): It is used as a bitwise operator and as a destructor to free memory.

o Period (.): It is used to access a member of a structure or a union,

VARIABLES
Variable is defined as named memory location. It is used to store data. Its value will be changed
during execution. It must be declared first to reserve memory location for storing the value of the
variable.
Variable Declaration
data type variable_list;
Example:
int a;
float b;
charc;
Here, a, b, c 1s variables. The int, float and char are the data types.
We can also provide values while declaring the variables. This is called as variable initialization.
int a=10,b=20; //declaring 2 variable of integer type
char c='A’";
Rules for defining variables
o A variable can have alphabets, digits, and underscore.
o A variable name can start with the alphabet and underscore only. It can't start with a digit.
o No whitespace is allowed within the variable name.
o A variable name must not be any reserved word or keyword, e.g. int, float, etc.
Valid variable names:
int a;
int _ab;

int a30;

Scanned with CamScanner

Scanned with CamScanner

Invalid variable names:
int 2;
intab;
int long;
Types of Variables
_There are two ways to categorize variables
1. Based on datatype : Depending on the type of data it holds, variable is classified into
integer variable, floating point variable, character variable and string variable
2. Based on storage class associated with a variable such as automatic, external, static ,
register
1. Automatic Variable
All vanables in C that are declared inside the block are automatic variables by default. We can
explicitly declare an automatic variable using auto keyweord. This is also called as local
variable. These variables are confined to a single function. It does not retain its value once
control is transferred out of the defined function.
void main()
{
int x=10; /local variable (also automatic)
auto int y=20; //automatic variable
}
2. External Variable
These variables are not confined to a single function. We can share this variable in multiple C
source files. This is also called as global variable. We can declare an external variable using
extern keyword.
extern int a;
3. Static Variable
A variable that is declared with the static keyword is called static variable. It retains its value
between multiple function calls. We can declare static variable using static keyword.
void functionl()

{

int x=10; /flocal variable

Scanned with CamScanner

Scanned with CamScanner

static int y=10; //static variable

x=x+l;

y=y+l;

printf("%d,%d" x,y);

h

If this function is called many times, the local variable will print the same value for each
function call, e.g, 11, 11, 11 and so on. But the static variable will print the incremented
value in each function call, e.g. 11, 12, 13 and so on.

4, Register variable

Values of register variables are stored in registers found in CPU rather than in memory.

We can declare a register variable using register keyword.

register int a;

DATA TYPES
C supports several different types of data. The memory requirements for each data type vary. A
data type is essential to identify the storage representation and the type of operations that can be

performed on that data. C supports four different classes of data types.

Types Data Types
Basic Data Type int, char, float, double
Derived Data Type array, pointer, structure, union
User Defined Data Type enum, type def
Void Data Type void

1. Basic Data Types

The basic data types are integer-based and floating-point based. C language supports signed,
unsigned, long, short modifiers along with integer data types.

The memory size of the basic data types may change according to 32 or 64-bit operating system.

In the table below size is given according to 32-bit architecture.

Scanned with CamScanner

Scanned with CamScanner

Data Types Memory Size Range
Char 1 byte —-128 to 127
signed char 1 byte -128to 127
unsigned char 1 byte 0 to 255
Int 2 byte —32,768 to 32,767
signed int 2 byte —32,768 to 32,767
unsigned int 2 byte 0 to 65,535
short int 2 byte -32,768 to 32,767
signed short int 2 byte —32,768 to 32,767
unsigned short int 2 byte 0 to 65,535
long int 4 byte -2,147,483,648 to 2,147,483,647
signed long int 4 byte -2,147,483,648 to 2,147,483,647
unsigned long int 4 byte 0 to 4,294,967,295
Float 4 byte
Double 8 byte
long double 10 byte

All arithmetic operations such as addition, subtraction etc is possible on basic data types.

2. Derived Data Types
Data types that are derived from fundamental data types are derived types.
Example: arrays, pointers, structures, unions etc.
3. User Defined Data types
Users can define new data types. This new data type can then be used to declare variables. The
main advantage of user defined data type is that it increases the program’s readability.
There are two methods
1. By using type def
Example
type def int numbers;
numbers numl num?2;
In this example, num| and num?2 are declared as int variables.
2. By using enum
It is used to assign names to constants which make a program easy to read and maintain. The

keyword “enum” is used to declare an enumeration.

Scanned with CamScanner

Scanned with CamScanner

Syntax:
enum identifier {constl,const2, const3,... }
Example:
enum week{sunday, monday, tuesday, wednesday, thursday, friday, saturday};
enum week day;
Compiler automatically assigns integer digits beginning from 0 to all the enumeration constants.
For example, “sunday ™ will have value 0, “monday™ value 1 and so on.
4. void data type
void is an incomplete type. It means "nothing" or "no type". For example, if a function is not

returning anything, its return type should be void. Variables of void datatype cannot be created.

ALGORITHM
Definition:

Algorithm is a set of sequential well defined steps to solve a given problem. It should be precise,
complete, unambiguous and contain finite number of logical steps for solving a problem.

Algorithm writing is the first step in problem solving.

Steps in algorithm development:
1. Identification of input

2. Identification of data processing operations
3. Identification of output

Example

Algorithm to find the area of the square
Step 1 : Start
Step 2: Read the side of the square a.
Step 3: Area=a%*a
Step 4: Output the Area
Step 5: Stop.

FLOWCHART
Definition:
Pictorial representation of an algorithm is called as flowchart.

Description:
Flowchart shows the process involved in solving a problem and the flow of control in a
visual manner. There are three types of control flow.

Scanned with CamScanner

Scanned with CamScanner

1. Sequential - Statements are executed one after another in the same order as they are in

the program.

2. Branching - Skipping execution of statements based on condition.

3. Looping - Repeated execution of statements until a condition is false.

A flowchart cannot be directly entered in a computer. It must be converted into a program
using any high level language such as ¢, ¢+, java and etc.,

Symbols used in Flowcharts

Flow charts are drawn using certain special symbols such as Rectangles, Diamonds, Ovals

and small circles. These symbols are connected by arrows called flow lines.

Rounded Rectangle

Parallelogram

>

Symbol Name Symbol function
Used to represent start and
Oval end of flowchart

L/

Used for input and output
operation

Processing: Used for

Rectangle arithmetic operations and
data-manipulations
Decision making. Used to
represent the operation in
Diamond which there are twolthree
altematives, true and false
etc
1 Flow line Used to Indicate
Arrows — — the flow of logic by
l connecting symbols
Circle O Page Connector
[+
entagon L——"I Off Page Connector
Elongated hexagon Definite Loop

Scanned with CamScanner

Scanned with CamScanner

Flowchart to find the area of the square

3
/’ Rt;d A /

] Area= A A]
!
/ Print Area /

Uses of Flowchart

o Easier to understand, at a glance, than a narrative description.
o We can review and debug programs easily with the help of flowcharts.

They provide effective program documentation.

(o]

o

With a flowchart drawn, it is easier to explain a program or discuss a solution,

o

Easy and efficient to analyze problem.

Easy to convert the flowchart into any programming language code.

o

PSEUDO CODE

Pseudo code is a rough code. It is defined as an informal high level description of an algorithm

in natural language rather than in a programming language.

It doesn’t follow the syntax rules of any programming language. But it follows the structural

conventions of a normal programming language.

It 1s intended for human reading rather than machine reading. It omits the details that are

essential for machine understanding such as variable declaration, header file inclusion etc.

It is easy to write programs from pseudo code rather than flowchart. Pseudo Code is more

commonly used by experienced programmers while Flowchart is by beginners.

We can write pseudo code freely as long as it is easy to understand for other persons. But it is
suggested to use commonly used keywords from programs (i.e. if, then, else, while, do, repeat,

for and etc.) and follow certain programming style (i.e. ¢, Pascal, C++, etc.).

Scanned with CamScanner

Scanned with CamScanner

Common pseudo code verbs
o Input : Read, Obtain, get, Input
o Output: Print, Display, Show, Write
o Processing: Compute, Calculate, Determine
o Intialize: Set, Init
o Add one: Increment
Branching statements are written as
if (conditional statement)
statement block
else
statement block
Looping statements are written as
1. while (Condition)
statement block
2. Repeat
statement block
Until (Condition)
Example
Read n
Set sum to 0
Setito 1
While (i<n)
Compute sum = sum +i

Display sum

INPUT AND OUTPUT STATEMENTS

The getchar is a simple function to read a single character from the input device.

varmame=getchar();

Scanned with CamScanner

Scanned with CamScanner

The putchar is a simple function to output a single character on the output device.
putchar(vamame),
The getchar() and putchar() is used only for one input and is not formatted. For formatted input
and output scanf and printf statements are used. . Both functions are library functions, defined
in stdio.h (header file).
Scanf statement
Syntax
scanf{"format specifier”, &vl1, &v2,...&vn),
Format specifier specifies the format in which data is to be entered.
Where v1,v2 are the variables
Example
scanf("%d%d",&a,&Db);
%d used for integers
%f used for floats
%l used for long
Yoc used for character
Yos used for string
printf statement
Syntax
printf{("format specifier ", v1, v2,...vn);
Example
printf{"%d" ,a);

SYNTAX AND LOGICAL ERRORS IN COMPILATION

Syntax Error

Each programming language has its own set of rules or syntax to write the program. Programmer
should write the program according to the correct syntax. If not, it will cause an error. This error
type is known as a syntax error. This error occurs at the time of compilation.

It is easy to identify and remove syntax errors because the compiler displays the location and

type of error. Most frequent syntax errors are:

Scanned with CamScanner

Scanned with CamScanner

o missing semicolons
o missing curly braces
o undeclared variables
o Mis-spelled keywords or identifiers.
The program will not get compiled until the syntax error is fixed.

Logic Error

Errors which provide incorrect output but appear to be error free are called logical errors. These
errors occur due to faults in algorithm. A program with logical error will not cause the program
to terminate the execution but the generated output is wrong. When a syntax error occurred, it is
casy to detect the error because the compile specifies about error type and the line that the error
occurs. But identifying a logical error is hard because there is no compiler message. Therefore,
the programmer should read each statement and identify the error on his own. One example of
logical error is the wrong use of operators. If the programmer used division (/) operator instead
of multiplication (*), then it is a logical error.

Comparison of Syntax and Logic Error

Syntax Error Logic Error
A syntax error occurs due to violation of rules | A logical error occurs due to a fault
of a programming language. in the algorithm.
Compiler indicates the syntax error with the The programmer has to detect the
location and what the error is. error by himself.
It is easier to identify a syntax error. It is comparatively difficult to
identity a logical error.

OPERATING SYSTEM
An Operating System (OS) is a system software which is used to control and co-ordinate the
activities of computer.
Examples:
o Windows, Unix, Linux, MS-DOS etc
Functions of OS

It provides an interface between the hardware and the user.
It controls and co-ordinate the entire computer system.

It controls the allocation and use of various resources.

o O 0O o

It controls various application programs.

Scanned with CamScanner

Scanned with CamScanner

A compiler is a system software that transforms the high level language into machine level
language. The program written in high level language is known as source program and the
corresponding machine level language program is called as object program. Compiler read the
program at-a-time and searches the error and lists them. If the program is error free then it is

COMPILER

converted into object program,

L

-1

DIFFERENCE BETWEEN SYSTEM SOFTWARE AND APPLICATION SOFTWARE

No.

System Software

Application Software

System software is a general purpose
software which is used for operating
computer hardware.

Application software 1s a specific purpose
software which is used by user to perform
specific task.

2. System softwares are installed onthe | Application softwares are installed
computer when operating system is according to user’s requirements.
installed.

3. In general, the user does not interact In general, the user interacts with
with system software because it works | application sofwares.
in the background.

4, System software can run Application software can’t run
independently. It provides platform for | independently. They can’t run without the
running application softwares. presence of system software.

5. Some examples of system softwares Some examples of application softwares

are Operating System, compiler,
assembler, debugger, driver, etc.

are word processor, web browser, media
player, etc.

Scanned with CamScanner

Scanned with CamScanner

MODULE I

OPERATORS

An operator is a symbol used to perform mathematical, logical and relational operations.
C operators can be classified as

1. Unary Operators
. Arithmetic operators
. Relational operators
. Logical operators
. Assignment operator
. Equality operator
. Conditional operator

. Bitwise operators

[= - . R e Y " I S

. Special operators

1. UNARY OPERATORS:

The following table shows all the unary operators supported by the C language. Assume
variable A holds 10 and variable B holds 20

Operator Description Example
= Negative of the operand —B=-20

+ Increases the integer value by one. y=++A;y=11
- Decreases the integer value by one. =--A;y=9

Note: IfY=A++; y=10
Y=A--; y=10
2. ARITHMETIC OPERATORS:

The following table shows all the arithmetic operators supported by the C language. Assume
variable A holds 10 and variable B holds 20

Operator Description Example
+ Adds two operands. A+B=30
— Subtracts second operand from the first. A—-B=-10
¥ Multiplies both operands. A*B=200
/ Divides numerator by denominator. B/A=2
% Modulus Operator and remainder of after an integer [B% A =0
division.

Scanned with CamScanner

Scanned with CamScanner

3. RELATIONAL OPERATORS:

The following table shows all the relational operators supported by C. Assume variable A holds
10 and variable B holds 20.

Operator Description Example

> Checks if the value of left operand is greater than the value of | (A > B) is not
right operand. If yes, then the condition becomes true. true.

< Checks if the value of left operand is less than the value of (A < B) is true.
right operand. If yes, then the condition becomes true.

>= Checks if the value of left operand is greater than or equal to (A >= B) is not
the value of right operand. If yes, then the condition becomes | true.
true.

<= Checks if the value of left operand is less than or equal tothe | (A <=B)is
value of right operand. If yes, then the condition becomes true. | true.

4. LOGICAL OPERATORS:

This combines two or more relational expressions. Following table shows all the logical

operators supported by C language. Assume variable A holds | and vanable B holds 0

Operator Description Example
&& Called as Logical AND operator. If both the operands are (A && B) is false.
non-zero, then the condition becomes true.
Il Called as Logical OR Operator. If any of the two operands | (A || B) is true.
is non-zero, then the condition becomes true.
! Called as Logical NOT Operator. It is used to reverse the I(A && B) is true.
logical state of its operand. If a condition 1s true, then
Logical NOT operator will make it false.
5. EQUALITY OPERATORS:
Assume variable A holds 10 and variable B holds 20.
Operator Description Example
= Checks if the values of two operands are equal or not. If yes, | (A = B)is not
then the condition becomes true. true.
1= Checks if the values of two operands are equal or not. Ifthe | (A 1= B) is true.

values are not equal, then the condition becomes true.

6. ASSIGNMENT OPERATORS:

They are used to assign the result of an expression to a variable.

Scanned with CamScanner

Scanned with CamScanner

Operator Description Example

= Simple assignment operator. Assigns values C=A + B will assign the
from night side operands to left side operand value of A+Bto C

+= Add AND assignment operator. It adds the right | C += A is equivalent to C
operand to the left operand and assigns theresult |=C+ A
to the left operand.

= Subtract AND assignment operator. It subtracts | C -= A is equivalent to C
the right operand from the left operand and =C-A
assigns the result 1o the left operand.

*= Multiply AND assignment operator. It multiplies | C *= A is equivalent to C
the night operand with the left operand and =C*A
assigns the result to the left operand.

/= Divide AND assignment operator. It divides the | C /= A is equivalent to C
left operand with the right operand and assigns =C/A
the result to the left operand.

Y= Modulus AND assignment operator. It takes C %= A is equivalent to C
modulus using two operands and assigns the =C%A
result to the left operand.

7. BITWISE OPERATORS:

The following table lists the bitwise operators supported by C for manipulation of data at bit

level. They are nat applied to float or double.

Assume varniable 'A' holds 60 and vanable 'B' holds 13

Operator Description Example

& Binary AND Operator copies a bit to the result if it | (A & B)=12,

exists in both operands. i.e., 0000 1100
| Binary OR Operator copies a bit if it exists in (A|B)=6l,

either operand. e, 0011 1101

A Binary XOR Operator copies the bit if it is set in (A~B)=49,
one operand but not both. i.e., 00110001

~ Binary One's Complement Operator is unary and | (~A) =~(60),
has the effect of 'flipping' bits. i.e,.11000011

<< Binary Lefl Shifi Operator. The lefl operands A<<2=2401e,1111
value is moved left by the number of bits specified | 0000
by the right operand.

>> Binary Right Shift Operator. The left operands A>>2=151e, 0000
value is moved right by the number of bits 1111
specified by the right operand.

Scanned with CamScanner

Scanned with CamScanner

8. SPECIAL OPERATORS:

These are the operators which do not fit in any of the above classification.

| Operator Description Example
sizeof{) | Returns the size of a variable. sizeof{a), if a is integer, will
return 2.
& Returns the address of a variable, &a; returns the actual address of
the vanable.
* Pointer to a variable. *a;
Conditional Operator to construct Y=(A>B) ? A:B
conditional expressions. Also calfed as IfA>B istrue then Y=A
.« ternary operator. It is an alternative for if else | otherwise Y=B

statement.

Syntax:
expression] ? expression2 : expression3

comma (,) works as a separator and an
operator too. Sometimes we assign multiple
values to a variable using comma, in that
case comma is known as operator.

a=10,20,30;

b=(10,20,30);

In the first statement, value of a
will be 10.

In the second statement, value of
b will be 30, because when
multiple values are given with
comma operator within the
braces, then right most value is
considered as result of the
expression.

OPERATOR PRECEDENCE

Operator Precedence determines the order in which different operations are carried out in an
expression with more than one operators

For example 10+ 20 * 30 is calculated as 10+ (20 * 30) and not as (10 + 20) * 30.

Associativity specifies the direction of evaluating an expression with more than one operator of
same priority. It may be lefi to right or right to left.

Scanned with CamScanner

Scanned with CamScanner

Precedence and associativity of C operators

Category Operator Associativity
Unary -~ - Right to left
Arithmetic * % Lefi to right
Arithmetic + - Lefl to right
Shift << >> Left to right
Relational < <= > >= Lefi to right
Equality = I= Left to right
Bitwise AND & Lefi to right
Bitwise XOR A Lefl to right
Bitwise OR | Lefi to right
Logical AND && Left to right
Logical OR Il Lefi to right
Conditional 7 Right to left
Assignment = += = ¥= Right to left
Comma Lefi to right

CONDITIONAL BRANCHING STATEMENTS

The order of execution of statements is not sequential in branching statements and it is based on
some conditions. The different branching statements are
1. if statement
2. switch ... case statement
1. if Statement
There are different forms of if statements. They are
o Simple If statement
o [If-else statement
o Nested if
o Ifelse-if ladder
i. Simple if statement
This statement is used to check some given condition and perform some operations depending
upon the correctness of that condition.
Syntax
if (expression)
{

//Statement block1 ;

}

Statement2;

Scanned with CamScanner

Scanned with CamScanner

Description
If the expression returns true, then statement block1 will be executed, otherwise these statements

are skipped.

Flow Chart
g If conditien
is true

Y

If condition
Is false conditional code

A

Example:
#include <stdio.h>
void main()
{

int x, y;

x=15

y=13;

if(x>y)

{

printf{"x is greater than y");
H

i
Output

x Is greater than y

if...else statement
The if-else statement is used to perform two operations for a single condition. One is for the
correctness of that condition, and the other is for the incorrectness of the condition. Here, we
must notice that if and else block cannot be executed simultaneously.

Syntax
if (expression)

{
//statement blockl;

}

else

{

Scanned with CamScanner

Scanned with CamScanner

// statement block2;

}

Description
If the expression is true, the statement-block]! is executed, else statement-block2 is executed.

Flow Chart

If condition
is false

If condition
is true

else code

-

@®

Example:
#include <stdio.h>
void main()
{

intx,y;

x=15;

y=18;

if (x>y)

{

printf{"x is greater than y");
}

else

{
printf{"y is greater than x"),
)
}

Output
y is greater than x

Scanned with CamScanner

Scanned with CamScanner

iii. Nested if....else statement
There are many different forms. The most general form of two layer nesting is
Syntax
if (expressionl)
{
if(expression2)
{

// statement block1;

}

else

{
/Istatement block2;
}
h

else

{

/fstatement block3;
}
Description
If expression| is false then statement-block3 will be executed, otherwise the execution continues
and enters inside the first if, and evaluates expression2. If true statement-blockl is executed
otherwise statement-block2 is executed.
Example:
#include <stdio.h>
void main()
{
inta, b, c;
printf("Enter 3 numbers...");
scanf("%d%d%d", &a, &b, &c);
if (a>b)
{
if (a>c)
{
printf{"a is the greatest");
}
else
{
printf{"c is the greatest");
}
H

Scanned with CamScanner

Scanned with CamScanner

iv.

else

{
if(b>c)
{
printf("b is the greatest"),
}

else

{

printf{("c is the greatest"),
}
}

if-else-if ladder statement

The if-else-if ladder statement is an extension to the if-else statement. It is used in the scenario
where there are multiple conditions. In if-else-if ladder statement, if a condition is true then the
statements defined in the if block will be executed, otherwise if some other condition is true then
the statements defined in the corresponding else-if block will be executed. At the last if none of
the condition 1s true, then the statements defined in the else block will be executed. It is similar
to the switch case statement where the default is executed instead of else block if none of the

cases is matched.

Syntax:
if(conditionl)

{
}

else if(condition2)

{

/fcode to be executed if condition? is true

}

else if(condition3)

{

/fcode to be executed if condition3 is true

i

//code to be executed if conditionl is true

else
{

/fcode to be executed if all the conditions are false

i

Scanned with CamScanner

Scanned with CamScanner

False

Defaulrstarement

Next statement

2. Switch ... Case Statement
The switch statement is an alternate to if-else-if ladder statement which allows us to execute
multiple operations for the different possible values of a single variable called switch variable.
Syntax

switch (expression)

{

case value-1:
statement block-1;
break;

case value-2:
statement block-2;
break;

case value-3:
statement block-3;
break;

case value-4:
statement block-4;

break;

default:
default-block:
break;

Scanned with CamScanner

Scanned with CamScanner

Description

The expression in switch is evaluated and then compared to the values present in different cases.
It executes the block of code which matches the case value. If there is no match, then default

block is executed(if present).

Flowchart
Expression
'c' True —
T‘B — statement
False l '
) True
% Cazse — Sialement
False 1
= True =
C:lse —_— Statement
False l
' defaull ——— Statement
edureka!
Example:

#include<stdio.h>

void main()
{ .
int num,
printf{"\n\nEnter a number between 0 -3 ");
scanf("%d",&num);
switch(num)
{
case 0
printf{"\nEntered number is Zero \n"),
break:
case 1:
printf{"\nEntered number is One \n");
break;

—o; break
_.E break
_-—u} break
—t! break

r

Statement after switch

Scanned with CamScanner

Scanned with CamScanner

case 2:
printf{"\nEntered number is Two \n");
break:
case 3:
printf{("\nEntered number is three \n");
break;
default:
printf{"\n Enter the number between is 0 - 3 \n"); break;
]

H
Output:

Enter a number between0-3: 0

Entered number i1s Zero

Points to remember

1. The expression (after switch keyword) must yield an integer value not a float value

2. The case values must be unique and must end with a colon ()
break statement is used to exit the switch block. If it is not used, then all the consecutive
blocks of code will get executed after the matching block.

4. default case is executed when none of the case values matches the value of switch
expression.

Difference between switch and if

o if statements can evaluate float conditions but switch statements cannot evaluate float
conditions.

o if statement can evaluate relational operators. switch statement cannot evaluate relational
operators.

[Note: No curly braces are required if there is a single statement inside if part and else part]

Iteration and loops

Repeated execution of a single or block of statements for a specified number of times or until the
specified condition is satisfied is called as looping or iteration. The different looping statements
are:

1. for statement

Scanned with CamScanner

Scanned with CamScanner

2. while statement
3. do while statement
We have two types of looping structures.
o Condition is checked before entering the statement block called entry control.
o Condition is checked after the statement block called exit control.
1. for statement
The for statement 1s the most commonly used looping statement in C.
Syntax
for(expression 1; expression 2; expression 3)

{

statement block;
i
Expression 1 is used to initialize a index/ control/counter variable. This is an assignment
expression,
Expression 2 represents a condition. It must be true for the loop to continue execution. This is a
logical expression
Expression 3 is used to alter the value of the index variable. This is a unary expression or an
assignment expression.
Description
The process of execution involves the following steps
Stepl: First the index variable gets initialized.
Step 2: The condition is checked, where the index variable is tested for the given condition. If
the condition returns true then the C statements inside the body of for loop gets executed. If the
condition returns false then the for loop gets terminated and the control comes out of the loop.
Step 3: After successful execution of statements inside the body of loop, the index variable is

altered depending on the operation (++ or —).

Scanned with CamScanner

Scanned with CamScanner

Flow Chart

for(Init; condition; Increment)

conditional code ;

}

If conditian
is true

Y
code block If eondition
is false

increment

Example
/¥ printing n numbers */
#include<stdio.h>

void main()
{
intni=1;:

for(i=1; 1<=5; i++)
printf(“%d”,i)

}

Output

T S T S

2, while statement

It is an entry controlled loop. The condition is evaluated and if it is true then body of loop is
executed. After execution of body the condition is once again evaluated and if it is true body is
executed once again. This goes on until test condition becomes false.

Syntax

while (condition)

{

Scanned with CamScanner

Scanned with CamScanner

1/ body of the loop

}
Flow chart

Example
/* printing n numbers */
#include<stdio.h>
void main()
{
intni=1;
while(count<=5)
{
printf(*%d”,1);
++H;
}
)

Output

v oW —

3. do while statement

The do while is an exit controlled loop and its body is executed at least once.

Syntax
do

{
/fbody of the loop

Scanned with CamScanner

Scanned with CamScanner

}
while(condition);
Flowchart

Example

Statements inside loop

condition

/* printing n numbers */

#include<stdio.h>
void main()

{

intni=1;

do

{

printf(*%d”,1);
++i;

}
while(count<=5)

}

Output

L s

Scanned with CamScanner

Scanned with CamScanner

UNCONDITIONAL STATEMENTS

Unconditional statement allows transferring the flow of control to another part of program
without evaluating conditions. These are also called as jumping statements. There are four
jumping statements in C. They are break, continue, goto and return.

1. Break Statement:

Break statement is used to terminate any type of loop e.g, while loop, do while loop or for loop.
The break statement terminates the loop body (jump out of the loop skipping the code below it)
immediately and passes control to the next statement after the loop. In case of inner loops, it

terminates the control of inner loop only.

ffar[expressian] \

{

statementi;

iﬁmndltlon]
break;

statement2;

Example
#include<stdio.h>
void main ()
{
int1;
for(i=1; i1<=10; i++)
{
printf{("%d ",i);
ifi==15)
break;
}
printf("/ncame outside of loop 1 = %d",1);

}

/

{

%

while (test condition)

n

statement1;

E“(mndiﬁon]
break;

;t;temeﬂtz;

A—

Scanned with CamScanner

Scanned with CamScanner

Output
12345

came outside of loop wheni=5
2. Continue Statement:
Continue statement is used to bring the program control to the beginning of the loop. The

continue statement skips some lines of code inside the loop and continues with the next iteration.
It is mainly used for a condition so that we can skip some code for a particular condition.

‘ for (expression) —-—~(while {test condition) \

8 S

8 { S {

W statementl; U statementl;

£ £

— = — s

¢ if (condition) a if (condition)

2 continue; £ continue;
statement2; statement2;

}

. A

Example
#include<stdio.h>
void main ()
{
int 1;
for(i1= 1, 1<=10; i++)
{
if(i==Y35)
continue;
printf{"%d ",i);
}

}

Output
1234678910

Scanned with CamScanner

Scanned with CamScanner

3. Goto And Labels:
Goto is used to transfer the program control to a predefined label. A label is an identifier

followed by a colon. 1t can be used to break the multiple loops which can't be done by using a
single break statement.

Syntax:

label :

//some part of the code;

goto label;

Example
#include <stdio.h>
int main()

{
int i=1;
label:
printf("%d",i);
I++;
if{i<=5)
goto label;

}

Output

12345

4. return statement

The return statement terminates the execution of a function and returns control to the calling
function. Execution resumes in the calling function at the point immediately following the

calling statement.

Type Casting in C
Typecasting allows us to convert one data type into other. In C language, we use cast operator
for typecasting which is denoted by (type).
Syntax:

(type)value;

Scanned with CamScanner

Scanned with CamScanner

Without Type Casting:

int =9/4;
printf{"f: %d\n", f');

Output: 2

With Type Casting:
float f=(float) 9/4;
printf("f; %f\n", f);
Output: 2.250000

Scanned with CamScanner

Scanned with CamScanner

UNIT I

What is an Array?

e An array is a collection of similar data-type elements stored sequentially in memary.
e Array size is defined at the time of declaration and can’t be altered that after.

¢ Elements of array can be referenced with an index number.
e This index number starts with 0.

Index Number
|
I 1

0 3 4
Array_name Array Array Array Array Array
i Element | Element | Element | Element | Element

A simple array takes continuous locations in memory as shown below.

Note:

Ifthere is no free contiguous memory locations as size of array, the declaration of array will be failed.

Why we need Array:

Let us consider to find out the average of 100 integer numbers entered by user. In C, you have two

ways to do this:

1) Define 100 variables with int data type and then perform 100 scanf() operations to store the
entered values in the variables and then at last calculate the average of them.

2) Have a single integer array to store all the values, loop the array to store all the entered

values in array and later calculate the average.

From the second solution, it is convenient to store same data types in one single variable and later

access them using array index

Array Declaration:

Scanned with CamScanner

Scanned with CamScanner

While declaring an array, we must have 3 things
a. Array datatype,
b. Array name and
c. Array size.

Types of C Arrays:

There are 2 types of C arrays. They are,

1. Onedimensional array
Only one index should be used to access the elements of the array.
2. Multi dimensicnal array
More than one index should be used to access the elements of the array. This includes
i. Twa dimensional array
ii. Three dimensional array
ii. Four dimensional array etc.

ONE DIMENSIONAL ARRAY(1-D Array)
Declaration of one dimensional array.
data_type array_name[size of array]
Examples:
» if you want to declare an integer array with four elements,
int a[4];

This statement allocates a contiguous block of memory for four integers and initializes all the values
to 0. This is how it is laid out in memory:

<— int —»<— ijnt —><— int —><— int —*

0 0 0 0

alo] a[l1] a[2] al3]
Note:

Array indexes start from zero and end with (array size — 1). So for the above array, you can
use the first element with a[0], second element with a[1], third element with a[2] and fourth
(last) element with a[3].

» You can use the indexes to set or get specific values from the array.

a[0] = 10;
a[1] = 20;

Scanned with CamScanner

Scanned with CamScanner

a[2] = a[1]/ a]0]; // a[2] will be set to 20/10 = 2
a[3)=a[1]-2; //a[3] will beset to20-2 =18
After these changes, here is how the array will look like in memory:

<“«— jnt —»<¢— nt —»<¢— int —>»<— int —>

10 20 2 18

alo] a[1] al2] a[3]
You can print them by using:
printf("%d %d %d %d\n", a[0], a[1], a[2], a[3]);
Note:

C does not enforce any array bounds checks, and accessing elements outside the maximum
index will lead to “undefined behaviour”. if you try to access a[5], the element is not
available. This may cause unexpected output (your program to crash or behave
abnormally).

» If you want to save a-z characters in an array, define it as following
char arr[26];

» Similarly an array can be of any data type such as double, float, short etc.

Array Initialization:
There are two ways of array initialization:

1. Initialize array at time of declaration —means save all the values in array columns during
declaration like below.

Egl.:int num[6]={1,3,5, 7,9, 11};
Eg2.: char letters[5] = {'a', 'b", 'c', 'd', 'e'};
Eg3.: float numbers[3] = {13.25, 12.09, 8.1};
You can also initialize an array without arraysize.
int mark[] = {19, 10, 8, 17, 9};

Here, we haven't specified the size, Compiler knows its size is 5 as we are initializing it with 5
elements. However, you cannot skip both the size and the initializer list, and write as int mark([]. If you
skip both of them, C cannot create the array, and this will lead to a compile-time error

Scanned with CamScanner

Scanned with CamScanner

mark[0] mark[1] mark[2] mark[3] mark[4]

19 10 8 17 9

2. Initialize array during program execution — means all array elements will be fill at time of
execution programs. It has a benefit that we can save elements from user input.

int arr[5];

inti;

for(i=0;i<5;i++)

{
printf("Enter a number: ");
scanf{"%d", &num);
arr[i] = num;

}

Note:
1. You can also make an array that is bigger than the initializer list, like

int a[6] = {10, 20, 30, 40);

printf("%d %d %d %d %d %d\n", a[0], a[1], a[2], a[3], a[4], a[5]);
In this case, the rest of the elements are initialized with zera. In our above example, elements
from a[0] to a[3] will be initialized, whereas a[4) and a[5] will be set to zero,

(ie) a[0]=10, a[1]= 20,a[2]= 30, a[3]= 40, a[4]= 0 and a[5]=0.
Accessing Array Elements:

In array we can access any element by specifying their index number. For example if we want to access
the element stored on index 2 in array named arr. Use following

int value;
value = arr[2];

Or we can fetch and print entire array elements using for or while loop
inti;
for{i=0D;i<5; i++)
{
printf("%dn", arr[i]);

}
Example:

1. To find out the average of 4 integers

#include <stdio.h>
int main()

{

Scanned with CamScanner

Scanned with CamScanner

intavg=0;
int sum =0;
int x=0;

/* Array- declaration — length 4*/
int num(4];

J/* We are using a for loop to traverse through the array
while storing the entered values in the array */

for (x=0; x<4;x++)

{
printf("Enter number %d \n", (x+1));

scanf("%d", &num|x]);
}

for (x=0; x<d;x++)

{

sum = sum+num|x];

}

avg =sum/4;
printf("Average of entered number is: %d", avg);
return 0;

}

Output;

Enter number 1

10

Enter number 2

10

Enter number 3

20

Enter number 4

40

Average of entered numberis: 20

TWO DIMENSIONAL ARRAY (2 -D Array)

Two Dimensional Array in C is the simplest form of Multi-Dimensional Array. It is defined as
an array of arrays. 2D array can be seen as a table or matrix which can have any number of rows

and columns. We can access the elements using 2 indexes, row index and column index. It is
represented as below.

Scanned with CamScanner

Scanned with CamScanner

Column Column Column Column

L 2 3 4

x[e][e] | x[e][1] | x[e][2] | x[e][3]

x[1][e] ‘ x[1][1] | x[1][2] : x[1][3]

e _— e —— —_— —

x[2](e] | x[2][1] | x[2][2] | x[2][3]

x[1][2] refers to the element stored in the 2™ row and 3" column, because index value always
ranges from 0 to maximum size-1.

The elements of the 2D array are stored in contiguous memory locations in a row-wise manner,
starting from first row and ending with last row.

Declaration:
data_type array_name[row size][column size];

For example,
float x[3][41;
Here, x is a two-dimensional (2D) array with 3 rows and each row has 4 columns. This array can
hold 12 elements (3 * 4).

Initialization of a 2D array

There are Different ways to initialize two-dimensional array
Egl.iintc[2][3] = {(!, 3,0}, (-1, 5,9} };
Eg2.:int c[][3] = {{1, 3,0}, {-1,5,9}};
Eg3.:int c[2][3]={1,3,0,-1, 5, 9});

Eg4.:// Declare a two-dimensional array with 3 rows and 2 columns
int table[3][2]:
// create and initialize an array
int table[3][2] = { {10, 22}, {33, 44}, (45,78} };
or
int table[3][2] = {10, 22, 33, 44, 45,78 };
or
int table[3][2] = {
{10, 22}, /* initializers for row indexed by 0 */
{33, 44 },/* initializers for row indexed by 1 */
{45, 78 } /* initializers for row indexed by 2 */
b

Scanned with CamScanner

Scanned with CamScanner

Printing a Two-dimensional array
To print all the elements of a two dimensional array we use a doubly-nested for-loop. In the
following example, there are 3 rows and 2 columns.

#include <stdio.h>
main()

{

int row,col;
int table[3][2] = { (10, 22}, {33, 44}, (45,78} };
for (row = 0; row < 3; row++)

(

for (col = 0; col < 2; col++)

{
printf("%d\t",table[row][col]);

}
printf("\n");
}

}

CHARACTER ARRAYS AND STRINGS
Strings are one-dimensional array of characters terminated by a null character \0'. character arrays
are used to manipulate text such as word or sentences. Each character in the array occupies one
byte of memory, and the last character must always be 0.

Declaring a string
Syntax : char string_name [size];
Example : char name[10];
Initializing a string

There are two ways to initialize a string.
1. By char array

To hold the null character at the end of the array, the size of the character array must be
one more than the number of characters.

char ch[6]={H', 'E, L', L', 'O, \0'};
2. By string literal
char ch[]="HELLO";

You do not place the null character at the end of a string constant. The C compiler will
automatically place "\0' at the end of the string when it initializes the array.

Scanned with CamScanner

Scanned with CamScanner

Reading Strings
Strings can be read from the terminal using scanf() or gets().

1. scanf(“%s”, stringl);
scanf() reads a sequence of characters and terminates when the first white space is
encountered or a new line character (*\n’) is encountered.

2. gets(stringl);
gets() terminates only when new line character (*\n”) is encountered.

Displaying Strings
Strings can be displayed using printf() or puts().
printf(**%s, stringl);
puts(string2);
Example:

printf{%s”, name);

puts(address);

String Operations

To perform string operations many important library functions are defined in "string.h" header file.

No. | Function Description

1) strlen(string) Returns the total numbers of characters in string.

2) strepy(destination, source) copies the contents of source string to destination
string.

3) strcat(first_string, Joins first string with second string. The result of the

second_string) string is stored in first string.

4) stremp(stringl, string2) compares stringl with string2.
If both strings are same, it returns 0.
if Stringl is Greater than String2, it returns positive
integer
if String1 is lesser than String2, it returns negative
integer

5) strrev(string) returns reverse of string.

Scanned with CamScanner

Scanned with CamScanner

6) strlwr(string) returns string characters in lowercase.

7 strupr(string) returns string characters in uppercase.

Two Dimensional Character Array.

The first index of the array is used for defining total numbers of strings and the second index
is used for defining length of the string.

Example:
char name[5][10]

It declares 5 names and length of each name is up to 10.

SEARCHING ALGORITHMS

Searching is the process of finding the position of given value in a list or an array. To search an
element in a given array, there are two popular algorithms available:

I. Linear

2. Binary

1. Linear Search
Linear search is a very basic and simple search algorithm. It is used with unsorted or
unordered lists.

Algorithm

Step 1: Iterate over every element of the array to check if it matches with the number we’re
looking for.
Step 2: when the element is matched , return the index of the element in the array.
Step 3: else return -1,

Program:

#include <stdio.h>

int main() (
/f declare an array, a loop variable, and the number to search
int a[5], 1, search;
// declare another variable to keep track of the index where
// the number was found.
int pos = -1;

printf("Enter five numbers:\n");

Scanned with CamScanner

Scanned with CamScanner

/! read each number from the user

for(i=0;i<5;i++) {
scanf("%d", &ali]);

}

printf("Enter the number to search for:\n");
scanf("%d", &search);

// iterate over the array to find the element
for(i=0;i<5;i++) (
// is the current element equal to the number?
if (a[i] == search) {
// note down the new position
pos =i;
// break out of the loop.
break;
}
)

if (pos==-1) {

printf("%d was not found\n", search);
} else {

printf("%d was found at position %d\n", search, pos);
}

return 0;
}
Output:
Enter five numbers:
10
25
30
26
40
30
Enter the number to search for:
30 was found at position 2

2. Binary Search
Binary Search is used with sorted array or list. Binary search follows divide and conquer
approach in which, the list is divided into two halves and the item is compared with the
middle element of the list. If the match is found then, the location of middle element is

returned otherwise, we search into either of the halves depending upon the result produced
through the match.

Algorithm:
Step 1: Compare the element to be searched with the element in the middle of the sorted

Scanned with CamScanner

Scanned with CamScanner

list.

Step 2: If matched, return the index of the middle element
Step 3: If not matched, check whether the element to be searched is less or greater

than

the middle element.
Step 4 : If the element to be searched is lesser than the middle number, then do binary
search in left half of the array.
Step 5: Else do binary search in right half of the array.
Step 6: If not matched with any elements, return -1.

SORTING ALGORITHMS

Sorting is a process of arranging elements of an array in ascending or descending order.

Consider an array

int A[10] = (5, 4, 10, 2, 30, 45, 34, 14, 18,9);

The Array sorted in ascending order will be given as

All=1{2,4,5,9, 10, 14, 18, 30, 34,45 }

There are many techniques by using which, sorting can be performed.

SN | Sorting Algorithms

Description

1 | Bubble Sort

It is the simplest sort method which performs sorting by
repeatedly moving the largest element to the highest index of the
array. It compares each element with its adjacent element and

swap them if it is not in correct arder.

2 | Insertion Sort

As the name suggests, insertion sort inserts each element of the
array to its proper place. It is a very simple sort method .

3 | Selection Sort

It finds the smallest element in the array and place it on the first
place on the list, then it finds the second smallest element in the
array and place it on the second place. This process continues

until all the elements are placed in their correct position.

1. Bubble Sort

Scanned with CamScanner

Scanned with CamScanner

In Bubble sort, Each element of the array is compared with its adjacent element. The algorithm
processes the list in passes. A list with n elements requires n-1 passes for sorting.

Algorithm

1. Compare first element with the second element. If the first element is greater than the
second element, swap them.

2. Repeat the above process with the next two elements until the last element. Now the
largest element is placed in the highest index of the array.

3. Do stepl and step 2 to place the next largest element in the next highest index. Repeat the

process until the list is sorted

Example

Take an array of numbers " 5 | 4 2 8", and sort the array from lowest number to greatest number
using bubble sort. In each step, elements written in bold are being compared. Three passes will
be required;

First Pass

(51428)—(15428), Here, algorithm compares the first two elements, and swaps
since 5> 1.

(15428)—(14528),Swapsince5>4
(14528)—(14258), Swapsince5>2
(14258)—(14258), Now, since these elements are already in order (8 > 5),
algorithm does not swap them.
Second Pass
(14258)—(14258)
(14258)—(12458), Swapsince4 > 2
(12458)—(12458)
(12458)—(12458)

Now, the array is already sorted, but the algorithm does not know if it is completed. The
algorithm needs one whole pass without any swap to know it is sorted.
Third Pass
(12458)—(12458)
(12458)—(12458)
(12458)—(12458)
(12458)—>(12458)

2. Insertion Sort

Scanned with CamScanner

Scanned with CamScanner

Insertion sort works similarly as we sort cards in our hand in a card game. This sort inserts each
element of the array to its proper place. It is a very simple sort method .

Algorithm:
1. Assume the first element in the array is sorted. Take the second element and
store it as key
2. Compare key with the first element. If the first element is greater than key, then
key is placed in front of the first element.
3. Take the next element as key and compare it with the elements on the left of it.
Place it just behind the element smaller than it. If there is no element smaller
than it, then place it at the beginning of the array.
4. Repeat step 3 for every unsorted element.
Examplel:

Sort the following array
9,5,14,3

step=1

N - | - | - |- |-
k
. ey

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

step=4

li
key
1

a5 e]
Els=1s =]
[eTaas]2]

3. Selection Sort

It finds the smallest element in the array and places it on the first place on the list. Then it finds
the second smallest element in the array and places it on the second place. This process continues
until all the elements are placed in their correct position.

Algorithm

1. Set the first element as minimum

Compare minimum with the next element. If that element is smaller, then assign
it (ie next)as minimum.

Repeat this until the last element.

Swap the first element with minimum.

Repeat steps 1 to 4 from the first unsorted element until all the elements are
placed at their correct positions

o

Examplel:
Sort the following array
2,12, 10, 15, 20.

Scanned with CamScanner

Scanned with CamScanner

step=1

- R
1
T s

1
- [
t)

q swapping |.|

step=2

R -
t 1

- EIEE

DG

&
already in place

min value
at index 2

min value
at index 2

min value
atindex 2

min value
at index 2

min value
atindex 2

Scanned with CamScanner

Scanned with CamScanner

step=3

i=0 | 4

-

- X . min value
12 n 20 atindex 3
1

2|0 |2 15|20

already in place

COMPLEXITY ANALYSIS

Analysis of algorithms focuses on the computation of space and time complexity.

Space Complexity
Space Complexity of an algorithm denotes the total space used or needed by the algorithm for
its working, for various input sizes.
for(i=0;i<n-1;i++)
scanf{“%d",&al[i]);

In the above example, we are creating a array of size n. So the space complexity of the above
code is in the order of "n" i.e. if n will increase, the space requirement will also increase
accordingly.

Time Complexity

Time Complexity of algorithm is not equal to the actual time required to execule a particular code.
It is the number of operations an algorithm performs to complete its task with respect to input size
(considering that each operation takes the same amount of time). The algorithm that performs the
task in the smallest number of operations is considered the most efficient one.

Time Complexity of algorithm is not equal to the actual time required to execute a particular code
but the number of times a statement executes. There are three types of time complexities which
can be analyzed for the algorithm:

o Best case time complexity [Notation] : It is defined as the minimum number of steps
required for an input of size n.

o Worst case time Complexity [Big-O Notation |: : It is defined as the maximum number of
steps required for an input of size n.

o Average Time complexity Algorithm[@ Notation]: : It is defined as the average number
of steps required for an input of size n.

Scanned with CamScanner

Scanned with CamScanner

Example: Consider linear search algorithm.

We have one array named "arr" and an integer "k". We need to find if that integer "k" is present
in the array "arr” or not? If the integer is there, then return | or return 0.

Now, one possible solution for the above problem is traverse each and every element of the array
and compare that element with "k", If it is equal to "k" then return 1, otherwise, keep on
comparing for more elements in the array and if you reach at the end of the array and you did
not find any element, then return 0.

The section of code for the above task is

for (inti=0;1<n; ++1)

{
if (arr[i] == k)
return 1;

}

return 0;

Time Complexity Analysis

In the above code

ol = | R > will be executed once
S e e — > will be executed n+1 times
e > will be executed n times

* if(arr[i] == k) --> will be executed n times
*return 1 ------——- > will be executed once(if "k" is there in the array)

* return 0 ------- —> will be executed once (if "k" is not there in the array)

Each statement in code takes constant time, "C". So, if a statement is executed "N" times, then
it will take C*N amount of time. Here we assume that each statement is taking Isec of time to

execute.

Now, consider the following inputs to the above algorithm

If the input array is [1, 2, 3, 4, 5] and you want to find if "1" is present in the array or not,
then the if-condition of the code will be executed I time and it will find that the element
1 is there in the array. So, the if-condition will take | second here.

If the input array is [1, 2, 3, 4, 5] and you want to find if "3" is present in the array or not,
then the if-condition of the code will be executed 3 times and it will find that the element
3 is there in the array. So, the if-condition will take 3 seconds here.

If the input array is [1, 2, 3, 4, 5] and you want to find if "6" is present in the array or not,
then the if-condition of the code will be executed 5 times and it will find that the element
6 is not there in the array and the algorithm will return O in this case. So, the if-condition
will take 5 seconds here.

As you can see that for the same input array, we have different time for different values of "k".
So, this can be divided into three cases:

Scanned with CamScanner

Scanned with CamScanner

Best case: This is the lower bound on running time of an algorithm. We must know the
case that causes the minimum number of operations to be executed. In the above example,
our array was [1, 2, 3, 4, 5] and we are finding if "1" is present in the array or not. So
here, after only one comparison, you will get that your element is present in the array.
So, this is the best case of your algorithm.

Average case: We calculate the running time for all possible inputs, sum all the
calculated values and divide the sum by the total number of inputs.

Worst case: This is the upper bound on running time of an algorithm. We must know the
case that causes the maximum number of operations to be executed. In our example, the
worst case can be if the given array is [1, 2, 3, 4, 5] and we try to find if element "6" is
present in the array or not. Here, the if-condition of our loop will be executed 5 times and
then the algorithm will give "0" as output.

Scanned with CamScanner

Scanned with CamScanner

UNIT IV: FUNCTIONS
Introduction to Functions

A number of statements grouped into a single logical unit are called a function. The use of
function makes programming easier since repeated statements can be grouped into functions.
Splitting the program into separate function make the program more readable and
maintainable. A function definition has two principal components:

(i) the function header

(ii) body of the function.

The function header is the data type of return value followed by function name and a set of
arguments. Associated type to which function accepts precedes each argument. The function
header statement can be written as

return_type function_name (tvpel argl. type2 arg2,...tvpen argn)
where return_type represents the data type of the item that is returned by the function,
function_name represents the name of the function, and typel, type2,...,typen represents the

data type of the arguments argl,arg2, . argn.

Example: function returns the sum of two integers.
int add(int p, int q)
{

return p+q;//Body of the function
}
Here p and q are arguments. The arguments are called formal arguments or formal
parameters, because they represent the name of the data item that is transferred into the
function from the calling program. The corresponding arguments in the function call are
called actual arguments or actual parameters, since they define the data items that are actually
transferred. A function can be invoked whenever it is needed. It can be accessed by
specifying its name followed by a list of arguments enclosed in parenthesis and separated by

commas.
The following condition must be satisfied for function call.

eThe number of arguments in the function calls and function declaration must be same.

Scanned with CamScanner

Scanned with CamScanner

eThe prototype of each of the argument in the function call should be same as the

corresponding parameter in the function declaration statement.
For example the code shown below illustrate how function can be used in programming

/IC Program for Addition of Two Number's using User Define Function
#include<stdio.h>

#include<conio.h>

float add(float,float); // function declaration

void main()
{ float a,b,c;
clrscr();

printf("Enter the value for a & b\n\n");
scanf("%f%f",&a,&b);

c=add(a,b);

printf("\nc=%f",c);

getch();

Here is the function definitation

float add(float x,float y)
{
float z;
Z=X+Y;
return(z);
}

There are two types of functions in C on basis of whether it is defined by user or not.
e Library function

e User defined function

Library functions are the in-built function in C programming system.
For example:
main(): The execution of every C program starts from this main.

printf(): It is used for displaying output in C.

Scanned with CamScanner

Scanned with CamScanner

scanf(): It is used for taking input in C.
sqgri(): to find the square root of a number
User defined function
C provides programmer to define their own function according to their requirement known as
user defined functions.
#include <stdio.h>

void function_name()

{

}

int main()

{

function_name(),

Advantages of user defined functions
eUser defined functions helps to decompose the large program into small segments.
oIf repeated code occurs in a program, function can be used to include those codes and
execute when needed by calling that function.
Example of user defined function
#include <stdio.h>
int add(int a, int b);
/ffunction prototype(declaration)
int main()
{
int num1,num2,sum;
printf("Enters two number to add\n");
scanf("%d %d",&num1,&num2);
sum=add(num1,num2); //function call
printf("sum=%d",sum);

return O;

Scanned with CamScanner

Scanned with CamScanner

int add(int a,int b) /function declaratory

{

int add;

add=a+b;

return add; //return statement of function
}

Every function in C programming should be declared before they are used. This type of
declaration are also called function prototype. Function prototype gives compiler information

about function name, type of arguments to be passed and return type. Syntax of function

prototype

return_type function_name(type(1) argument(1),.....type(n) argument(n));

Control of the program cannot be transferred to user-defined function unless it is called.
Syntax of function call

Junction_name(argumeni(1),....argument(n));

Passing Argument to a Function

Arguments can be passed to a function by two methods,
e pass by value

¢ pass by reference.

Pass by value

When a single value is passed to a function via an actual argument, the value of the actual
argument is copied into the function. Therefore, the value of the corresponding formal
argument can be altered within the function, but the value of the actual argument within the
calling routine will not change. This procedure for passing the value of an argument to a

function is known as passing by value.

Scanned with CamScanner

Scanned with CamScanner

#include <stdio.h>

void main()

{
int x=3;
printf("\n x=%d(from main, before calling the function”),x);
change(x);

printf("\n\nx=%d(from main, after calling the function)",x),

}
void change(x)
{
int x;
X=x+3;
printf(“\nx=%d(from the function, after being modified)" x);
return;
}

The original value of x (i.e. x=3) is displayed when main begins execution. This
value is then passed to the function change, where it is sum up by 3 and the new
value displayed. This new value is the altered value of the formal argument that is
displayed within the function. Finally, the value of x within main is again displayed,
after control is transferred back to main from change.

x=3 (from main, before calling the function)

x=6 (from the function, after being modified)

x=3 (from main, after calling the function)

Passing an argument by value allows a single-valued actual argument to be written as
an expression rather than being restricted to a single variable. But it prevents
information from being transferred back tothe calling portion of the program via

arguments. Thus, passing by value is restricted to a one-way transfer of information.

Pass by reference

Instead of passing the value of variable, address or reference is passed and the function
operate on address of the variable rather than value. Here formal argument is altered to the
actual argument, it means formal arguments calls the actual arguments.

Example:-

Scanned with CamScanner

Scanned with CamScanner

void main()

{
int a,b;
change(int *,int*);
printf(“enter two values:\n");
scanf("%d%d",&a,&b);
change(&a,&b); /*address of a and b are passed to the function®/
printf(“after changing two value of a=%d and b=%d\n:"a,b);
}
change(int *a, int *b)
{
int k;
k="a;
*a="b;
*b=k;
printf(“value in this function a=%d and b=%d\n",*a,*b);
}

Arrays are passed differently than single-valued entities. If an array name is specified as an
actual argument, the individual array elements are not copied to the function. Instead the
location of the array is passed to the function. If an element of the array is accessed
within the function, the access will refer to the location of that array element relative to the
location of the first element. Thus, any alteration to an array element within the function will

carry over to the calling routine.

#include <stdio.h>

#define SIZE 5

void showarray(int array[]);

int main()

{
intn[]={1,2,3,57);
puts("Here's your array:");
showarray(n);
return(0);

Scanned with CamScanner

Scanned with CamScanner

void showarray(int array[])

{
int x;
for(x=0;x<SIZE;x++)
printf("%dt",array[x]);
putchar('n’);
}
Recursion

When function calls itself (inside function body) again and again then it is called as recursive
function. In recursion calling function and called function are same. According to recursion
problem is defined in term of itself. Here statement with in body of the function calls the
same function and same times it is called as iterative definition. Recursion is the process of

defining something in form of itself.

Recursion always consists of two main parts.
e aterminating case that indicates when the recursion will finish

¢ acall to itself that must make progress towards the terminating case.
Eg:

int main()

{

rec();

)

void rec()

{

if(base_condition)

{
}

statement 1;

// terminating condition

rec();

)

Example:

[*calculate factorial of a no.using recursion*/

Scanned with CamScanner

Scanned with CamScanner

int fact(int);

void main()

{
int num;
printf(“enter a number”);
scanf(*%d",&num);
f=fact(num);
printf(“factorial is =%d\n",f);

}
fact (int num)
{
if (num==0||num==1)
return 1;
else
return(num*fact(num-1));
}

Display Fibonacci series using Recursion
#include<stdio.h>
int Fibonacci(int);
int main()
{
intn,i=0,c;
scanf("%d",&n);
printf("Fibonacci series\n");
for(c=1;c<=n;c++)
{
printf("%d\n", Fibonacci(i));
i++;
}
return O;
}
int Fibonacci(int n)

{
if(n==0)

Scanned with CamScanner

Scanned with CamScanner

return O;
elseif(n==1)
return 1;
else
return (Fibonaccifn-1) + Fibonacci(n-2));
}
Ackerman Function implementation using Recursion
All primitive recursive functions are total and computable, but the Ackermann function
illustrates that not all total computable functions are primitive recursive.It’s a function with

two arguments each of which can be assigned any non-negative integer. It is computed as,

A(0,n) = n+l
A(m+1,0) = A(m,1)
Alm+1,n+1) = A(m,A(m+1,n))

where m and n are non negative numbers.
#include<stdio.h>
int ack(int m, int n);
main()
{
int m,n;
printf("Enter two numbers :: \n");
scanf("%d%d",&m,&n);
printf("\nOUTPUT :: %d\n",ack(m,n));

int ack(int m, int n)
{
if(m==0)
return n+1;
else if(n==0)
return ack(m-1,1);
else
return ack(m-1,ack(m,n-1));

Scanned with CamScanner

Scanned with CamScanner

Quick sort =Recursion

Quick sort algorithm first selects a value that is to be used as split-point (pivot

element) from the list of given numbers. Elements are arranged so that, all the

numbers smaller than the split-point are brought to one side of the list and the rest

on the other. This operation is called splitting.

After this, the list is divided into sub lists, one sub list containing the elements less

than the pivot element and the other containing the elements more than the pivot

element. These two lists are again individually sorted using Quick sort algorithm that

is by again finding a split-point and dividing into two parts. The process is recursively

done until all the elements are arranged in order. So it is called divide and conquer

algorithm.

Consider the given list,

e L 2 3 4 ot & 71 8
alw]gnlﬁn]s I1a]1u 2 [as 5:_1|

n-1

Select the first element as pivot element and place it, at its position using an algorithm.
Find the biggest element than the pivot element from first using “i” and smallest element

from the last using *j”" and interchange them.

|
r v

0 1 2 E 4 5 6 7 2
g K I N I 3
° w |4 °

follow the same procedure as long as i<j

v v

o 1 2 3 4 5§ 6 7 8
o I e) A E
o 5

¥ v
alw]m“m”s“13”50”90]45"5'1-‘
oiik:

As i<j is false, the current process is stopped and a[start] and a[j] are interchanged.

Now the pivot element is at its position “j”, which is the split position for next sub arrays

because all elements to its left are smaller and to its right are greater.

LI

Scanned with CamScanner

Scanned with CamScanner

S) N))
1

50|

continue the same process recursively with other sub arrays. It can be done using a recursive

procedure

[#0] s0] en s [z Jzo]as]

S0 ‘

=0 o=) [aoso] o0]

[0] 20]10]s [13]eo Joo]as Jso]

[13 [20 J1o0]=s Jao] 60 [0 |45 |50

* v

[13][20] 0[5] [60] 90 | 45 [50]

5 s [0f=z0] [eo]so|[4s] oo]

[10]s J[a3J20] [4s|so]fe0]so]
. | ! i
[os 1 [20] [@]=0]

1

= Tho [[2 [0 [[=0 [eo []

I:I Pivot/Split element

I: Grezter than pivol from start

]:I Less than piwat from end

#include<stdio.h>

int a[50];

void gsort(int,int);

int split(int,int);

int main()

{

int n,i;
printf("How many elements?");
scanf("%d",&n);
printf("Enter %d elements:\n",n);
for(i=0;i<n;i++)
scanf("%d",&ali]);

gsort(0,n-1);

Scanned with CamScanner

Scanned with CamScanner

printf("The resultant array:\n");
for(i=0;i<n;i++)
printf("%5d",a[i]);
return O;
}
void gsort(int start,int end)
{
ints;
if(start>=end)
return;
s=split(start,end);
gsort(start,s-1);
gsort(s+1,end);
}
int split(int start,int end)
{
int p=a[start];
int i=start,j=end,temp;
while(i<j)
{
while(a[i]l<=p)
i++;
while(a[j]>p)
[
if(i<j)
temp=ali],alil=alj],aljl=temp;
)
a[start]=a[j];
afjl=p:
return j;

Merge Sort is based on divide and conquer algorithm.

Scanned with CamScanner

Scanned with CamScanner

1) DIVIDING

In Merge Sort, take a middle index and break the array into two sub-arrays. These sub-array

will go on breaking till the array have only one element.
2) MERGING

With the single elements left, start merging the elements in the same order in which divided
them. During Merging, sort the sub-arrays, because sorting 10 arrays of 2 elements is cheaper

than sorting an array of 20 elements.

In the end, an array of elements is resulted, which is sorted.

|+s_|5|=|sm_%=r -
Gz Gl

e

o
L—l 9 5 ; !1|;l
|9 r: [_s 1) [8 |werne
F5L 3
GLs] LDl
III=I!i=I:I_=II°P

#include<stdio.h>

void merge(arr, low, mid, high)

{
int temp[MAX];
inti=low;
intj=mid +1 ;
intk=low;
while((i <= mid) && (j <=high))
{

if(arr[i] <= arrj])

temp[k++] = arrfi++] ;
else

temp[k++] = arr[j++] ;

13

Scanned with CamScanner

Scanned with CamScanner

Y*End of while*/
while(i <=mid)

temp[k++]=arr[i++];

while(j <= high)

temp[k++]=arr[j++];

for(i= low; i <= high ; i++)

arr[i{=temp[i];

}
void merge_sort(int low, int high)
{
int mid;
if(low != high)
{
mid = (low+high)/2;
merge_sort(low , mid);
merge_sort(mid+1, high);
merge(low, mid, high);
}
}
int main()
{
inti,n;

printf("Enter the number of elements : ");

scanf("%d",&n);

for(i=0;i<n;i++)

{
print{("Enter element %d : ",i+1);
scanf("%d",&arr(i]);

}

printf("Unsorted list is :\n");

for(i=0;i<n; i++)

Scanned with CamScanner

Scanned with CamScanner

printf("%d ", arr[i]);
merge_sort(0, n-1);
printf("\nSorted list is :\n");
for(i=0;i<n ; i++)
printf(*%d “, arr[i]);
printf("\n");
return O;

Scanned with CamScanner

Scanned with CamScanner

Unit V

Structures, pointers and files

Structures

Structure is a user-defined datatype in C language which allows us to combine data of different
types together. Structure helps to construct a complex data type which is more meaningful. It is
similar to an Array, but an array holds data of similar type only.

Syntax of a structure:

struct [structure_tag]

{

Member definition
Member definition
Member definition
} [one or more structure variables];

The structure tag is optional and each member definition is a normal variable definition or any
other valid variable definition. At the end of the structure's definition, before the final semicolon,
one or more structure variables can be specified but it is optional

Examples:
1.
struct Student
{
char name[25];
int age;
char branch[10];
/I F for female and M for male
char gender;
|5
struct Student declares a structure to hold the details of a student which consists of 4 data fields,
namely name, age, branch and gender. These fields are called structure elements or members.
Student is the name of the structure and is called as the structure tag.

Each member can have different datatype: name is an array of char type and age is of int type
branch and gender is of character type.

2.
struct address

{
char name[50];
char street[100];

Scanned with CamScanner

Scanned with CamScanner

char city[50];
char state[20];
int pin;

|5

A structure named ‘address’ with 5 members is declared. The members namely name, street, city,
and state are of character type of length 50, 100,50 and 20 respectively and pin is of integer type.

3.

struct Books {
char title[50];
char author[50];
char subject[100];
int book_id;

} book;

A structure named ‘Books’ with 4 members is declared. The members title, author and subject are
of character type of length 50, 50 100 respectively. The book_id is of integer type.

4.
struct Person

{

char name[50];
int citNo;
float salary;

5

A structure named “Person’ with 3 members is declared. The members name is of character type,
citNo of integer type and salary is of float type.

5.

struct

{
float x, y;

} complex;

An anonymous structure with two members with float type, x and y is declared. The structure type
has no tag and is therefore unnamed or anonymous.

Scanned with CamScanner

Scanned with CamScanner

Declaring structure variable :

When a struct type is declared, no storage or memory is allocated. To allocate memory of a given
structure type and work with it, we need to create variables.

We can declare a variable for the structure so that we can access the member of the structure easily.
The two ways to declare structure variable are:

1. By struct keyword within main() function
2. By declaring a variable at the time of defining the structure.

struct keyword within main() function :

struct employee

{ intid;
char name[50];
float salary;

|5

int main()
{

struct employee el;

}

The variable el can be used to access the values stored in the structure.
Declaring a variable at the time of defining the structure:
struct employee
{ intid;
char name[50];
float salary;
Jel;

The following image shows the memory allocation of the structure employee that is defined in the
above example.

Scanned with CamScanner

Scanned with CamScanner

1000 1004 1014 1018

{ J1) J

intid char Name[10] float salary
struct Employee sizeof (emp) = 4 + 10 + 4 = 18 bytes
int id; where; —> lbye
char Name[10]; sizeof (int) = 4 byte
float salary; sizeof (char) = 1 byte
} emp; sizeof (float) = 4 byte

Accessing members of the structure :
There are two ways to access structure members:

1. By .(member or dot operator)
2. By -> (structure pointer operator)

Let's see the code to access the id member of pl variable by. (member) operator.

#Hinclude<stdio.h>
finclude <string.h>
struct employee
{ intid;
char name[50];
}el; //declaring el variable for structure
int main()
{
//store employee information
el.id=101;
strepy(el.name, ""ABC");//copying string into char array
//printing first employee information
printf("employee 1id : %d\n", el.id);
printf("employee 1 name : %s\n", el.name);
return 0;
)
Output:

employee 1id : 101
employee 1 name : ABC

Scanned with CamScanner

Scanned with CamScanner

Designated Initialization :

Designated Initialization allows structure members to be initialized in any order.

flinclude<stdio.h>

struct Point
{
int x,y, z;

b

int main()

{

// Examples of initialization using designated initialization
struct Point pl = {,y =0, .z=1,.x=2};

struct Point p2 = {x=20};

printf ("'x = %d, y = %d, z= %d\n", pl.x, pL.y, pl.2);
printf ("'x = %d", p2.x);
return 0;

}

Output:
x=2,y=0,z=1
x=20

Array of structures :
finclude<stdio.h>

struct Point

{

intx, y;

B

int main()

{

// Create an array of structures
struct Point arr[10];

Il Access array members
arr{0].x = 10;
arr{0].y = 20;

printf ("' %d %d", arr[0].x, arr{0L.y);

Scanned with CamScanner

Scanned with CamScanner

return 0;

}

Output:
1020

Structure pointer :
Like primitive types, we can have pointer to a structure. If we have a pointer to structure, members
are accessed using arrow (->) operator.

flinclude<stdio.h>
struct Point

{

int x, y;

|5

int main()
{
struct Point p1 = {1, 2);

[/ p2 is a pointer to structure p1
struct Point *p2 = &pl;

/I Accessing structure members using structure pointer
printf("'%d %d", p2->x, p2->y);
return 0;

}

Output:
12

Limitations of C Structures :

In C language, Structures provide a method for packing together data of different types. However,
C structures have some limitations.

1. The C structure does not allow the struct data type to be treated like built-in data types:
2. We cannot use operators like +,- etc. on Structure variables.

struct number

{

float x;

b

Scanned with CamScanner

Scanned with CamScanner

int main()

{
struct number nl,n2,n3;
nl.x=4;
n2.x=3;
n3=nl+n2;:
return 0;
}
/*QOutput:

prog.c: In function 'main':

prog.c:10:7: error:

invalid operands to binary -+ (have 'struct number' and 'struct number')
n3=nl+n2;

*/

3. No Data Hiding: C Structures do not permit data hiding. Structure members can be
accessed by any function, anywhere in the scope of the Structure.

4. Functions inside Structure: C structures do not permit functions inside Structure

5. Static Members: C Structures cannot have static members inside their body.

Pointers

A pointer is a variable that stores the address of another variable. Unlike other variables that
hold values of a certain type, pointer holds the address of a variable. For example, an integer
variable holds (or you can say stores) an integer value, however an integer pointer holds the
address of a integer variable.

A simple example to understand how to access the address of a variable without pointers?

In this program, we have a variable num of int type. The value of num is 10 and this value must
be stored somewhere in the memory, right? A memory space is allocated for each variable that
holds the value of that variable, this memory space has an address. The value of the variable is
stored in a memory address, which helps the C program to find that value when it is needed.

So let’s say the address assigned to variable num is Ox7fff5694dc58, which means whatever
value we would be assigning to num should be stored at the location: Ox7fff5694dc58.

Scanned with CamScanner

Scanned with CamScanner

#include <stdio.h>
int main()
{
int num = 10;
printf("Value of variable num is: %d", num);
/* To print the address of a variable we use %p
* format specifier and ampersand (&) sign just
* before the variable name like &num.
*/
printf("\nAddress of variable num is: %p", &num);
return 0;

}
Output:

Value of variable num is: 10

Address of variable num is: Ox7fff5694dc58

num < Variable name
10 < Value of num
0x7#ff5694dc58 < Address of num

A Simple Example of Pointers in C

This program shows how a pointer is declared and used. There are several other things that we
can do with pointers, we just need to know how to link a pointer to the address of a variable.

Important point to note is: The data type of pointer and the variable must match, an int pointer
can hold the address of int variable, similarly a pointer declared with float data type can hold the
address of a float variable. In the example below, the pointer and the variable both are of int

type.

Scanned with CamScanner

Scanned with CamScanner

#include <stdio.h>

int main()

{

//Variable declaration

int num = 10;

//Pointer declaration

int *p;

//Assigning address of num to the pointer p
p=*#

printf(" Address of variable num is: %p", p);
return 0;

}
Qutput:

Address of variable num is: Ox7fff5694dc58

Operators that are used with Pointers:

Lets discuss the operators & and * that are used with Pointers in C.

“Address of " (&) Operator

We have already seen in the first example that we can display the address of a variable using
ampersand sign. [have used &num to access the address of variable num. The & operator is
also known as “Address of” Operator.

printf("Address of var is: %p", &num);

Point to note: %p is a format specifier which is used for displaying the address in hex format.

“Value at Address™(*) Operator

The * Operator is also known as Value at address operator.

Scanned with CamScanner

Scanned with CamScanner

How to declare a pointer?

int *pl /*Pointer to an integer variable*/

double *p2 /*Pointer to a variable of data type double*/
char *p3 /*Pointer to a character variable*/

float *p4 /*pointer to a float variable*/

The above are the few examples of pointer declarations. If you need a pointer to store the
address of integer variable then the data type of the pointer should be int. Same case is with
the other data types.

By using * operator we can access the value of a variable through a pointer.
For example:

double a = 10;

double *p;

p = &a;

*p would give us the value of the variable a. The following statement would display 10 as
output.

printf("%d", *p);

Similarly if we assign a value to *pointer like this:

*p = 200;

It would change the value of variable a. The statement above will change the value of a from 10
to 200.

Example of Pointer demonstrating the use of & and *

#include <stdio.h>
int main()
{
/* Pointer of integer type, this can hold the
* address of a integer type variable.
*/
int *p;

int var= 10;

Scanned with CamScanner

Scanned with CamScanner

/* Assigning the address of variable var to the pointer
* p. The p can hold the address of var because var is
* an integer type variable.
*/
p= &var;
printf("Value of variable var is: %d", var);
printf("\nValue of variable var is: %d", *p);
printf("\nAddress of variable var is: %p", &var);
printf("\nAddress of variable var is: %p", p);
printf("\nAddress of pointer p is: %p", &p);
return 0;

}

Qutput:

Value of variable var is: 10

Value of variable var is: 10

Address of variable var is: 0x7fff5ed98c4c

Address of variable var is: 0x7fff5ed98c4dc

Address of pointer p is: 0x7fff5ed98c50

Self Referential Structures

Self Referential structures are those structures_that have one or more pointers which point to the
same type of structure, as their member.

Scanned with CamScanner

Scanned with CamScanner

Self Referential Structures

struct node {
int datal;
char dataz;

struct node* link:

In other words, structures pointing to the same type of structures are self-referential in
nature.

Example:

struct node {
int datal;
char data2;
struct node* link;

}:

int main()
{
struct node ob;
return 0;
}
In the above example ‘link’ is a pointer to a structure of type “node’. Hence, the structure ‘node’
is a self-referential structure with “link’ as the referencing pointer.
An important point to consider is that the pointer should be initialized properly before accessing,
as by default it contains garbage value.

Types of Self Referential Structures

1. Self Referential Structure with Single Link

2. Self Referential Structure with Multiple Links
Self Referential Structure with Single Link: These structures can have only one self-pointer as
their member. The following example will show us how to connect the objects of a self-
referential structure with the single link and access the corresponding data members. The

Scanned with CamScanner

Scanned with CamScanner

connection formed is shown in the following figure.

10 20 —|—> 30

40 X

obl

Example:

#include <stdio.h>

struct node |

}:

int datal;
char data2;
struct node* link;

int main{)

{

struct node obl; // Nodel

// Initialization
obl.link = NULL;
okl.datal = 10;
obl.dataz = 20;

struct node ob2; // Node2

// Initialization
ob2.link = NULL;
ob2.datal = 30;
ob2.data2 = 40;

// Linking obl and ob2
obl.link = &ob2;

// Accessing data members of ob2 using obl
printf ("%d", obl.link->datal);
printf ("\n%d", obl.link->data2):;

return Q;
}
Output:
30
40

ob2

Self Referential Structure with Multiple Links: Self referential structures with multiple links
can have more than one self-pointers. Many complicated data structures can be easily

Scanned with CamScanner

Scanned with CamScanner

constructed using these structures. Such structures can easily connect to more than one nodes at a
time. The following example shows one such structure with more than one links.
The connections made in the above example can be understood using the following figure.

X 10 ———— 20 —— 30 X

obl ob2 ob3

Example:

#include <stdio.h>

struct node
int data;
struct node* prev_link;
struct node* next_link;
}i

int main()
{
struct node obl; // Nodel

f// Initialization
obl.prev link = NULL;
obl._next_ link = NULL;
obl.data = 10;

struct node ob2; // Node2

// Initialization
ob2 .prev_link = NULL;
ob2-next_link = NULL;
ob2.data = 20;

struct node ob3; // Node3l

// Initialization
ob3.prev link = NULL;
ob3.next link = NOULL:
ob3.data = 30;

// Forward links
obl.next_link = gob2;
cb2.next link = &ob3;

// Backward links
ob2.prev link = &obl;
ob3.prev link = &ob2;

// Accessing data of obl, ob2 and ob3 by obl

Scanned with CamScanner

Scanned with CamScanner

printf("%d\t", obl.data);
printf("$d\t", obl.next link->data);
printf ("%d\n", obl.next_link->next_link->data);

// Accessing data of obl, ob2 and ob3 by ob2
printf ("%d\t", ob2.prev_link->data);

printf ("%d\t", ob2.data);

printf ("$d\n", 0h2.next_link->data] H

// Accessing data of obl, ob2 and ob3 by ob3
printf ("%d\t", ob3.prev link->prev link->data):
printf ("%d\t", ob3.prev link->data):
printf ("%d", ob3.data);
return 0;

)

Output:
10 20 30

10 20 30

10 20 30

In the above example we can see that ‘ob1’, ‘ob2' and ‘ob3' are three objects of the self
referential structure ‘node’. And they are connected using their links in such a way that
any of them can easily access each other's data. This is the beauty of the self
referential structures. The connections can be manipulated according to the
requirements of the programmer.

Notion of Linked Lists

A linked list is a dynamic data structure where each element (called a node) is made up of two
items - the data and a reference (or pointer) which points to the next node. A linked list is a
collection of nodes where each node is connected to the next node through a pointer. The first
node is called a head and if the list is empty then the value of head is NULL.

12| +—>{99| e——>»{37| 1>

A Simple Linked List

Scanned with CamScanner

Scanned with CamScanner

For a real-world analogy of linked list, you can think of conga line, a special kind of dance in
which people line up behind each other with hands on shoulders of the person in front. Each
dancer represents a data element while their hands serve as the pointers or links to the next
element.

Advantages of Linked Lists

The dynamic nature of linked list comes with a number of advantages.

e In contrast to arrays, which have pre-defined or fixed length, linked lists have a dynamic
length which can be increased or decreased at runtime.

e Insertion and deletion operations in the linked list are much faster in comparison to other
data structure such as the queue, stack, and arrays.

Consequently, it often better to consider using a list when the exact volume and quantity is not
known ahead of time and cannot be made fixed. For instance, a programmer designing a school
management system cannot determine how many students will enroll in the school. Therefore, it
is most efficient to choose an ordered list data structure over arrays.

Linked list as Self-referencing Structure

As self-referential structure means that at least one member of the structure is a pointer to the
structure of its own type. An implementation of self-referential structure is as follows:

1. struct Node {

2 int data;

3. struct Node *next;
4

)

In the above code, the structure node contains data element data as well as pointer next which
points to the structure of the same type. The (*) indicates a pointer definition and it points to the
address of the next node of the linked list. As the linked list is traversed using the next pointer,
the value of the pointer in the last node will be NULL. The self-referential structure is the reason
why a linked list is called a dynamic data structure and can be expanded and pruned at runtime.

Ordered List vs Ordered Array

Suppose we have an ordered array arr[] having integer values.

|‘.1. arr[] = [50, 1ee, 12, 150, 200];

Scanned with CamScanner

Scanned with CamScanner

If we have to insert a new value 70 into the array, then we have to move all elements after 50 to
maintain the ordered array. Similarly, if we have to delete a value 100 from the array, we have to
move all the values after 100. So, insert and delete operations are expensive in ordered arrays. If
we maintain an ordered list, the insert and delete operations are faster and more efficient due to
the use of pointers.

Following are the basic operations supported by a list.

Insertion — Adds an element at the beginning of the list.
Deletion — Deletes an element at the beginning of the list.
Display — Displays the complete list.

Search — Searches an element using the given key.

Delete — Deletes an element using the given key:.

Linked List Representation
A linked list is a sequence of data structures, which are connected together via links.

Linked List is a sequence of links which contains items. Each link contains a connection to
another link. Linked list is the second most-used data structure after array. Following are the
important terms to understand the concept of Linked List.

e Link — Each link of a linked list can store a data called an element.

« Next — Each link of a linked list contains a link to the next link called Next.

« LinkedList — A Linked List contains the connection link to the first link called First.
s lastlink carries a link as null to mark the end of the list.

Linked list can be visualized as a chain of nodes, where every node points to the next node.

NODE NODE NODE
Head Next Next Next
____» Dataltems ___» Dataltems ____, Dataltems
NULL
Types of Linked List

Following are the various types of linked list.
» Simple Linked List — Item navigation is forward only.
« Doubly Linked List — Items can be navigated forward and backward.

e« Circular Linked List — Last item contains link of the first element as next and the first
element has a link to the last element as previous.

Scanned with CamScanner

Scanned with CamScanner

Basic Operations
Following are the basic operations supported by a list.
¢ Insertion — Adds an element at the beginning of the list.
e Deletion — Deletes an element at the beginning of the list.
« Display — Displays the complete list.
« Search — Searches an element using the given key.
o Delete — Deletes an element using the given key.
Insertion Operation

Adding a new node in linked list is a more than one step activity. We shall learn this with diagrams
here. First, create a node using the same structure and find the location where it has to be inserted.

NODE NODE

Head Next Next
» Dataltems —» Dataltems

NULL

ext
Data Items

New NODE
Imagine that we are inserting a node B (NewNode), between A (LeftNode) and C (RightNode).
Then point B.nextto C —
NewNode.next —> RightNode;
It should look like this =
NODE NODE

Head ' Next — Next
» Dataltems Data Items

—

NULL

Next
Data ltems

New NODE
Now, the next node at the left should point to the new node.

LeftiNode.next = NewNode;

Scanned with CamScanner

Scanned with CamScanner

NODE NODE

Head Next e > Next
» Dataltems o eveesmeessesspenaieaes Data items

% E

ext
Data ltems

New NODE

This will put the new node in the middle of the two. The new list should look like this —
NODE NODE

' Head Next Next Next
» Dataltems > Data ltems » Dataltems
el

NULL

New NODE

Similar steps should be taken if the node is being inserted at the beginning of the list. While
inserting it at the end, the second last node of the list should point to the new node and the new

node will point to NULL.

Deletion Operation

Deletion is also a more than one step process. We shall learn with pictorial representation. First,
locate the target node to be removed, by using searching algorithms.

NODE NODE

Head Next Next Next
» Dataltems » Dataltems _» Dataltems

Target NODE
NULL

The left (previous) node of the target node now should point to the next node of the target node

LeftNode.next — TargetNode.next;
NODE NODE

Head Next J Next | Next
» Dataltems /.. Dataltems : _» Dataltems

Target NODE
NULL

This will remove the link that was pointing to the target node. Now, using the following code, we
will remove what the target node is pointing at.

TargetNode.next —> NULL;

Scanned with CamScanner

Scanned with CamScanner

NODE NODE

Head Next Next Next
» Dalaltems Data Items » Data ltems

Target NODE
NULL

We need to use the deleted node. We can keep that in memory otherwise we can simply deallocate
memory and wipe off the target node completely.

NODE NODE
Head ' Next Next
» Dataltems . » Dataltems
NULL
File Handling

A file represents a sequence of bytes on the disk where a group of related data is stored. File is
created for permanent storage of data. A file is a container in computer storage devices used for
storing data. The uses of files are:

e When a program is terminated, the entire data is lost. Storing in a file will preserve your
data even if the program terminates.

s If you have 1o enter a large number of data, it will take a lot of time to enter them all.
However, if you have a file containing all the data, you can easily access the contents of
the file using a few commands in C.

* You can easily move your data from one computer to another without any changes.

Types of Files:
1. Text files

Text files are the normal .txt files. You can easily create text files using any simple text editors
such as Notepad.

When you open those files, you'll see all the contents within the file as plain text. You can easily
edit or delete the contents.

They take minimum effort to maintain, are easily readable, and provide the least security and
takes bigger storage space.

Scanned with CamScanner

Scanned with CamScanner

2. Binary files
Binary files are mostly the .bin files in your computer.
Instead of storing data in plain text, they store it in the binary form (0's and 1's).

They can hold a higher amount of data, are not readable easily, and provides better security than
text files.

File Operations :
In C, you can perform four major operations on files, either text or binary:

1, Creating a new file

2. Opening an existing file

3. Closing afile

4. Reading from and writing information to a file

I/0 functions:

C provides a number of functions that helps to perform basic file operations. Following are the
functions:

Function Name Operations

fopen() create a new file or open a existing file
fclose() closes a file

getc() reads a character from a file

putc() writes a character to a file

fscanf() reads a set of data from a file
fprintf() writes a set of data to a file

oetw() reads a integer from a file

putw() writes a integer to a file

fseek() set the position to desire point

ftell() gives current position in the file
rewind() set the position to the begining point

Working with files:

When working with files, you need to declare a pointer of type file. This declaration is needed
for communication between the file and the program.

FILE *filepointer;

Scanned with CamScanner

Scanned with CamScanner

Opening or creating file :-
For opening a file, fopen function is used with the required access modes. Some of
the commonly used file access modes are mentioned below.
File opening modes in C:

e “r” — Searches file. If the file is opened successfully fopen() loads it into memory and sets
up a pointer which points to the first character in it. If the file cannot be opened fopen()
returns NULL.

s “w” — Searches file. If the file exists, its contents are overwritten. 1f the file doesn’t exist, a
new file is created, Returns NULL, if unable to open file.

s “a” — Searches file. If the file is opened successfully fopen() loads it into memory and sets
up a pointer that points to the last character in it. If the file doesn’t exist, a new file is
created. Returns NULL, if unable to open file.

e “r+” — Searches file. If is opened successfully fopen() loads it into memory and sets up a
pointer which points to the first character in it. Returns NULL, if unable to open the file.

e “w+" — Searches file. If the file exists, its contents are overwritten. If the file doesn’t exist
anew file is created. Returns NULL, if unable to open file.

e “a+" — Searches file. If the file is opened successfully fopen() loads it into memory and
sets up a pointer which points to the last character in 1t. If the file doesn’t exist, a new file is
created. Returns NULL, if unable to open file.

As given above, if you want to perform operations on a binary file, then you have to append ‘b’
at the last. For example, instead of “w”, you have to use “wb”, instead of “a+” you have to use
“a+b”. For performing the operations on the file, a special pointer called File pointer is used
which is declared as

FILE *filePointer;

So, the file can be opened as

filePointer = fopen(“fileName. txt”, “w™)

The second parameter can be changed to contain all the attributes listed in the above table.

Reading from a file :-
The file read operations can be performed using functions fscanf or fgets. Both the
functions performed the same operations as that of scanf and gets but with an additional
parameter, the file pointer. So, it depends on you if you want to read the file line by line or
character by character.
And the code snippet for reading a file is as:

FILE * filePointer;
filePointer = fopen(“fileName.txt”, “r”);
fscanf(filePointer, "%s %s %s %d", strl, str2, str3, &year);

Writing a file :-
The file write operations can be perfomed by the functions fprintf and fputs with
similarities to read operations. The snippet for writing to a file is as :

FILE *filePointer :
FilePointer = fopen(“fileName.txt”, “w”),
fprintf(filePointer, "%s %s %s %d", "We", "are", "in", 2012);

Scanned with CamScanner

Scanned with CamScanner

Closing a file :-
After every successful fie operations, you must always close a file. For closing a
file, you have to use fclose function. The snippet for closing a file is given as :
FILE *filePointer ;
filePointer= fopen(“fileName.txt”, “w™);
---------- Some file Operations -------
fclose(filePointer)

Example 1: Program to Open a File, Write in it, And Close the File

// C program to Open a File,
// Write in it, And Close the File

include <stdio.h>
include <string.h>

int main{)

// Declare the file pointer
FILE *filePointer ;

// Get the data to be written in file
char dataToBeWritten[50]
= "¢ is a high level language";

// Open the existing file Test.txt using fopen()
// in write mode using "w" attribute
filePointer = fopen("Test.txt", "w"] ;

// Check if this filePointer is null
// which maybe if the file does not exist
if (filePointer == NULL)
{
printf("Test.txt file failed to cpen.”) ;
}
else

(
printf ("The file is now opened.\n"} ;

// Write the dataToBeWritten into the file
if (strlen (dataToBeWritten | > 0)
{

// writing in the file using fputs()
fputs (dataToBeWritten, filePointer) ;
fputs ("\n", filePointer) ;

Scanned with CamScanner

Scanned with CamScanner

// Closing the file using fclose ()
fclose (filePointer) ;

printf ("Data successfully written in file Test.txt\n");
printf ("The file is now closed.") ;
)

return 0;

This program takes a character which is stored in the variable “dataToBeWritten” and stores in the
file Test.txt.

After you compile and run this program, you can see a text file Test.txt created in C drive of your
computer. When you open the file, you can see the integer you entered.

Example 2: Program to Open a File, Read from it, And Close the File

// C program to Open a File,
// Read from it, And Close the File

include <stdio.h>
include <string.h>

int main()

{

// Declare the file pointer
FILE *filePointer ;

// Declare the variabhle for the data to be read from file
char dataToBeRead[50] ;

// Open the existing file Test.txt using fopen()
// in read mode using "r" attribute
filePointer = fopen("Test.t=xt", "r"} ;

// Check if this filePointer is null
// which maybe if the file does not exist
if (filePointer == NULL)
{
printf("Test.txt file failed to open.™) ;

}
else

(
printf ("The file is now opened.\n")

// Read the dataToBeRead from the file
// using fgets(] method

Scanned with CamScanner

Scanned with CamScanner

while(fgets (dataToBeRead, 50, filePointer) != NULL)
{

// Print the dataTcBeRead
printf("%s" , dataToBeRead | ;

// Closing the file using fclose ()
fclose(filePointer) ;

printf ("Data successfully read from file Test.txt\n");
printf ("The file is now closed.") ;

}

return 0;
}
This program reads the string present in the Test.txt file and prints it onto the screen.

If you successfully created the file from Example 1, running this program will get you the string
you entered.

Scanned with CamScanner

Scanned with CamScanner

