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Unit I — Introduction of Operating System
Introduction

An operating system acts as an intermediary between the user of a computer and computer
hardware. The purpose of an operating system is to provide an environment in which auser can
execute programs in a convenient and efficient manner.

An operating systetn is a software that manages the computer hardware. The hardware must
provide appropriate mechanisms to ensure the correct operation of the computer system and to

prevent user programs from interfenng with the proper operation of the system.
{Jperating System — Definiti on:

An operating systetn 15 a program that controls the execution of application programs and acts as
an intetface between the user of a computer and the computer hardware.

A more common definition 15 that the operating systemn 15 the one program running at all times
on the computer (usuall¥ called the kernel), wath all else being application programs.

An operating system 18 concerned with the all ocation of resources and serwvices, such as memm ory,
processors, devices, and information. The operating system correspondingly includes programs
to tnanage these resources, such as a traffic controller, a scheduler, memory management
module, IO programs, and afile system.

Functions of Operating system — Operating system petforms three functions:
Convenience: An OF makes a computer more convenient to use.
Efficiency: An OF allows the computer system resources to be uzed in an efficient manner.

Ability to Ewolve: An OF should be constructed in such a way as to permit the effective
development, testing and introduction of new system functions at the same time without
interfering with service.

Cperating system as User Interface —
Tser

mystem and application programs
Operating system

Hardware



Every general-purpose computer consists of the hardware, operating system, system programs,
and application programs The hardware consists of memory, CPU, ALT, and LI'O devices,
peripheral device, and storage dewvice. Swstern program consists of compilers, loaders, editors,
25, etc. The application program consists of business programs, database programs.
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Figl: Conceptual wiew of a computer system

Every computer must have an operating system to run other programs. The operating system
cootdinates the use of the hardware among the wvanious system programs and application
programs for wanious uzers. It simply provides an environment within which other programs can

do uzeful worke

The operating system 12 a set of special programs that run on a computer system that allows it to
wotk propetly. It performs basic tasks such as recognizing input from the kevboard, keeping
track of files and directories on the disk, sending output to the display screen and controlling
peripheral devices.

051z designed to serve two basic purposes:

It controls the allocation and use of the computing System’s resources among the various user

and tasls.

It prowvides an interface between the computer hardware and the programmer that simplifies and

malkes feasible for coding, creation, debugging of application programs.



The Operating system must support the following tasks. The task are:
Provides the facilities to create, modification of programs and data files using an editor.

Access to the compiler for translating the user program from high level language to machine
language.

Prowide a loader program to move the compiled program code to the computer’ s memory for
execution.

Prowride routines that handle the detatls of IO programiming.
'O System Management —

The module that keeps track of the status of dewices iz called the I/O traffic controller. Each IO
device has a device handler that resides in a separate process assoniated with that device.

The I'O subsystem consists of

A memory Management component that includes buffering caching and spooling.
& general device driver interface.

Dinvers for specific hardware devices.

Assembler -
The input to an assembler 13 an assembly language program. The output 15 an object program
plus information that enables the loader to prepare the object program for execution. At one time,
the computer programmer had at his disposzal a basic machine that interpreted, through hardware,
certain fundamental instructions. He would program this computer by writing a series of ones

and Zeros (MMachine language), place them into the memory of the machine.

Compiler -
The High-level languages- examples are FORTEAT, COBOL, ALGOL and PLIT are processed
by compilers and interpreters. & compiler 18 a program that accepts a source program in a “high-
lewvel language “and produces a corresponding object program. An interpreter 13 a program that
appears to execute a source program as if it was machine language. The same name (FOETE AN,
COBECL, ete) i often used to designate both a compiler and its associated language.

Loader -
& Loader 15 a routine that loads an object program and prepares it for execution. There are
various loading schemes: absolute, relocating and direct-linking. In general, the loader must load,
relocate and link the object program. The loader 15 a program that places programs into metn oty
and prepares them for execution. In a simple loading scheme, the assembler outputs the machine
language translation of a program on a secondary device and a loader places it in the core. The



loader places into memory the machine language version of the user’s program and transfers
control to it Since the loader program 1s much smaller than the assembler, those make more core
available to the user’ s program.

History of Operating system —
Oiperating system has been evelving through the vears. Following Table shows the history of OF.

First 1945-55 Waccum Tubkes Plug Boards
mecond 1955-65 Transistors Batch Systems
Third 1965-R0 Integrated Circuits(IC) MMultiprogramming
Fourth since 1250 Large Scale Integration BC

Types of Operating System —

Batch OCperating Svatem- Sequence of jobs 1n a program on a computer without manual
interventions.

Time sharing operating System- allows many users to share the computer resources (Idax
utilization of the resources).

Distnbuted operating System- Manages a group of different computers and make appear to be a
single computer.

Hetworle operating system- computers running in different operating system can participate in
cotnmon netwotl (It 15 used for secunty purpose).

Eeal time operating systemn — meant applications to fix the deadlines.

Examples of Operating System are —

Windows (GUI based, PC)

G Linuz (Personal, Workestations, ISP, File and print server, Three-tier client’Server)
macCs (Macintosh), used for Apple’ s personal computers and work stations (MMacB ook, iMac).
Android (Google's Operating System for smartphonesitablets/smartwatches)

105 (Apple’s OF for 1Phone, 1Pad and iPod Touch)



{Jperating System Structure

An operating system 18 a construct that allows the user application programs to interact with the
system hardware. Since the operating system is such a complex structure, it should be created
with uttnost care so it can be used and modified easily. An easy way to do this 15 to create the
operating system in parts. Each of these parts should be well defined with clear inputs, outputs
and functions.

Simple Structure

There are many operating systems that have a rather simple structure. These started as small
systems and rapidly expanded much further than their scope. &4 common example of this 15 ME-
DOS Tt was designed asimply for a niche amount for people. There was no indication that it
would become so popular.

Animage to illustrate the structure of BS-DOS 15 as foll owes:
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It 15 better that operating systems have a modular structure, unlike JE-DOS. That would lead to
greater control over the computer systetn and its various applications. The modular structure
would also allow the programmers to hide information as regquired and implement internal
routines as they see fit without changing the cuter specificati ons.

Layered Structure

One way to achieve modularity in the operating system is the layered approach. In this, the
bottom layer 15 the hardware and the topm ost layer 13 the user interface.

Animage demonstrating the layered approach 1s az foll ows:
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Layered Structure of Operating System

Az seen from the image, each upper layer 15 built on the bottom layer. All the layers hude some
sthuctures, operations etc from their upper layers.

COperating System Operations

An operating system 15 a construct that allows the user application programs to interact with the
systemn hardware Operating system by itself does not prowide any function but it prowides an
atmosphere in which different applications and programs can do useful work

The major operations of the operating system are process management, memory management,

device management and file management. These are given in detail as follows:
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Process Management

The operating system 13 responsible for managing the processes ie assigning the
processor to a process at a ime. This 15 known as process scheduling. The different algorithms
used for process scheduling are FCFS (first come first served), SJF (shortest job first), priority
scheduling, round robin scheduling etc.

There are many scheduling queues that are used to handle processes in process
management. When the processes enter the system, they are put inte the job queue. The
processes that are ready to execute in the man memotry are kept in the ready queve. The

processes that are waiting for the IFO dewice are kept in the device quene.

Mem ory Management

Memotry management plays an impottant part in operating system. It deals with mem ory

and the moving of processes from disk to primary memory for execution and back again.

The activities petformed by the operating system for memory management are:

s The operating system assigns memory to the processes as required. This can be done
using best fit, first fit and worst fit algonthms.

»  Allthe memory 15 tracked by the operating system 1.e. 1t nodes what memory parts are in
use by the processes and which are empty.

o The operating system deall ocated mem oty from processes as required. This may happen

when a process has been terminated orif it no longer needs the mem oty

Device Managem ent

There are many 'O devices handled by the operating system such as mouse, keyboard,
dizk drive etc. There are different dewvice drivers that can be connected to the operating system to
handle a specific device. The device controller 15 an interface between the device and the device
driver. The user applications can access all the I/ devices using the device drivers, which are
device specific codes.

File Management

Files are used to provide auniform wiew of data storage by the operating system. All the
files are mapped onto physical devices that are usually non volatile so data 1s safe in the case of
system failure.

The files can be accessed by the system in two ways 1.e. sequential access and direct access:



+» Seguential Access

The information 1n a file 15 processed in order using sequential access. The files records
are accessed on after another. Most of the file systems such as editors, compilers ete. use
sequential access.

« Direct Access

In direct access or relative access, the files can be acceszed in random for read and write
operatiens. The direct access model 15 based on the disk model of a file, since 1t allows
random accesses.

Protection and Security in Operating System

Protection and security requires that computer resources such as CPTT, softwares, memory etc.
are protected. This extends to the operating system as well as the data in the system. This can be
done by ensuring integrity, confidentiality and availability in the operating systetn. The system
must be protect against unanthorized access, vinizes, worms etc.

Threats to Protection and Security

A threat 1z a program that 1z malicious 1 nature and leads to harmiul effects for the system.
mome of the common threats that occur in a system are:

Virus

Wirnses are generally small snippets of code embedded in a system . They are very dangerous and
can corrupt files, destrov data, crash systems etc. They can also spread further by replicating
themselves as required.

Trojan Horse

& trojan horse can secretly access the login details of a system. Then a malicious user can use
these to enter the system as a harmless being and wreak havoc.

Trap Door

A trap doot 15 a security breach that may be present in a system without the knowledge of the
uzers. It can be exploited to harm the data or files in a system by malicious people.

Worm

& worm can destroy a system by using its resources to extreme levels. It can generate multiple
copies which claim all the rescurces and don't allow any other processes to access them. & worm

can shut down a whole network in this way.



Denial of Service

These type of attacks do not allow the legitimate users to access a system. It overwhelms the

system with requests so itis overwhelmed and cannot work properly for other user.

Protection and Security Methods

The different methods that may provide protect and secunty for diff erent computer systems are:

Authentication

Thiz deals with identifying each user in the system and making sure they are who they claim to

be. The operating system makes sure that all the uszers are authenticated before they access the

system. The different ways to make sure that the users are authentic are:

Username’ Password

Each user has a distinct username and password combination and they need to enter 1t
correctly before they can access the system.

User Key/ User Card

The users need to punch a card into the card slot or use they individual key on a keypad
to access the system.

User Attribute Identification

Different user attnibute identifications that can be used are fingerprint, eve retina etc.
These are unique for each user and are compared wath the existing samples in the
database. The user can only access the system 1f there 1z a match.

One Time Password

These passwords provide a lot of secunity for authentication purposes. & one time password can

be generated exclusively for a login every time a user wants to enter the system. It cannot be

used more than once. The vanous ways a one titne password can be implemented are:

Random Numbers

The system can ask for numbers that correspond to alphabets that are pre arranged. This
combination can be changed each time alogin 15 required.

Secret Key

A hardware device can create a secret key related to the user 1d for login. This key can

change each time.



Kernel Data Structures

The kernel data structures are very inpottant as they store data about the current state of the
system. For example, if a new process 15 created in the system, a kernel data structure 13 created
that contains the details about the process.

Wlost of the kernel data structures are only accessible by the kemel and 1ts subsystems. They may

contain data as well as pointers to other data structures.

Eernel Components

The kernel stores and organizes a lot of information. So it has data about which processes are
running in the system, their memory requirements, files 1n use etc. To handle all this, three
important structures are used. These are process table, file table and v nodef 1 node information.

e g S
-~ .

(' KERNELDATA
STRUCTURES |

e
T ol ) H.‘.H'\ -
Ar'"-' -..-J-f -\-xh.‘“"l
PROCESS FILE V-NODE AND
TABLE TABLE I-NODE TABLES

Details about these are as foll ows:

Process Tahle

The process table stores information about all the processes running in the system. These include
the storage information, execution status, file inform ation etc.

When a process forks a child, its entry in the process table 15 duplicated including the file
information and file pointers. So the parent and the child process share afile.

File Tahle

The file table contains entries about all the files in the system. If two or more processes use the

same file, then they contain the same file information and the file descriptor number.



Each file table entry contains informati on about the file such as file status (file read or file write),
file offset etc. The file offzet specifies the position for next read or write into the file.

The file table also contains vnode and 1-node pointers which point to the virtual node and index

node respectively. These nodes contain informati on on how to read a file.
V-Node and I-Node T ahles

Both the vnode and 1-node are references to the storage system of the file and the storage
mechanisms They connect the hardware to the software.

The v-node 15 an abstract concept that defines the method to access file data without worrying
about the actual structure of the systemn. The 1-node specifies file access information like file
storage device, read/write procedures eto.

C omputing Environm ents

A computer system uses many dewvices, arranged in different ways to solve many problems. This
constitutes a computing environment where many computers are used to process and exchange
infortmation to handle multiple 1ssues.

The different types of Computing Environmments are:
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Letusz begin with Personal Computing Environment:



Personal Computing Environment

In the personal computing environment, there 15 a single computer system. All the system
processes are avallable on the computer and executed there. The different devices that constitute
apersonal computing environment are laptops, mobiles, printers, computer systems, scanners
etc.

Time Sharing Computing Environment

The time sharing computing environment allows multiple users to share the system
sitnultanecusly. Each user 15 provided a time slice and the processor switches rapidly among the
uzers according to it Because of this, each user believes that they are the only ones using the
system.

{Client Server Computing Envir onm ent

In client server computing, the client requests a resource and the server provides that resource. A
server may serve multiple clients at the same time while a client 12 in contact with only one
server. Both the client and server usually communicate via a computer network but sometimes
they may reside in the same systetn.

Distributed Computing Environment

& distributed computing environment containg multiple nodes that are physically separate but
linked together using the networle All the nodes in this system communicate with each other and
handle processes in tandem. Each of these nodes contains a small part of the distnbuted
operating system software.

Cloud Computing Environment

The computing 15 moved away from individual computer systems to a cloud of computers in
cloud computing environtment. The cloud users only see the service being provided and not the
internal details of how the service 15 provided. This 13 done by pocling all the computer resources
and then managing them using a software.

Cluster Computing Environment

The clustered computing environtnent 15 similar to parallel computing environtnent as they both
have multiple CPUs Howewver a major difference is that clustered systems are created by two or
more individual computer system s merged together which then work parallel to each other.

COpen Source Operating System s

Open Source operating systems are released under a license where the copynght holder allows
others to study, change as well as distribute the software to other people. This can be done for
any reason. The different open source operating system avail able 1n the market are:



Cosmos

Thiz 15 an open source operabng system written mostly 1n programming language C# ITts full
fortm 15 C# Cpen Source Managed Operating System. Till 2016, Cosmos did not intend to be a
tully fledged operating system but a system that all owed other developers to easily build their
own operating systems. It alzo hid the inner workings of the hardware from the devel opers thus
providing data abstraction.

FreeDOS

This was a free operating svstem developed for systems compatible with IBM PC computers.
FreeDOF provides a complete environment to run legacy software and other embedded systems.
It can booted from a floppy disk or TUSE flash drive as required. FreeDos 15 licensed under the
GHT General Public license and contains free and open source software. So there 15 no licensze
fees required for its distnbution and changes to the system are permitted

Genode

Genode 1z free as well as open source. It contains a microkernel laver and different user
components. It 13 one of the few open source operating systems not denived from a licenced
operating system such as Uiz Genode can be used as ah operating system for computers,
tablets etc. as required. It 15 also used as a base for wirtnalization, interprocess communication,

software devel opment etc. as it has a small code system.
Ghost O

This 15 a free, open source operating system developed for personal computers. It started as a
research project and developed to contain various advanced features like graphical user interface,
2 library etc. The Ghost operating system features multiprocessing and multitasking and 15 based
on the Ghost Eernel. Most of the programming in Ghost OF 15 done in CH

ITS

The incompatible time-sharing system was developed by the MIT Artificial Intelligence Library.
Itis principally atime sharing systern. There 15 a remote login facility which allowed guest users
to informally try out the operating system and its features using ARPAnet ITS also gave out
many new features that were unigque at that time such as dewvice independent graphics terminal,
wirtnal devices, inter machine file system access etc.

O8Ny

Thiz was an operating system released in 2013 It was mainly focused on cloud computing and
was built to run on top of a wirtual machine as a guest This 1z the reason it deesn't include
drivers for bare hardware. In the OSv operating system, everything runs in the kernel address
space and there 15 no concept of a multi-user system .



Phantom OS

Thiz 15 an operating system that 15 based on the concepts on persistent virtual memory and 1s
code oriented Tt was mostly developed by Eussian developers. Phantom O3S 18 not baszed on
concepts of famous operating systems such as Uiz Its main goal 15 simplicity and effectiveness
In process managem ent.

{Jperating System Services

An Cperating System provides services to both the users and to the programs.

o It provides programs an environment to execute.

s It provides users the services to execute the programs in a convenient manner.

Following are afew common services provided by an operating system —

« Drogram execution

o L operations

» File System manipulation
«  Communication

s+ Error Detection

+» Eesource Allocation

» Protection
Program execution

Operating systems handle many kinds of actiwities from uszer programs to system programs like
printer spocler, name servers, file server, etc. Each of these activities is encapsulated as a
process.

A process includes the complete execution context (code to execute, data to manipulate,
registers, 05 resources in use). Following are the major activities of an operating system with
respect to program management —

« Loads aprogram into memaory.

« Executes the program.

» Handles program's execution.

s« Drovides amechanism for process synchronization,
o« Provides amechanism for process communication.

+ Provides amechanism for deadlock handling.



I/ Operation

An MO subsystem comprises of 'O devices and their corresponding driver software. Drivers
hide the peculiarities of specific hardware devices from the users.

An Cperating System manages the communication between user and device drvers,

o LD operation means read of wiite operation with any file or any specific 'O dewice.

« Operating system provides the access to the required IO device when required.

File system manipulation

A file represents a collecton of related informaton. Computers can store files on the disk
(secondary storage), for long-term storage purpose. Examples of storage media include
magnetic tape, magnetic disk and optical disk dnves like CD, DVD . Each of these media has its
own properties like speed, capacity, data transfer rate and data access methods.

A file system iz notmally organized into directories for easy navigation and usage. These
directories may contain files and other directions. Following are the major activities of an
operafing system with respect to file management —

» DProgram needs to read afile or wnite afile.

s The operating system gives the permission to the program for operation on file.
s Permission varies from read-only, read-write, denied and o on.

« Operating System provides an interface to the user to create/delete files.

« Operating System provides an interface to the user to create/delete directories.

» Operating System provides an interface to create the backup of file system.

C ommunic ation

In case of distnbuted systems which are a collection of processors that do not share memory,
peripheral devices, or a clock, the operating system manages communications between all the
processes. Multiple processes communicate with one another through communication lines in
the networtle.

The OF handles routing and connection strategies, and the problems of contention and secunty.
Following are the major activities of an operating system with respect to communication —

»  Two processes often require data to be transferred between themn

s Both the processes can be on one computer or on different computers, but are connected
through a computer networl



» Communication may be implemented by two methods, either by Shared Memory or by
Message Passing.

Error handling

Errors can occur anvtme and anywhere, An etror may occur in CPT, in YO devices or in the
memoty hardware Following are the major activities of an operating system with respect to

error handling —

#» The OF constantly checks for possible errors.

o  The OF takes an appropriate action to ensure correct and consistent computing.
Resource Managem ent

In case of multi-user or multi-tasking environment, resources such as main memory, CFTT
cycles and files storage are to be allocated to each user or job. Following are the major activities
of an operating systetn with respect to resource managetnent —

o« The 05 manages all kinds of resources using schedulers.
o« CPT scheduling algonthims are used for better utilizat on of CETT

Protection

Considenng a computer system having multiple users and concurrent execution of multiple

processes, the wari ous processes must be protected from each other's activities.

Protection refers to a mechanism or a way to control the access of programs, processes, or users
to the rescurces defined by a computer system. Following are the major activities of an

operating system with respect to protection —

o« The OF ensures that all access to systemn resources 1s controlled,
o« The OF ensures that external 'O devices are protected from invalid access attempts.
s The OF provides authentication features for each user by means of passwords.

Operating System and User Interface

&g already mentioned, in addition to the hardware, a computer also needs a set of programs—an

operating system—to control the dewices. This page will discuss the foll owing:
There are different kinds of operating systems:

such az Windows, Linux and Mac OF



There are also different versions of these operating systems,

e.g. Windows 7, B and 10

{Jperating systems can he used with different user interfaces (UI):

text user interfaces (IUL) and graphical user interfaces (GUT) as examples
Graphical user interfaces have many similarities in different operating systems:
such as the start menu, desktop ete.

When yvou can recognize the typical parts of each operating system’s user interface, vou will
mostly be able to use both Windows and Linux as well as e.g. Mac O

THE ROLE OF OPERATING SYSTEMIN THE CORMPUTER

An operating system (O3 1 a set of programs which ensures the interoperability of the hardware
and software in your computer. The operating system enables, among other things,

The identification and activation of devices connected to the computer,
The installation and use of programs, and
The handling of files.

What happens when you turn on your computer or smartphone?

— The computer checks the functionality of 1ts components and any devices connected to 1t, and
starts to look for the OF on ahard drive or other memory media.

—If the O3 13 found, the computer starts to load itinto the EAM (Random Access Memory).

— When the OF has loaded, the computer waits for commands from you.

DIFFERENT OPERATING 8Y STEMS

Uver the years, several different operating systems have been developed for different purposes.
The most typical operating systems in ordinary computers are Windows, Linux and Iac OF

WINDOWS

The name of the Windows OF comes from the fact that programs are run 1n “windows™ . each
program has itz own window, and vou can have szeveral programs open at the same time
Windows 12 the most popular O3 for home computers, and there are several wersions of it The
newest version 15 Windows 10,



LINUX AND UNIX

Linux 1z an open-source OF, which means that its program code is freely available to software
developers. This 15 why thousands of programmers around the worl d have devel oped Linusx, and
it 1z considered the most tested OF in the world Linux has been very much influenced by the
commercial Tnix OF.

In addition to servers, Linux 13 widely used in hotme computers, since there are a great number of
free programs for it (For text and image processing, spreadsheets, publishing, etc). Ower the
vears, many different versions of Linux have become avalable for distribution, most of which
are free for the user (such as Ubuntu, Fedora and Mint, to name a few) See the additional
reading material for more information on Linuzx.

MAC OS X

Apple’s Mac computers have their own operating system, OF X, Most of the programs that are
availlable for PCs are also avalable for Macs running under OF 3, but these two types of
computers cannot use the exact same program s for example, you cannot install the Mac version
of the Microsoft Office suite on a Windows computer. Y ou can install other operating systems
on Mac computers, but the OF X 15 only availlable for computers made by Apple. Apple’ s lighter
portable devwices (1Pads, iPhones) use a light version of the same operating system, called 105

Mac computers are popular because OF X 1z considered fast, easy to learn and very stable and
Apple’s devices are constdered well-designed—though rather expensive 3ee the additional

reading matenial for more information on OF 20
ANDROID

Android 15 an operating system designed for phones and other mobile devices. Android 15 not
available for desktop computers, but 1n mohile devices it 13 extremely popular: more than a half
of all mobkile devices in the world run on Android

USERINTERFACES

& user interface (UL refers to the part of an operating system, program , o device that allows a
user to enter and receive information. A text-hased user interface {zee the image to the left)
displays text, and its commmands are usually typed on a comtnand line using a keyboard With
a graphical user interface (see the nght-hand image), the functions are carried out by clicking
or moving buttons, icons and menus by means of a pointing device.



Larger image: text Ul | graphical TI

The images contain the same information: a directory listing of a computer. You can often carry
out the same tasks regardless of which kind of Tl wou are using.

TEXT USERINTERFACE (TUD

Modern graphical user interfaces have evolved from text-based Uls. Some operating systems can
still be used wath a text-based user interface. In this case, the commands are entered as text (e.g.,
“rat story .t ).

This demonstration will show yvou how to rename a file 1n a TUL the example will show both
the »ex (rename) and the dir (directory listing) commands The use of a TUL does not differ very
much from a GUI {Graphical TTser Interface) controlled with .2 a mouse (many TUTs mirror
GULs).

To display the text-based Command Prompt in Windows, open the Start menu and type emd.
Presz Enter on the keyboard to launch the command prompt in a separate window. With the

command prompt, vou can type vour commands from the kevboard instead of using the mouse.

GRAPHICAL USERINTERFACE

In most operating systems, the primary user interface 1z graphical, 1.6 instead of typing the
commands you manipulate various graphical objects (such as icons) with a pointing device. The
undetlying prnciple of different graphical user interfaces (GUIs) 1z largely the same, so by
knowing how to use a Windows UL vou wall most likely know how to use Linux or some other

GTIL
Wlost GUIs have the following basic components:

® astart menu with program groups
®* ataskbar showing running programs
o adesktop

®  vanousicons and shortouts.



System Calls

In computing, a system callis the programmatic way in which a computer program recquests a
service from the kemnel of the operating system it iz executed on. ... It provides an interface
between a process and operating system to allow user-level processes to request services of
the operating system.

The interface between a process and an operating system 13 provided by system calls. In general,
system calls are avalable as assembly language instructions. They are also included in the
manuals used by the assembly level programmers.

mystemn calls are usually made when a process in user mode requires access to a resource. Then it
requests the kernel to provide the resource via a system call.

Types of System Calls

There are mainly five types of system calls. These are explained in detal as follows:
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Process Control

These system calls deal with processes such as process creation, process tenmination ete.

File Management

These system calls are responsible for file manipulation such as creating a file, reading a file,
witing into a file etc,



Device Managem ent

These system calls are responsible for device mampulation such as reading from device buffers,
wiiting into device buffers etc.

Information Maintenance

These system calls handle information and its transfer between the operating system and the user
program.

C ommunic ation

These systemn calls are useful for interprocess communication. They also deal with creating and

deleting a communication connection.

wome of the examples of all the above types of system calls in Windows and Unix are given as
followrs:

Types of System Calls Windows Linux

CreateProcess() Forlk()

Process Control EzxitProcess() exit()
WatForsingleChbiect () wrait()
CreateBFile() openl)
FeadFile() read()

File Management o .
WnteFilel) write )
ClozeHandle) clozel)
metConsol eldodel) ioctl)

Drevice Management FeadConsole) readi)
WnteConsole) write )
FetCurrentProcessID) o etpl d)

[nformation Maintenance [SetTimer() alarm()
sleep) sleep()
Create Pipel) pipel)

I ommunication CreateFileMapping() shimget()

I Tap WV iew CEFile() it ap )




There are many different system calls as shown abowe. Details of some of those system calls are
as Foll ows:

wait()

In sotne systems, a process may wait for another process to complete its execution. This happens
when a parent process creates a child process and the execution of the parent process is
suspended until the child process executes. The suspending of the parent process occurs with a
walt() swstemn call. When the child process completes execution, the control 12 returned back to
the parent process.

exec()

This system call runs an executable file in the context of an already running process. It replaces
the previous executable file. Thiz 1z known as an overlay. The original process identifier remains
SIfICE A New process 15 not created but data, heap, stack etc. of the process are replaced by the
NEW Process.

fork()

Processes use the fork) system call to create processes that are a copy of themselves This iz one
of the major methods of process creation 1n operating systems. When a parent process creates a
child process and the execution of the parent process is suspended until the child process
executes. When the child process completes execution, the control 12 returmned back to the parent
process.

exiti)
The exit() system call 1z used by a program to tertninate its execution. In a multithreaded

environment, thiz means that the thread execution 12 complete. The operating system reclaims
resources that were used by the process after the exit() system call.

kill()

The kill() system call 13 used by the operating system to send a termination signal to a process
that urges the process to exit However, kill system call dees not necessary mean killing the
process and can have vanous meanings.

system Programs

There are mainly two categories of programs 1.e. application programs and system programs. A&
diagram that demonstrates their place in the logical computer hierarchy 15 as follows:



User User User

System and Application Programs

I

Operating System

I

Computer Hardware

Avpplication Programs

These programs petform a patticular function directly for the users. Some of the common
application programs include Email, web browsers, gaming software, word processors, graphics
software, media player etc.

Al of these programs provide an application to the end users, so they are known as application
programs. For example: a web browser 15 used to find information while a gaming software is
uzed to play games.

The requests for service and application communication systems used in an application by a
programmer 15 known as an application program interface (AP

System Programs

The system programs are used to program the operating system software. While application
programs provide software that 12 uzed directly by the uzer, system program: provide software
that are used by other systems such as Saa® applications, computational science applications etc.

The attnbutes of system programming are:

o Taing system programming, a programiner can make assumphions about the hardware of
the systemn that the program runs of.

o A low level programming language 15 used in system programming normally. This 15 so
that the programs can operate 1n low resource environments easily,

o Dlost systemn program s are created to have alow runtime overthead These programs may
have small runtim e library.



» ome parts of the system programs may be directly written in assembly language by the
programin ers.

o A debugger cannot be used on system program s mostly. This problem can be solved by
running the programs in a simul ated environment.

some examples of system programs are operating systemn, networking system, web site server,

data backup server etc.

Operating System design and Implem entation

An operating system 15 a construct that allows the user application programs to interact with the
systemn hardware Operating system by itself does not prowide any function but it prowides an
atmosphere in which different applications and programs can do useful work

There are many problems that can ocour while desighing and implementing an operating system.

These are covered in operating system design and implementation.

MEMORY MANAGEMENT
f INPUTIOUTPUT
FILE MANACGEMENT

USER INTERFACE

Layerad Operating System Design

{Operating System Design Goals

It 1z quite complicated to define all the goals and specifications of the operating systemn while
designing 1t The design changes depending on the type of the operating system 1.6 1f 1t 13 batch
system, time shared system, single user system, multi user system, distributed system etc.

There are basically two types of goals while designing an operating system. These are:

User (5oals

The operating system should be convenient, easy to use, reliable, safe and fast according to the
users. However, these specifications are not very useful as there 15 no set method to achieve these

goals.



System Goals

The operating system should be easy to design, implement and maintain. These are specifications
required by those who create, maintain and operate the operating system . But there 1s not specific
method to achieve these goals as well.

{Jperating System MMechanisms and Policies

There 13 no specific way to design an operating systemn as 1t 15 a hughly creative task. Howewer,
there are general software principles that are applicable to all operating systems.

& aubtle difference between techanism and policy iz that mechanism shows how to do
something and policy shows what to do. Policies may change over time and this would lead to
changes 1n mechanism. 5o, it 15 better to have a general mechanism that would require few

changes even when a policy change occurs.

For example - If the mechanism and policy are independent, then few changes are required in
mechanism 1f policy changes. It a policy favours IO intensive processes over TP intensive
processes, then a policy change to preference of CPTT intensive processes will not change the

tmechanism.

Operating System Implementation

The operating system needs to be implemented after 1t 13 designed. Earlier they were written 1n
assembly language but now higher level languages are used The first system not written in
assembly lahguage was the Master Control Program (WM CE) for Burroughs Computers.

Advantages of Higher L evel Language

There are multiple advantages to implementing an operating system using a higher level
language such as the code 1z written more fast, it 15 compact and also easier to debug and
understand. Alzo, the operating system can be easily moved from one hardware to another if 1tis

witten 1n a high level language.

Disadvantages of Higher Level Language

Taing high level language for implementing an operating systemn leads to a loss in speed and
increase in storage requirements. However in modem systems only a small amount of code is
needed for high performance, such as the CPU scheduler and memory manager. Also, the

kottleneck routines in the system can be replaced by assembly language equivalents if required.

Operating System-debugging

Debugging 15 the process of finding the problems in a computer system and solving them. There
are many different ways in which operating svstems petrform debugoing. Some of these are:



Log Files

The log files record all the events that occur in an operating system. This is done by writing all
the messages into a log file. There are different types of log files Some of these are given as

follows:

Event Logs

These stores the records of all the events that occur in the execution of a system. This 15 done so
that the actiwities of all the events can be understood to diagnose problems.

Transaction Logs

The transaction logs store the changes to the data so that the system can recover from crashes
and other errors. These logs are readable by a human.

Message Logs

These logs store both the public and private messages between the users. They are mostly plain
textfiles, but in some cases they may be HIML files.

Core Dump Files

The core dump files contain the memotry address space of a process that terminates
unexpectedly. The creation of the core dump is triggered 1n response to program crashes by the
kernel. The core dump files are used by the developers to find the program s state at the time of

its terminati on so that they can find out why the terminati on occurred.

The automatic creation of the core dump files can be dizabled by the users. This may be done to
improve performance, clear disk space o increase security.

{Crash Dump Files

In the event of a total system falure, the information about the state of the operating system 1s
captured in crash dump files. There are three types of dump that can be captured when a system
crashes. These are:

Complete Memory Dump

The whaole contents of the physical memory at the time of the system crash are captured in the

complete mem oty dump. This is the defanlt setting on the Windows Server System .

Kernel Mem ory Dump

Cnly the kemel mode read and wnte pages that are present in the main mem oty at the timne of the
system crash are stored in the kernel mem ory dump.



Small Mem ory Dump

Thizs memory dump contains the list of device drivers, stop code, process and thread information,

leernel stacl: etc.

Trace Listings

The trace listing record information about a program execution using logging. This information
1z used by programmers for debugging. System administrators and technical personnel can use
the trace listings to find the comm on problem s with software using software monitoring tools

Profiling

This 15 a type of program analysis that measures various parameters in a program such as space
and time complexity, frequency and duration of function calls, usage of specific instructons ete.
Profiling 15 done by monitoring the source code of the required system program using a code
profiler.

Operating System-G eneration

Operating Systems have evolved ower the vears So, their evolution through the years can be
mapped using generations of operating systems. There are four generations of operating svstems.
These can be described as follows:

The First Generation | 1345-1555 |

Vacuum Tubes and Plug boards

The Sacond Generation ( 1355-1365 )

Transistors and Batch Systems

The Third Generation [ 1965-1580 )

Integrated Circuits and Multi
programming

The Fourth Generation [ 1980-Current )

Personal Computers

CPERATING SYSTEM GEMERATIOMS



The First Generation ( 1945 - 1955 ): Vacuum Tuhes and Plughoards

Digital computers were not constructed until the second world war. Calculating engines with
mechanical relays were built at that time. However, the mechanical relays were very slow and
were later replaced with vacuum tubes. These machines were enormous but were still very slow.

Thesze early computers were designed, built and maintained by a single group of people.
Programming languages were unknown and there were no operating systems so all the
programming was done in machine language All the problems were simple numerical
calculations.

Bw the 1950°s punch cards were introduced and this improved the computer system. Instead of
using plughoards, programs were written on cards and read into the system.

The Second Generation (1955 - 1965): Transistors and Batch Systems

Transistors led to the development of the computer systemn s that could be manufactured and sold
to paving customers These machines were known as manframes and were locked 1n air-

condittoned computer room s with staff to operate them.

The Batch System was introduced to reduce the wasted time in the computer. A tray full of jobs
was collected in the input room and read into the magnetic tape. After that, the tape was rewound
and mounted on a tape drive. Then the batch operating system was loaded in which read the first
1ob from the tape and ran it The output was written on the second tape. After the whole batch

was done, the input and output tapes were removed and the output tape was printed.

The Third Generation {1965 - 1980): Integrated Circuits and Multiprogramming

Tntil the 19607 s, there were two types of computer systems 1.6 the scientific and the commercial
computers. These were combined by IBM in the Systemi/360. This used integrated circuits and
provided a major price and perform ance advantage over the second generation systems.

The third generation operating systems also introduced multiprogramming. This meant that the
processor was not 1dle while a job was completing 1ts 'O operation. Another job was scheduled
oft the processor so that 1ts titn e would not be wasted.

The Fourth Generation (1980 - Present): Personal Computers

Personal Computers were easy to create with the development of large-scale integrated circuits.
These were chips containing thousands of transistors on a square centimeter of silicon. Because
of these, microcomputers were much cheaper than minicomputers and that made it possible for a
single individual to own one of them.

The advent of personal computers also led to the growth of networlks This created network
operating systems and distnbuted operating systems. The users were aware of a network while
using a netwotk operating systetn and could log in to remote machines and copy files from one
machine to another.



System Boot

The booting of an operating system works by loading a very small program into the computer
and then giving that program control so that it in turn loads the entire operating system. Booting
or loading an operating system 15 different than installing it, which 15 generally an initial one-
time actvity.

Booting and Dual Booting of Operating System

The procedure of starting a computer by loading the kernel 15 known as Booting the system.
Hence it needs a special program, stored in EOM to do this job known as the Bootstrap loader.
Example: BIOE (boot input output system). & modern PC BIOS (Basic Input/Cutput System))
supports booting from various devices Typacally, the BIOS will allow the user to configure a
koot order. If the boot order 12 set to

Ch Dnve
Heard Disk Drive
Metworl

Then the BIOS will try to boot from the CD drive first, and if that fails then it will try to boot
from the hard disk drive, and if that fails then 1t will try to boot from the networl, and if that fails
then it won't boot at all.

Booting 15 a startup sequence that starts the operating system of a computer when it i3
turned on. A boot sequence 15 the mnitial set of operations that the computer performs when it 15
switched on. Every computer has a boot sequence. Bootstrap loader locates the kermel, loads it
into main memory and starts its execution. In some systems, a sitnple bootstrap loader fetches a
more complex boot program from disk, which in turn leads the kernel.

POWER ON COMPUTER

I
BIOS PERFORMS POST

DISK ] RAM

LOADING OF DS




Dual Booting:

When two operating systemn are installed on the computer system then it 1s called dual booting.
In fact multiple operating systems can be installed on such a system. But how system knows
which operatng system 15 to boot? & boot loader that understand multiple file systems and
multiple operating system can occupy the boot space Once loaded, it can boot one of the
operating svstems availlable on the disk The disk can have multiple partitions, each containing a
different type of operating system. When a computer system turn on, a boot manager program
displays a menu, allowing uzer to choose the operating system to use.

Unit IT — Process Management

® A process can be thought of as a program in execution. & process will need certain
resources - such as TP time, memory, files, and IO devices - to accomplish its task
These resources are allocated to the process either when it 13 created or while it is
executing.

o A process 18 the unit of work 1nh most systetns. Systerns consist of a collection of
processes: operating-system processes execute system code, and user processes execute
user code. All these processes may execute concurrently.

o  Although traditionally a process contained only a single thread of control as it ran, most
moderm operating systems now suppott processes that have multiple threads.

» The operating system 1s responsible for several important aspects of process and thread
management: the creation and deletion of both user and system processes, the scheduling
of processes; and the provision of mechanisms for synchronization, communication, and
deadlock handling for processes.

Process Concepts:

& question that arises 1n discussing operating systems involves what to call all the CTU

activities. & batch system executes jobs, whereas a time-shared systemn has user programs, of
tasks.

Even on a single-user systemn, a user tnay be able to run several programs at one time: a
word processor, a Web browser, and an e-mail package.

And even if a user can execute only one program at a time, such as on an embedded
device that does not support multitasking, the operating system may need to support its own
internal programimed activities, such as memory management.

In many respects, all these activities are similar, so we call all of them processes.

The terms fab and precess are used alm ost interchangeably in this text



The Process:

e sk o A processismore than the program code, which is sometimes
known as the text section.

l ® Tt also includes the current activity, as represented by the
value of the program counter and the contents of the
processor’ s registers.

]' o A process generally also includes the process stack, which

heap contains temporary data (such as function parameters, return
addresses, and local wariables), and
data e A data section, which contains global wvanables.
* A process may also include a heap, which 15 memeory that 13
A e dynamically allocated during process run time. The structure

of a process ih memory 18 shown in Figure "We emphasize

that a program by 1tself 1z not a process.

o A program is a passive entity, such as afile contatning alist of instructions stored on disk

{often called an executable file).

o In contrast, a process 15 an acfive enhity, with a program counter specifving the next
instruction to execute and a set of associated resources. A programn becomes a process

when an executable file 15 loaded into mem ory.

Two common techniques for loading executable files are

o Double-clicking an icon representing the executable file and

* Entering the name of the executable file on the command line (as in prog.exe or a.out).

Process State

Az aprocess executes, it changes state The state of a process 1z defined in part by the
current activity of that process. & process may be in one of the following states: The state

diagram corresponding to these states is presented in bel ow Figure.

admitted interrupt exit terminated
b - d

,
i

I'D or event completion mfﬁqu'?r_d i

L5
waiing

New- The process 15 being
created.

Running- Instructions are
being executed.

Waiting. -The process is
waiting for some event to
occur (such as an I/O
cotmpletion)

Ready -The process 15
waiting to be assighed to a
Processor.



Terminated- The process has finished execution.

It iz important to realize that only one process can be rusning on any processor at

any instant. Many processes may be ready and waisfing.

Process Control Block-[PCE]:

Each process is represented in the operating system by a

rocess state
i process control hlock (PCE)—also called a task control hlock.

process number

program counter APCEBis shown in Figure.

It contains many pieces of information associated with a

registers specific process, including these:

memory limits ®* Process state. The state may be new, ready, running, and

list of open files waiting, halted, and z0 on.

®* Program counter. The counter indicates the address of the

.o nextinstruct on to be executed for this process.
» CPU registers. The registers

process P, operating system process P, vaty in number and type,
depending on the computer

Interrupt or syste call architecture. They include
execuling 4 1 accumulators, index registers,
T save state into PCB, stack pointers, and general-
purpose registers, plus any
: » idle condition-code information.
' o CPU-scheduling information.
reload state from PCB, ) Thizs information includes a

- process priofity, pointers to

scheduling queues, and any other
e interrupt or system call execuling scheduling parameters.

—\\L * DNemory-management

information. This information
save state into PCB, may include such items as the

' L idle value of the base and limit

;[Ehad state rom PCB, the memoty system used by the

executing | X operating system.

o Accounting information. This

|

registers and the page tables, or
the segment tables, depending on

information includes the am ount
Diagram showing CPU switch from process to process.



of CPTT and real time used, time limits, account numbers, job or process numbers, and so
ol
» T/ status information. This inform ati on includes the list of 'O devices all ccated to the
process, alist of open files, and so on.
In brief, the PCE simply serves as the repository for any informati on that may vary from
process to process.

Process Scheduling

The objective of multiprogramming 15 to have some process running at all times, to
mazximize CFT utilization.

The ohiective of time sharing iz to switch the CPTT among processes so frequently that
users can interact with each program while 1t1s running.

To meet these objectives, the process scheduler selects an available process (possibly
from a set of several avail able processes) for program execution on the CPTT

For a single-processor system, there will never be more than one running process. IF
there are mote processes, the rest will have to waitt until the CPTT iz free and can be rescheduled.

scheduling Ouenes:

Az processes enter the system, they are put into a joh gueue, which consists of all
processes in the system.

The processes that are residing in main memory and are ready and waiting to execute are
kept on alist called the ready queue.

Thiz cqueue 15 generally

quale haadsr PCE, PCRE, ) )
| : ; stored as a linked list. A ready-
resarcly head - EE— T B . -
queve [ il ragisters | reqisters gqueve header contains peinters to
\'_/ !J/ . the first and final PICBs in the list,
mag [ head +— = Each PCE includes a pointer field
L= e | . R
unto |8 T that points to the next PCB in the
ready queue.
My head —
taps ——m—] —  PCB, PCE,, PCB, _
et 1 HEes - BN BN . The system also includes
other queues. When a process is
e allocated the CPT, it executes for
- ™ . . .
H'“‘-_-—————-"_Ffj a while and eventually quits, is
PCB, . .
—— i interrupted, or  wats for the
w0 [ @il . occurrence of a patticular event,
. such asz the completion of an IO

The ready queise and various VO device queuss



request. Suppose the process makes an I'O recuest to a shared device, such as a disk.

Since there are many processes in the system, the disk may be busy with the 'O request
of some other process. The process therefore may have to wait for the disk. The list of processes
wating for a particular IO device 15 called a device queue Each device has its own device

quEelE.

Y
—_— E—

7 ready quevs . EF‘LI N

common  representation of

P process scheduling 1z a gqueuing diagram,

— 110 -'—' I p— A — : :
Rk s s such as that in Figure. Each rectangular

box represents a gqueue. Two types of

time slica
I queues are present: the ready queue and a
P 1_T-.—— set of dewice queues. The circles represent
\ awecutes . child the resources that serve the queues, and the
g T arrows indicate the flow of processes in the
Gy
CUueueng-diagram representation of process schedubng. -flll'* New process iS 1n1t1311§.r pU't iﬂ thE

ready cueue It wats there until it 1s
selected for execution, or dispatched. Once the process 15 allocated the CPTT and 13 executing,
one of several events could occur:

+ The process could 1zsue an 'O request and then be placed 1n an 'O queue.
* The process could create a new child process and wait for the chil 4's termination.

* The process could be removed forcibly from the CPU, as a result of an intermupt, and be
put back in the ready queue.

In the first two cases, the process eventuall ¥ switches from the waiting state to the ready
state and 15 then put back in the ready queue. A process continues this cycle until it ternunates, at
which time it1s removed from all queues and has its PCE and resources deallocated.

Schedulers:

A process migrates among the various scheduling queues throughout its lifetime. The
operating system must select, for scheduling purposes, processes from these queues 1n some
fashion. The selection process i3 carried out by the appropriate scheduler.

Often, in a batch system, more processes are submitted than can be executed
immediately. These processes are spocled to amass-storage device (typically a disk), where they

are kept for later execution.



The long-term scheduler, or joh scheduler, selects processes from this pool and loads
them into memory for execution.

The short-term scheduler, or CPU scheduler, selects from among the processes that are
ready to execute and all ocates the CPTT to one of them.

The long-term scheduler executes much less frequently, minutes may separate the
creation of one new process and the next. The long-term scheduler controls the degree of

multiprogramming (the number of processes in memory).

some operating systems, such as time-sharing systems, may introduce an additional,
intermediate level of scheduling. Thiz medium-term scheduler iz diagrammed in Figure. The
key 1dea behind a medium term scheduler 15 that sometimes 1t can be advantageous to remove a
process from memory (and from active contention for the CPTT) and thus reduce the degree of
multiprogramming. Later, the process can be reintroduced into memory, and its execution can be
continued where 1t left off. This scheme 1z called swapping. The process 15 swapped out, and 15
later swapped in, by the medium-term scheduler Swapping may be necessaty to improve the
process mix of because a change in memory requirements has overcommitted avalable mem ory,
requining memn oty to be freed up.

Context Switch: swapin partially executed _ Swapout
o swapped-out processas
Swiatching  the CPU to  another

process requires performing a state save of L £
the current process and a state restore of a ready quete | e

. . . L
different process. This task 1z known as a
context switch. ';UU‘.." | /0 waiting

i | queuEs

When a context switch occurs, the e
kernel saves the context of the old process in
its PCE and loads the saved context of the new process scheduled to run.

Context-switch time 15 pure overhead, because the system does no useful work while
switching, Switching speed varies from machine to machine, depending on the mem oty speed,
the number of registers that must be copied, and the existence of special instructions (such as a
single instruction to load or store all registers). A typical speedis afew milliseconds.

Operations on Processes

The processes in most systems can execute concurrently, and they may be created and
deleted dynamically. Thus, these systems must provide a mechanism for process creation and
terminati on.



In this section, we explore the mechanisms involved in creating processzes and illustrate
process creation on UNEK and Windows systems.

Process Creation

Dunng the course of execution, a process may create several new processes. As
mentioned earlier, the creating process 15 called a parent process, and the new processes are
called the children of that process.

Each of these new processes may in tumn create other processes, forming a tree of
processes.

Most  operating

e systetns {including

"-’.\__. TN,  Linux, and

' ] Windows) identify

e _ - B processes according to a

\pie - $ ) K i unigque process

o TN identifier (or  pid),

i _‘ _._ : Sk which 15 typically an
p . gl o) integer number.

: The p1d provides
s e, o a unigque value for each
. e e ) T process in the system,

- and it can be used as an
A tree of processes on a typical Linux system. index to access various

attnibutes of a process
With in the kernel.

In general, when a process creates a child process, that child process will need certain
resources (CPTT time, memory, files, IO devices) to accomplish its task

A child process may be able to obtain its resources directly from the operating system, or
it may be constrained to a subset of the rescurces of the parent process. The parent may have to
pattition 1ts resources among its children, or it may be able to share some resources (such as
memory of files) among several of its chil dren.

Eestricting a child process to a subset of the parent’s resources prevents any process from
ovetloading the system by creating too many child processes.

When a process creates a new process, two possibilities for execution exist:

1. The parent continues to execute concurrently with its chil dren.
2. The parent waits until some or all of its children have terminate d.



There are also two address-space possibilities for the new process:

1. The child process 15 a duplicate of the parent process

parent).

2. The child process has anew program leaded into it

#include -<sys/types.h-
#include <stdio.h=
#include <unistd.h>
int mainl)

pid_t pid;

f# fork a child process */
pid = fark();

if (pid < 0) { /* error occurred =/
fprintf{atderr, "Fork Failed");

return 1;

t

elze if (pid == 0) { /* child process #/

execlp("/binS1s","1s" ,NULL);
1
]

else | L

/* parent process

/# parent will wait for tha child to complate

wait (NULL) ;
printf("Child Complata"};
I

return 0;

J

*/

{same program and data as the

The C program shown in Figure
tllustrates the TMIX system calls
previously described. We now have
different

copies of the same program. The

two Processes  running
only difference 1z that the walue of
pid (the process identifier) for the
child process 15 zero, while that for
the parent 15 an integer value greater
than zero (in fact, it 15 the actual pid

of the child process).

The
privileges and scheduling attributes

child process inhents

from the parent, as well certain
such as open files. The
then owetlays its
with  the TN

fused to get a

rESCUICES,
child process
address
command fhanfs

space

directory listing) using the execlp) system call (execlp() iz a version of the exec() system call).

The parent waits for the child process to complete with the wait() system call. When the

child process completes (by either implicitly or explicitly involing exit()), the parent process

resumes from the call to wat]), where it completes using the exit]) svstem call. This 1s also

illustrated in the following Figure.

ri;;d=fbrku.:

gt S

pare rit

U

parent (pid = 0]

aitl
——a——rk\- =xecn.x\1—————hfff exmﬁ ™

child (pid = 0)

}'

Process creation using the fork () system call.




Of course, there 15 nothing to prevent the child from amef invoking execland continuing
to execute as a copy of the parent process. In this scenano, the parent and child are concurrent
processes running the same code instructions. Because the child 1 a copy of the parent, each
process has its own copy of any data.

Process Termination

A process terminates when it finishes executing its final statement and asks the operating
system to delete it by using the exit]) system call At that point, the process may return a status
value (typically an integer) to 1ts parent process (via the wait() system call).

A1 the resources of the process—including physical and wirtual memotry, open files, and
IO btutfers—are deallocated by the operating system.

Termination can occur in other circumstances as well, A process can cause the

termination of another process via an appropriate system call (for example, Terminate Process()
i Windows).

Tsually, such a system call can be inveked only by the parent of the process that 15 to be
terninated. Ctherwise, users could arbitranly lill each othet’s jobs MNote that a parent needs to
know the identities of 1ts children if it 1s to terminate them.

Thus, when one process creates a new process, the identity of the newly created process

1z passed to the parent.

A parent may terminate the execution of one of itz children for a variety of reasons, such
as these:

o The child has exceeded itz usage of some of the resources that it has been allocated. (To
determine whether thiz has occurred, the parent must have a mechanism to inspect the
state of 1ts children.)

o  The task assigned to the childis no longer required.

o The parent 1z exiting, and the operating system does not allow a child to continue if its
parent terminates.

some systems do not all ow a child to exist if 1ts parent has terminated. In such svstems, if
a process terminates (either notmally or abnormally), then all its children must alse be
terminated. Thiz phenomenon, referred to as cascading termination, 15 normally initiated by the
operating system.

Teo 1llustrate process execution and termination, consider that, in Linux and TG
systems, we can terminate a process by using the exit) system call, providing an exit status as a
paratmeter:



i* exit with status 1 */
exit(1);

In fact, under normal termination, exit]) may be called either directly (as shown above) or

indirectly (by a return statement in main()).

Interprocess Communication

Processes executing concurrently in the operating system may be etther independent
processes of cooperating processes.

4 process 13 independent if 1t cannot affect or be affected by the other processes
executing in the system.

Any process that does not share data with any other process 1z independent.

A process 15 ceaperating if 1t can affect or be affected by the other processes executing in
the system. Clearly, anv process that shares data with other processes 15 a cooperating process.

There are several reasons for

process A — process A providing  an  environment  that
[ all owrs process cooperation

shared memory :I

+ Information sharing Since

— process B

several users may be interested in

process B

the same piece of information. "We

must provide an environment to
alow concurrent access to  such
information.

message queue « Computation speedup. If we want
> Mg M4/ Mo My | ... My |«= ' a particular task to run faster, we

kemel must breal: it into subtasks, each of
kemel which will be executing in parallel
: - - with the others.
(a) (b)
+ Modularity. "We may want to
Communications models. (a) Message passing. (b} Shared memory,  Construct the system in a modular
fashion, diwviding the  systemn
functions into separate processes or threads.

+ Convenience Even an individual user tnay work on tnany tasks at the same time. For tnstance,
auser may be editing, listening to music, and compiling in parallel.



Cooperating processes require an interprocess communication (IPC) mechanism that
will allow them to exchange data and information. There are two fundamental models of
interprocess communi cat on:

* Shared memory
* DMessage passing,
In the shared-memory model, aregion of memory that 1z shared by cooperating processes
1z established. Processes can then exchange information by reading and writing data to the shared
region.

In the message-passing model, communicaton takes place by means of messages
exchanged between the cooperating processes,

The two communications models are contrasted in above Figure.

Both of the models just mentioned are common in operating systemns, and many systems
implement both.

Message passing 13 useful for exchanging smaller amounts of data, because no conflicts
need be avoided. Message passing 13 also easier to implement 1n a distributed system than shared

et ory.

=whared memory can be faster than message passing, since message-passing systems are
typically implemented using system calls and thus require the more tme-consuming task of
kernel intervention. In shared-memory svstems, system calls are required only to establish shared
memoty regions. Once shared memory 13 established, all accesses are treated as routine mem ofy
accesses, and no assistance from the kernel 15 recquired.

Shared-MMem ory Systems

Interprocess communication using shared memeory requires commmunicating processes to
establish aregion of shared memory.

They can then exchange information by reading and writing data in the shared areas.

The form of the data and the location are determined by these processes and are not under

the operating system’ s control.

The processes are also responsible for ensuring that they are not writing to the same

locaton simultaneously.

To illustrate the concept of cooperating processes, let’s consider the producer — consumer

problem,



Which 15 a common paradigm for cooperating processes. 4 producer process produces
information that 15 consumed by a consumer process.

For example, a compiler may produce assembly code that 15 consumed by an assembler.
The assembler, in turn, may produce object modules that are consumed by the loader.

The producer — consumer problem also provides a useful metaphor for the client — server
paradigm. We generally think of a server as a producer and a client as a consumer. For example,
a web server produces (that 1, prowvides) HTML files and images, which are consumed (that 13,
read) by the client web browser requesting the resource.

One solution to the producer — consumer problem uses shared mem ory.

To allew producer and consumer processes to run concurrently, we must have available a
buffer of items that can be filled by the producer and emptied by the consumer. Thiz buffer will
reside in aregion of memory that 15 shared by the producer and consumer processes. A producer
can produce one item while the consumer 13 consuming another item. The producer and
consumer must be synchronized, so that the consumer does not try to consume an item that has
not yet been produced.

while (true)

{

{* produce an item in next produced */
while (({in + 1) % BUFFEE SIZE) = out)
. *donothing ¥
buftfer[in] = next produced;
in={in+ 1) % BUFFEE_SIZE;
}

The producer process using shared mem ory.
Two types of buffers can be used.

The unbhounded buffer places no practical limit on the size of the buffer. The
consutner may have to wat for new ttem s, but the producer can always produce new items.

The bounded buffer assumes a fized buffer size. In this case, the consumer must
wait if the buffer 1z empty, and the producer must wait if the buffer 12 full.

Message Passing System s

The shared-mem ory environment recquires that these processes share a region of memory
and that the code for accessing and manipulating the shared memory be written explicitly by the
application prograrmin er.



Another way to achieve the same effect 15 for the operating system to provide the means

for cooperating processes to commmunicate with each other via a message-passing facility.

Message passing provides a mechanism to allow processes to communicate and to
synchronize their actions without shanng the same address space. It 15 particularly useful 1n a
distributed environment, where the communicating processes may reside on different computers
connected by a networle

For example, an Internet chat program could be desighed so that chat participants
communicate with one another by exchanging messages.

& meszage-passing facility provides atleast two operations:
send (message) receive(message)
Mlessages sent by a process can be etther fixed or vanable in size.

If only fized-sized messages can be sent, the system-level implementation 12 straight-
forward. This restriction, however, makes the task of programming more difficult.

Conversely, variable-sized tnessages require a  tore complex  system-  level

implementation, but the programming task becomes simpler.

If processes P and O want to communicate, they must send messages to and receive
messages from each other: a communication fink must exist between them.

This link can be implemented in a variety of ways. We are concemed here not with the
link’s physical implementation (such as shared memory, hardware bus, or network) but rather
with its logical implementati on.

Here are several methods for logically implementing a link and the send()freceive()

operations:

o  Direct or indirect communication
o  ZSynchronous of asynchronous communicati of

o Automatic or explicit buffering
Naming

Processes that want to communicate must have a way to refer to each other.
They can use either direct or indirect communi caticn.

Tnder direct communication, each process that wants to communicate must explicitly

name the recipient of sender of the communication. In this scheme, the send() and receive()
primitives are defined as:



send(P, message)— Send a message to process P
receive((), message)— Eeceive a message from process
A communication link in this scheme has the foll owing properties:

o A link is established automatically between every par of processes that want to
communicate. The processes need to know only each othet’s identity to
communicate.

o A linkis assoctated with exactly two processes.

# Eetween each pair of processes, there exists exactly one link.

synchronization

Communication between processes takes place through calls to send() and receive()
primitives. There are different design options for implementing each primitive. Message
passing may be either blocking or nonblocking— also known as synchronous and
asynchronous. {Throughout this text, you will encounter the concepts of synchronous and
asynchronous behavior in relation to various operating-system al gorithms.)

Bloclang send. The sending process 13 blocked until the message 12 received by the
receiving process of by the matlbox.

Nonhlocking send. The sending process sends the message and resumes operation.
Bloclang receive. The receiver blocks until a message 15 available.

Nonblocking receive. The receiver retrieves either a valid message or anull.

Buffering

Whether communication 13 direct or indirect, messages exchanged by communicating
processes reside in a temporary queune. Basically, such queues can be implemented in three
Ways:

Zero capacity. The queue has a mamimum length of zero; thus, the link cannot have
any messages wating 1n 1t In this case, the sender must block until the recipient
receives the message.

Bounded capacity. The queue has finite length »; thus, at most # messages can

reside 1n it If the queue 1z not full when anew message 15 sent, the message 15 placed
it the queue (either the message 15 copied of a pointer to the message 15 kept), and the
sender can continue execution without waiting. The link’s capacity 15 finite, howewver.
If the link 15 full, the sender must block until space 15 avalable 1n the queue.
Unbounded capacity. The queue’s length is potentially infinite; thus, any number of
messages can watin it. The sender never blocks.



Multi- Threaded Programming
Thread

A thread is a flow of execution through the process code, with its own program counter
that keeps track of which instruction to execute next, system registers which hold its current

wotling variables, and a stack which contains the execution history.

A thread shares with its peer threads few information like code segment, data segment
atid open files. When one thread alters a code segment memory item, all other threads see that

& thread 15 also called a lightweight process. Threads provide a way to improve
application petformance through parallelism. Threads represent a software approach to
improving petformance of operating svstem by reducing the overhead thread 15 equivalent to a
classical process,

Each thread belongs to exactly one process and no thread can exist outside a process.
Each thread represents a separate flow of control. Threads have been successfully used in
implementing netwotle servers and web server. They also prowvide a sutable foundation for
parallel execution of applications on shared memory multiprocessors. The following figure
shows the working of a singlethreaded and a multithreaded process.

Diffarence hatwem Process and Thread

5. Process Thread

Thread 1z light weight, talung lesser resources
than a process.

Process is heavy weight of resource
intensive.

Process switching needs interaction with
operating systetn.

Thread switching does not need to interact
with operating system.

3 In multiple processing environments, each  All threads can share same set of open files,
process executes the same code buthas its child processes.
own memory and file resources.

4 It one process is blocked, then no other ‘While one thread 15 blocked and waiting, a

process can execute until the first process

15 unblocked.

second thread in the same task can run.



Multiple processes without using threads

NEE MMOre resources.

In multiple processes each process
operates independently of the others.

Multiple threaded processes use fewer
rESOUrCEs.

Omne thread can read, write or change another
thread's data.

Advantages of Thread

s Threads minimize the context switching time.

s [Tze of threads provides concurrency within a process.

o Efficient communication.

¢ Jtizmore economical to create and context switch threads.

s Threads allow utilization of multiprocessor architectures to a greater scale and efficiency.

Types of Thread

Threads are implemented in following two ways —

s User Level Threads — User managed threads.

s EKernel Level Threads — Operating Svstem managed threads acting on kernel, an
operating system core.

A thread 1s a basic unit of CPT utilization; it cotnprises a thread ID, a program counter, a

register set, and a stack It shares with other threads belonging to the same process its code
section, data section, and other operating-system resources, such as open files and signals.
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mulithreaded process

& traditional  {or

process has a single thread of control. If a

heavyweight)

process has multiple threads of control, it
can petform more than one task at a time.
The
difference between a traditional single-
threaded process and a multithreaded
process.

following  Figure illustrates the

Most software applications that mn on modern computers are multithreaded An
application typically 15 implemented as a separate process with several threads of control



& web browser might have one thread display images or text while another thread
retneves data from the networle

For example. & word processor may have athread for displaying graphics, another thread
for responding to keystrokes from the user, and a third thread for performing spelling and
grammar checking in the background. Applications can alzo be designed to leverage processing
capabilities on multicore systems. Such applications can perform several CPantensive tasks in
parallel actoss the multiple computing cores.

(2) create new One selution 13 to have
(1) requast thread to service :
! the request the server run as a single process
client | Server » thread that accepts requests. When the

Server receives a reguest, it
creates a separate process to
service that recuest In fact, this

(3) ;EFEL;H—; tliErt]';?mg process-creation method was in
client requests comtnon  use  before  threads

became popular. Process creation
1z tme consuming and rescurce intensive, however. If the new process will perform the same
tasks as the existing process, why incur all that ovethead? It is generally more efficient to use
one process that contains multiple threads. If the web-server process 13 multithreaded, the server
will create a separate thread that listens for client requests. When a request 1z made, rather than
creating another process, the server creates a new thread to serwice the request and resume
listening for additional requests.

Finally, most operating-system kernels are now multithreaded. Several threads operate in
the kernel, and each thread performs a specific task, such as managing devices, managing
memoty, of interrupt handling. For example, Solaris has a set of threads in the kernel specifically
for interrupt handling; Linux uses a kernel thread for managing the amount of free mem oty in the
system.

EBenefits

The benefits of multithreaded programming can be broken down tnto four major categones:

* Hesponsiveness MNultithreading an interactive application may allew a program to
continue running even if part of it 1z blocked or 15 performing a lengthy operation,
thereby increasing responsiveness to the user.

* FResource sharing Processes can only share resources through techniques such as shared
memoty and message passing.

* EBconomy Allocatng memoty and resources for process creation is costly, Because

threads



share the resources of the process to which they belong, it 13 more economical to create

and context-switch threads.
» Scalability. The benefits of multithreading can be even greater 1n a multiprocessor
architecture, where threads may be running in parallel on different processing cores. A
single-threaded process can run on only one processor, regardless how many are

available "We explore this issue further in the foll owing section.

Multithr eading Models
some operating system provide a combined user level thread and Eernel lewvel thread

molaris 15 a good example of this combined approach. In a combined system, multiple

facility.
threads within the same application can run in parallel on multiple processors and a blocking

system call need not block the entire process. Multithreading models are three types

o« Dlany to many relationship.
« DMany to one relat onship.
One to one relationship.

[ ]
The many-te-many model multiplexes any number

Many to Many Modd
of uzer threads onte an equal or smaller number of kernel

+— el Thead

threads.
The follewing diagram shows the many-to-many
threads are

where ©& user lewel

| .'I ra
/ threading model
multiplexing with & kernel level threads In this model,
developers can create as many user threads as necessary
i and the cotresponding Eernel threads can run in parallel on
;_k_. +— ke thraa a multiprocessor machine. This model provides the best
accuracy on concurrency and when a thread performs a
blocking system call, the kernel can schedule another

thread for execution.

5 — Many to One Moded
Many-to-one model maps many user level threads
to one Eernel-devel thread Thread management 1z done in
user space by the thread library. When thread makes a

blocking system call, the entire process will be blocked

Only one thread can access the Eemel at a time, so

.,
| #—— kearmal thraad



multiple threads are unable to run in parallel on multiprocessors.

If the userdevel thread libraries are implemented in the operating system in such a way

that the system does not suppott them, then the Eernel threads use the many-to-one relationship

modes.

One to COne hods]

s—iser thread

relati onship model.

There 1z one-to-one relati onship of userdevel thread to the
kerneldevel  thread Thiz  model provides  more
concurrency than the many-to-one model. It also allows
another thread to run when a thread makes a blocking
system call. It supports multiple threads to execute 1n
parallel on microprocessors.

Disadvantage of this model 1z that creating user
thread recquires the corresponding Eernel thread OS/2,
Windews MNT and windews 2000 use one to one

Diffarence hetween User-Leve & Kand-1Level Thread

SN

User-Level Threads Eernel-Level Thread

User-level threads are faster to create and  Eernel level threads are sl ower

fnanage.

to create and manage.

Implementation 15 by athread library at Cperating system suppotts

the user level.

creatton of Eernel threads.

TTzer-level thread is generic and can mn Eernel-level thread 1z specific to

ofl any operating systetn.

the operating system.

Mult threaded applications cannot take Eemel routines themselves can
advantage of multiprocessing. ke multithreaded.

Threading Issues

The fork( ) and exec

avstermn Calls

Eecall that when fork) 1 called, a separate, duplicate process is created

+ How should fork) behave in a multithreaded program 7 - Should all threads be duplicated?
- Should only the thread that made the call to fork) be duplicated?

+ In some systems, different versions of fork) exist depending on the desired behavior



- Some TTHIX systems have forkl() and forkall)) » fork1() only duplicates the calling
thread
o forkall() duplicates all of the threads in a process

-In a POSTE compliant system, fork() behaves the same as fork 10)
+ The exec() system call continues to behave as expected - Eeplaces the entire process that called
it, including all threads
« If planning to call exec) after fork(), then there1s no need to duplicate all of the threads in the
calling process - All threads in the child process will be terminated when exec()is called

-TTze fork 10), rather than forkall() if using in conjunction with exec()

signal Handling

signals are used in TNIX systems to notify a process that a particular event has occurred
- CTEL-C1is an example of an asynchronous signal that might be sent to a process
« An asynchronous signal 15 one that1s generated from cutside the process that receives 1t
-Divide by 015 an example of a synchronous signal that might be sent to a process
« & synchronous signal 15 delivered to the same process that caused the signal to occur
+ All signals follow the same basic pattern: - & sighal i3 generated by particular event
-The signal 13 delivered to a process
-The signal 15 handled by a signal handler (all signals are handled exactly once)
signal handling 15 straightforward in a single-threaded process - The one (and only) thread in the
process receives and handles the signal
In amultithreaded program, where should signals be delivered? - Options:
(1) Deliver the signal to the thread to which the signal applies
(20 Deliver the signal to every thread in the process
{3) Deliver the signal only to certain threads in the process
(4) Assign a specific thread to recetve all signals for the process
« Option 1 - Deliver the signal to the thread to which the signal applies - Most likely option when
handling synchronous signals (e.g. only the thread that attempts to divide by zero needs to know
of the errot)
« Option 2 - Deliver the signal to every thread in the process - Likely to be used in the event that
the process 15 being terminated {e.g. a CTELC is sent to terminate the process, all threads need to
receive this sighal and terminate)

Thread Cancell ation

+ Thread cancellation 15 the act of terminating a thread before it has completed - Example -
clicking the stop button on vour web browser will stop the thread that1s rendering the web page

+ The thread to be cancelled 15 called the target thread

+ Threads can be cancelled in a couple of ways - Asynchronous cancell ation terminates the target
thread immedi ately

+ Thread may be in the middle of wnting data ... not so good



-Deferred cancellation allows the target thread to penodically check if it should be cancelled
+ Allows thread to terminate itself in an orderly fashion

s Threads that are no longer needed may be cancelled by another thread in one of two
ways:

1. Asynchronous Cancellation cancels the thread immediatel .

2. Deferred Cancellation szets a flag indicating the thread should cancel itself
when it 15 convenient It 15 then up to the cancelled thread to check this flag
penodically and exit nicely when 1t sees the flag set.

o (Shared) resource allocation and inter-thread data transfers can be problematic with
asynchronous cancellation.
Thread-Local Storage

s Mlost data 13 shared among threads, and this is one of the major benefits of using threads
in the first place.

» However sometimes threads need thread-specific data alse.

s Most major thread libranes { pThreads, Win32, Java ) provide suppott for thread-specific
data, known as thread-local storage or TLS. HMote that this 15 more like static data than
local wariables, because 1t does not cease to exist when the function ends.

Scheduler Activations

_ o DMMany implementations of threads prowvide a wirtual
—iser hread processor as an intetface between the user thread and the
kernel thread, particul atly for the manyto-many or two-tier
models.
s This virtual processor 13 known as a "Lightweight Process",
LWP.
o There 1z a one-to-one correspondence between

L'WFPs and kernel threads.

T _ _ o The number of kernel threads available, (and hence
LWP *_JI'QH'HEI"Qh’[ roGess the number of LWPs) may change dynamically.
B o The application (user level thread library) maps
’L user threads onto available LWEs.

Fiy o EKernel threads are scheduled onto the real
| k |e=—"kemelthread processor(s) by the O3,

“\__/"I o The kernel commmunicates to the user-level thread

library when certain events occur (such as a thread about to block ) wia an up eall,
which 1z handled 1n the thread library by an upcall handler. The upcall alzo
provides a new LWDP for the upcall handler to tun on, which it can then use to
reschedule the user thread that 15 about to become blocked. The OF will also 1ssue



Process Scheduling

upcalls when a thread becomes unblocked, so the thread library can make

appropriate adustm ents.

If the kernel thread blocles, then the L'WE bloclks, which blocls the user thread.
Ideally there should be at least as many L'WPs available asz there could be concurrently
blocked kernel threads. Otherwisze if all TWPEs are blocked, then user threads will have to

walt for one to become avalable.

CPU Scheduling

CFTT scheduling 1s the basizs of multiprogrammed operating systems. By switching the

CPTT among processes, the operating system can make the computer more producthve. We

introduce basic CPU-scheduling concepts and present several CPU- scheduling algorithms. We

alzo consider the problem of zelecting an algonthm for a particular system .
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Easic Concepts

In a single-processor svstem, only one
process can tun at a time. Cthers tust wat until the
(ZPTT 15 free and can be rescheduled The objective of
multiprogramming is to have some process running
at all imes, to maxmize CEFTT utilization. The 1deais
relatwely simple. & process is executed until 1t must
watt, typically for the completon of some IO
recquest. In a simple computer system, the CPT then
st sits 1dle. All this waiting time 13 wasted; no
accomplished. With
multiprogramming, we try to use thiz  time

uzeful worle 12

productively, Several processes are kept in mem oty
at one time.

When one process has to wat, the operating
systemn takes the CPU away from that process and

gives the CPTT to another process. This pattern continues Every time one process has to wait,

ancther process can take over use of the CP1T.

mcheduling of this kindis a fundamental operating-system function. Almost all computer

a T

E-c )

Bt urilon [indlsbcoris,

resources are scheduled before use. The CPTT 13,
of course, one of the primary computer resources.
Thus, its scheduling 15 central to operating-system
design.



CPU - IO Burst Cycle

The success of CFU scheduling depends on an observed property of processes: process
execution consists of a cycle of CPTT execution and /O wait. Processes alternate between these
two states. Process execution begins with a CPU burst. That 1z followed by an IO burst, which
iz followed by another CPTT burst, then another 'O burst, and so on. Eventually, the final CFPIT
burst ends with a system request to terminate execution.

The durations of CPTT bursts have been measured extensively. Although they vary greatly
from process to process and from computer to computer, they tend to have a frequency curve
sitnilar to that shown in Fig. The curve 1z generally characterized as exponential or hyper
exponential, with alarge number of short CPT bursts and a small number of long CPTT bursts.

An TObound program typically has many short CPT bursts. & CPU-bound program tight have
a few long CPTT burstz. This distribution can be impottant in the selection of an appropriate
CP-scheduling algorithm.

CPU Scheduler

Whenever the CPTU becommes 1dle, the operating svstetn tnust select one of the processes
in the ready cqueue to be executed The selection process 1s carnied out by the short-term
scheduler, or CPTT scheduler. The scheduler selects a process from the processes in memory that

are ready to execute and allocates the CFTT to that process.

Iote that the ready queue is not necessanly a first-in, first-out (FIFO) queue. As we shall
see when we consider the warious scheduling algorithms, a ready queue can be implemented az a
FIFO queue, a prionty queue, a tree, or simply an unordered linked list Conceptually, howewer,
all the processes in the ready queue are lined up waiting for a chance to run on the CPTT. The
records in the quenes are generally process control blocks (PCEs) of the processes.

Preemptive Scheduling
CPU-scheduling decisions may take place under the following four circum -stances:

1. When aprocess switches from the ninning state to the waiting state (for example, as the
result of an I'O request or an invocation of wait() for the termination of a child process)

2. When a process switches from the running state to the ready state (for example, when an
interrupt ocours)

3. When aprocess switches from the watting state to the ready state (for example, at
cotpletion of IO

4. When a process tenminates

For situations 1 and 4, there 15 no choice in terms of scheduling. & new process (if one exists

in the ready queue) must be selected for execution. There 15 a choice, howewer, for situations 2

and 3.



When scheduling takes place only under circumstances 1 and 4, we say that the scheduling
scheme 15 nonpreemptive or cooperative. Ctherwisze, it 15 preemptive Under nonpreemptive

scheduling, once the CPU has been allocated to a process, the process keeps the CPT until it
releases the CPTT either by terminating or by switching to the waiting state. This scheduling
method was used by Microsoft Windows 3z Windows 95 introduced preemptive scheduling,
and all subsequent versions of Windows operating systemns have used preemptive scheduling.
The Mac OF X operating system for the Macintosh alse uses preemptive scheduling; previous
versions of the Macintosh operating system relied on cooperative scheduling. Cooperative
scheduling 1s the only method that can be used on certain hardware platforms, because it does
not require the special hardware (for example, a timer) needed for preemptive scheduling.

Another component involved in the CPU-scheduling function i1s the dispatcher The
dispatcher 15 the module that gives control of the CPT to the process selected by the short-term
scheduler. This function involves the following:

* Switching contesxt
& Switching to user mode
» Jumping to the proper location 1n the user program to restart that program
The dispatcher should be as fast as possible, since it 12 invoked duning every process
switch. The time it takes for the dispatcher to stop one process and start another running 1s

known as the dispatch latency.

scheduling Criteria

Different CPU-scheduling algonthms have different properties, and the choice of a
particular algorithm may favor one class of processes over another. In choosing which algorithm
to usein a particular situati on, we must consider the properties of the various algorithms.

Mlany crniteria have been suggested for comparing CPU-scheduling algorithms. Which
characteristics are used for comparizon can make a substantial difference in which algorithm is
mdgzed to be best. The criteria include the foll owing:

o CPU utilization. We want to keep the CPU as busy as possible. Conceptually,
CPTT utilization can range from 0 to 100 percent. In areal system, it should range
from 40 percent (for a lightly loaded system) to 20 percent (for a heavily loaded
system).

o Throughput. If the CPT is busy executing processes, then work 13 being done.
One measure of wotls 15 the number of processes that are completed per time unit,
called throughput For long processes, this rate may be one process per hour; for
short transactions, it may be ten processes per second.

o Turnaround time From the point of wiew of a particular process, the impottant
criterion 15 how long 1t takes to execute that process. The interval from the time of
subtnission of a process to the time of completon iz the tumarcund tme.



Turnaround time 13 the sum of the periods spent wating to get into memory,
wating in the ready queue, executing on the CPT, and doing IO

o Waiting time The CFlT-scheduling algonthm does not affect the amount of time
during which a process executes or does 'O It affects only the amount of time
that a process spends waiting in the ready queue. Waiting time 15 the sum of the
periods spent waiting in the ready queue.

o Hesponse time In an interactive system, turnaround time may not be the best
criterion. Often, a process can produce some output fairly eatly and can continue
computing new results while previous results are being output to the user. Thus,
ancther measure 15 the time from the submission of a request until the first
response 18 produced. This measure, called response titne, 15 the fime it takes to
start responding, not the time it takes to output the response. The turnarcund time
1z generally limite d by the speed of the output device.

Cpu-Scheduling Algorithms

CPTT scheduling deals with the problem of deciding which of the processes in the ready
queue 13 to be allocated the CPT There are many different CPU-scheduling algonthms. In this
section, we describe several of them.

First- Come, First-Served Scheduling

Bv far the simplest CPU-scheduling algorithm 15 the first-come, first-served (FCFS)
scheduling algorithm. With this scheme, the process that requests the CPTT first is allocated the
CETT first. The implementation of the FCEFS policy 12 easily managed with a FIFO queue. When a
process enters the ready queue, 1ts PCE 13 linked onto the tail of the queue. When the CPTT 15
free, it 15 all ocated to the process at the head of the queue. The running process 13 then removed
from the queue. The code for FCFS scheduling 12 simple to wrte and understand.

On the negative side, the average waiting time under the FCFS policy 15 often quite long.
Consider the following set of processes that arrive at timne 0, with the length of the CPTT burst
given in milliseconds:

Process Burst Time

P 24
Py 3
Py 3

If the processes arnve in the order By, By, 5, and are served in FCFS order, we get the
result shown in the following Gantt chart, which 15 a bar chart that illustrates a particular
schedule, including the start and finish times of each of the participating processes:



£l P P

0 24 27 30

The waiting time 15 O milliseconds for process By, 24 milliseconds for process Pz, and
27 millizeconds for process P5. Thus, the average waiting time 12 (0424 + 2703 =17
milliseconds. If the processes amve in the order P, By | P, however, the results will be as
showsn it the following Gantt chart:

Pz Pj Pl

0 3 & 30

The average wating time iz now (6 + 0 + 303 = 3 milliseconds. Thiz reduction is
substantial. Thus, the average waiting time under an FCEFS policy 15 generally not mimmal and
tay vary substantially if the processes” CPTT burst timnes vary greatly.

Shortest-Job-First Scheduling

& different approach to CPTT scheduling 1s the shortestjob-first (SJF) scheduling
algonthm. This algonthi associates with each process the length of the process’s next CFU
burst. When the CPTT 12 avalable, it is assigned to the process that has the smallest next CPIT
burst. If the next CPTT bursts of two processes are the same, FCFS scheduling 15 used to break the
tie. Mote that a more appropriate term for this scheduling method would be the shortesf-rexi-
CPU-hurst algorithm, because scheduling depends on the length of the next CPT burst of a
process, rather than its total length. We use the tenm SJF because most people and textbooks use
this term to refer to this type of scheduling.

Az an example of STF scheduling, consider the following set of processes, with the length
of the CFI burst given in milliseconds:

Proces: Burst Time

P
By
Py
Fy

LATN IS B o I e



Tsing 2JF scheduling, we would schedule these processes according to the foll owing Gantt
chart:

0 3 9 16 24

The wating titne 15 3 milliseconds for process F, 16 milliseconds for process Fg 9
millizeconds for process P, and 0 milliseconds for process Fy. Thus, the average waiting titne is
(3 + 16+ 9+ 04 =7 millizeconds. By comparison, if we were using the FCFS scheduling
scheme, the average wating time would be 1025 milliseconds.

Priority Scheduling

The SIF algorithm is a special case of the general priority-scheduling algorithm. A
prionity 15 associate d with each process, and the CPTT 15 allocated to the process with the highest
priotity. Equal -prionty processes are scheduled in FCFS order. An 5JF algorithin 15 simply a
prionity algorithm where the priority (2) 13 the inverse of the {predicted) next CPT burst The
larger the CFU burst, the lower the priority, and wice versa.

Mote that we discuss scheduling in terms of Aigh pnonty and lew priority. Priorities are
generally indicated by some fized range of numbers, such as 0 to 7 or 0 to 4,095 However, there
iz no general agreement on whether 0 1z the highest or lowest priority. Some systems use low
numbers to represent low prionty; others use low numbers for high prionty. This difference can
lead to confusion. In this text, we assume that low numbers represent high priority.

A5 an example, consider the following set of processes, assumed to have arrived at time 0
in the order B, Py, - - -, Py, with the length of the CFTT burst given in milliseconds:

Process  Burst Time Priority

Fl 10 3
7, 1 I
P, 2 4
, 1 5

P 5 2



Tsing prionty scheduling, we would schedule these processes according to the following
Fantt chart:

01 & 16 1815
The average waiting fitne 15 8.2 milliseconds.
Prionties can be defined either internally or externally.

Internally defined priorities use some measurable quantity or quantities to compute
the priority of a process. For example, time limits, memory requirements, the number of
open files, and the ratio of average I/O burst to average CPT burst have been used in
computing priorities,

External priorities are set by criteria outside the operating system, such as the
importance of the process, the type and amount of funds being paid for computer use, the
department sponsoring the worle, and other, often political, factors.

Round-Rohin Scheduling

The round-rohin (BR) scheduling algorithm 15 designed especially for time-sharing
systems. It 13 similar to FCFS scheduling, but preemption 15 added to enable the system to switch
between processes. A small unit of time, called a im e quantum or time slice, 15 defined. 4 time
gquantum 15 generally from 10 to 100 milliseconds in length. The ready queue iz treated as a
circular quene.

The CPT scheduler goes around the ready queue, allocating the CPTT to each process For
atime interval of up to 1 time quantum.

To implement EE scheduling, we again treat the ready queue as a FIFO queue of
processes. Mew processes are added to the tal of the ready queue. The TP scheduler picks the
first process from the ready queue, sets a timer to interrupt after 1 time quantum, and dispatches
the process.

One of two things will then happen. The process may have a CPT burst of less than 1
time quantum. In this case, the process itself will release the CPU voluntanly. The scheduler will
then proceed to the next process in the ready queue. If the CPTT burst of the currently running

process 18 longer than 1 time quantum, the timer will go off and will cause an interrupt to the



operating system. A context switch will be executed, and the process will be put at the tail of the
ready queue. The CPTT scheduler will then select the next process in the ready queue.

The average waiting time under the ER policy 15 often long. Consider the following set of
processes that arnive at time 0, with the length of the CPTT burst given in milliseconds:

Process PBurst Time

P 24
Fy 3
Py 3

I weuse atime quantum of 4 mallizseconds, then process Py gets the first 4 milliseconds.
since it requires another 20 milliseconds, it 1 preempted after the first ime quantum, and the
CFTT iz given to the next process in the queue, process Po Process Fo does not need 4
milliseconds, so it quits before its time quantum expires. The CPTU 15 then given to the next
process, process Py Once each process has received 1 fitne quantum, the CPT is returned to
process By for an additional time quantum. The resulting BEE schedule 13 as foll ows:

P Py Py P F P P F

0 4 7 10 14 18 22 26 30

Let’s calculate the average waiting time for this schedule. & watts for 6 milliseconds (10
-4, Faowaits for 4 milliseconds, and 2y waits for 7 milliseconds. Thus, the average watting time

15 173 =566 milliseconds.

In the EE scheduling algorthm, no process 18 allocated the CFU for more than 1 time
fquantum in a row (unless it 15 the only runnable process). If a process’s CPU burst exceeds 1
time quantum, that process 15 preempted and 15 put back in the ready queuve. The EE scheduling
al gorithin 15 thus preemptive.

If there are » processes in the ready queue and the time quantum 13 ¢, then each process
gets 1fx of the CPTT time in chunks of at most ¢ time units. Each process must walt no longer
than (# — 1) = ¢ time umits until its next tme quantum. For example, with five processes and a
time quantum of 20 milliseconds, each process will get up to 20 milliseconds every 100

milliseconds.
process lims = 10 quantum context The performann:e
switches ]

12 0 of the EER algorithm
o 10 depends heawvily on the
size of  the  fume

& |

0 B 10
1 9




quantum. At one extreme, if the time quantum 15 extremely large, the BE policy

iz the same as the FCFS policy. In contrast, if the time quantum is extremely small (say, 1
millisecond), the ER approach can result in alarge number of context switches. Assume, for
example, that we have only one process of 10 time units. If the quantum 13 12 time units, the
process finishes in less than 1 time quantum, with no overhead. If the quantum is & time
units, however, the process requires 2 quanta, resulting 1n a context switch. If the time
gquantum 1z 1 time unit, then nine context switches will occur, slowing the execution of the
process accordingly.

Mhultiple . evel (Juenes Scheduling

Multipledevel queues are not an independent scheduling algorithm. They make use of other
existing algorithms to group and schedule jobs with common characteristics.

« Dlultiple queves are maintained for processes with comm on characteristics.
« Each queue can have its own scheduling algonthms.
» Prionties are assigned to each queue.

For example, CPTT-bound jobs can be scheduled in one queue and all FO-bound jobs in another
gqueue. The Process Scheduler then alternately selects jobs from each queue and assigns them to
the CPTT based on the algorithm assigned to the queue.

highest priority Let's look at an example of a

multilewvel uele schedulin
m— syslem processes ———mp 4 &

algonthm with five queves, listed

below in order of priority:

i inleraclive processes | =4
mystem processes Interactive
= L | =p  Processes Interactive editing
processes Batch processes
: : Student processes
= betch processes —
m— student processes m—

iowess prioety



Each queue has absolute priority over lower-

r1or ueues. o process in the batch -
P ¥ 4 P —>| guantum = & b

gquene, for example, could run unless the

queues for system processes, interactive

processes, and interactive editing processes o 1

"

were all empty. I an interactive editing quantum = 16 .

process entered the ready queue while a batch

process was running, the batch process would

be preempted. ﬁCFE I:—..

MMultilevel Feedback Jueue Scheduling

Hormmally, when the multilevel queue scheduling algorithm 1s used, processes are

permanently assigned to a queue when they enter the system. If there are separate queues for
foreground and background processes, for example, processes do not move from one queue to
the other, since processes do not change their foreground or background nature. This setup has
the advantage of low scheduling overhead, but it 1z inflexmible.

The multilevel feedback queue scheduling algorithm, 1n contrast, all ows a process to move
between queues. The idea is to separate processes according to the characteristics of their CPIT
bursts. If a process uses too much CPTT time, it will be moved to a lower- priority queue. This
scheme leaves FO-bound and interactive processes in the higher-priority queues. In addition, a
process that waits too long in a lower-priority queue mav be moved to a higherpriority queue.
This form of aging prevents starvation.

For example, consider a multilevel feedback quene scheduler with three queues, numbered
from 0 to 2. The scheduler first executes all processes in queue 0. Only when queue 013 empty
will it execute processes in queue 1 Similatly, processes in queve 2 will be executed only if
gquenes 0 and 1 are empty. & process that arnves for quene 1 will preempt a process in queue 2.
A process in queue 1 will in turn be preempted by a process arniving for queue 0.

& process entering the ready queue 15 put in queue 0. A process in queue 0 is given a time
guantum of 8 milliseconds. If it does not finish within this time, 1t 15 moved to the tal of queue 1.
If queve 01z empty, the process at the head of queue 112 given a quantum of 16 milliseconds. If
it dees not complete, it 13 preempted and 13 put inte queue 2. Processes in queue 2 are run on an
FCF?S basis but are run only when queues 0 and 1 are empty.

Process chronization

4 cooperating process is one that can affect or be affected by other processes executing
in the system. Cooperating processes can either directly share a logical address space (that 13,
both code and data) or be allowed to share data only through files or messages. The former case
iz achieved through the use of threads,



The Critical-Section Prohlem

We begin our consideration of process synchronization by discussing the so-called
critical-section problem. Consider a system consisting of 2 processes {Fp, B1.. F1). Each
process has a segment of code, called a eritical section, in which the process may be changing
comimon varables, updating a table, writing a file, and soon.

The important feature of the system is that, when one process 12 executing in its critical
section, no other processis allowed to execute in its critical section. That1s, no two processes are
executing in their critical sections at the same time.

The erfical-section prodlem 12 to design

do { a protocol that the processes can use to
cooperate. Each  process  must  request
entry secton permission to enter its critical section.
The secticn of code implementing this
critical section request is the entry section.
exit section The cnitical section may be followed by

an exit section.

remainder section The remaining code iz the remainder

o section.
} while (true);
The general structure of a typical
process Fiis shown in Fig. The entry section and exit section are enclesed in boxes to highlight

these impottant segments of code.
& solution to the crtical -section problem must satisfy the following three requirements:

o Mutual exclusion. If process F;is executing in its critical section, then no other
processes can be executing in their cntical sections.

o Progress. If no process iz executing in its critical section and some processes
wish to enter their critical sections, then only those processes that are not
executing in their remainder sechons can participate 1n deciding which will enter
its critical section next, and this selection cannot be postponed indefinitel v,

o Bounded waiting There exists a bound, or limit, on the number of times that
other processes are all owed to enter their critical sections after a process has made
arequest to enter its critical section and before that request 15 granted.

We assume that each process 13 executing at a nonzero speed. However, we can make no
assumption concerning the relative speed of the » processes.



At a given point in time, many kernel-mode processes may be active in the operating
system. As a result, the code implementing an operating system (kermel code) 13 subject to
several possible race conditions. Consider as an example a kemel data structure that maintains a
list of all open files in the system. This list must be modified when anew file 15 opened or closed
{adding the file to the list or remowing it from the list) | If two processes were to open files
simultaneously, the separate updates to this list could resultin arace condition. Cther kernel data
structures that are prone to possible race condittons include structures for maintaining mem ory
allocation, for maintaining process lists, and for interrupt handling. It 1z up to kemel developers
to ensure that the operating system i1z free from such race conditions,

Twao general approaches are used to handle critical sections in operating system s

Preemptive kernels. &4 preemptive kernel all ows a process to be preempted while
it 15 running in kernel mode.

A nonpreemptive kernel does not allow a process running in kernel mode to be
preempted; a kemel- mode process will run until 1t exts kernel mode, blocks, or
woluntanly vields control of the CPTT

CUbviously, a nonpreemptive kernel 15 essentially free from race conditions on kernel data
structures, as only one process 15 active in the kernel at a time. We cannot say the same about
preemphive kermels, so they must be carefully designed to ensure that shared kernel data are free
from race conditions. Preemptive kernels are especially difficult to design for SMWEP architectures,
since in these environments 1t 15 possible for two kernel-mode processes to run simultaneously
on different processors.

Peterson’'s Solution

The classic software-based solution to the critical-section problem known as Peterson’s
solution. Because of the way modern computer architectures perform basic machinelanguage
instructions, such as lead and store, there are no guarantees that Peterson’s solution will work
cotrectly on such architectures. Howewer, we present the solution because it provides a good
algonthmic description of selving the critical-section problem and illustrates some of the
complezittes involved in  designing
software that addresses the

requirements of mutual exclusion,

do |{

flag[i] = true;
turn = j;
while (flag[j] &% turn == j);

progress, and bounded waiting

Peterson’s solution 1z restricted

e j to  two  processes  that  alternate
critical section . . .
execution  between  thewr  critical

flag[i] = false; sections and remainder sections. The

processes are numbered Py and Py For
remainder section

} while (true);



convenience, when presenting &, we use P to denote the other process; that 1z, J equals 1 -1
Peterson’s solution requires the two processes to share two data item s

int turn;
hoolean flag[2];
The variable turn indicates whose turn 1t 15 to enter its critical section. That1s, if turn ==1,
then process Fris allowed to execute in its critical section. The flag atray 1z used to indicate if a
process 18 ready to enter its critical section. For example, if flag[i] 12 true, this value indicates that
Fiis ready to enter its critical section. "With an explanation of these data structures complete, we
are now ready to describe the algorithm shown in Fig.

To enter the critical section, process &) first sets flag[i] to be true and then sets turn to the
value §, thereby asserting that 1f the other process wishes to enter the critical section, it can do
so. If both processes try to enter at the same titme, turn will be set to both 1 and § at roughly the
same time. Only one of these assignments will last, the other will ocour but will be overwritten
intediately. The eventual value of turn determines which of the two processes 15 allowed to
enter its critical section first.

We now prove that this selution 15 correct. We need to show that:

o Mutual exclusion is preserved.
® The progress requirement 15 satisfied.
o The bounded-wating requirement 15 met.

To prove property 1, we note that each F; enters its critical section only if either flag[j]
= false or turn =1. Also note that, 1if both processes can be executing in their critical sections at
the same time, then flag[0] = flag[1] = true. These two cobservations imply that Fy and P
could not have successfully executed their while statements at about the same time, since the
walue of turn can be either 0 or 1 but cannot be both. Hence, one of the processes — say, 5 —
must have successfully executed the while statement, whereas F; had to execute at least one
additional statement {“turn = 7). However, at that time, flag[j] = true and turn = 3, and this
condifion will persist as long as F;i1s in its critical section; as a result, mutnal exclusion is
preserved

Mutex Locks:

o The hardware solutions presented above are often
difficult for ordinary programmers to access,
particularly on mult -processor machines, and

particul arly because they are often platf orm-dependent. e

febosg fock
remainder section

| while (TROE};



» Therefore most systems offer a software APT equivalent call ed mimitex lacks or simply
miztexes. | For mutual exclusion )

o The terminclogy when using mutexes is to geguire a lock prior to entering a critical
section, and to release it when exiting, as shown in Figure

o Just as with hardware locks, the acquire step will block Acqni re:

the process if the lock 15 1n use by another process, and
acquire(} [

koth the acquire and release operations are atomic, uhile ('available)

e Aceure andrelease can be implemented as shown here, - 1’_;1_2“5:3“ f‘;ali;e *f
based on a boolean variable "avallable": }
s« One problem with the implem entation shown here, { and Release:
in the hardware solutions presented earlier ), 15 the busy release() |
available = true;

loop used to block processes in the acquire phase. These }
types of locks are referred to as spindecks, because the
CPTT qust sits and spins while blocking the process.

o pinlocks are wasteful of cpu cycles, and are a really badidea on single-cpu single-
threaded machines, because the spinlock blocks the entire computer, and deesn't all ow
any other process to release the lock. { Until the scheduler kicks the spinning process off
of the cpu. )

« Onthe other hand, spinlocks do not incur the overhead of a context switch, so they are
effectively uzed on multi threaded machines when it 15 expected that the lock will be

released after a short ime.

Semaphores

& semaphore - 15 an integer variable that, apart from initialization, 15 accessed only
through two standard atomic operations wait() and signal(). The wat() operation was originally
termed P {from the Dutch prederen, “to test™); signall) was eriginally called V {from verhogen,
“toincrement” ). The definition of wait() 15 as foll ows:

walt(Z) {
while (3 <=0
{f busy watt
5=
}
The definition of signal() is as foll owes:

signall(s) {
S



All modifications to the integer value of the semaphore in the wat]) and signal()
operations must be executed indiwisibly., That 13, when one process modifies the semaphore
value, no other process can simultaneously modify that same semaphore value. In addition, in the
case of wait(3), the testing of the integer value of 5 (3 = (), as well as its possible modification

{5--1, must be executed without interruption.
Semaphore Usage

Operating systems often distinguish between counting and binary semaphores. The value
of a counting semaphore can range over an unrestricted domain. The wvalue of a hinary
sem aphore can range only between 0 and 1. Thus, binary semaphores behave similarly to mutex
locks In fact, on systems that do not provide mutex locks, binary semaphores can be used
instead for providing mutual exclusion.

Counting semaphores can be used to control access to a given resource consisting of a
finite number of 1nstances. The semaphore 12 mitalized to the number of resources avalable.
Each process that wishes to use a resource performs a wait() operation on the semaphore
{thereby decrementing the count) When a process releases a resource, it performs a signal()
operation (incrementing the count). When the count for the semaphore goes to 0, all resources
are being used After that, processes that wish to use a resource will block until the count

becomes greater than

We can also use semaphores to solve warious synchronization problems. For example,
constder two concurrently running processes: Fp with a statement 57 and F; with a statement 55
suppose we require that 55 be executed only after 5] has completed We can implement this
scheme readily by letting ) and &5 share a comimon semaphore synch, initialized to 0. In process
F1, we mnsert the statements

A
signal{synch);
In process Po |, we insert the statements
walt(synch);
Ry
Because synch iz initialized to 0, Py wall execute 55 only after P has involked signal(synch),
which 15 after statement 5] has been executed.

semaphore Implem entation

The defimitions of the wait) and signal() semaphore operations just descnbed present the
same problem. To owvercome the need for busy waiting, we can modify the definition of the
wat() and signal() operations as follows: When a process executes the wait]) operation and finds
that the semaphore value 13 not positive, 1t must wat. However, rather than engaging in busy
waiting, the process can block itzelf. The block operation places a process into a walting cueue



associated with the semaphore, and the state of the process 13 switched to the waiting state. Then
control 15 transferred to the CPTT scheduler, which selects another process to execute.

A process that 15 blocked, waiting on a semaphore 3, should be restarted when some
other process executes a signal{) operation. The process 1z restarted by a waleup()
operation, which changes the process from the waiting state to the ready state. The process
1z then placed in the ready queue. (The CPU may or may not be switched from the running
process to the newly ready process, depending on the CPU-scheduling algonithm )

To implement semaphores under this definition, we define a semaphore as follows:
typedef struct {
int walue;
struct process *list;
+ semaphore,

Each semnaphote has an integer value and a list of processes list. When a process must wait
on a semaphore, it 15 added to the list of processes A signal() operation removes one

process from the list of watthng processes and awalcens that process,

MNow, the wait() semaphore operation can be defined as
wat{zem aphore *3) {
S-Fyalue--
if (5-=value <0} {
add this process to S-=list;
block(;

}
}

and the signal() semaphore operation can be defined as
signal (semaphore *3) {
S-=valuet
if (S-=value <=0} {
remove aprocess P from S->list;
wakeup(F,

The block() operation suspends the process that invokes it. The wakeup(P) operation resumes
the execution of ablocked process P. These two operations are provided by the operating system

as basic system calls.



Hote that in thiz implementation, semaphore walues may be negative, whereas semaphore
values are never negative under the classical definition of semaphores wath busy wating. If a
semaphore walue 1s negative, itz magnitude 1 the number of processes wating on that
semaphore. This fact results from switching the order of the decrement and the test 1n the

implementation of the wait() operation.

Deadlocks and Starvation

The implementation of a semaphore with a walting queue may result in a situation where
two of more processes are waiting indefinitely for an event that can be caused only by one of the
walting processes. The event in question i3 the execution of a sighal() operation. When such a
state 15 reached, these processes are said to be deadlocked.

To illustrate this, consider a system consisting of two processes, Fpand Py, each accessing
two semaphores, 3 and O, zet to the value 1:

Pu Pl
wait{3); wait (L)),
wat t{ (), walt(S);

signs;l(S); signa.l(Q_];
signal (Q); signal (37,

suppose that Fp executes watt{3) and then Py executes wait(Q) When Py executes wait{Q),
it must wait until Py executes signal (). Similarly, when 5] executes wait(s) | it must wat untl

Py executes signal(®) Since these signal() operations cannot be executed, 5y and F) are

deadlocked.

We say that a set of processes 15 in a deadlocked state when every process in the set is
wating for an event that can be caused only by another process in the set The events with which
we are manly concerned here are resource acquisition and release. Other types of events may
result in deadlocks, as we show in Chapter 7 In that chapter, we describe vanous mechanisms

for dealing wath the deadlock problem.

Another problem related to deadlocks 15 indefinite blocking or starvation, a situation in
which processes wait indefimtely within the semaphore. Indefinite bloclung may occur if we
remove processes from the list assoctated with a semaphore in LIFO (last-n, first-cut) order.



Priority Inversion

& scheduling challenge arises when a higher-priority process needs to read or modify
kernel data that are currently being accessed by a lowerpriority process — or a chain of lower-
prionity processes. Since kemel data are typically protected with a lock, the higher-priority
process will have to walt for a lower-priority one to finish with the resource. The situation
kecomes more complicated if the lower-priority process 13 preempted in favor of another process
with a higher priority.

A5 an example, assume we have three processes — L, M, and ¥ — whose priorities
follow the order L < M = A Assume that process A requires resource £, which 13 currently being
accessed by process L. Ordinanly, process & would wait for L to finish using resource &
However, now suppose that process M becomes runnable, thereby preempting process L
Indirectly, aprocess with a lower priority — process M— has affected how long process A must
wait for L to relingquish resource &

This problem 1z known as priority inversion. It occurs only in systems with more than
two prionities, so one solution 15 to have only two priorities. That 15 insufficient for most general -
purpose operating  systems, howewer. Typically these systems solve the problem by
implementing a priority-inheritance protocol.

Lccording to this protocol, all processes that are accessing resources needed by a higher-
priority process inhent the higher priority until they are finished with the resources in question.
When they are finished, their prionties revert to their oniginal values. In the example above, a
prictity-dnheritance protocol would allow process L to temporarnily inherit the prionty of process
H, thereby preventing process A from preempting its execution. When process had finished
using resource K, it would relinguish its inhented prionty from A and assume 1ts original
prictity. Because resource £ would now be avalable, process & —not M— would run next.

Monitors

» Semaphores can be wery useful for seolwing concurrency problems, buf omly if
pregramrmiers wse them properdy. If even one process fals to onitor s dm

areill variahle declareclons

abide by the proper use of semaphores, either accidentally or
deliberately, then the whole system breaks down. (And since
concurrency problems are by definition rare events, the
problem code may easily go unnoticed andfor be heinous to

debug )

s Forthis reason a higher-level language construct has been eveloped, called menitars.



MMonitor Usage

lry quatss o i
private, and with the special restriction that only one 7 snarea nn \\(ﬁ_ v

® A monitor 15 essentially a class, ih which all data iz

method within any given monitor object tmay be active
at the same time. An additional restriction is that
monitor methods may only access the shared data
within the tnonitor and any data passed to them as
parameters. Le they cannot access any data external to
the monitor.

aparahonsg

b réSalization
. oode

o In order to fully realize the potential of monitors, we need to introduce one additional
new data type, known as a condition. _—
oniry gueus 1 _,-‘_)-

o A& wariable of type condition has only two legal

- g
shasnd cata T

operations, weif and signal Le if X was defined as 2
type condition, then legal operations would ke e Venatons Lyt
Howalt] ) and X signal()

o The wat operation blocks a process untl some
other process calls signal, and adds the blocked (o

process onto a list associated with that condition. wpersong

o The signal process dees nothing if there are no mabaaon
processes wating on that condition. Otherwize 1t B
wakes up exactly one process from the condition's list of waiting processes. {Contrast this
with counting semaphores, which always affect the semaphore on a signal call)

» Butnowthere 13 apotential problem - If process P wathin the monitor 1ssues a signal that
would wake up process O also within the monitor, then there would be two processes
running simultanecusly within the monitor, wiclating the exclusion requirement

Accordingly there are two possible solutions to this dilemma:

signal and wait - When process P 1zsues the signal to wake up process ), P then waits, either
for Qto leave the monitor or on some other condition.

Signal and continue - When P issues the signal, O waits, either for P to exit the monitor or for
some other condition,

There are arguments for and against either choice. Concurrent Pascal offers a third
alternative - The sighal call causes the signaling process to immediately exit the monitor, so that
the waiting process can then wake up and proceed.



o Java and C#{ Csharp ) offer monitors bulit-in to the language. Erlang offers
similar but different constructs.

Classic Problems of Synchronization

We present a number of synchronization problems as examples of a large class of
concurrency-control problems These problems are used for testing nearly every newly proposed
synchronization  scheme. In our  solutions to the problems, we use semaphores for
synchronization, since that 15 the traditional way to present such solutions. Howewer, actual
implementations of these solutions could use mutex locks in place of binary semaphores

The Bound ed-Buffer Prohlem

The hounded-buffer prodlem 1: commonly used to  illustrate the power of
synchromization primitives. Here, we present a general structure of this scheme without
cotnmitiing surselves to any particular implementation. We provide a related programming
projectin the exercises at the end of the chapter.

In our problem, the producer and consumer processes share the following data structures:

int n;

sem aphore mutex = 1;
sem aphore empty = n;
serm aphore full =0

We assume that the pool consists of n buffers, each capable of holding one 1tem. The
mutex semaphote provides mutual exclusion for accesses to the buffer pool and 1z initialized to
the value 1. The empty and full semaphores count the number of empty and full buffers. The
semaphotre empty 15 inittalized to the wvalue n; the semaphore full 15 initalized to the value 0.

The code for the producer process is shown in Fig, and the code for the consumer process
1z shown 1n Fig. Note the symmetry between the producer and the consumer. We can interpret
thiz code as the producer producing full buffers for the consumer or as the consumer producing
empty buffers for the producer.

do
wat{full);

wat{mutex),
f* remove an item from buffer to next consumed */

signal{mutesx);
stgnal{empty);



* consume the item 1n next consumed */
+ while (true);

The structure of the consumer process.
The Readers — Writers Problem

cuppose that a database 13 to be shared among several concurrent processes. Some of
these processes tmay want only to read the databasze, whereas others may want to update (that iz,
to read and write) the database We distinguish between these two types of proceszes by
referring to the former as readers and to the latter as writers, Obvicusly, if two readers access
the shared data simultaneously, no adwverse effects will result. However, if a writer and some
other process (either areader or a writer) access the database simultanecusly, chaos may ensue.

To ensure that these difficulties do not arise, we require that the writers have exclusive
access to the shared database while writing to the database This synchronization problem is
referred to as the readers—writers problem. Since it was originally stated, it has been used to
test nearly every new synchronization primitive. The readers — writers problem has seweral
variations, all invelwing priorities. The simplest one, referred to as the first readers — writers
problem, requires that no reader be kept waiting unless a writer has already obtained permission
to use the shared object. In other words, no reader should wait for other readers to finish simply
kecause a writer 15 waiting. The secand readers— writers problem requires that, once a writer 13
ready, that writer perform itz write as soon as possible. In other words, if a writer 15 waiting to
access the object, no new readers may start reading.

& solution to either problem may result in starvation. In the first case, writers may starve,
in the zecond case, readers may starve. For this reason, other variants of the problem have been
proposed. Mext, we present a solution to the first readers — writers problem.

In the solution to the first readers — writers problem, the reader processes share the

following data structures:

semaphote rw mutex = 1;

semaphote mutex = 1;

int read count=10;
The sem aphores mutex and rw mutex are initialized to 1; read count 15 initialized to 0. The
semaphote rw mutex 15 comimon to both reader and writer

do

walt{rw mutex),



{* writing 18 petformed *

signal (rw mutex),
1 while (true);

Fig-The structure of a wnter process,

processes. The mutex semaphore 15 used to ensure mutual exclusion when the variable read
count 13 updated. The read count varnable keeps track of how many processes are currently
reading the object- The semaphore rw_mutex-functions as a mutual exclusion semaphore for the
witers. It 15 also used by the first of last reader that enters or exits the critical section. It 1z not
used by readers who enter or exit while other readers are in their critical sections.

The code for a writer process 18 shown in Fig, the code for a reader process 15 shown in
Fig. Mote that, 1f a writer 15 1n the critical section and # readers are waiting, then one readeris
queued on rw mutex, and # — 1 readers are queued on mutex. Also observe that, when a writer
executes sighal(rw mutex), we may resume the execution of either the wating readers or a single
watting writer. The selection 15 made by the scheduler.

The readers — writers problem and its solutions have been generalized to provide reader—
writer locks on some systems Acquiring a reader — writer lock requires specifying the mode of
the lock: either read or write access. When a process wishes only to read shared data, it requests
the reader — writer lock in read mode. & process wishing to modify the shared data must request
the lock in wnte mode. Multiple processes are permitted to concurrently acquire a reader — writer
lock in read mode, but only one process may acquire the lock for writing, as exclusive access is
required for writers.

Dead Locks

In a multiprogramming environment, several processes may compete for a finite number
of resources. A process requests resources, if the resources are not available at that time, the
process enters a waiting state. Sometimes, a walting process 15 never again able to change state,
kecause the resources it has requested are held by other waiting processes. This situation 15 called

a deadloclc

Perhaps the best illustration of a deadlock can be drawn from alaw passed by the Eansas
legislature early in the 20th century. It said, in part: “When two trains approach each other at
a crossing, hoth shall come to a full stop and neither shall start up again until the other has
gone.”



Although some applications can identify programs that may deadlock, operating systems
typically do not provide deadlock-prevention facilities, and it remains the responsibility of

prograttm ers to ensure that they design deadlockfree programs.

Deadlock problems can only become more common, given current trends, including
larger numbers of processes, multithreaded programs, many more resources within a system, and
an emphasis on longlived file and database servers rather than batch systems.

System Model

A system consists of a finite number of resources to be distnbuted among a number of
competing processes. The resources may be partitioned into several types (or classes), each
constsing of some number of 1dentical instances. CPTT cycles, files, and /O devices (such as
printers and DVD drives) are examples of resource types. If a system has two CPUs, then the
resource type CFPIF has two instances. Similarly, the resource type prinfer may hawve five
instances.

If a process requests an instance of a resource type, the allocation of asy instance of the
type should satisfy the request If it does not, then the instances are not 1dentical, and the

resource type classes have not been defined properly.

For example, a system may have two printers. These two printers may be defined to be in
the same resource class if no one cares which printer prints which output. Howewer, 1f one printer
1z on the nminth floor and the other 15 in the basement, then people on the ninth floor may not see

both printers as equivalent, and separate rescurce classes may need to be defined for each pnnter.

& process must request a resource before using it and must release the resource after
using it 4 process may request as many rescurces as it requires to carry out its designated task
Obwicusly, the number of resources requested may not exceed the total number of resources
available in the system. In other words, a process cannot request three printers if the swstem has
only twao.

Tnder the normal mode of operation, a process may utilize a resource 1n only the
following sequence:

* Hequest. The process requests the resource. I the request cannot be granted
immediately (for example, if the resource 15 being used by another process), then the
requesting process must wait until it can acouire the resource.

o Use The process can operate on the resource (for example, if the resource iz a
printer, the process can print on the printer).

o Helease The process releases the resource.

The request and release of resources may be system calls,, Examples are the request()
and release() device, open() and clese() file, and allocate]) and free() metm ory system calls.



A set of processes 13 in a deadlocked state when every process in the seti1s waiting for an
event that can be caused only by another process in the set. The events with which we are mainly
concerned here are resource acqusition and release. The rescurces may be either physical
resources (for example, printers, tape dnves, memory space, and CPTT cycles) or logical
resources (for example, semaphores, mutex locks, and files). However, other types of events may
result in deadlocks (For example, the IPC facilities).

To illustrate a deadlocked state, consider a system with three CD EW drives. Suppose
each of three processes holds one of these CD EW drives. If each process now requests another
drive, the three processes will be in a deadlocked state. Each 15 waiting for the event “CD EW s
released,” which can be caused only by one of the other walting processes. Thiz example
illustrates a deadlock involving the same resource type.

Deadlocks may also involve different rescurce types. For example, consider a system
with one printer and one DVD drve. Suppose that process 5 15 holding the DVD and process F;
15 holding the printer. If & requests the printer and 5 requests the DVD drive, a deadlock occurs.

Developers of multithreaded applications must remain aware of the possibality of
deadlocks. The loclking tools presented in Chapter 5 are designed to averd race conditions.
Howewver, in using these tools, devel opers must pay careful attention to how locks are acouired

and released. Ctherwise, deadloclk: can occur.

Deadlock Characterization

In a deadlock, processes never finish executing, and system resources are tied up,
preventing other jobs from starting. Before we dizscuss the various methods for dealing with the
deadlock problem, we look more closely at features that charactenze deadlocks.

Necessary Conditions

& deadlock situation can arize if the following four conditions hold simultane-ously 1n a
system:

o DNotual exclusion. At least one resource must be held in a nonsharable mode; that 13,
only one process at a time can use the resource. If another process requests that
resource, the requesting process must be delaved until the resource has been released.

& Hold and wait. 4 process mustbe holding atleast one resource and wating to acquire
additional resources that are currently being held by other processes.

o o preemption. Eesources cannot be preempted; that is, a resource can be released
only voluntanly by the process holding 1t, after that process has completed itz task

o Circular wait. & set {5y, Py, ..., 5, of walting processes must exist such that Fqis
walting for a resource held by &, P 18 waiting for a resource held by Py, ., P15

wating for a resource held by By, and Fyuis waiting for a resource held by By



We emphasize that all four conditions must hold for a deadlock to occur. The circular-
wat condition implies the hold-and-wait condition, so the four conditions are not completely

independent.
Resource-Allocation Graph

Deadlocks can be described more precisely in terms of a directed graph called a system
resource-allocation graph.

Thiz graph consists of a set of vertices Fand a set of edgez &

The set of vertices iz pattitioned into two different types of nodes: F= {7, A, .., Ful,
the set consisting of all the active processes in the system, and B = {H) | By, ... K.}, the set
constsing of all resource types in the system.

A directed edge from process Fyto resource type ;15 denoted by & — &y 1t signifies that
process My has requested an instance of resource type & and s currently watting for that rescurce.
A directed edge from resource type £ to process Fris denoted by K — Fi o it signifies that an
instance of resource type &; has been allocated to process 7.

A directed edge F; — R ;12 called a request edge; a directed edge &, — ;12 called an
assignment edge.

Fictonally, we represent each process 5 as a circle and each resource type &; as arectangle.
since resource type K may have more than one instance, we represent each such instance as a
dot within the rectangle. IMNote that a request edge peints to only the rectangle &; | whereas an
assignment edge must also designate one of the dots in the rectangle.

When process F; requests an instance of resource type K, a request edge iz inserted in the
resource-all ocati on graph. When this request can be fulfilled, the request edge 15 instgnfaneonusly
transformed to an assighment edge. When the process no longer needs access to the resource, 1t
releases the resource. A5 aresult, the assignment edge 1z deleted.

The resource-allocation graph shown in Fig depicts the followang situation.

The zetz F, &, and &

Ay A
-

P = {Pl, P;g, Pj} 4\{ }A{
R={R) Ry, R3, Ry} L ¥

Py

s B={F — R, Py =Ry, K —F Ry —=F £
LRy — P Ry — Ps} \/J'
A




Resource instances:
Cne instance of rescurce type &)
Two instances of resource type Ao
One instance of resource type Rs
Three instances of resource type Sy

Process states:
Process Fisz holding an instance of resource type B; and 15 waiting for an instance

of resource type &)
Process Pois holding an instance of &) and an instance of 87 and 15 waiting for an
instance of K=
Process P iz holding an instance of B
iven the defimition of a resource-allocation graph, it can be shown that, if the graph
contains no cycles, then no process in the system 13 deadlocked. If the graph does contain a
cycle, then a deadlock may exist.

If each resource type has exactly one instance, then a cycle implies that a deadlock has
occurred. If the cycle involves only a set of resource types, each of which has only a single
instance, then a deadlock has occurred. Each process invelved in the cycle 15 deadlocked. In this

case, a cycle in the graph is both a necessary and a sufficient condition for the existence of

deadlocl.

If each resource type has several instances, then a cycle does not necessanly imply that a
deadlock has ocourred In this case, a cycle in the graph 13 a necessary but not a sufficient
condition for the existence of deadlock.

To illustrate thizs concept, we return to the resource-allocation graph depicted in Fig
suppose that process Psrequests an instance of resource

Falal
N Mo

L] L]

A - _=r——

'q:
type Rz Since no resource instance is
currently available, we add a request edge Py — &5 to the graph. At this point, two minimal

cycles existin the system:

B—=R—=P—R—P—R—P = R—h—R
—P,



Processes Py, Py, and Py are deadlocked. Process Py iz waiting for the resource B4, which s
held by process &y Process By 15 waiting for either process ) or process Py to release resource
Ro In addition, process Py is waiting for process Poto release resource &y

HNow consider the resource-allocation graph in Figure 7.3 In this example, we also have a
cycle:

Pl _}Rl —>P3 —:*Rz —?'Pl

However, there 15 no deadlock. OChserve that process Pq may release its instance of
resource type Ay That resource can then be allocated to Py, brealung the cycle.

In summary, if a resource-all ocation graph does not have a cycle, then the system 15 nef
i a deadlocked state. If there 1z a cycle, then the system may of may not be in a deadlocked
state. This obeervation 15 important when we deal with the deadlock problem.

Methods for Handling Deadlocks
Generally speakung, we can deal with the deadlock problem 1n one of three ways:

» e can use aprotocol to prevent or aveld deadlocks, ensuring that the system will

mever enter a deadlocked state.
® We can allow the system to enter a deadlocked state, detect it, and recover.

* We can ignore the problem altogether and pretend that deadlocks never ocourin

the system.

The third solution is the one used by most operating systems, including Linux and
Windows. Itis then up to the application developer to write programs that handle deadlocls.

To ensure that deadlocks never occur, the system can use either a deadlock-prevention or
a deadlock-avoidance scheme. Deadlock prevention provides a set of methods to ensure that at
least one of the necessary conditions cannot hold These methods prevent deadlocks by
constraining how requests for resources can be made.

Deadlock avoidance requires that the operating system be given additional information
in advance concerning which resources a process will request and use during 1ts lifetime. "With
thiz additional knowledge, the operating system can decide for each request whether or not the
process should watt. To decide whether the current recuest can be satisfied or must be delayed,
the system must consider the resources currently avalable, the resources currently allocated to
each process, and the future requests and releases of each process.



Deadlock Prevention

For a deadlock to occur, each of the four necessary conditions must hold By ensuring
that at least one of these conditions cannot held, we can prevent the occurrence of a deadlock
We elaborate on this approach by examining each of the four necessary conditions separately.

Mutual Exclusion

The mutual exclusion condition must hold That i1z, at least one resource must be
nonsharable. Sharable resources, 1n contrast, do not require mutually exclusive access and thus
cannot be involved in a deadlocl.

Eead-only files are a good example of a sharable resource. If several processes attemnpt to
open a read-only file at the same time, they can be granted simultaneous access to the file

& process never needs to wait for a sharable resource. In general, however, we cannot
prevent deadlocks by denwying the mutual-exclusion condition, because some resources are
intrinsically nonsharable.

For example, a mutex lock cannot be sitnultaneously shared by several processes.

Hold and Wait

To ensure that the hold-and-wait condition never occurs in the system, we must guarantee
that, whenever a process requests a resource, 1t does not hold any other resources. One protocol
that we can use requires each process to request and be allocated all its resources before it begins
execution. We can implement this provision by requiring that system calls requesting resources

for aprocess precede all other system calls.

An alternative protocol allows a process to request resources only when it has none. &
process may request some resources and use them. Before it can request any additional
resources, itmust release all the resources that it 12 currently allocated.

To illustrate the difference between these two protocols, we consider a process that
copies data from a DVD drive to a file on disk, sorts the file, and then prints the results to a
printer. If all resources must be requested at the beginming of the process, then the process must
initially request the DVD dnwe, disk file, and printer. It will hold the printer for its entire

execution, even though it needs the printer only at the end.

The second method allows the process to request initially only the DVD drive and disk
file. It copies from the DV D drive to the disk and then releases both the DWVD drive and the disk
file. The process must then request the disk file and the printer. After copying the disk file to the
printer, it releases these two resources and terminates.



Both these protocols have two main disadvantages. First, resource utilizati on may be low,
since resources may be allocated but unused for a long penod In the example given, for
instance, we can release the DVD drive and disk file, and then recquest the disk file and printer,
only 1f we can be sure that our data will remain on the disk file. Ctherwize, we must request all

resources at the beginning for both protocols.

second, starvation is possible. 4 process that needs several popular resources may have
to wait indefinitely, because at least one of the resources that it needs 15 always allocated to some
other process.

o Preemption

The third necessary condition for deadlocks 15 that there be no preemption of resources
that have alteady been allocated. To ensure that this condition does not hold, we can use the
following protocol. IF a process 15 holding some resources and recquests another resource that
cannot be immediately allocated to it {that 1z, the process must wait), then all resources the
process 13 cutrently holding are preempted In other words, these resources are implicitly
released. The preempted resources are added to the list of resources for which the process 1s
wating. The process will be restarted only when 1t can regain 1ts old resources, as well as the
new ones thatit 18 requesting.

Circular Wait

The fourth and final condition for deadlocks 15 the circular-wait condition. Cne way to
ensure that this condition never holds 15 to impose a total ordering of all rescurce types and to
recquire that each process requests resources in an increasing order of enumeration.

To illustrate, we let & = { &, B, ..., B,,} be the set of resource types. We assign to each
resource type a unique integer number, which allows usz to compare two resources and to
determine whether one precedes another in our ordering. Formally, we define a one-to-one
function 7 & — A where N iz the set of natural numbers. For example, if the set of resource
types A includes tape drives, disk drives, and printers, then the function & might be defined as
follows:

F(tape drive) =1
Fdisk dnve) =5
F(printer) = 12

We can now consider the foll owing protocol to prevent deadlocks: Each process can request
resources only in an increasing order of enumeration. That 15, a process can initially request any
number of instances of a resource type — say, &; . After that, the process can request instances of
resource type &y if and only of F{ & ) = M R; ). For example, using the function defined



previously, a process that wants to use the tape drive and printer at the same time must first
request the tape drive and then request the printer. Alternatively, we can require that a process
requesting an instance of resource type &; must have released any resources &; such that #{ &) =
F{ Ry ). Mote also that if several instances of the same resource type are needed, a simgle request
for all of them must be 13sued.

Deadlock Avoidance

An alternative method for aveiding deadlocks 13 to require additional information about
how rescurces are to be requested.

The warious algorithms that usze this approach differ in the amount and type of
information required. The sunplest and most useful model requires that each process declare the
mcocimmem mumber of resources of each type that 1t may need. Given this a prion information, it
iz possible to construct an algorithm that ensures that the system will never enter a deadlocked
state. &4 deadlock-avoidance algorithm dynamically examines the resource-allocation state to
ensure that a circular-wait condition can never exist. The resource-allocation séafe 15 defined by
the number of available and allocated resources and the mazimum demands of the processes. In
the following sections, we explore two deadlock-aveidance algorithms.

Safe State
trieito & state is sqfe 1f the system can allocate
deadlock resources to each process (up to its maximum ) in
= some order and stll averd a deadl ocle. More
sale formally, a system 15 in a safe state only if there

exists a safe sequence.

& sequence of processes <P, P, . Frisa

safe sequence for the current all ocation state if, for

each F;, the resource requests that 7 can still make
cah be satisfied by the currently available resources
plus the resources held by all &, with 7 <4

In this situation, if the resources that & needs are not immediatel v available, then P can
wat until all F; have finished. When they have finished, 5 can obtain all of itz needed resources,
cotnplete its designated task, return 1ts allocated resources, and terminate. When F; terminates,
Fi can obtain its needed resources, and so on. If no such sequence exists, then the system state

1z said to be unsafs.

& zafe state 15 not a deadlocked state. Conversely, a deadlocked state 15 an unsafe state.
ot all unsafe states are deadlocks, howewver. An unsafe state meay lead to a deadlock. As long as
the state is safe, the operating system can avoeld unszafe (and deadlocked) states. In an unsafe



state, the operating system cannot prevent processes from requesting resources in such a way that
a deadlock occurs. The behavior of the processes controls unsafte states.

Toillustrate, we consider a system with twelve magnetic tape drives and three processes:
Fp, P1, and Py Process Pprequires ten tape drives, process &) may need as many as four tape
drives, and process Pamay need up to nine tape drives. Suppose that, at time 4, , process Fyis
holding five tape drives, process F) 15 holding two tape drives, and process Fuis holding two
tape drives. (Thus, there are three free tape drives)

Masmimum Meeds  Current Meeds

Fy 10 5
P 4 2
F2 5 2

Attime &, the system is in a safe state. The sequence <F) , By, Fy= satisfies the safety
condition. Process P can immediately be allocated all its tape drives and then return them (the
system will then have five available tape drives); then process Mo can get all its tape dnves and
return them (the system will then have ten available tape drives); and finally process &y can get
all its tape driwves and returmn them (the system will then have all twelve tape drives available).

Resource-Allocation-Gr aph Algorithm If we have aresource-allocation system with
oty one instance of each resource type, we

can wse a vartant of the resource-allocation
/ \ graph for deadlock avoidance.
..";I ) [ J;z. frr
P In addition to the request and
e assignment edges already  described, we

introduce a new type of edge, called a claim
edge.

A clam edge F; — Ry indicates that process 5 may request resource & at some titne in
the future. This edge resembles a request edge in direction but 15 represented in the graph by a
dashed line. When process F; requests resource &; | the claim edge F; — & 15 converted to a
request edge. similarly, when a resource ;15 released by 5 | the assignment edge £ — Fris
reconverted to a claim edge F; — &

Mote that the resources must be claimed a prion in the system. That 15, before process 5
starts executing, all itz claim edges must already appear in the resource-allocation graph. We can



relas this condition by allowing a claim edge & — & to be added to the graph only if all the
edges assoctated with process & are claim edges.

Mow suppose that process &y requests resource & . The request can be granted only 1f
converting the request edge 5y — & to an assignment edge K — F; does not result in the

formation of a cycle in the resource-allocation

R, graph. "We check for safety by using a cycle-

detection algorithm. An algorithm for detecting a

/—\ cycle in this graph requires an order of x2

. operations, where # 15 the number of processes 1n
P", P the system.

.,_/ If no cycle exists, then the allocation of the

resource will leave the systemn in a safe state If a
cycle 13 found, then the allocation will put the
system in an unsafe state. In that case, process 5y
will have to watt for its requests to be satisfied

To illustrate this algonthim, we consider the resource- allocation graph of Fig. Suppose
that &5 requests B, Although &; 15 currently free, we cannot allocate it to P, since this action
will create a cycle in the graph. 4 cycle, as mentioned, indicates that the system 13 in an unsafe
state. It &) requests Bo, and &5 requests K1, then a deadlock wall occur.

Banker's Algorithm

The resource-allocation-graph algorithm 15 not applicable to aresource-all ocation system
with multiple instances of each resource type. The deadlock-averdance algorithm that we
describe next 13 applicable to such a system but iz less efficient than the resource-allocation
graph scheme. This algorithm is commonly known as the hanker’s algorithm. The namme was
chosen because the algonthm could be used in a banking system to ensure that the bank never
allocated itz avalable cash 1n such a way that it could no longer satisfy the needs of all its
customers.

When a new process enters the systemn, it tnust declare the mamimutm number of instances of
each resource type that it may need This number may not exceed the total number of resources
in the system. "When a user requests a set of resources, the system must determine whether the
allocation of these resources will leave the systetn in a safe state. If it will, the resources are
allocated; otherwise, the process must wait untl some other process releases enough resources.

Several data structures must be mantained to implement the banker s algonthm. These
data structures encode the state of the resource-allocation system. We need the following data

structures, where # 15 the number of processes in the system and s 15 the number of resource
types:



Availahle & wvector of length # indicates the number of available resources of each
type. If Avazlable(i] equals 4 then kinstances of resource type &; are avalable.

Max An » = m matriz defines the masimum demand of each process. I Meoe[7][7]
equals & then process P may request at most finstances of resource type &; .

Allocation. &n » = m matrix defines the number of resources of each type currently
allocated to each process. If Allecasien(i][/] equals & then process & 15 currently
allocated kinstances of resource type A

Need. An » = m matnx indicates the remaining resource need of each process. If
Need[i][/] equals &, then process P may need & more instances of resource type & to
complete its task. Mote that Meed[i][7] equals Mex[i][/] — ARecatian(:][i]

These data structures vary over ime 1n both size and value.

To simplify the presentation of the banker "5 algorithm, we next establish some notation.
Let X and ¥ be vectors of length » We say that X = Yif and only of ATi] < il feralli=1, 2, .,
#. For example if X =0(17321and Y=1(0321), then ¥ < X In addition, Y=< X if FeXand F&
4

We can treat each row in the matnices ARocaion and Need as vectors and refer to them as
Aflacasion; and Need; . The vector Allecation; specifies the resources currently allocated to
process By the vector Need, specifies the additional resources that process ) may still request to
complete its task.

Safety Algorithm

We can now present the algonthm for finding out whether or not a system 15 1n a safe
state. This algorithm can be described as follows:

Let Weark and Finish be vectors of length w2 and #, respectively. Initialize Hork =
Available and Finish[i] =falsetori=0,1,  ,n—1
Find an index i such that both
Finish[i]| — false
Nead, < Work
Ifne such i exists, go to step 4
Wark = Wark + Allocation; Finish[i] =
e



Go to step 2.
If Finish[i] = frue tor all i, then the system 15 in a safe state.

This algenthm may require an order of #2 % 52 operations to determine whether a state 15 safe.

Resource Reguest Algorithm

Hext, we describe the algorithm for determining whether requests can be safely granted.

Let Reguest; be the request vector For process 5 If Reguest; [ | | =— k, then process
Fywants kinstances of resource type & . When arequest for resources 15 made by process
F;  the following actions are taken:

If Reguest; = Nead; , go to step 2. Otherwise, raise an error condition, since the
process has exceeded its mamimum claim.

I Reguest; = Available, go to step 2 Otherwise, Frmust wait, since the resources
are not avalable.

Hawve the system pretend to have allocated the requested resources to process F; by

modifying the state as foll ows:

Available = Available Reguest, |
Aflocation, = Allecation; + Reguest,
Need, = Need, Regiiest, |

If the resulting resource-allocation state 15 safe, the transaction 15 com-pleted, and
process F;is allocated its resources. However, if the new state iz unsafe, then 5
must wait for Reguest,, and the old resource-allocation state 15 restored.

An IMustrative Example
o  Consider the following situati on: The system i1sin a safe state since
Allacation T Er m'L Wi the sequence <P1,F3, P4, P2 FO=
= H = ) satisfies safety criteria
LB AR TABET  ABC Y
& 01 'J 753 332 743 . .
P 2 are 55 «  Andnew consider what happens if
L 2 U o ] .
i oty 907 500 process P1requests 1instance of &
e 1 .I- T },-, : l-1 ‘I I and 2 instances of C. { Eequest[ 1]
P, 002 433 431 =(L0.2))



s What about requests of (3, 3,0 by

Allocation Need  Available P47 or (0,2, 0 by PO7 Can these
ABC ABC ABC ke safely granted? Why or why not?
Po 010 743 230
I 302 020
P 302 600
P; 2] 011
P, D02 451
Deadlock Detection

If a system does not employ either a deadlock-prevention or a deadlock-aver dance
algorithim, then a deadlock situation may occur. In this enwironiment, the system may provide:

*  An algorithm that examines the state of the system to determine whether a deadlock
has occurred

o  An algorithim to recover from the deadlock

In the following discussion, we elaborate on these two requirements as they pertain to
systems with only a single instance of each resource type, as well as to systems with seweral
instances of each resource type. At this point, however, we note that a detection-and-recovery
scheme requires overhead that includes not only the run-time costs of maintaining the necessary
information and executing the detection algorithm but also the potential losses inherent in
recovenng from a deadlock

Single Instance of Each Resource Type

If all resources have only a single instance, then we can define a deadlock-
detection algorithm that uses a wvariant of the resource-allocation graph, called a wait-for graph.
We obtain this graph from the resource-all ocation graph by removing the resource nodes and

collapsing the appropriate edges.

Llore precisely, an
edge from F;to Frmn
a watfor graph
implies that process

{Ps) . -
b o Fy 15 wating  for
o i T 1 process Fy to release
¥ - i j_F."j (P o Py a resource that &
| \ J / needs. An edge B, —
—| | ) . . . ~
|__J. {Paj | vt Fiextsts in a wait-for
Ay A —

{a) (k)



graph if and only 1f the corresponding resource-all ocation graph contains two edges &y — £, and
Ry — Fp for some reseurce R; . In Fig, we present a resource-allecation graph and the

cotresponding wait-for graph.

Lz before, a deadlock exists in the system 1if and only if the wait-for graph contains a
cycle. To detect deadlocks, the system needs to maimfain the waitfor graph and perodically
invake an algerithm that searches for a cycle in the graph. An algorithm to detect a cycle1in a
graph requires an order of #¢ operations, where 2 15 the number of vertices in the graph.

Several Instances of a Hesource Type

The wait-for graph scheme 12 not applicable to a resource-all ocation system with multiple
instances of each resource type. We turn now to a deadlock-detection algorithm thatis applicable
to such a system. The algonthm employs several time-varying data structures that are similar to
those uzed in the banker "5 algonthm:

*  Avwailable A wector of length w2 indicates the number of available resources of each
type.

o Allocation. An # = matrix defines the number of resources of each type
currently allocated to each process.

* FRequest An » = m matnxz indicates the current request of each process If
Reguest[i|[i] equals & then process F; s requesting & more instances of resource

type & .

To simplify notation, we again treat the rows in the matrices Afecafion and Reguest as
wectors;, we refer to them as Allecation, and Reguest, . The detection algorithm described here
sitnply investigates every possible allocation sequence for the processes that remain to be
completed. Compare this algenthm with the banketr’s algorithm.

Let Werk and Finish be vectors of length s and » respectively. Initialize Hark =
Available. For i =01, . »n — I, if Allecation; + 0, then Finish[i] = false. Otherwize, Finish[i] =
rue.

Find an index i such that both

Finish[i]| — false
Keguest; = Work
It no such i exists, go to step 4.

Wark — Wark + Allocation; Finish[i] =
frate
30 to step 2.



If Finish(i] = fadse for some i, 0 =i < #, then the system 15 in a deadlocked state.
Woreover, 1f Finish[i | =— false, then process B 15 deadlocked.
This algorithm requires an order of m x 24 operations to detect whether the system 15 in a
deadlocked state.

Tou may wonder why we reclaim the resources of process F; (in step 3) as soon as we

determine that Reguest = Work (in step 2b). We know that 5y 13 currently zef involved 1n a
deadlock (since Reguest, < Work). Thus, we take an optimistic attitude and assume that F; will
requite no mote resources to complete itz task; it will thus soon return all currently allocated

resources to the system. If our assumption 1z incorrect, a deadlock may occur later. That
deadlock will be detected the next time the deadlock-detection algorithm 1z invoked
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To illustrate this algorithm, we consider a systemn
with five processes Fjp through Py and three resource
types A, 5, and O\ Eesource type A has seven instances,
resource type 5 has two instances, and resource type O
has sizinstances. Suppose that, at time 7p, we have the
following resource-allocation state:

We claim that the system 1z not in a deadlocked state. Indeed, if we execute

our algorithm, we will find that the sequence <Fp |, Fo, B5 |, P, Py results in

Finish[i] = true for all i,

Suppose now that process My makes one additional request for an instance of
type C. The Reguest matriz 1z modified as follows:

We claim that the systemn 18 now deadlocked Although we can reclaim the

resources held by process My, the number of avalable rescurces 13 not sufficient

to fulfill the requests of the other processes. Thus, a deadlock exists, consisting of

processes P, Po, Py, and Py

When should we involke the detection algonithm ¥ The answer depends on two factors:

How affen 15 a deadlock likely to ocour?
How mary processes will be affected by deadl ock when it happens?



If deadlocks occur frequently, then the detection algorithm should be invoked frequently.
Eesources allocated to deadlocked processes will be 1dle until the deadlock can be broken. In
addition, the number of processes invelved in the deadlock cycle may grow.

Deadlocks occur only when some process makes a request that cannct be granted
immediately. This request may be the final request that completes a chain of waiting processes.
In the extreme, then, we can invoke the deadlock-detection algonthm every time a request for
allocation cannot be granted immediately. In this case, we can identify not only the deadlocked
set of processes but also the specific process that “cansed” the deadlock. (In reality, each of the
deadlocked processes 15 a link in the cycle 1n the resource graph, so all of them, jontly, caused
the deadlock ) If there are many different resource types, one request may create many cycles in
the resource graph, each cycle completed by the most recent request and “caused” by the one
identifiable process.

Recovery from Deadlock

When a detection algorithin detertnines that a deadlock exists, several alter-natives are
available. One possibility 13 to inform the operator that a deadlock has occurred and to let the
operator deal with the deadlock manually, Another possibility 15 to let the system recover from
the deadlock automatically.

There are two ophions for breaking a deadlocle
One 15 simply to abort one or more processes to break the circular wait.

The other 15 to preempt some resources from one or more of the deadlocked
processes.

Process Termination

To eliminate deadlocks by abotting a process, we use one of two methods. In both
methods, the system reclaims all reseurces allocated to the terminated processes.

# Ahort all deadlocked processes.
Thizs method cleatly wall break the deadlock cycle, but at great expense. The
deadlocked processes may have computed for a long time, and the results of these
pattial computations must be discarded and probably will have to be recomputed later.
® Ahort one process at a time until the deadlock cycle is eliminated.
Thiz method incurs considerable overhead, since after each process 1z aborted, a
deadlock-detection algorithm must be invoked to determine whether any processes are
still deadlocked.
Aborting a process may not be easy. If the process was 1n the midst of updating a file,
terminating it will leave that file in an incotrect state. Similarly, if the process was in the midst of



printing data on a printer, the system must reset the printer to a correct state before printing the

next job.

If the partial terminati on method is used, then we must determine which deadlocked

process (or processes) should be terminated. This determination 15 a policy decision, sitmilar to
CFTT-scheduling decisions. The question 18 basically an economic one, we should abort those

processes whose termination will incur the minimum cost

Unfortunately, the term miminmem costiz not a precise one. Many Factors may affect

which process 15 chesen, including:

What the prionty of the process 1z

How long the process has computed and how much longer the process will compute
kefore completing its designated task

How many and what types of resources the process has used (for example, whether
the resources are simple to preempt)

How many more resources the process needs in order to complete

How many processes will need to be terminated

“Whether the process 15 interactive or batch

Resource Preemption

To eliminate deadlocks using rescurce preemphion, we successively preempt some

resources from processes and give these resources to other processes until the deadlock cycle s

brolen.

If preemption 18 required to deal with deadlocks, then three issues need to be addreszed:

Selecting a victim. Which resources and which processes are to be preempted? As
it process tennination, we must determine the order of preemption to minimize cost
Cost factors may 1nclude such parameters as the number of resources a deadlocked
process 15 holding and the amount of time the process has thus far consumed.
Rollback. If we preempt a resource from a process, what should be done with that
process? Clearly, it cannot continue with its normal execution; it 13 missing some
needed resource. We must roll back the process to some safe state and restart 1t from
that state.

starvation. How do we ensure that starvation will not occur? That 12, how can we
guarantee that resources will not always be preempted from the same process?

In a system where wictim selection is based primarily on cost factors, it may happen that

the same process 13 always picked as a wictim. As a result, this process never completes its

designated task, a starvation situation any practical system must address. Clearly, we must ensure

that a process can be picked as a victim only a (small) finite number of imes. The tost common

solution 15 to include the number of rollbacks in the cost factor.



Unit IIT - Memory Management
Background

»  Obviously memory accesses and memory management are a very important part of
modern computer operation. Every instruction has to be fetched from memory before 1t
can be executed, and most instrictions involve retriewing data from memory or storing
data ih memaory o both.

o« The advent of multi-tasking Operating Systems compounds the complezity of memory
management, becanse as processes are swapped in and out of the CFUT | so must their code
and data be swapped in and out of memeory, all at high speeds and without interfering
with any other processes.

o Shared memory, wirtnal memory, the classification of memory as read-only versus read-
wite, and concepts like copy-on-write forling all further complicate the 1ssue.

Basic Hardware

o Tt should be noted that from the memory chips point of wiew, all memory accesses are
equivalent. The mem oty hardware deesn't khow what a particular part of memory is
being used for, nor does it care. This 15 almost true of the OF as well, although not
entirely.

o The CPT can only access its registers and main memory. It cannot, for example, make
direct access to the hard drive, so any data stored there must first be transferred into the
maitn mem oty chips before the CPTT can work with 1t (Device drivers communicate with
theit hardware wia interrupts and "memory” accesses, sending short instructions for
example to transfer data from the hard drive to a specified location in main memory. The
dizl: controller monitors the bus for such wnstructions, transfers the data, and then notifies
the CPTT that the data is there with another interrupt, but the CPTT never gets direct access
to the disk)

o DMemory accesses to registers are very fast, generally one clock tick, and a CPU may ke
able to execute more than one machine instruction per clock tick

» DMemoty accesses to maih memory are comparatively slow, and may take a number of
clock ticks to complete. This would require intolerable waiting by the CPTT if 1t were not
for an intermediary fast memory eache built into most modern CPUs. The basic idea of
the cache is to transfer chunks of memory at a time from the main memory to the cache,
and then to access individual mem ory locatons one at a time from the cache.

» Tlser processes must be restnicted so that they only access memory locations that
"belong" to that particular process. This 1z usually implemented using a base register and
alimit register for each process, as shown in Figures below.



o Fyvery memory access made by a user process iz checked against these two registers, and
if a memory access 15 attempted outside the valid range, then a fatal error 15 generated.
The OF obvicusly has access to all extsting mem oty
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locations, as this 18 necessary to swap users' code
and data 1 and out of memory. It should also be
obvious that changing the contents of the base and

limit registers 13 a privileged activity, allowed only
to the OF kernel.
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Fig. - Hardware address protection with base and

limit registers

s Ilzer programs typically refer to memory

addresses with symbolic names such as "1",

"count", and "average Temperature" These

symbolic names must be mapped or beund

to  physical memory

addreszes, which

twpically occurs in several stages:

u}

Compile Time - If it 1z known at
cotnpile time where a program will
reside in physical memory, then
ahsalite cadez can be generated by
the actual
physical addresses. Howewer if the

cotpiler, containing

load address changes at some later
time, then the program will have to

mamary



be recompiled. DOS COM program s use compile ime binding.

Load Time - If the locaton at which a program wall be loaded 15 not
known at compile time, then the compiler must generate relocatable code,
which references addresses relative to the start of the program. If that
starting address changes, then the program must be reloaded but not
recompiled.

Execution Time - If a program can be moved around in memory during
the course of its execution, then binding must be delayed until execution
time. Thiz requires special hardware, and 12 the method implemented by
mostmodern Operating Systems.

Fig shows the wvarious stages of the hinding processes and the units
involved in each stage

Logical Versus Physical Address Space:

» The address generated by the CPTT 15 a logical address, whereas the address
actually seen by the mem oty hardware 15 a physical address.

o  Addresses bound at compile time o load titne have 1dentical logical and physical

addresses.

o« Addresses created at execution time, however, have different logical and physical
addresses.

o In thiz case the logical address 13 also known as a virfual address, and the

two terms are used interchangeably by our text.

The set of all logical addresses used by a program composes the lagical
address space, and the szet of all corresponding physical addresses
composes the physical address space.

o« Therun time mapping of logical to physical addresses 15 handled by the memory-

miarnagenient wnit, MM

a

The M can take on many fortms. One of the simplest 1z a modification

of the base-register scheme described earlier.

» The base register 18 now termed a

relocation register, whose value 13

relocanon |
ot added to every memory request at
_ [ rao00 | the hardware level.
lagical = P sical
sk - Ak rimpge
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physical addresses. Tzer programs
wotle  entirely  in logical address
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space, and any memory references or
manipulations are done using purely



logical addresses. Only when the address gets sent to the physical memory chips is the
physical memory address generated.

Dymamic L oading:

» Eather than loading an entire program into memory at once, dynamic loading
loads up each routine as it 18 called. The advantage is that unused routines need
never ke loaded; reducing total memotry usage and generating faster program
startup times. The downside 15 the added complexity and overhead of checking to
see if a routine 12 loaded every time it 12 called and then loading it up 1f it 12 not

already loaded.

Dynamic Linking and Shared Libraries

o«  With stagic linking library modules get fully included 1n executable modules,
wasting both disk space and main femory usage, because every program that
included a certain routine from the library would have to have their own copy of
that routine linked into their executable code,

o With dymnamic Enking, however, only a stub 13 linked into the executable module,
containing references to the actual library module linked 1n at run time.

o This method saves disk space, because the library routines do not need to
be fully included in the executable modules, only the stubs.

o we will also learn that if the code section of the library routines is
reentrant, ( meaning it does not modify the code while it runs, making it
safe to re-enter it ), then main mem oty can be saved by loading only one
copy of dynamically linked routines into memory and sharing the code
ammongst all processes that are concurrently using it { Each process would
have their own copy of the dafa section of the routines, but that may be
small relative to the code segments ) Obwicusly the OFS must manage
shared routines in mem oy,

o An added benefit of dvnamically linked libraries (DELs also known as
shared hbraries or shared ebfects on UMLK systems) invelves easy
upgrades and updates. When a program uses a routine from a standard
library and the routine changes, then the program must be re-built {re-
linked ) in order to incorporate the changes. However 1f DLLs are used,
then as long as the stub doesn't change, the program can be updated
merely by loading new wersions of the DLLs onto the system. Version
information 15 mantaned in both the program and the DLLs, so that a
progratm can specify a particular version of the DLL if necessary.

o In practice, the first ime a program calls a DLL routine, the stub will
recognize the fact and will replace itself with the actual routine from the



DLL library. Further calls to the same routine will access the routine
directly and not incur the overhead of the stub access. (Following the
TIL Proxy Patters.)

Swapping:

s A process must be loaded into memory in order to execute.

« If there 15 not enough memory avalable to keep all running processes in memory at the
same time, then some processes who are not currently using the CPT may have their
memotry swapped out to a fastlocal disk called the backing store.

Standard Swapping

o If compilestime or load-time address binding iz used, then processes must be
swapped back into the same memory locati on from which they were swapped out.
If execution time binding is used, then the processes can be swapped back into
any available location.

»  Swapping 15 a very slow process compared to other operations.

« For example, if a user process ocoupied 10 ME and the transfer rate for the
backing store were 40 MB per second, then it would take 1/4 szecond (250
milliseconds ) just to do the data transfer Adding in a latency lag of &
milliseconds and ignonng head seek time for the moment, and further recognizing
that swapping invelves mowving old data out as well as new data in, the overall
transfer time required for this swap 15 512 millizeconds, or over half a second For
efficient processor scheduling the CPTT time slice should be significantly longer
than this lost transfer time.

» Toreduce swapping transfer overhead, it 13 desired to transfer as little information
as possible, which requires that the svstem know how much mem oty a process is
using, as opposed to how much 1t sright use. Programmers can help with this by
freeing up dynamic memory that they are no longer using.

o  Itisimportant to swap processes out of memoty only when they are idle, or more
to the point, only when there are no pending IO operations. (Ctherwise the
pending IO operation could write into the wrong process's memory space.) The
solution 13 to etther swap only totally 1dle processes, or do I/O operations only
into and out of OF buffers, which are then transferred to or from process's main
memoty as a second step.



. Most modern Cperating Systems no longer use swapping, because it 13 too slow

e and there are faster
operating e il alternatives avalable.

v (e.g. Faging. )
However some TUHE
process Py

(1)swap out systems  will  still
>

invoke swapping if the

- S process systemn gets extremely

E S ' il full, and then

user S o discontinue swapping

s backing store when the load reduces

again. ‘Windows 3.1

Main memory o
would use amodified

Fig - Swapping of two processes using a disk as abacking store

version of swapping that was somewhat controlled by the user, swapping process's
out if necessary and then only swapping them back in when the user focused on that
particular window,

Swapping on Mohile Systems (New Section in 9th Edition)

»  Swapping 13 typically not supported on mobile platform s, for several reasons:
o IMobile devices typically use flash memory in place of more spacious hard
driwves for persistent storage, so there 13 not as much space available.
o Flash memoty can only be written to a limited number of times before 1t
kecomes unreliable.
o The bandwidth to flash memory 15 also lower.
o Apple's IOS asks applications to voluntarily free up memory
o Eead-only data, 2. code, 13 simply removed, and rel oaded later if needed.
o Modified data, e g the stack, 1z never removed, but . .
o Appsthat fal to free up sulficient memory can be removed by the OF
o Android follows a similar strategy.
o Priorto terminating a process, Android writes its applicatian state to flash
memory For quick restarting.

C ontiguous Mem ory Allocation

« Une approach to memory management 135 to load each process into a contiguous space.
The operating system is allocated space first, usually at either low or high memory
locations, and then the remaining avalable memory 15 allocated to processes as needed.



{ The OF 15 usually loaded low, because that 13 where the interrupt vectors are located,
btut on older system s part of the OF was loaded high to make more room in low memory

within the 640E barrier ) for user processes. )

MMem ory Protection (was Memory MMapping and Protection)
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The system shown in Fig below
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Fig - Hardware support for relocation and limit registers

Iem ory Allocation

CUne method of allocating contiguous memory 15 to diwvide all available memory into
equal sized partitions, and to assign each process to their own partition. This restricts both
the number of stmultaneous processes and the maximum size of each process, and 13 no
longer used.

An alternate approach 13 to keep a list of unused (free) memory blocks (holes), and to
find a hole of a suitable size whenever a process needs to be loaded into memory. There
are many different strategies for finding the "best" allocation of memory to processes,

including the three most commonly discuszed:

1. First fit - Search the list of holes until one 1s found that 1s big enough to
satisfy the request, and assign a portion of that hele to that process
Whatever fraction of the hole not needed by the request 12 left on the free
list as a smaller hole. Subsequent requests may start looking either from
the beginning of the list or from the point at which this search ended.

2. Best fit - Allocate the smaliest hole that 15 big enough to satisty the
recquest. This saves large holes for other process requests that may need
them later, but the resulting unused portions of holes may be too small to
ke of any use, and will therefore be wasted. Eeeping the free list sorted
can speed up the process of finding the right hole.



3 Worst fit - Allocate the largest hole available, thereby increasing the
likelihood that the remmaining portion will be usable for sabisfying future
redquests.

o  Simulations show that etther first or best fit are better than worst fit in terms of both time
and storage utilization. First and best fits are about equal in tenms of storage utilization,
bt first fit 15 faster.

Fragmentation:

o  All the memory allocation strategies suffer from external fragmentation, though first and

kest fits expenience the problems more so than worst fit External fragmentation teans
that the available memory 1z broken up into lots of little pieces, none of which 1z hig
encugh to satisfy the next memory requirement, although the sum total could

o The amount of memory lost to fragmentation may vary with algorithm, usage patterns,
and some design decisions such as which end of a hole to allocate and which end to save
on the free list.

&  Statistical analysis of first fit, for example, shows that for I blocks of allocated mem ory,
another 0.9 N will be lost to fragmentati on.

o Jnternal fragmeniatian also occurs, with all memory allocation strategies. Thisis caused

by the fact that memory 15 allocated 1n blocks of a fized size, whereas the actual memory
needed will rarely be that exact size. For a random distribution of memory requests, on

the average 1/2 block will be wasted per mem ory request, because on the average the last
allocated block will be only half full.

o Mote that the same effect happens with hard drives, and that modern hardware
gives us increasingly larger drives and memory at the expense of ever larger
klock sizes, which translates to more memory lost to internal fragmentation.

o Some systems use variable size blocks to minimize losses due to internal
fragmentati on.

o If the programs in memory are relocatable, (using execution-time address hinding ), then
the external fragmentation problem can be reduced via compaction, 1.6, moving all
processes down to one end of physical memory. This only involves updating the
relocation register for each process, as all internal work 12 done using logical addreszes.

o«  Another solution as we will see 1n upcoming sections 13 to allow processes to use non-
contiguous blocks of physical mem oty, with a separate rel ocati on register for each block



Segmentation

Y Basic Method:

subroutine slack

eymbol
tabli=

main
ErOgram

agical addrass

Most users (programmers ) do not think of their
programs as exishing in one conbnuous linear
address space.

Eather they tend to think of their memory in
multiple segments, each dedicated to a patticular
use, such as code, data, the stack, the heap, etc.
Memory segmentation supports this wiew by
providing addresses with a segment number
(mapped to a segment base address) and an offzet

from the beginning of that segment.
« For example, a C compiler might generate 5 segments for the user code, library
code, glebal (static) vanables, the stack, and the heap, as shown in Figure

Programmer's view of a program.

Segmentation 1z a memory-nanagement scheme that supports this programmer view of

memotry. & logical address space 13 a collection of segments.

Each segment has a name and a length. The addresses specify both the segment name and
the offset within the segment The programmer therefore specifies each address by two

fquantities a segment name and an offset.

For simplicity of implementation, segments are numbered and are referred to by a segment
number, rather than by a segment name. Thus, alogical address consists of a fwe fuple:

<zegment-number, offset>.

Hormally, when a program 1z compiled, the compiler automatically constructs segments

reflecting the input programm

A Croompiler might create separate segments for the following:

The code
Flobal variables

The heap, from which memory 15 all ocated

The stacks used by each thread
The standard C library

Libraries that are linked in during compile time might be assigned separate segments. The

loader would take all these segments and assign them segment numbers.



Segmentation Hardware

Although the programmer can now refer to objects in the program by atwo-dimensional
address, the actual physical memory 15 still, of course, a one-dimensional sequence of bytes.
Thus, we must define an implementation to map two-dimensional user-defined addresses into
one-dimensional physical addresses. This mapping is effected by a segment table Each entry in
the segment table has a segment base and a segment limit The segment base contains the
starting physical address where the segment resides in metmory, and the segment limit specifies
the length of the segment.

The uze of a segment table 1z illustrated in Fig.. A logical address consists of two parts: a
segment number, 5 and an offzet into that segment, &, the segment numberis used as an index to
the segment table The offset & of the logical address must be between 0 and the segment limit If
it 1z not, we trap to the operating system (logical addressing attempt beyvond end of segment).
When an offset 1z legal, 1t 15 added to the segment base to produce the address 1n physical
memoty of the desired byte. The segment table 15 thus essentially an atray of base — limit register

pars.
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trap: addressing ermor physical memary iy R '-|
Flg = phyaical mermony
megmentation hardware Fig - Ezample of segmentation

Lz an example, consider the situation shown in Fig. We have five segments numbered
from 0 through 4. The segments are stored in physical memory as shown. The segment table has
a separate entry for each segment, giving the beginning address of the segment in physical
memotry {or base) and the length of that segment {or limit). For example, segment 2 15 400 bytes
long and begins at location 4300, Thus, a reference to byte 53 of segment 2 15 mapped onto



location 4300 + 53 = 4353 A reference to segment 3, byte 852, 15 mapped to 3200 (the base of
segment 3) + 802 = 4052, A reference to byte 1222 of segment 0 would result in a trap to the
operating system , as this segment 15 only 1,000 bytes long.

Paging:

« Paging 1z a memory management scheme that allows processes physical metm ory to be

dizcontinuous, and which eliminates problems with fragmentation by allocating mem oty

in equal sized blocks known as peages.

« Paging eliminates most of the problems of the other methods discussed previously, and is

the predominant memory managetn ent techni que used today.

Basic Method

» The basicidea behind paging is to divide physical memory into a number of equal sized
blocks called frames, and to divide programs logical memory space into blocks of the
same size called pages.

»  Any page (from any process) can be placed into any avalable frame.

s The page fable 1z used to look up what frame a particular page 15 stored 1n at the moment.

In the following example, for instance, page 2 of the program's logical metnory is

currently stored in frame 3 of physical memory:

page 0

page 1

page 2

page 3

logical
memaory

[1]

4]
it
7

Ly ha == O

page table

frame
number

0

1

2

page O
pages 2

page 1

phy=ical
memaony

| physoe
T THOy
pans lablke i

Fig - Paging model of logical and physical
memory

o A logical address consists of two
patts: & page number in which the
address resides, and an offset from
the beginming of that page. (The
number of bits in the page number
limits how many pages a single
process can address. The number
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of bits in the offset determines the maxzimum size of each page, and should correspond to
the system frame size. )

The page table maps the page number to a frame number, to wvield a physical address
which also has two parts: The frame number and the offset within that frame. The number
of bits in the frame number determines how many frames the system can address, and the
number of bits in the offset determines the size of each frame.

Page numbers, frame numbers, and frame sizes are determined by the architecture, but
are typically powers of two, allowing addresses to be split at a certain number of bits. For
example, if the logical addresz size 12 2"m and the page size 15 27n, then the high-order
m-n bits of a logical address designate the page number and the remaning n bits
represent the offset.

Iote also that the number of bits in the page number and the number of bits in the frame
number do not have to be identical. The former determines the address range of the
logical address space, and the latter relates to the physical address space.

page number page offset
1 [ d |

1 T "

(DOS used to use an addressing scheme with 16 bit frame numbers and 16-bit offsets, on
hardware that only supported 24-bit hardware addresses. The result was a resolution of
starting frame addresses finer than the size of a single frame, and multiple frame-offset
combinations that mapped to the same physical hardware address )

Consider the following micre example, in which a process has 16 bytes of logical
memoty, mapped in 4 byte pages into 22 bytes of physical memory. (Presumably some
other processes would be consuming the remaining 16 bytes of physical memory )

o o Iote that paging is like hawing a table of
relocation registers, one for each page of
the logical memory.

=

s There 1z no external fragmentation with

pagae 1alks

paging. All blocks of physical memory

- B

Iogrcal memary " | are used, and there are ne gaps in

ketween and no problems with finding
the right sized hole for a particular chunk
of memory.
s Thereis, however, internal fragmentation.
Iem oty 15 all ocated in chunks the size of
PRy sInel My apage, and on the average, the last page



will only be half full, wasting on the average half a page of memory per process.
{Possibly more, 1f processes keep their code and data in separate pages.)

o« Larger page sizes waste more memoty, but are more efficient in terms of overhead
Iodern trends have been to increase page sizes, and some svstems even have multiple
size pages to try and make the best of both worl ds.

« Dage table entries (frame numbers) are typically 32 bit numbers, allowing access to 2732
phywsical page frames. If those frames are 4 EB in size each, that translates to 16 TB of
addressable physical memory. (32 + 12 = 44 bats of physical address space.)

s When aprocess requests

free-frame list | free-trame list | ] ;
o . . et - memoty ( e.g when its
I IS ' . code 15 loaded 1n from
N 14 14 | | .
5 _ lpage 0 disk), free frames are
- 1 15 ETE 15 allocated from a free-
page O 16 page O 16| frame list, and inserted
page 1 | ] page 1 | | . .
page 2 = page 2 A into that process's page
pEge 3 S page 3 ; . table
: ! .
P 18 s 18 |page 2
- —_— e ® DProcesses are blocked
19 o] 19| f: i
L 1113 ; _ rofn ACCESSig  anyone
20 2|18 20 jpage 3| 1
. . ala0 | . else's memory because
21 nEw-process page table EIE all of their IMEm Ory
(al B} requests are tmapped

through their page table.
Fig- Free frames (a) before allocation and (b) after allocation

# There 15 no way for them to generate an address that maps into any other process's
MEMOry Space.

o The operating system must keep track of each individual process's page table, updating 1t
whenever the process's pages get movedin and out of memory, and applving the correct
page table when processing system calls for a patticular process. This all increases the
owethead involved when swapping processes in and out of the CPTT (The currently active

page table must be updated to reflect the process that 1s currently running )
Har dware Support

» Page lockups must be done for every memory reference, and whenever a process
gets swappedin or out of the CPIT, its page table must be swapped ih and out too,
along with the instruction registers, etc. It 1z therefore appropriate to provide
hardware support for this operation, in order to make it as fast as possible and to
make process switches as fast as posaible also.
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Cne option 15 to use a set of registers for the page table. For example, the DEC
PDP-11 uses 16-bit addressing and 8 EB pages, resulting in only 8 pages per
process. (It takes 13 bits to address B KB of offeet, leawving only = bits to define a
page number. )

An alternate option 15 to store the page table in main memoty, and to use a single
register (called the page-table base register, PTBER ) to record where in metmn oty
the page table 1z located.

o Process switching is fast, because only the single register needs to ke
changed.

o However memory access just got half as fast, because every memory
ACCESS NOW recqires e memoty accesses - One to fetch the frame
number from mem oty and then another one to access the desired mem ory
location.

o The solution to this problem is to use a very special high-speed mem oty

device called the franslation laak-aside huffer, TLE.

» The benefit of the TLE is that it
|

d can search an entire table for a

e, Atk key value in parallel, and if itis
e s s S found anywhere in the table,
| T phpsacal .

B — } : iz then the corresponding lockup
— | I d - i
TLE value 15 returned.
=
TLE
I
phiysical
page tabka

Fig - Paging hardware with TLE

The TLE 12 very expensive, however, and therefore wery small. (Tot large enough
to hold the entire page table. 3 Itis therefore used as a cache device.

A ddresses are first checked against the TLE, and 1f the info 15 not there (a TLE
miss ), then the frame 13 looked up from main memory and the TLE is updated.

If the TLE 1s full, then replacement strategies range from leastrecently used,
LR to random.

mome TLEs allow some entnes to be wired dewn, which means that they cannot
ke removed from the TLE. Typically these would be kernel frames.

Some TLBs store address-space idenidifiers, ASTDs, to keep track of which
process "owns' a particular entry in the TLE. This allows entries from multiple



Protection

processes to be stored simultanecusly in the TLE without granting one process
access to some other process's memory location. Without this feature the TLE has
to be flushed clean with every process switch.

The percentage of time that the desired information 12 found in the TLE 15 termed
the kit ratio.

The page table can also help to protect processes from accessing memoty that
they shouldn't, or their own mem oty in ways that they shouldn't.

A bit or bats can be added to the page table to classify a page as read-write, read-
only, read-write-execute, of some combination of these sorts of things Then each
memotry reference can be checked to ensure it 15 accessing the memory in the
appropriate mode.

Walid / invalid bits can be added to "mask off" entries in the page table that are
notin use by the current process, as shown by example in Figure 812 below.

Hote that the valid finvalid bits descnibed above cannot block all illegal mem oty
accesses, due to the internal fragmentation. ( Areas of memoty in the last page
that are not entirely filled by the process, and may contain data left over by
whoever used that frame last. )

Wlany processes do not use all of the page table available to them, particulatly in
modern systems with very large potential page tables. Eather than waste mem oty
by creating a full size page table for every process, some system s use a page-table
length register, PTLR to specify the length of the page table.

Structure of the Page Table

1. Hierarchical Paging

Mlost modern computer system s support logical address spaces of 2752 to 2764,
With a 2732 address space and 4K ( 2712 ) page sizes, this leave 2720 entries in
the page table. At 4 bytes per entry, this amount to a 4 ME page table, which is
too large to reasonably keep in contiguous memory. (And to swap in and out of
memory with each process switch. ) Mote that with 4E pages, this would take
1024 pages just to hold the page tablel
Cne option 13 to use a two-tier paging system, 1.e. to page the page table.
For example, the 20 bits descnibed above could be broken down into two 10-bat
page numbers. The first identifies an entry in the outer page table, which
identifies where in memoty to find one page of an inner page table. The second 10
kits finds a specific entry in that inner page table, which 1n turn identifies a
particular frame in physical

page number page offset

n_ | p d

10 10 12




memoty. (The remaining 12 bits of the 32 bit logical address are the offset within
the 4K frame.)

Fig- A two-level page-table scheme
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Fig - Address translation for a two-level 32-

kit paging architecture

o WA Architecture divides 22-hit addresses into 4 equal sized sections, and each
pageis 512 bytes, vielding an address form of

With a &4-bit logical address space and 4E pages, there are 52 bits worth of page numbers,
which 1z still too many even for two-level paging. One could increase the paging level, but with

10-bit page tables it would take 7 levels of indirection, which would be prohibitively slow
temoty access. So some other approach must be

used.

64 -bits Two-tiered leaves 42 bits in outer table

Going to a fourth level still leaves 32 bits 1n the

| outer table.

section page offset
s p | d
2 21 9
outer page | inner page offset
P P2 d
42 10 12
2nd outer page . outer page | innar page  offsat
M ™ I i i
3z 10 10 12




2. Hashed Page Tahles
» Une common data structure for accessing data that 15 sparsely distributed over a

broad range of possible values 15 with haskh fables Fig. below illustrates a Aashed
page fable nsing chain-and-bucket hashing:

phiysic al

logical address [ J‘, address
o Td] [+ at—-
."-. Fasls ..'\_ | | physical
L Munetion s 1 | | a9 =1 I hl Pl r] | ],' e M mory

hash tabhks

Fig - Hashed page table

3. Inverted Page Tables

o Another approach 15 to use an imverted page tfable Instead of atable listing all of the pages
for a particular process, an invetted page table lists all of the pages currently loaded in
memory, For all processes. (1.e there 1z one entry per frame instead of one entry per

page.

o g 5 Access to an inverted page table can

Sru —mEle Do L Rt be slow, as it may be necessary to

w1 g search the entire table in order to find

the desired page {or to discover that 1t

1z not there) Hashing the table can
help speed up the search process.

Fig. - Inverted page table

» Inverted page tables prohibit the normal method of implementing shared mem ory,
which 1z to map multiple logical pages to a common physical frame. (Because
each frame 1s now mapped to one and only one process. )

Virtual WMemory



Background

» Preceding sections talked about how to avold mem ory fragmentation by breaking process
memory requirements down into smaller bites {pages), and storing the pages non-
contiguously in memory. However the entire process still had to be stored in memory
somewhere.

o« In practice, most real proceszes do not need all their pages, or at least not all at once, for

several reasons

1.

Error handling code 15 not needed unless that specific error occurs, some of which
are quite ratre.

Arrays are often over-sized for worst-case scenarios, and only a small fraction of
the arrays are actually used in practice.

Certain features of cettain programs are rarely used, such as the routine to balance

the federal budget. -

o« The ability to load only the portions of processes that were actually needed {and only
when they were needed ) has several benefits:

a

Programs could be wntten for a much larger address space (virtual metnoty
space) than physically exists on the computer.

Because each process 1s only using a fraction of their total address space, there s
more memory left for other programs, improving CPTT utilization and system
throughput.

Less 'O is needed for swapping processes in and out of EAN, speeding things

up.

Fig - Diagram showing wirtual memory that 1z larger than physical memory Fig. shows
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»  Mote that the address space
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Wirtual memotry alse allows the sharing of files and memory by multiple processes, with several
kenefits: The System libraries can be shared by mapping them into the virtual address space of
more than one process.

Fig- Virtual address space

o Processzes can also share

shack e wirtual Oty by
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in all at once. Eather they are swapped in only when the process needs them. (on demand.
1 This 1z termed a lagy swapper, although a pageris amore accurate term.

Fig - Transter of a paged memory to contiguous disk space

Basic Concepts:

s« The basicidea behind paging 15 that

0 when a process 12 swapped in, the pager
—' . .
_ . only loads into mem ory those pages that 1t
A 2 :
Sk . o expects the process to need (right away.)
B frame . 3_ | | \,
: ofdl A |
o 1___|_: ] 1 L b |
5 26 |v| ' " EE :
X al i o 4] [5 « Pagesthat are notloadedinto memory
£ j - : , E [ [E are marked as invalid in the page table,
“ sl_[i o & | using the invalid bit. (The rest of the page
T i y F ] H . .
1 - aod bl E ._F_! ; table entry may either be blank or contain
|"§ o o= = wl | | o/ . .
T:'E"'Tl:.:n!‘y (— | | information about where to find the
11 | .
B == == swapped-out page on the hard drive. )
12
13

physical marmany
Fig - Page table when some pages are not in fnain memoty.
o It the process only ever accesses pages that are loaded in memory (memoty

resident pages), then the process runs exactly as if all the pages were loaded in to
MEMOrY,

« On the other hand, if a page 15 needed that was not originally loaded up, then a
pege fauli frap 15 generated, which must be handled in a series of steps:



1. The memory address requested 1z first checked, to make sure it was a valid
memory request.

2. If the reference was inwvalid, the process 1s terminated. Otherwise, the page
must be paged in.

3. A freeframe is located, possibly from afreeframe list

4. A disk operation 15 scheduled to bring in the necessary page from disk
{This will usually block the process on an IO wait, allowing some other
process to use the CPT in the meantime. )

9. When the 'O operation 15 complete, the process's page table 1s updated
with the new frame number, and the invalid bat 15 changed to indicate that
thiz iz now a valid page reference.

fi. The instriction that caused the page fault must now be restarted from the
beginning, (as soon as this process gets another turn on the CPTT)

- W cigaall _ _ o In an extreme case, IO pages

|7 “, are swapped in for a process

ngir; b until they are requested by

sykiem = page faults. Thiz 15 known as
VoA s pure demand paging.

o In theoary each insthiction
could generate multiple page
faultz. In practice this iz very
rare, due to lecality of

O | @ - - reference.
-y — iiasing page # The hardware necessary to
— support wirtnal memory is the
Fyss I samne as for paging and
swapping:, A page table and
Fig - Stepsin handling a page fault secondary metn ory.

o« A crucial part of the process 15 that the instruction must be restarted from scratch
once the desired page has been made avalable in memory. For most simple
instructions this is not a major difficulty. However there are some architectures
that allow a single instruction to modify a fairly large block of data, (which may
span a page boundary), and 1f some of the data gets modified before the page fault
occurs, this could cause problems. One solution 18 to access both ends of the block
before executing the instruction, guaranteeing that the necessary pages get paged
in before the instruction begins.

Performance of Demand Paging



Obwiously there 15 some slowdown and performance hit whenever a page fault
occurs and the system has to go get 1t from memory, but just how big a hit 13 1t
exactly”

There are many steps that cccur when servicing a page fault { see book for full
detals ), and some of the steps are optional or variable. But qust for the sake of
dizscussion, suppose that a normal memory access requires 200 nanoseconds, and
that servicing a page fault takes B millizeconds (8,000,000 nanoseconds, or
40,000 times a normal memory access. ) With a page fault rate of ¢, ( on a scale
from 0to 1), the effective access titme 15 now:

(1-p)*(200) +p *2000000 =200+ 7,999,800 *p

Which cleardy depends heavily on pl Even if only one access in 1000 causes a page fault, the

effective access time drops from 200 nanoseconds to 8.2 microseconds, a slowdown of a factor

of 40 times. In order to keep the slowdown less than 10%, the page fault rate must be less than
0.0000025, or one in 399,990 accesses.

& subtlety is that swap space is faster to access than the regular file system,
because 1t does not have to go through the whole directory structure. For this
reason some systems will transfer an entire process from the file system to swap
space before starting up the process, so that future paging all occurs from the
{relatively) faster swap space.

Some systerns use demand paging directly from the file system for binary code
{ which never changes and hence does not have to be stored on a page operation ),
and to resetrve the swap space for data segments that must be stored This
approach 15 uzed by both Selans and BSD iz

C opv-on-Write:

OCESS,

® The idea behind a copy-on-write

:Th1"l'11llj::,| i fork 15 that the pages for a parent

—| 7 process do not have to be actually

| pagsh | copied for the child until one or

[ . the wother of the processes
I L— pageB o—— - changes the page. They can be

simply shared between the two

I o pageC [— - ' processes in the meantime, with a
bit set that the page needs to be

copied if it ever gets written to.

Thiz 15 a reasonable approach, since the child process usually 1ssues an exec) ) systemn
call immediately after the fork



Obwiously only pages that can be modified even need to be labeled as copy-on-write.
Code segments can simply be shared,

physice

) iz Ry » Pages used to  sabsty copy-on-write
' ? duplications are typically allocated using
_—I B | rero-fill-on-demand, meaning that their
s pageB b : previous contents are zeroed out before the

7 - copy proceeds.
page G ?—_—! » Some systems provide an alternative to the

Forki ) systetn call called a virdual memary
Ffork, vforkf) In thiz case the parent is
suspended, and the cluld uses the parent's

——+ Capy of page C

memoty pages. This 13 very fast for process creation, but recquires that the child not
modify any of the shared memory pages before performing the exec{ ) system call. (In
essence this addresses the question of which process executes first after a call to forl, the
parent of the child With viorlk, the parent 15 suspended, allowing the child to execute first
until it calls exec( ), sharing pages with the parent in the meantime.

Page Replacement:

In order to make the mostuse of wirtual memory, we load several processes into mem ory
at the same time. Since we only load the pages that are actually needed by each process at
any given time, there i room to load many more processes than if we had to lead in the
entire process.

However memotry 12 also needed for other purposes (such as IFO buffering), and what
happens if some process suddenly decides it needs more pages and there aren't any free
frames avallable? There are several possible solutions to consider:

1. Adpust the memory used by IO butfering, etc., to free up some frames for user
processes. The decision of how to allocate memory for IV versus user processes
1z acomplex one, vielding different policies on different systems. {(Fome allocate
a fized arnount for 'O, and others let the IiO system contend for memory along
with everything else)

2. Put the process requesting more pages into a wait queue until some free frames
become avalable.

3. Swap some process out of memory completely, freeing up its page frames.



4 Find some page in memory that 1sn't being used right now, and swap that page
only out to disk, freeing up a frame that can be allocated to the process requesting

it. This 1z known as page replacement, and 1z the most common solution. There

are many different algorithms for page replacement, which 15 the subject of the

remander of thiz section.
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Basic Page Replacement

The previously discussed page-fault processing assumed that there would be free frames

avallable on the free-frame list Mow the page-fault handling must be modified to free up

aframe if necessary, as follows:

Findthe location of the desired page on the disk, either in swap space or in
the file system.
Find afree frame:
a. If thereis afree frame, use it.
b, If there 1z no free frame, use a page-replacement algorithm to
select an existing frame to be replaced, known as the victir frverme,
c. Wrte the victm frame to disk. Change all related page tables to
indicate that this page iz no longer ih mem oty
Eead in the desired page and store it 1n the frame. Adjust all related page
and frame takles to indicate the change.



4 Eestart the process that was waiting for this page.

e P i ————_ HMote that step 3c adds an extra
ET— : .
1 disk write to the page-fault

page ol
- change wickim

handling, effectively doubling
(2) = pagi{_d,.,' ] the time required to process a

o |1 |\ toinvalid Z
T "'-':';'F":; page fault  Thiz can  be

o f| wictim

| reset page ' alleviated sotn ewhat by
page taklke by fra (3) _‘::"::-1"_-:_.._ assigning a ?Hﬂffiﬁ’ b.l'.!f, or tfﬂiy

Ny page Sy

desired hif to each page, indicating
FI-!I:_JI'

whether or not it has been

' changed since 1t was last

loaded 1n from disk It the

vhelis dirty bit has not been set, then
it the page 15 unchanged, and
does not need to be written out to disk Ctherwise the page wrte 12 required. It should come as
no surprise that many page replacement strategies specifically look for pages that do not have
their dirty bit set, and preferentiall¥ select clean pages as victim pages. It should also be obvious

that unmodifiable code pages never get their dirty bits set.

o There are two major requirements to implement a successful demand paging
system. We must develop a frame-allacation algarithm and a page-replacement
afgarithm. The former centers around how many frames are allocated to each
process (and to other needs), and the latter deals with how to select a page for
replacement when there are no free frames availakle.

s« The overall goal in selecting and tuning these algorithms is to generate the fewest
number of overall page faults. Becanse disk access 12 so slow relative to mem oty
access, even slight improvements to  these algorithms can  wield large
inprovetnents in overall system performance.

o  Algorithms are evaluated using a given string of memory accesses known as a
reference siring, which can be generated 1n one of { at least) three common
ways:

1. Eandomly generated, either evenly distributed or with some distribution curve
based on observed system behawvior This 15 the fastest and easiest approach,
but may not reflect real performance well, as it ignores locality of reference.

2. Specifically  desighed secquences. These are useful for illustrating the
properties of comparative algonthms in published papers and textbooks, { and
also for homewotls and exam problems. (-1 )

3. Eecorded memory references from a live system. This may be the best
approach, but the amount of data collected can be enormous, on the order of a



million addresses per second The volume of collected data can be reduced by
making two important observat ons:

1.

CUnly the page number that was accessed s relevant. The off set within that
page does not affect paging operations.

successive accesses within the same page can be treated as a single page
request, because all requests after the first are guaranteed to be page hits.
(Since there are no intervening recquests for other pages that could remove
this page from the page table)

s« o for example, if pages were of size 100 bytes, then the sequence of address requests
(0100, 0422, 0101, 0612, D634, 068, 0132, 00328, 0420 would reduce to page requests

16

number of page faults

(1,4,1,6,1,0,4)

Az the number
of  avalable frames
inicreases, the number

= gy of page faults should
decrease, as shown in

| 1 | | Flg.

numbsar of framas

Fig - Graph of page faults versus number of frames.

2. FIF() Page Replacem ent

reference string

o A simple and obvious page replacem ent strategy 15 FFFQ e firstan-first-out.

» Asnew pages are broughtin, they are added to the tal of a queue, and the page at
the head of the queue is the next victim. In the following example, 20 page
recquests resultin 12 page faults:

7 0 1

page frames

2 0 3 0 4 2 3 032120170 1
4| [4] [o 0| [o] ?i?il
. B & ]
2| [2] [2 1| [1] 1&1;0
o| (3] |3 a| 2] 2| [2] |1

Fig - FIFO page-replacement algorithm.



o Although FIFO1s simple and easy, it 13 not always optimal, or even efficient.

» Aninteresting effect that can occur with FIFO 15 Belady's anemaly, 1n which
increasing the number of frames avallable can actually imeregse the number of
page faults that occur! Consider, for example, the following chart based on the
page sequence (1,2, 3, 4,1, 2,5, 1,2, 3,4, 5) and a varying number of avalable
frames. Obwiously the mammum number of fanlts 15 12 { every request generates
a fault 3, and the mintmum number 15 5 { each page loaded only once 3, but in
ketween thete are some interesting results:

number of page faulls
al
1

number of frames

Fig - Page-fault curve for FIFO replacement on a reference string
{Optimal Page Heplacement

o The discovery of Belady's ancmaly lead to the search for an epfimal page-
replacement algerithm, which 13 simply that which vields the lowest of all
possible page-faults, and which does not suffer from Belady's anomaly.

o« 3Such an algonthm does exist, and 15 called QP T ar MIN. This algorithm 1s simply
"Eeplace the page that will not be used for the longest ime in the future "

« For example, Figure 2.14 shows that by applying OPT to the same reference
string used for the FIFO example, the minimum number of possible page faults 12
9 Since & of the pagefaults are unavoidable (the first reference to each new
page), FIFO can be shown to requite 3 fimes as many ( extra ) page faults as the
optimal algorithm . (Mote: The book claim s that only the first three page faults are
required by all algorithmes, indicating that FIFO 15 only twice as bad as OFT )

o«  Unfortunately OPFT cannot be implemented in practice, because it requires
foretelling the future, but it makes a nice benchmark for the comparison and
evaluation of real proposed new algorithms.

« In practice most page-replacement algorithms ty to appromimate OFT by
predicting {estimating) in one fashion or ancther what page will not be used for
the longest period of titme. The basiz of FIFO 15 the prediction that the page that



was brought in the longest time ago 13 the one that will not be needed again for
the longest future time, but as we shall see, there are many other prediction
methods, all striwing to match the performance of OFT.

reference string

7 01 2 0 3 ¢ 4 2 3 0 3 21 2 0 1 7 0 1

s Qi e ]
IR
w[o[m]
BRI
= |o|~

page frames

Fig - Optimal pagereplacement al gorithm
LRI Page Beplacement

o The prediction behind LRIT the Legst Recently Used, algorithim iz that the page
that has not been used in the longest time 15 the one that will not be used again 1n
the near future. { Mote the distinction between FIFO and LETT: The former locks
at the ol dest lead time, and the latter looks at the oldest use time. )

« ome view LETT as analogous to OFT, except looking backwards in time instead
of ferwards. { OFT has the interesting property that for any reference string 5 and
its rewerse B, OPT will generate the same number of page faults for 5 and for E. It
turns out that LETT has this same property. )

« Figure 915 illustrates LETT for our sample string, vielding 12 page faults, { as
compared to 15 for FIFO and 9 for OFT . )

reference string

s 01 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7| [7] [7] [2] ED [1] El 1
j 0| |o] o| |0 |3] |3 3l Jo| o
BERRERE 3| 2] [2] |2] ‘5 o

page frames

Fig - LEU page replacement algonthm.

« LEW 15 considered a good replacement policy, and 15 often used. The problem 1s
how exactly to itnplement 1t. There are two simple approaches commonly used:

1. Counters. Every memory access increments a counter, and the current

walue of this counter is stored in the page table entry for that page. Then



finding the LETT page invelves simple searching the table for the page
with the smallest counter value. Mote that overflowing of the counter must
ke considered.

2. Stack. Another approach 1s to use a stack, and whenever a page is
accessed, pull that page from the middle of the stack and place 1t on the
top. The LETT page will always be at the bottom of the stack Because this
requires removing objects from the middle of the stack, a doubly linked
list 1z the recommended data structure.

o« DMote that both implementations of LEUT require hardware support, either for
incrementing the counter or for managing the stack, as these operations must be
petformed for every mem oty access.

o DMetther LETT or OFT exhibit Belady's ancomaly. Both belong to a claszs of page-
replacement algonthms called stuck algarithms, which can never exhubit Belady's
anctnaly. & stack algorithm 15 one in which the pages kept in metm oty for a frame
set of size N will always be a subset of the pages keptfor aframe size of N+ 1. In
the case of LET, { and particularly the stack implementation thereof ), the top I
pages of the stack will be the same for all frame set sizes of IT or anything larger.

reference string

4 7 0o 7 1 0 1 2 1 2 7 1 2
2 7 T T
—] o a b
1 2
0 i
o
4 4
stack stack
before after
a b

Fig - Uze of a stack to record the most recent page references.
LRU-Approximation Page Replacement

o«  Unfortunately full implementation of LET requires hardware support, and few
systems provide the full hardware support necessary.

» However many systems offer some degree of HW support, encugh to approzimate
LET fairly well. (In the absence of ANY hardware suppott, FIFO might be the best
avatlable choice)



s« In particular, many systems provide a reference bif for every entry in a page table,
which 15 set anyhme that page 15 accessed Initally all bits are set to zero, and they
can also all be cleared at any time. One bit of precision 15 enough to distinguish pages
that have been accessed since the last clear from those that have not, but does not

provide any finer grain of detal.
1 Additional-Reference Bits Algorithm

« Finer grain 1z possible by storing the most recent 8 reference bits for each
page in an B-bit byte in the page table entry, which is interpreted as an
unsigned int.

o At periodic intervals (clock interrupts ), the OF takes over, and
right-shifts each of the reference bytes by one hit,

o The high-order (leftmost ) bit 1z then filled in with the current
value of the reference bit, and the reference bitz are cleared.

o At any given time, the page with the smallest value for the
reference byte 15 the LETT page.

«  Obviously the specific number of bits used and the frequency with which
the reference byte 13 updated are adjustable, and are tuned to give the
Fastest performance on a given hardware platform.

2 Second-Chance Algorithm

s The second chance algorithm 15 essentially a FIFQ, except the reference
hit 15 used to give pages a second chance at staving in the page table.
o wWhen a page must be replaced, the page table 15 scannedin a FIFO
{circular queue) manner.
o If a page 18 found with its reference bit not set, then that page iz
selected as the next wictim.
o I, however, the next page in the FIFO does have its reference bit
set, then itis given a second chance:
=  The reference bit1s cleared, and the FIFO search continues.
» It sotne other page is found that did not have its reference
kit set, then that page will be selected as the victim, and this
page { the one being given the second chance ) wall ke
allowed to stay in the page table.
= If, however, there are no other pages that do not have their
reference bit set, then this page will be selected as the
victitn when the FIFO search circles back around to this
page on the second pass.



o If all reference bits in the table are set, then second chance degrades to

relerence  pages weforence  pages FIFO, but  also  requires a
i P e /—\ ! complete search of the table for
o] e 0 o every page-replacement.
i k& . Az long as there
o (1 v il are some pages whose reference
- - L . Y bits are not set, then any page
vigim L] _ ’ -~ referenced frequently enough
; ¥ _ L gets to stay in the page table
i L . il indefinitely.
. 4 v s  Thiz algorithm is
[ 1 - :l also  known as the clock
e R algonthm, from the hands of
[1] ] the clock mowving around the
Bt ¥ ¥ circular queue.
| 1] 1
X U/
circula aueus of pages circular gueus of pages
E] 41}

Fig - Second-chance (clock) pagereplacement algorithm.
Allocation of Frames:

We said eatlier that there were two impottant tasks in virtual memory management: a page-
replacement strategy and a frame-allocation strategy. This section cowvers the second part of that
palt.

Minimum Number of Frames

» The absolute minimum number of frames that a process must be allocated 1s
dependent on system architecture, and corresponds to the worst-case scenario of
the number of pages that could be touched by a single (machine) instriction.

o If an instruction (and itz operands) spans a page boundary, then multiple pages
could be needed st for the instruction fetch.

» Memory references in an instruction touch more pages, and if those memory
locations can span page boundanes, then multiple pages could be needed for
operand access also.

#» The worst case involves indirect addressing, particularly where multiple levels of
indirect addressing are all owed. Left unchecked, a pointer to a pointer to a pointer



to a pointer to a . . . could theoretically touch every page in the wirtual address
space 1n a single machine instruction, requiring every virtual page be loaded 1nto
physical memaory simultaneously. For this reason architectures place a limit { say
16 ) on the number of levels of indirection allowed 1n an 1nstruction, which 1s
enforced with a counter initialized to the limit and decremented with every level
of indirection in an instruction - If the counter reaches zero, then an "excessive
indirection” trap occurs. This example would still require a minimum frame
allocation of 17 per process.

Allocation Algorithms

« Equal Allocation - If there are m frames avalable and n processes to share them,
each process getem /n frames, and the leftovers are keptin a free frame buffer
pool.

« Proportional Allocation - Allocate the frames propottionally to the size of the
process, relative to the total size of all processes. Soif the size of process113 3 1,
and 515 the sum of all 5 1, then the allocation for process P 11sa 1=m * 5 1 /5

« Variations on propottional allocation could consider priority of process rather
than just their size.

s«  Ubviously all allocations fluctuate owver time as the number of avalable free
frames, m, fluctuates, and all are also subject to the constraints of minimum
allocation. { If the minimum allocations cannot be met, then processes must either
ke swapped out of not allowed to start until more free frames become avalable )

i5lobal versus Local Allocation

»  One big question 15 whether frame allocation ( page replacement ) ococurs on a
local or global level.

« With local replacement, the number of pages allocated to a process 15 fized, and
page replacement occurs only amongst the pages allocated to this process.

o  With global replacement, any page may be a potential wictim, whether it currently
belongs to the process seeliung afree frame or not.

« Local page replacement all ows processes to better control their own page fault
rates, and leads to more consistent performance of a given process over different
system load lewvels.

o Global page replacement 18 overall more efficient, and 15 the more commonly
used approach.

Non-Uniform Memory Access



Thrashing

The above arguments all assume that all memory 15 equivalent, or at least has
equivalent access times.

Thiz may not be the case in multiple-processor systems, especially where each
CPTT 15 physically located on a separate circuit board which alse helds some
pottion of the overall system memory.

In these latter systems, CPUs can access memory that i3 physically located on the
same board much faster than the memory on the other boards.

The basic sclution 13 akin to processor affinity - At the same time that we try to
schedule processes on the same CPFU to minimize cache misses, we also try to
allocate memory for those processes on the same boards, to minimize access
times.

The presence of threads complicates the picture, especially when the threads get
loaded onto different processors.

=molaris uszes an lgronp as a solution, in a hierarchical fashion based on relative
latency. For example, all processors and EAM on a single board would probably
ke in the same lgroup. Memory assighments are made within the same lgroup if
possible, or to the next nearest lgroup otherwise (Where "nearest" 15 defined as

hawing the lowest access time. )

» It a process cannot maintain its minimum required number of frames, then it must be

swapped out, freeing up frames for other processes. This 15 an intermediate level of CFTT

scheduling.

+ But what about a process that can keep tts minimum , but cannot keep all of the frames

thatit iz currently using on aregular basis? In this case it 15 forced to page out pages that

it will need again in the very near future, leading to large numbers of page faults.

« A process that 1s spending more time paging than executing 15 said to be thrashing.

Cause of Thrashing

Early process scheduling schemes would control the level of multiprogramming
allowed based on CPT utilization, adding in tmote processes when CPT utilization
was low.

s The problem 15 that when memory filled up and processes started spending lots of time

waiting for their pages to page in, then CPTT utilizati on would lower, causing the schedule

CPU utilization

to add in even more

processes ad
exacerbating the
thrashing problem! Ewentually the

degres of multiprogramming



system would essentially grind to a halt.

» Local page replacement policies can prevent one thrashing process from taling
pages away from other processes, but it still tends to cleg up the 'O queue, thereby
slowing down any other process that needs to do even a little bit of paging ( or any other
IO for that matter. )

To prevent thrashing we must provide processes with as many frames as they really need
i Tl i . "nghtnow", but how do we know what that 137

T T s+ The lpcality madzl notes that processes
typically access memory references in a
given loceadity, making lotz of references

L to the same general area of memory
¥ before moving penodically to a new
locality, as shown in Figure 9.19 below.
It we could just keep as many frames as
e N 1 are involved in the current locality, then
page faulting would occur primarily on

switches from one locality to another
|| =t (E.z. when one function exits and
Rl s another s called.)

Working-Set Model

s The working sef madel 15 based on the concept of locality, and defines a working
sef windaow, of length defta. "Whatewver pages are included in the most recent delta
page references are said to be in the processes working set window, and comprise
its current worlang set, as illustrated in Figure 920

page reference table
...2B15777751623412344434344413234443444. ..

A T ) A
1

£
WS(t,) ={1.2.5,6,7) WS(1,) = {3.4)
Fig - Worlung-zet model.

» The selection of delta 15 critical to the success of the worlang set model - If 1t 1s
too small then it does not encompass all of the pages of the current locality, and if



it 13 too large, then it encompasses pages that are no longer being frequently
accessed.

The total demand, D, is the sum of the sizes of the working sets for all processes.
If D exceeds the total number of availlable frames, then at least one process is
thrashing, because there are not encugh frames avalable to satisfy its minimum
wotling set. If D 1s significantly less than the currently available frames, then
additional processes can be launched,

The hard part of the wotling-set model 15 keeping track of what pages are in the
current wotking set, since every reference adds one to the set and removes one
older page. An approzmimation can be made using reference bits and a timer that
goes off after a setinterval of memory references:

o For example, suppose that we set the timer to go off after every 2000
references ( by any process ), and we can store two additional historical
reference bits in addition to the current reference bit.

o Ewery time the timer goes off, the current reference bit 15 copied to one of
the two historical bats, and then cleared.

o If any of the three bits 15 set, then that page was referenced within the last
15,000 references, and 15 considered to be in that processes reference set.

o Finer resclution can be achieved with more historical bits and a more
frequent timer, at the expense of greater overhead.

Page-Fault Frequency

page-fault rate

& more direct approach 15 to recognize that what we really want to control is the
page-fault rate, and to allocate frames based on this directly measurable value. If
the page-fault rate exceeds a certain upper bound then that process needs more
frames, and if it 12 below a given lower bound, then it can afford to give up some
of 1ts frames to other

Processes.
« ([ I suppose a page-
replacement strategy could

incraase number ke  dewised that would
AL select victim frames based
upper bownd ]
on the process with the
lowest current page-fault
e lewer bound f;
~ TEQUENCY.
e S Cecrease number 1 ¥ :I
—— of frames

nurnioer of frames

Fig - Pagefault frequency.



s Mote that there 15 a direct relationship between the page-fault rate and the

wotling-set, as a process moves from one locality to another:

TUnnumbered side bar in Ninth Edition

MMem ory-MMapped Files
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« Eather than accessing data files directly via the file systern with every file access, data

files can be paged into memory the same as process files, resulting in much faster

accesses { except of course when page-faults ocour. ) This 15 known as memorny-mapping

afile.

Basic Mechanism

o« Basically a file 1z mapped to an address range within a process's wirtual address

space, and then paged in as needed using the ordinary demand paging system.

o« DMote that file writes are made to the memory page frames, and are not
immediately wrtten out to disk. { Thiz 1z the purpose of the "flush{ )" system call,
which may also be needed for stdout 1n some cases. See the timekiller program

for an example of this. )
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Thiz 15 also why it 15 important to
"closel )" a file when one 13 done
witing to it - So that the data can
be safely flushed out to disk and
so that the memory frames can
ke freed up for other purposes.

some  systems provide special

system calls to memory map files



and use direct disk access otherwisze. Other systems map the file to process
address space if the special system calls are used and map the file to kernel
address space otherwise, but do memory mapping in either case.

+ File sharing 15 made possible by mapping the same file to the address space of
more thah one process, as shown in Figure below. Copy-on-wnte 15 supported,
and mutual exclusion techniques { chapter & ) may be needed to awvoid
synchronization problems.

+ chared memory can be implemented via shared mem ory-mapped files
CWindows), or it can be implemented through a separate process (Linuzx, TUNEL )

Shared Memory in the Win32 API

o« windows implements shared mem oty using shared memory-mapped files,

process, Process,
shared TEE memory-mapped
memaory S file
T shared Vg
il memory T
™ shared
. memory

involwing three basic steps:
1. Create afile, producing a HANDLE to the new file.
2. Mame the file az a shared object, producing a HANDLE to the shared
object.

3. Map the shared object to virtual mem ory address space, returning its base
address as a vord pownter (LPV OIDY.

MMem ory-MMapped I'D

o Al access to devices 13 done by writing into { or reading from ) the device's registers.
MNormally this is done wia special IO instructions.

s For certain devices it makes sense to simply map the device's registers to addresses in
the process's wirtual address space, making device If0 as fast and simple as any other
memoty access. Video controller cards are a classic example of this

s« enal and parallel devices can alse use memoty mapped VD, mapping the device
registers to specific memory addresses known as I Porgs, e g 0zFE Transferring a



series of bytes must be done one at a time, mowing only as fast as the I'O device is
prepared to process the data, through one of two mechanisms:

o Programmed 70 { PIO ), also known as pelling, The CPTT periodically checks
the control bit on the dewvice, to see if it 12 ready to handle another byte of data.

o Interrpt Drivenn. The device generates an interrupt when it either has another
byte of data to deliver or 18 ready to receive another byte.

Allocating K ernel Memory

o Previous discussions hawve centered on process memotry, which can be conveniently
broken up into page-sized chunks, and the only fragmentation that occurs 15 the average
half-page lost to internal fragmentation for each process (segment.)

o There 1z also additional memory allocated to the kernel, howewer, which cannot be o
easily paged. Some of 1t 15 used for VO buffering and direct access by devices, example,
and must therefore be contiguous and not affected by paging. Other memory 15 used for
internal kemel data structures of various sizes, and since kernel mem oty 13 often locked
{restricted from being ever swapped out), management of thiz resource must be done
carefully to avoid internal fragmentation or other waste. (Le. you would like the kernel to
consume as little memeory as possible, leaving as much as possible for user processes. )
Accordingly there are several classic algonithms in place for allocating kemel memory
structures.

Buddy System

o The Buddy Spsiem all ocates mem oty using a power of two allpcator

» [Inder thizs scheme, memory 15 always allocated as a power of 2 ( 4K, 8K, 16E,
etc ), rounding up to the next nearest power of two if necessary.

o If a block of the correct size 12 not currently available, then one is formed by
splithing the next larger block in two, forming two matched buddies. { And if that
larger size 15 not available, then the next largest available size 13 split, and so on. )

o  One nice feature of the buddy system 1z that if the address of a block is
exclusively OFed with the size of the block, the resulting address 15 the address of
the buddy of the satne size, which allews for fast and easy coalescing of free
blocks back into larger blocks.

o Free lists are maintained for every size blocl

o Ifthe necessary block size 15 not available upon request, a free block from
the next largest size 15 split inte two buddies of the desired size
{ Eecursively splithing larger size blocks if necessary. )

o When a block iz freed, its buddy's address 15 calculated, and the free list
tor that size block 15 checked to see if the buddy 15 also free If 1t 13, then



the two buddies are coalesced into one larger free block, and the process s
repeated with successively larger free lists.
o Seethe ( annotated ) Figure below for an example.

physlanlly sanbgus puy s Buddy Addresses
| 2 kB 00000000
1
128 HEr 133 KB |
H . 00000000 40000000
Size
‘ 1 EB ||:-1HKH
I"- | i 01000000 00000000 01000000
3:2;3}(5 |J§| crLllcrr
=t 00100000 00000000 00100000

0100000 0110000

Figure .27 Buddy system allpeaton

slabh Allocation

o Sluh Allocation allocates memory to the kernel in chunks called sfbs, consisting
of one or more contiguous pages. The kernel then creates separate caches for each
type of data structure it might need from one or more slabs Initially the caches
are matked empty, and are marked full as they are used.

» MNew requests for space 1n the cache 1s first granted from empty or partially empty
slabe, andif all slabs are full, then additional slabs are all ocated.

o« This essentially amounts to allocating space for arrays of structures, in large
chunks suitable to the size of the structure being stored For example if a
particular structure were 512 bytes long, space for them would be allocated 1in
groups of 8 using 4K pages. If the structure were 3K, then space for 4 of them
could be allocated at one time 1in a slab of 12K using three 4K pages.

» Benefits of slab allocation include lack of internal fragmentation and fast

allocation of space for individual structures.



s olaris uses slab allocation for the kemnel and also for certain user-mode mem ory

kernel objects caches slabs
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allocations. Linux used the buddy system pror to 2.2 and switched to slab
allocation since then, SLOB, Simple List of Blocks, maintains 3 hinked lists of
free blocks - stmall, medium, and large - designed for { imbedded ) swstems with
limited am ounts of mem ory.

o =LUB modifies some implementation 1ssues for better petformance on

systems with large numbers of processors.

Operating- System Examples { OJptional )

Windows

o  Windows uses demand paging with clusfering, meaning they page in multiple
pages whenever a page fault ocours.

» The worling set minimum and maximum are notrmally set at 30 and 345 pages
respectively. [ Maximums can be exceeded in rare circumstances. )

» FDree pages are mantaned on a free list, with a minimum threshold indicating
when there are enough free frames avalable.

» If a page fault occurs and the process 13 below their maxzimum, then additional
pages are allocated Otherwise some pages from this process must be replaced,
using alocal page replacement al gotithin,

s If the amount of free frames falls below the allowable threshold, then werking set
frimming occurs, talung frames away from any processes which are above their
minimutn, until al are at their minimumes. Then additional frames can be allocated
to processes that need them.

s The algorithin for selecting victim frames depends on the type of processor

o On single processor B0xB6 systems, a variation of the clock ( second
chance ) algorithm 15 used.



Solaris

o On Alpha and multiprocessor systems, clearing the reference bits may
require invalidatng entries in the TLE on other processors, which 15 an
expensive operation. In this case Windows uses a wariation of FIFO.

Solaris maintains a list of free pages, and allocates one to a faulting thread
whenever a fault occurs. It 15 therefore imperative that a mimimum am ount of free
memoty be kept on hand at all imes.

Solaris has a parameter, lofgfres, usually set at 1764 of total physical memory.
=wolaris checks 4 times per second to see if the free memory falls below this
threshheold, and if it does, then the pageons process is started.

Pagecut uses a variation of the clock (zecond chance ) algorithm , with two hands
rotating arcund through the frame table. The first hand clears the reference bats,
and the second hand comes by afterwards and checks them. Any frame whose
reference bit has not been reset before the second hand gets there gets paged out.
The Pageout method 15 adjustable by the distance between the two hands, (the
heandspan ), and the speed at which the hands move. For example, if the hands
each check 100 frames per second, and the handspan 1z 1000 frames, then there
would be a 10 second interval between the time when the leading hand clears the
reference bits and the time when the trailing hand checles them.

The speed of the hands 1z usually adjusted according to the amount of free
memoty, as shown below. Sawscan 15 usually set at 100 pages per second, and
Fasiscan 15 usually set at the smaller of 1/2 of the total physical pages per second
and 8192 pages per second.

8182
fastscan

SCan rate

100
slowscan

minfres desfres lotsfree
amownt of fres memaony

Fig - Zolaris page scanner.

Solaris also maintaing a cache of pages that have been reclaimed but which have
not vet been overwritten, as opposed to the free list which only holds pages whose



current contents are invalid If one of the pages from the cache 12 needed before 1t
gets moved to the free list, then it can be quickly recovered.

o  Mormally pagecut runs 4 times per second to check if memory has fallen below
lotsfres. However if 1t falls below desfees, then pageout will run at 100 times per
second in an attempt to keep at least desfree pages free. If 1t 13 unable to do this
for a 30-second awerage, then Solans begine swapping processes, starting
preferably with processes that have been 1dle for along time.

o If free mem oty falls bel ow wmiinfres, then pageout runs with every page fault.

o Eecent releases of Solariz have enhanced the wirtual memory management
system, including recognizing pages from shared Libranes, and protecting them

from being paged out.

Unit I'V - Storage WManagement

Overview of Mass-Storage Structure
1 Magnetic Disks
Traditional magnetic disks have the foll owing basic structure:

One of more plaffers in the form of dicks covered with magnetic media Hand disk platters are
made of ngid metal, while "Repay" disks are made of more flexible plastic.

Each platter has two worling surfaces. Older hard disk drives would sometimes not use the very
top of bottom surface of a stack of platters, as these surfaces were more susceptible to potential
datn age.

Each working surface 13 divided into a number of concentric rings called éracks. The collection
of all tracks that are the same distance from the edge of the platter, (1.e all tracks immediately
above one another in the following diagram) 1s called a cylinder

Each track 1z further divided into secfors, traditionally containing 512 bytes of data each,
although some modern disks occasionally usze larger sector sizes. (Sectors also include a header
and atraler, including checksum information among other things. Larger sector sizes reduce the
fraction of the disk consutned by headers and tratlers, but increase internal fragmentation and the
atn ount of disk that must be marked bad in the case of errors. )

The data on a hatrd dnve 15 read by read-write heads. The standard configuration (shown below)
uses one head per surface, each on a separate grer, and controlled by a common arm

assemthbly which moves all heads simultanecusly from one cylinder to another. (Cther



configurations, including independent read-wrnte heads, may speed up disk access, but invelve
serious technical difficulties)

The storage capacity of atraditional disk dnwe 13 equal to the number of heads ( 1.e. the number
of worling surfaces ), times the number of tracks per surface, times the number of sectors per
track, times the number of bytes per sector. A particular physical block of data 1z specified by
providing the head-sector -cy¥linder number at which it 15 located.

In operation the disk rotates at high speed, such as 7200 rpm (120 revolutions per second.) The
rate at which data can be transferred from the disk to the computer 15 composed of several steps:

The positioning fime, ala the seek fime or random gccess fme 15 the time required to move
the heads from one cylinder to another, and for the heads to settle down after the move. This 1s

typically the slowest step in the process and the predominant bottleneck to overall transfer rates.

The refational laterncy 15 the amount of time required for the desired sector to rotate around and
cotne under the read-write head This can range anywhere from zero to one full revolution, and
on the average will equal one-half revelution. This 13 another physical step and 15 usually the
second slowest step behind seek time. (For a disk rotating at 7200 rpm, the average rotational
latency would be 172 revelution /120 revolutions per second, of just over 4 milliseconds, a long
time by computer standards.

The fransfer mte, which 1s the timme required to move the data electronically from the disk to the
Cotnfter.

Disk heads "fly" ower the surface on a wery thin cushion of ar If they should accidentally
contact the disk, then a Aead crashk occurs, which may or may not permanently damage the disk
of even destroy it completely. For this reason it i3 notmal to park the disk heads when turning a
computer off, which means to move the heads off the disk or to an area of the disk where there 12

no data stored.

Floppy disks are normally remeovable Hard drives can also be remowable, and some are
even hof-swappable, meaning they can be removed while the computer 15 running, and a new
hard drive inserted in their place.

Disk drives are connected to the computer via a cable known as the £/ Bus. Some of the
common intetface formats include Enhanced Integrated Drive Electronics, EIDE, Adwanced
Technology Attachment, ATA; Senal ATA, SATA, TTniversal Senal Bus, TTSE; Fiber Channel,
FC, and Small Computer Systems Interface, SCSL

The kest contraller 1z at the computer end of the I'O bus, and the disk contrefleris built into
the disk itself. The CPTT 1ssues commands to the host controller via VO ports. Data 15 transferred
between the magnetic sutface and onboard eache by the disk controller, and then the data is



transferred from that cache to the host controller and the motherboard memory at electronic
speeds.

2 Magnetic Tapes

Mlagnetic tapes were once used for common secondary storage before the days of hard disk
drives, but today are used primarily for backups.

Arccessing a particular spot on a taghetic tape can be slow, but once reading or writing
commences, access speeds are comparable to disk drives.

Capacities of tape drives can range from 20 to 200 GE, and compression can double that

capactty.
Disk Structure

The traditional head-sector-cylinder, HSC numbers are mapped to linear block addresses by
numbering the first sector on the first head on the outermost track as sector 0. MNumbering
proceeds with the rest of the sectors on that same track, and then the rest of the tracks on the
same cylinder before proceeding through the rest of the cylinders to the center of the disk In
modern practice these linear block addresses are used in place of the HEC numbers for a varety
of reasons:

The linear length of tracks near the outer edge of the disk 13 much longer than for those tracks
located near the center, and therefore it 15 possible to squeeze many more sectors onto outer

tracls than onto inner ones.

Al disks have some bad sectors, and therefore disks maintain a few spare sectors that can ke
uzed in place of the bad ones. The mapping of spare sectors to bad sectors in managed internally
to the disk controller.

Modern hard drives can have thousands of cylinders, and hundreds of sectors per track on their
outermost tracks. These numbers exceed the range of H3C numbers for many ( older ) operating
systems, and therefore disks can be configured for any convenient combination of H5C walues
that fallz within the total number of sectors physically on the drive.

There 1z alimit to how closely packed individual bits can be placed on a physical media, but that

limitis growing increasingly more packed as technological advances are made.

Modern disks pack tnany motre sectors into outer cylinders than inner ones, using one of two
approaches:

With Canstant Linear Velocity, CLV, the density of bits 15 uniform from cylinder to cylinder.
Because there are more sectors in outer cylinders, the disk spins slower when reading those



cylinders, causing the rate of bits passing under the read-write head to remain constant This 13
the approach used by modern CDs and DV D,

With Canstant Angular Velacity, CAV, the disk rotates at a constant angular speed, with the
kit density decreasing on outer cylinders. { These disks would have a constant number of sectors
per track on all cylinders. )

Disk Attachment

Disk drives can be attached either directly to a particular host { alocal disk ) or to a networke
1 Host-Attached Storage

Local disks are accessed through IO Ports as deseribed eatlier.

The most commeon interfaces are IDE or ATA, each of which allew up to two drives per host
controller.

SATA 15 simalar with sumpler cabling.

High end workstations or other systems in need of larger number of disks typically use SCEI
cdiskes:

The =CE1 standard supports up to 16 fargets on each SC5I bus, one of which 13 generally the
host adapter and the other 15 of which can be disk or tape drives.

A BCET target 13 usually a single dnve, but the standard also supports up to B umits within each
target. These would generally be used for accessing indivi dual disks within a RATD array.

The SC:1 standard also supports multiple host adapters 1n a single computer, 1.e. multiple SCS1

busses.
Modern advancements in SC5] include "fast" and "wide" versions, as well as SC3I-2.
SCHE cables may be either 50 or 68 conductors. SC5I devices may be external as well as internal.

FC iz ahigh-speed serial architecture that can operate over optical fiber or four-conducter copper
wires, and has two variants:

& large switched fabnic having a 24-bit address space. This variant allows for multiple devices
and multiple hosts to interconnect, forming the basis for the storage-~area netwarks, SANs, to
be discussed in a future section.

The arbitrited loap, FC-AL, that can address up to 126 dewvices (drives and controllers)



2 Network-Attached Storage

Wetwotrl attached storage connects storage dewvices to computers using a remote procedure call,
EPC, interface, typically with something like NFS filesystem mounts. This 15 convenient for
allowing several computers in a group common access and naming conventions for shared
storage.

AL can be implemented using SCEL cabling, or FSCSFuszes Internet protocols and standard
network connections, allowing long-distance rem ote access to shared files.

HAS allows computers to easily share data storage, but tends to be less efficient than standard
host-attached storage.

3 Storage Area Network

L Sterage-Area Network, SAN, connects computers and storage devices in a network, using
storage protocols instead of network protocols.

COne advantage of this 15 that storage access does not tie up regular networkung bandwi dth.
=AM 13 very flexible and dynamic, allowing hosts and devices to attach and detach on the fly.
=AT 1z alzo controllable, all owing restricted access to cettain hosts and devices.

Disk Scheduling

Az mentioned earlier, disk transfer speeds are limited primanly by seek times and miational
latenney. When multiple requests are to be processed there 15 also some inherent delay in wating
for other recuests to be processed.

BANDWIDTH is measured by the amount of data transferred divided by the total amount of
time from the first request being made to the last transfer being completed, { for a series of disk
requests. )

Both bandwidth and access time can be improved by processing recuests in a good order.

Dislk recuests include the disk address, memory address, number of sectors to transfer, and
whether the requestis for reading or writing.

1 FCFS Scheduling

First-Come First-Sermveis simple and intnnsically far, but not very efficient Consider in the
following sequence the wild swing from cylinder 122 to 14 and then back to 124:



2 S8TF Scheduling

Shortest Seek Time First scheduling iz more efficient, but may lead to starvation if a constant

stream of requests arrives for the same general area of the disk

S3TF reduces the total head mowvement to 236 cylinders, down from 640 required for the same
set of requests under FCFS. Mote, howewer that the distance could be reduced stll further to 208
by starting with =7 and then 14 first before processing the rest of the requests.

3 SCAN Scheduling

The SCAN algonthm, alk.a the elevator algorithm mowes back and forth from one end of the

dizk to the other, similatly to an elevator processing requests in a tall building.

Tnder the SCAT algorithm, If a request arrives ust ahead of the mowing head then it will be
processed right away, but if 1t arrives just after the head has passed, then it will have to wait for
the head to pass going the other way on the return trip. This leads to a fairly wide variation in
access times which can be improved upon.

Consider, for example, when the head reaches the high end of the disk: Eequests with high
cylinder numbers just mizsed the passing head, which means they are all faitly recent requests,
whereas requests with low numbers may have been watting for a much longer time. Making the
return scan from high to low then ends up accessing recent requests first and making ol der

requests wait that much longer.
4 C-SCAN Scheduling

The Circalar-SCAN algorithm improves upon SCAN by treating all requests in a circular queue
fashion - Once the head reaches the end of the disk, it returns to the other end without processing
any recuests, and then starts again from the beginning of the disk:

5, LO0OK Scheduling

LOOK scheduling improves upon SCAN by looking ahead at the queue of pending requests, and
not moving the heads any farther towards the end of the disk than 1s necessary. The following
diagram illustrates the circular form of LOCE:

Selection of a Disk-Scheduling Algorithm

With very low loads all algonithims are equal, since there will normally only be ohe request to
process at atime.

For slightly larger loads, S5TF offers better petformance than FCFS, but may lead to starvation
when loads become heavy enough.

For busier systems, SCATN and LOOK algonthms eliminate starvation problems.



The actual optimal algorithm may be something even more complex than those discussed here,
but the incremental unprovements are generally not worth the additional overhead.

some improvement to overall file system access times can be made by intelligent placement of
directory andfor inode information. If those structures are placed in the middle of the dizk instead
of at the beginning of the disk, then the maximum distance from those structures to data blocks 1s
reduced to only one-half of the disk size I those structures can be further distributed and
furthermore have their data blocks stored asz cloze as possible to the cotresponding directory
structures, then that reduces stll further the overall ime to find the disk block numbers and then

access the corresponding data blocks.

On modern disks the rotational latency can be almost as significant as the seek time, however 1t
15 not within the OZes control to account for that, because modern disks do not reveal their
internal sector mapping schemes, ( particularly when bad blocks have been remnapped to spare
sectors. )

mome disk manufacturers prowvide for disk scheduling algorithims directly on their disk
controllers, ( which do know the actual geometry of the disk as well as any remapping ), so that
it a series of requests are sent from the computer to the controller then those requests can ke
processedin an optimal order.

Tnfortunately there are some considerations that the OF must take into account that are beyond
the akilities of the on-board disk-scheduling algorithmes, such as priorities of some requests over
others, or the need to process certain requests ih a particular order. For this reason OSes may
glect to spocn-feed requests to the disk controller one at a time in certain situations.

Disk Managem ent
1. Disk Formatting

Before a disk can be used, ithas to be law-level formatfied, which means laying down all of the
headers and trailers dematking the beginning and ends of each sector. Included in the header and
trailer are the linear sector numbers, and errer-carrecting codes, ECC, which allow damaged
sectors to not only be detected, but in tany cases for the damaged data to be recovered
(depending on the extent of the damage ) Sector sizes are traditionally 512 bytes, but may be
larger, particularly in larger drives.

ECC calculation 1s performed with every disk read or wnte, and if damage 15 detected but the
data 15 recoverable, then a seff errer has ocourred. Soft errors are generally handled by the on-
board disk controller, and never seen by the OF.

COnce the disk 15 lowlevel formatted, the next step 15 to partition the dnve inte one or more
separate partitions. This step must be completed even if the disk iz to be used as a single large
pattition, so that the partition table can be written to the beginning of the disk



After partitioning, then the filesystems must be legically formatied, which involves laying
down the master directory information ( FAT table or inode structure ), inthalizing free lists, and
creating at least the root directory of the filesystem. ( Disk patrtitions which are to be used as raw
devices are not logically formatted This saves the overhead and disk space of the filesystem

structure, but requires that the application program manage its own disk storage requirements. )
2 Boot Block

Computer EOM contains a beefstmap program ( OF independent ) with just enough code to find
the first sector on the first hard drive on the first controller, load that sector inte memory, and
transfer control over to it. { The EOM bootstrap program may look in floppy andfor CD drives
before accessing the hard drive, andis smart enough to recognize whether it has found valid boot
code or not. )

The first sector on the hard drve is known as the Master Booet Record, MAR, and containz a
very small amount of code in addition to the partifien fable. The partition table documents how
the disk 1z partiticned into logical disks, and indicates specifically which pattition is
the active or haat partition.

The boot program then looks to the active partition to find an operating systemn, possibly loading
up a slightly larger / more advanced boot program along the way.

In a dual-baet ( or larger multi-boot ) system |, the user may be given a choice of which operating
system to boot, with a default action to be taken in the event of no response within some time

frame.

Cnce the kernel 15 found by the boot program, it 15 loaded inte memory and then control 13
transferred over to the OF The kernel will normally continue the boot process by initializing all
important kernel data structures, launching important system services { e.g. network daem ons,
sched, tnit, etc. ), and finally providing one or more login prompts. Boot ophions at this stage
may include single-user alk a maintenance or safe modes, in which very few systemn setvices
are started - These modes are designed for system administrators to repair problems or otherwise
maintain the system.

3 Bad Blocks

o disk can be manufactured to 100% perfection, and all physical objects wear out over time.
For these reasons all disks are shipped with a few bad blocks, and additional blocks can be
expected to go bad slowly over tume. If a large number of blocks go bad then the entire disk wall
need to be replaced, but a few here and there can be handled through other means.

In the old days, bad blocks had to be checked for manuvally. Formatting of the disk or running
certain disk-analysis tools would identify bad blocks, and attempt to read the data off of them
one last ime through repeated tries. Then the bad blocks would be mapped out and taken out of



future service. Sometimes the data could be recovered, and sometimes it was lost forever. { Disk

analysis tools could be either destructive or non-destructive. )

Modern disk controllers make much better use of the error-correcting codes, so that bad blocks
can be detected earlier and the data usually recovered. { Eecall that blocks are tested with every
wiite as well as with every read, so often errors can be detected before the wrte operation is
complete, and the data simply wntten to a different sector instead. )

Iote that re-mapping of sectors from their normal linear progression can throw off the disk
scheduling optimization of the OF, espenially if the replacement sector 15 physically far away
from the sector it 13 replacing. For this reason most disks normally keep a few spare sectors on
each cylinder, as well az at least one spare cylinder. Whenever possible a bad sector will be
mapped to another sector on the same cylinder, or at least a cylinder as close as posaible. Sector
slipping may aso be perfortned, in which all sectors between the bad sector and the replacement
sector are moved down by one, so that the linear progression of secter numbers can be

maintained.

If the data on a bad block cannot be recovered, then a hand errerhasz occurred | which requires
replacing the file(s) from backups, or rebuilding them from scratch.

Swap-Space Management

Modern systems typically swap out pages as needed, rather than swapping out entire processes.
Hence the swapping svstem 13 part of the virtual memory management systetn.

Managing swap space 15 obwiously an impottant task for modern OSes.
1 Swap-Space Use

The amount of swap space needed by an OF varies greatly according to how it 15 used Some
systems require an amount equal to physical EAM, some want a multiple of that, some want an
am ount equal to the amount by which wirtual memory exceeds physical EAM, and some systems
use little or none at alll

Some systems support multiple swap spaces on separate disks in order to speed up the wirtnal
memory system.

2 Swap-Space Location
mwap space can be physically located in one of two locations:

Az alarge file which is part of the regular filesystem. This 13 easy to implement, but inefficient.
ot only must the swap space be accessed through the directory systetn, the file 15 also subject to
fragmentation 1ssues. Caching the block location helps in finding the physical blocks, but that 15

not a complete fix



A5 araw partition, possibly on a separate or little-used disk. This allows the OF more control
over swap space management, which 1z usually faster and more efficient. Fragmentation of swap
space 15 generally not abig issue, as the space 18 rednitialized every time the system 12 rebooted.
The downside of keeping swap space on a raw partition 1z that 1t can only be grown by
repartitioning the hard dnve.

3 Swap-Space Management: An Example

Historically ©OSes swapped out entire processes as needed Modern systems swap out only
individual pages, and only as needed. { For example process code blocks and other blocks that
have not been changed since they were originally loaded are normally just freed from the virtual
memoty system rather than copying them to swap space, because it 1z faster to go find them
again in the filesystem and read them back in from there than to write them out to swap space
atd then read them back. )

In the mapping system shown below Por Linux systems, amap of swap space 15 kept in mem ory,
whete each entry corresponds to a 4K block in the swap space. Zeros indicate free slots and non-
zeros refer to how many processes have a mapping to that particular block ( =1 for shared pages

only. )
RATD Structure

The general 1dea behind EATD 15 to employ a group of hard drives together with some form of
duplication, either to increase reliability or to speed up operations, { or sometimes both )

RATD originally stood for Redundant Armay of Tnexpensive Disks, and was designed to use a
tunch of cheap small disks in place of one or two larger more expensive ones. Today EATID

systems employ large possibly expensive disks as their components, switching the definition
to fundependent disks.

1 Improvement of Reliahility via Redundancy

The more disks a system has, the greater the likelihood that one of them will go bad at any given

time. Hence increasing disks on a system actually decreases the hMean Time To Failure,
MTITF of the system.

If, however, the same data was copied onto multiple disks, then the data would not be lost
unless hoth { or all ) copies of the data were damaged simultaneously, which 1z a MUCH lower
probability than for a single disk going bad. More specifically, the second disk would have to go
bad before the first disk was repaired, which brings the Mean Time To Repair into play. For
example if two disks were inveolved, each with a MTTF of 100,000 hours and a MTTE of 10
hours, then the Mean Time to Data Loss would be 500 * 107 hours, or 57,000 years!



This 15 the basic idea behind disk mirraring, in which a system contains identical data on two or
more dizks.

Mote that a power faillure during a wnte operation could cause both disks to contain corrupt data,
if both disks were writing simultanesusly at the time of the power faillure. One solution 13 to
wiite to the two disks in series, so that they will not both become corrupted ( at least not in the
same way | by a power fatlure. And alternate solution invelves non-volatile EAM as a write
cache, which iz not lost in the event of a power faillure and which 1z protected by efror-correcting
codes.

2 Improvement in Performance via Parallelism

There 13 also a performance benefit to muroring, particul arly with respect to reads. Since every
block of datais duplicated on multiple disks, read operations can be satisfied from any avalable
copy, and multiple disks can be reading different data blocks simultanecusly in parallel. ( "Writes
could possibly be sped up as well through careful scheduling algorithms, but it would be
cotmnplicated in practice. )

Another way of improving disk access time 15 with sérdping, which basically means spreading

data out across multiple disks that can be accessed simultaneously.

With hif-level sariping the bits of each byte are striped across multiple disks. For examplef &
disks were involved, then each B-bit byte would be read in parallel by B heads on separate disks.
A single disk read would access 8 * 512 bytes = 4K worth of data in the time normally required
to read 512 bytes. Simalatly 1f 4 disks were involved, then two bits of each byte could be stored
ot each disk, for 2K worth of disk access per read or write operation.

BLOCE-LEVEL STRIPING spreads a filesystem across multiple disks on a block-by-block
basis, soif block M were located on dislke O, then Block I + 1 would be on diske 1, and s0 on. This
1z particularly useful when filesystems are accessed in elusters of physical blocks Other stniping
possibilities exist, with blocklevel striping being the tnost common.

3 RAID Levels

Mirroring provides reliability but 12 expensive, Striping improves petformance, but does not
improve reliability. Accordingly there are a number of different schemes that combine the
principals of mirroring and stiping in different ways, in order to balance reliability versus

petformance wersus cost. These are descnbed by different RAFD Jevels, as follows { In the
diagram that follows, "C" indicates a copy, and "P" indicates parity, 1.e. checksum bats )

RAID LEVEL 0 - Thislevel includes striping only, with no mirronng.

RATD LEVEL 1 - Thislevel includes mirroring only, no stiping.



RAID LEVEL 2 - This level stores error-correcting codes on additional disks, allowing for any
dam aged data to be reconstructed by subtraction from the remaning undamaged data. Mote that
this scheme requires only three extra disks to protect 4 disks worth of data, as opposed to full
mitroring. { The number of disks required 15 a function of the error-correcting algorithms, and
the means by which the particular bad bit{s) 1s{are) 1dentified. )

RAID LEVEL 3 - Thizlevel 12 similar to level 2, except that it takes advantage of the fact that
each disk 1z stll doing itz own error-detection, so that when an efror occurs, there 15 no question
about which dizk in the array has the bad data. A a result a single parity bit 1z all that 12 needed
to recover the lost data from an array of disks Level 3 also includes striping, which improves
petformance. The downside with the parity approach is that every disk must take part in every
dizk access, and the parity bits must be constantly calculated and checked, reducing performance.
Hardware-level parity calculations and NVEAM cache can help with both of those 15sues. In

practice lewel 3 is greatly preferred over level 2.

RAID LEVEL 4 - This level 15 sirmlar to level 3, emploving block-level stnping instead of bat-
lewel striping. The benefits are that multiple blocks can be read independently, and changes to a
block only require writing two blocks { data and parity ) rather than invelving all disks. Mote that
new disks can be added seamlessly to the system provided they are mnitialized to all zeros, as this
does not affect the parity results.

RAID LEVEL 5 - This level 15 similar to level 4, except the panty blocks are distributed over
all disks, thereby more evenly balancing the load on the system. For any given block on the

disk(s), one of the disks will hold the panty information for that block and the other M-1 disks
will hold the data Mote that the same disk cannot hold both data and parity for the same block,
as both would be lostin the event of a disk crash.

RAID LEVEL 6 - This lewel extends raid level 5 by storing multiple bits of etrorrecovery
codes, ( such as the Reed-Selomon cades ), for each bit position of data, rather than a single

parity bit In the example shown below 2 bats of ECC are stored for every 4 bits of data, allowing
data recovery in the face of up to two stmultaneous disk fatlures. Mote that this still invelves only
20% increase in storage needs, as opposed to 100% for simple mirroring which could only
tolerate a single disk failure.

There are also two EATD levels which combine EATD levels 0 and 1 { stnping and mirroring ) in
different combinations, designed to provide both performance and reliability at the expense of

increased cost

RATID level 0 + 1 disks are first striped, and then the stnped disks mirrored to another set. This
lewel generally prowvides better performance than EATD level 5.



RAID level 1 + Omirrors disks in pairs, and then stripes the mirrored pairs. The storage
capacity, petformance, etc. are all the same, but there 15 an advantage to this approach in the
event of multiple disk failures, as illustrated below: .

In diagram (a) below, the & disks have been divided into two sets of four, each of which 1s
striped, and then one stripe set 15 used to mirror the other set.

If a single disk fals, it wipes out the entire stripe set, but the system can keep on funchoning

using the remaining set.

However if a second disk from the other stipe set now fails, then the entire system is lost, as a
result of two disk failures.

In diagram (b), the same B dizsks are divided into four sets of two, each of which is mirrored, and
then the file system 1z striped across the four sets of mirrored disks.

If a single disk fails, then that mirror set is reduced to a single disk, but the system rolls on, and
the other three mirror sets continue mirroning.

Howrif a second disk fails, (that 1s not the mirror of the already failed disk ), then another one of
the mirror sets 13 reduced to a single disk, but the system can continue without data loss.

In fact the second arrangement could handle as many as four simultaneously failed disks, as long
as no two of them were from the same mirror pair.

4 Selecting a BATD Level

Trade-offs in selecting the optmal EATD level for a particular application include cost, volume
of data, need for reliability, need for performance, and rebuil d time, the latter of which can affect

the likelthood that a second disk wall fail while the first failed disk 1s being rebuilt.

Other decisions include how many disks are invelved in a EATD set and how many disks to
protect with a single panty kit More disks in the set increases performance but increases cost.
Protecting more disks per parity bit saves cost, but increases the likelihood that a second disk
will fail before the first bad disk 12 repaired.

5 Extensions

EATD concepts have been extended to tape drives { e.g. striping tapes for faster backups or parity
checking tapes for reliability ), and for broadeasting of data.

EATD protects against physical errors, but not against any number of bugs or other errors that
could write etroneous data

ZF5 adds an extralevel of protection by including data block checksums in all inodes along with
the pointers to the data blocks. It data are mirrored and one copy has the correct checksum and



the other does not, then the data with the bad checksum will be replaced with a copy of the data
with the good checksum. This increases reliabality greatly over EATD alone, at a cost of a
petform ance hit that 1s acceptable becausze ZF3 15 o fast to begin with.

Another problem with traditional filesystems 15 that the sizes are fized, and relatively difficult to
change. "Where EATD sets are involwed it becomes even harder to adjust filesystem sizes,
kecause afilesystem cannot span across multiple filesystems.

ZFE szolves these problems by pooling EATD sets, and by dynamically allocating space to
filesystems as needed. Filesystem sizes can be limited by quotas, and space can also be reserved
to guarantee that a filesystem will be able to grow later, but these parameters can be changed at
any time by the filesvstem's owner Ctherwize filesvstems grow and shrink dynamically as

needed.

Stahle-Storage Implem entation

The concept of stable storage ( first presented in chapter 6 ) involves a storage medium in which
data 15 meverlost, even in the face of equipment fatlure in the middle of a write operation.

Toimplement this requires two ( of mote ) copies of the data, with separate falure modes.
An attempted disk write results in one of three possible outcomes:

The data 15 successfully and completel ¥ wntten.

The data 1z partially written, but not completely. The last block written may be garbled.
Mo writing takes place at all.

Whenever an equipment fatlure occurs during a write, the system must detect it and return the
system back to a consistent state. To do this requires two physical blocks for every logical block,

and the foll cwing procedure:

Write the data to the first physical block.

After step 1 had completed, then write the data to the second physical block

Declare the operation complete only after both physical writes have completed successfully.
Durning recovery the par of blocks 15 examined.

I both blocks are identical and there 15 no sign of damage, then no further action 15 necesszary.

If one block contains a detectable error but the other does not, then the damaged block is
replaced with the good copy. (This will either undo the operation or complete the operation,
depending on which block 15 damaged and which 1z undamaged. )



If neither block shows damage but the data in the blocks differ, then replace the data in the first
block with the datain the second block. (Undo the operation. )

Because the sequence of operations described abowe 13 slow, stable storage usually includes
HVEAM as a cache, and declares a wnte operaton complete once it has been wntten to the

MVE AN
Tertiary-Storage Structure

Primary storage refers to computer mem ory chips, Secondary storage refers to fized-disk storage
systems [ hard drives ), And Terfiary Storage refers to remaovable media, such as tape drives,
ZDe, DV Ds, and to alesser extend floppies, thumb drives, and other detachable devices.

Tettiary storage is typically characterized by large capacity, low cost per ME, and slow access
times, although there are exceptions in any of these categories.

Tertiary storage 15 typically used for backups and for long-tertn archival storage of completed
wotk, Another common use for tertiary storage 15 to swap large little-used files  or groups of
files ) off of the hard dnve, and then swap them back in as needed 1n a fashion similar to
secondary storage providing swap space for primary storage.

Tertiary-Storage Devices

1 Removahle Disks

Eemovable magnetic disks (e.g. floppies) can be nearly as fast as hard drives, but are at greater
risk for damage due to scratches. Vanations of removable magnetic disks up to a GB or more 1n
capacity have been developed. (Hot-swappable hard drives?)

A mggneta-aptical disk uses a magnetic disk covered in a clear plastic coating that protects the
surface.

The heads sit a considerable distance away from the magnetic surface, and as a result do not have
encugh magnetic strength to switch bits af narmal room temperatiire.

For writing, a laser 15 used to heat up a specific spot on the disk, to a temperature at which the
weak magnetic field of the write head iz able to flip the bits.

For reading, a laser 15 shined at the disk, and the Kerr effect causes the polarization of the light
to becotne rotated either clockwise or counter-clockwise depending on the orientation of the
magnetic field.

Optical disks do not use magnetism at all, but instead use special materials that can ke altered
(by lasers ) to have relatively light or dark spots.



For example the phase-change disk has amaterial that can be frozen into either a crystalline or
an amorphous state, the latter of which 15 less transparent and reflects less light when a laser 1=
bounced off a reflective surface under the material.

Three powers of lasers are used with phase-change disks: (1) a low power laser 15 used to read
the disk, without effecting the matenials. (2) & medium power erases the disk, by melting and re-
freezing the medium into a crystalline state, and (3) a high power writes to the disk by melting
the medium and re-freezing itinto the amotphous state.

The most common examples of these disks are re-writahle CD-EWs and DVD -EWs.

A alternative to the disks described above are Write-Once Read-Many, WORM drives.

The original version of WOENM drives involved a thin layer of aluminum sandwiched between
two protective layers of glass or plastic.

Holes were burned in the aluminum to write bits.

Because the holes could not be filled back in, there was no way to re-write to the disk
Altheugh data could be erased by burning mote holes. )

WOEM drives have important legal ramificabons for data that must be stored for a very long
time and must be provable in court as unaltered since it was onginally written. ( Such as long-
termn storage of medical records. )

Modern CD-E and DVD-E disks are examples of WOEM drives that use organic polymer inks
instead of an aluminum layer.

Eead-only disks are similar to WORM disks, except the bits are pressed onto the disk at the
tactory, rather than being burned on one by one.

2 Tapes

Tape drives typically cost more than disk drives, but the cost per ME of the tapes themselves is
lowrer.

Tapes are typically used today for backups, and for enormous volumes of data stored by certain
scientific establishments. ( E g MMASA's archive of space probe and satellite imagery, which 1=
currently being downloaded from numerous sources faster than anvone can actually look at 1t )

Eobotic tape changers move tapes from dnves to archival tape libraries upon demand.
2 Future Technology

Selid State Disks, S5Ds, are becoming more and more popul ar.



Heolagraphic storage uses laser light to store images in a 3-D structure, and the entire data
structure can be transterred 1n a single flash of laser light.

Micra-Electranic Mechanical Systzms, MEMS, employs the technology used for computer
chip fabrication to create WEETY tiny little machines. One example packs 10,000 read-write
heads within a square centimeter of space, and as media are passed over it, all 10,000 heads can
read data in parallel.

LI'O Hardware and Application of 1’0 Interface

COne of the impottant jobs of an Operating Swstem 18 to manage various 'O devices including
mouse, keyboards, touch pad, disk drives, display adapters, USE devices, Bit-mapped screen,
LED, Analog-to-digital converter, Onfoff switch, networlk connections, audio IfO, printers etc.

An IO system 12 required to take an application I'D request and send it to the physical device,
then take whatever response comes back from the device and send it to the application. IO
devices can be divided into two categories —

Block devices— A block device 15 one wath which the drniver communicates by sending entire
blocks of data. For example, Hard disks, USE cameras, Disk-On-Eey etc.

Char acter devices — & character device 15 one with which the dnver communicates by sending
and receiving single characters (bytes, octets). For example, serial ports, parallel ports, sounds
cards etc

Device Controllers

Device dnvers are software modules that can be plugged into an OF to handle a particular
dewvice. Operating Swstem takes help from dewvice drivers to handle all T'O dewices.

The Device Controller works like an interface between a device and a dewvice drver. IXO units
(Kevboard, mouse, printer, etc) typically consist of a mechanical component and an electronic

component where electronic component1s called the device controller.

There 1z always a device controller and a dewvice driver for each dewice to communicate with the
Operating Systems. & device controller may be able to handle multiple devices. As an interface
its main task 13 to convert sertal bit stream to block of bwtes, perfortn etror cofrection as

NECEzEary.

Any device connected to the computer 12 connected by a plug and socket, and the socket is
connected to a device controller. Following 1z a model for connecting the CPU, memory,
controllers, and 'O devices where CPU and dewvice controllers all use a common bus for
Cofnmunicat on.



Memory Maonitor Keyboard USB Drive Disk Drive
| | ‘ |

Memory Video Keyboard usB Disk

Controller Controller Controller Controller Controller

CPLU

Synchronous vs asynchronous I/

synchronous I') — In this scheme CPT execution waits while 'O proceeds
Asynchronous I'O — YO proceeds concurrently with CPT execution
Communication to I'O Devices

The CPT must have a way to pass information to and from an 'O device. There are three
approaches available to communi cate with the CPTT and Device.

mpecial Instruction IO
Memory-mapped I'O

Direct memory access (DA
special Instruction L0

Thiz uses CPU instructions that are specifically made for controlling IiD devices. These
instructions typically all ow data to be sent to an VO device of read from an IO device.

MMem ory-mapped IO

When using memory-mapped IO, the same address space 13 shared by mem oty and IO devices.
The device 1z connected directly to certain main memory locations so that IO device can transfer

block of data toffrom mem ory without going through CPTT

A Commands
CPL : 10 Deswices

Data Data

Pl rmiary



While using metm oty mapped IO, OF allocates buffer in memory and informs I/O dewice to use
that buffer to send data to the CPU. /O device operates asynchronously with CPTT, interrupts
CPT when finished.

The advantage to this method is that every instruction which can access memory can be used to
manipulate an 'O dewvice. Memory mapped IO 18 used for most high-speed 'O devices like
disls, communication interfaces.

Direct Memory Access (DVIA)

slow dewvices like keyboards will generate an interrupt to the man CPT after each byte 13
transferred. If a fast dewice such as a disk generated an intermupt for each byte, the operating
system would spend most of its time handling these interrupts. 3o atypical computer uses direct
memoty access (DAY hardware to reduce this ovethead

Direct Memory Access (DIA) means CPT grants I'O module authonty to read from or wnte to
memoty without invelvement DA module itself controls exchange of data between main
memotry and the 'O device. CPT 12 only inveolved at the beginning and end of the transfer and
interrupted only after entire block has been transferred.

Direct Mem ory Access needs a special hardware called DMA controller (DMAC) that manages
the data transfers and arbitrates access to the system bus. The controllers are programmed with
source and destination pointers (where to read/write the data), counters to track the number of

transferred bytes, and settings, which includes VO and mem ory types, interrupts and states for
the CPTT cycles.

Main
i Memory
Data Bus
DA
Dewvice Device Device
Controller Controller Controller
USE Drive Drisk Printer

The operating systetn uses the DIA hardware as follows —



Step  Description

1 Deswrice driver 15 instructed to transter disk data to a bufter address 20

2 Dewvice dnver then instruct disk controller to transfer data to buifer.

3 Disk controller starts DA transfer.

4 Disk controller sends each byte to DIWA controller.

5 DML controller transfers bytes to buffer, increases the memory address,

decreases the counter O until Z becotmes Zero.

& When C becomes zero, DA interrupts CPT to signal transfer completion.

Polling vs Interrupts I/O

A computer must have a way of detecting the armival of any type of input There are two ways
that this can happen, known as polling and interrupts. Eoth of these techniques allow the
processor to deal with events that can happen at any time and that are not related to the process it
1z currently running.

Polling I/ O

Polling 15 the simplest way for an 'O dewice to communi cate with the processor. The process of
periodically checking status of the device to see 1f 1t 18 titne for the next I'O operation, 12 called
polling. The IFO device sumply puts the information in a Status register, and the processor must
cotne and get the information.

Wlost of the time, devices will not require attention and when one does it will have to wait until it
1z next interrogated by the polling program. This 15 an inefficient method and much of the
processors time 13 wasted on unnecessary polls.

Compare this method to a teacher continually asking every student in a class, one after another, if
they need help. Obwiously the more efficient method would be for a student to inform the teacher
whenever they require assistance.



Interrupts ')

An alternative scheme for dealing with IFO 1s the interrupt-driven method An intermipt iz a

signal to the microprocessor from a device that requires attention.

& device controller puts an interrupt signal on the bus when it needs CPTI s attention when CFPIT
receives an interrupt, It saves its current state and invokes the appropnate intermipt handler using
the interrupt vector (addresses of OF routines to handle various events). When the interrupting
dewvice has been dealt with, the CPU continues with its original task as if it had never been
interrupted.

Eernel I' O Subsystem

Prerequisite — Microkernel

The kernel provides many services related to IO Several services such as scheduling, caching,
spooling, device reservation, and error handling — are provided by the kernel, s IFO subsystem
tuilt on the hardware and device-drver infrastructure. The IO subsystem 13 also responsible for
protecting itself from the errant processes and malicious users.

'O Scheduling -

To schedule a set of I'O request means to determine a good order in which to execute them. The
order in which application 1ssues the system call are the best choice. Scheduling can improve the
owverall performance of the system , can share device access permission Fairly to all the processes,
reduce the average waiting time, response time, turnaround time for 'O to compl ete.

23 dewelopers implement scheduling by maintaining a wait queue of the request for each dewice.
When an application 1ssue a blecking IYO system call, The request 15 placed in the queue for that
device. The IO scheduler reatrange the order to improve the efficiency of the system.

Buffering -
A bufferis a memotry area that stores data being transferred between two devices of between a
dewvice and an application. Buffering 15 done for three reasons.

Firstis to cope with a speed mismatch between producer and consumer of a data stream.
The second use of buffering 15 to provide adaptation for that have different data-transfer size.

Third use of buffering 1z to support copy semantics for the application VO, “copy semantic ™
means, suppose that an application wants to write data on disk that 15 stored 10 its buffer. 1t calls
the write() systetn s=call, providing a pointer to the buffer and the integer specify the number of
bytes to write.

After the systemn call returns, what happens if the application of the buffer changes the content of
the buffer? With copy semantic, the version of the data wntten to the disk 13 guaranteed to be the
wersion at the time of the application system call.



{Caching -
& racke 1z aregion of fast memory that holds copy of data. Access to the cached copy 13 much
easier than the original file. For instance, the instruction of the currently running process is
stored on the disk, cached in physical memory, and copies again 1n the CPTT s secondary and

primary cache.

The main difference between a buffer and a cache 15 that a buffer may hold only the existing
copy of data item, while cache, by definition, holds a copy on faster storage of an item that
resides elsewhere.

spooling and Device Reservation —

& spooiis atuffer that holds the output of a dewvice, such as a printer that cannot accept
interleaved data stream. Although a printer can serve only one job at a time, several applications
tmay wish to print their output concurrently, without having their output fmixes together

The OF solves this problem by preventing all output continuing to the prnter. The output of all

® 0O 0 ™ 11.tex Info application 1z spooled in a separate disk file When an
TEX 1ltex 111 kg application finishes printing then the spooling system
Modified: Today 2:00 FM guenes the corresponding spool file for output to the
* Spotlight Comments: printer.
¥ General:
Kind: TeX Document Error Handling —
Size: 111,389 bytes (115 KB on disk) )
Where: [Users/greg/Dropbos/osce/tex An Osthat uses protected mem ory can guard against
Created: Today 1:46 PM . . .
Modified: Today 2:00 PM many kinds of hardware and application errors, so that a
Label . .
i L complete system falure is not the usual result of each
Stationery pad minor mechanical glitch, Devwices, and IO transfers can
Locked

Fail 1n many ways, either for transient reasons, as when a

v

e Jethe network becomes overloaded or for permanent reasons, as
Last opened: Today 1:47 PM ) )
when a disk controller becomes defective.

¥ Mame & Extension

11.tex I/O Protection —
Hide extension Errors and the 1ssue of protection are closely related. &
¥ Open with user process may attemnpt to 1ssue tllegal FOinstruction to
7 texmaker - distupt the normal function of a system. we can use the

Use this application to open all documents

like this one. varios mechanisms to ensure that such disruption cannot

take place in the system.

F Preview:

To prevent illegal IO access, we define all I'O instruction

¥ Sharing & Permissions:

You can read and write to be privileged instructions. The user cannot i1ssue LD
Name Privilege instruction directly.
L areg (Me) * Read & Write
2L staff * Read only
m CVEryone * Mo Access



File Concept:
File Attributes:

o« Different OZes keep track of different file attributes, including:

o MNMame - Zome systemns give special significance to names, and particularly
extensions (exe, txt, etc), and some do not. Some extensions may be of
significance to the OF { exe ), and others only to certain applications |
Jpg)

o Identifier ( e g inode number )

o Type - Text, executable, other binary, ete.

Location - on the hard drive.

u]

o Size

o Protection

o  Time & Date
o User ID

File Operations:

» Thefile ADT supports many commmon operations:

o Creating afile

o Writing afile

o Eeading afile

o Eeposttioning within a file

o Deleting a file

o Truncating afile.

o« Dlost Operating Systems require that files be opened before access and closed
after all access is complete. Normally the programmer must open and close files
explicitly, but some rare systems open the file automatically at first access.
Information about currently open files 15 stored in an epen file table, containing
for example:

o File pointer - records the current position in the file, for the next read or
wiite access.

o File-open count - How many times has the current file been opened
{simultaneously by different processzes) and not yet clesed? When this
counter reaches zero the file can be removed from the table.

o Disk location of the file.

o Accessrights

s Some systems provide support for file locking.

o & shared lack 1z Por reading only.

o A exclusive loek 15 for writing as well as reading.



o An advisery lock 1z informational only, and not enforced. { A "Eeep Out"

sign, which may be ignored. )

o & mandatory lock 15 enforced (A truly locked door. )
o UNE used adwisery locks, and Windows uses mandatory locks,

File Types:
file typa usual extension furnction
executable exe, cam, bin ready-to-run machine-
ar nane language program
abiject obj, o compiled, machine
language, not linked
source code C, o, java, perl, source code in various
asm languages
batch bat, sh commands to the command
imterpreter
markup w=ml, html, tex textual data, documents
word processor | xmil, rif, various word-processar
docx formats
library liby, &, 5o, dil libraries of routines for
Programmers
print or view aif, pdf, jpg ASCH or binary file in a
farmat for printing ar
viewiiny
archive rar, zip, tar | related fles grouped into
one file, sometimes com-
pressed, for archiving
ar starags
multimedia mpeg, mov, mp3. | binary file containing

mpd, avi

audio or AN information

File Structure:

Windows ( and some other systems )
use spectal file extension:z to
indicate the type of each file
Macintosh stores a creator attribute
for each file, according to the
program that first created it with the
create( ) system call.
TTHEX stores magic numbers at the
certain files.
with  the "file"
command, espectally 1n directonies

such as fbin and fdev )

keginning  of
Experiment

Some files contain an internal structure, which may or may not be known to the

05,

For the OF to support particular file formats increases the size and complexity of

the C5.

TTHMLX treats all files as sequences of bytes, with ne further consideration of the
internal structure. (With the exception of executable binary programs, which it

must know how to load and find the first executable statement, etc. )
Wlacintosh files have two forks - a reseurce fork, and a date fork. The resource

fork contains information relating to the UL such as icons and butten images, and

can be modified independently of the data fork, which contains the code or data as

appropriate.



Internal File Structure

Disk files are accessed in units of physical blocks, typically 512 bytes or some

power-of two multiple thereof. { Larger physical disks use larger block sizes, to

keep the range of block numbers within the range of a 32-bit integer. )

Internally files are organized in units of logical units, which may be as small as a

single byte, or may ke alarger size corresponding to some data record of structure

S1ZE.

The number of logical units which fit inte one physical block determines its

pecking, and has an impact on the amount of internal fragmentation ( wasted

space ) that occurs.

Az a general rule, half a physical block 15 wasted for each file, and the larger the

block sizes the motre space 15 lost to internal fragm entation.

Access Methods

1 Sequential Access:

beginning

—

A gsequential access file emulates magnetic tape operation, and generally suppotts

afew operations

]
u]

u]

remain

read next - read arecord and advance the tape to the next position.

wiite next - write a record and advance the tape to the next position.
rewind

skip n records - May or may not be supported I may be limited to
positive numbers, of may be limited to +/- 1.

current position
end

= rérad or write: s

Fig - Sequential-access file.

2 Direct Access:

Tump to any record and read that record. Operations supported include:

u]

u]

]

read n -read record number n. { Note an argument is now recquired.

whte n - wnte record number n. { Note an argument 13 now required. )
ump to record fn - could be O or the end of file.

Cuery current record - used to return back to this record later,

mequential access can be easily emulated using direct access. The inverse
1z complicated and inefficient.



sequential access implementation for direct access
reset cp=10;
read_next read cp;
sp=p+ 1
write_next write cp;
cp=rcp +71;

Fig - Simulation of sequential access on a direct-access file.

3 Other Access Methods:

o Anindexed access scheme can be easily built on top of a direct access system.

Wery large files may require a multi-tiered indexing scheme, 1e indexes of
indexes.

logical record
last name  number

Adams
Arthur _
Asher | smith, john |social-security| age
-
Smith
index file relative file

Fig - Example of index and relative files.

Directory Structure

1 Storage Structure

o A disk can be used in 1ts entirety for a file system.

o« Alternatively a physical disk can be broken up inte multiple partitions, slices, ar
mini-disks, each of which becomes a vitual disk and can have itz own file
system. (or be used for raw storage, swap space, etc.)

» Or, multiple physical disks can be combined inte one velume, 1 e alarger virtual
disk, with 1ts own file system spanning the physical disks.
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fdevices devis directory b : directary b

fdew dew e

Favstem Soontract ctfs

{prog proc artition A < i
Sete mnitab mntfs P files + disk 2
fete feve fvolatile bk

[ system S object objfs :

il libe 50,1 lofs 7 T - disk 1

fdev /id i directary partition C < %

{var ufs files

fmp 'rmpfs .

{vardrun tmips partition B 4 fileg

fopt ufs i
fzpbge #fs Ak
/zpbge backup i T

{export/ home zfs

{var / miail zfe

fvar/spool/mgueus zfs T —

{zpby zFs

fzpbg s zomes zt=

Figure 11.8 Soalaris file systermna.
2 Directory Overview

« Directory operations to be supported include:
o search forafile
o Create afile - add to the directory
o Delete afile - erase from the directory
o List a directory - possibly ordered in diff erent ways.
o Eename a file - may change sorting order
o Traverse the file system.

3. Single-Level Dir ectory

«  cimple to implement, but each file must have aunique name.
directory ca’.rl bal a I fﬂsi] n‘arsl ma.l‘-'] t:crnfl hﬂxlmmli

.383066000660

Fig - Singlelevel directory.

4 Two-Level Directory

» Each user gets their own directory space.

o Filenames only need to be unique within a given user's directory.

» A master file directory 13 used to keep track of each user’s directory, and must be
maintained when users are added to or removed from the system.

o A separate directory is generally needed for system (executable ) files.



s Systems may of may not allow users to access other directories besides their own

o I access to other directories 15 allowed, then provision must be made to
specify the directory being accessed.

o If access 13 denied, then special consideration must be made for users to
run programs located 1n system directories. & search pefh 15 the list of
directories in which to search for executable programs, and can be szet
uniquely for each user.

master file |
"7
directory | USer :I' Lz L.-se.-:i' uger 4

L e

uzser file = =i I | 2 =
directory | oaf | b = ! test || a | data|| a | tast ! x | data | | a J
I'\-\._.:I ¥ _) (- o k___] f_] o w W @

Fig - Two-level directory structure.

3 Tree-Structured Directories

« An obvious extension to the two-tiered directory structure, and the one with
which we are all most familiar.

« FEach user [/ process has the concept of a current directory from which all
{ relative ) searches take place.

» Files may be accessed using either absolute pathnames (relative to the root of the
tree ) or relative pathnames ( relative to the current directory.)

o Directories are stored the same as any other file in the system, except there 15 a bit
that 1dentifies them as directories, and they have some special structure that the
OS5 understands.

o  One gquestion for consideration 15 whether or not to allew the removal of
directories that are not empty - Windows requires that directonies be emphied first,
atnd THIX provides an option for deleting entire sub-trees.
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& Acyclic-Graph Dir ectories
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When the same files need to be accessed in more than one place in the directory
structure {e.g. because they are being shared by more than one user / process), it
can be useful to provide an acyclic-graph structure. (MNote the direcfed arcs from
parent to chald)

T provides two types of links for implementing the acyclic-graph structure.

o & Aard link (usually just called a link) invelves multiple directory entries
that both refer to the same file. Hard links are only valid for ordinary files
i the same file system.

o & spmbolic fink that involves a special file, containing information about
where to find the linked file. Symbeolic links may be used to link
directories andfor files in other file systems, as well as ordinary files in the
current file system.

Windows only supports symbolic links, termed shortouis.

Hard links redquire a reference count, or link count tor each file, keeping track of
how many directory entries are currently referring to this file. Whenever one of
the references 1z removed the link count 15 reduced, and when i1t reaches zero, the
dizk space can be reclaimed.

For symbolic links there 15 some question as to what to do with the symbolic links
when the original file 15 moved or deleted:

o One optionis to find all the symbolic links and adjust them also.

o Ancther 15 to leave the symbolic links dangling, and discover that they are
no longer valid the next ime they are used

o What if the original file 1z removed, and replaced with another file hawving
the same name before the symbolic link 15 next used?
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7 General Graph Dir ectory

s If cycles are allowed in the graphs, then several problems can anse:

o search algonthms can go into infinite loops. One solution 15 to not follow
links in search algorithms (Or not to follow symbolic links, and to only
allow symbolic links to refer to directonies)

o Sub-trees can become disconnected from the rest of the tree and still not
have their reference counts reduced to zero. Periodic garbage collection is
required to detect and resolve this problem. (chkdsk in DOS and fack in
ML search for these problems, among others, even though cycles are
not supposed to be allowed in either svstem. Disconnected disk blocks that
are not marked as free are added back to the file systems with made-up file
names, and can usually be safely deleted.)
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Fig - General graph directory.

File- System Mounting

o The basic idea behind mounting file systems 12 to combine multiple file system s into one
large tree structure.

s« The mount command is given a filesystem to mount and a moeunt point (directory ) on
which to attach it.

« Once afile system 15 mounted onto amount point, any further references to that directory
actually refer to the root of the mounted file system.

o Any files {or sub-directories ) that had been stored in the mount point directory prior to
mounting the new file system are now hidden by the mounted file system, and are no
longer awalable. For this reason some systems only alow mounting onto empty
directories.

« File systems can only be mounted by root, unless root has previously configured certain
file systems to be mountable onto certain pre-determined mount peints. (E.g. root may



allow users to mount floppy file systems to fmnt or something like 1t Anyone can run
the mount command to see what file systems are currently mounted.
o File systems may be mounted read-only, or have other restrictions imposed.

1] =1}

Fig- File system. (a) Existing system. (b) Unmounted volume.

users

doc

prog

Fig - Mount point.

s The traditional Windows OF runs an extended two-tier directory structure, where the first
tier of the structure separates volumes by drive letters, and a tree structure 15 implemented
bel ow that level.

+ Macintosh runs a similar system, where each new volume that 15 found 15 automatically
mounted and added to the desktop when it 15 found.

o  DMMore recent Windows systems allow file systems to be mounted to any directory in the

file swstem , much like TTNIZ



File Sharing

1 Multiple Users

»  On amulti-user system, more information needs to be stored for each file:

]

u]

u]

The owner {user) who owns the file, and who can control its access,

The group of other user ID s that may have some special access to the file.
What access rights are afforded to the owner (User), the Group, and to the
rest of the world (the universe, alea Others)

Some systems have more complicated access control, allowing or denying

specific accesses to specifically named users or groups.

2 Eemote File Systems

s« The advent of the Internet introduces 1ssues for accessing files stored on remote

cotnputers

u]

The original method was ftp, allowing individual files to be transported
across systems as needed Ftp can be ether account or password
controlled, of anenymeons, not re UIANg any User name of password.
Wanious forms of disgdhuted file systems allow remote file systems to be
mounted onto a local directory structure, and accessed using normal file
access commands. (The actual files are still transported across the netw otk
as needed, possibly using fip as the underlying transpott mechanism.)

The WW has made it easy once again to access files on remote systems
without mounting their file systemn s, generally using (anonymous ) ftp as
the undetlving file transport mechanism .

2.1 The Client- Server Model

When one computer system remotely mounts a file system that 1s
physically located on another system, the systemn which physically owns
the files acts as a server, and the system which mounts them iz the elierns
Tser D and group IDs must be consistent across both systems for the
systemn to wotk propetly. (Le. this 15 most applicable across multiple
computers managed by the same organization, shared by a common group
of users.)

The same computer can be both a client and a server. (E.g. crosslinked
file swstems)

There are anumber of security concerns involved in this model:



o Servers commonly restrict mount permission to certain trusted
systems only. Spoofing { a computer pretending to be a different
computer ) 15 a potential secunty nsk

o SErVers may restrict remote access to read-only.

o servers restrict which file systems may be remotely mounted.
Generally the information within those subsystems 1 limited,
relatively public, and protected by frequent backups.

The MES (Metwork File System) 15 a classic example of such a system.

2.2 Distributed Information Systems

2.3 Failure Modes

The Domeain Neame Spstem, DNS, provides for a unique naming system
across all of the Internet.

Domain names are maintained by the Netwark Information System, NIS,
which unfortunately has several security 1ssues. NIS+ 15 a more secure
wersion, but has not vet gained the same widespread acceptance as NIS.
Whicrosoft's Commaon Futernet File System, CIFS, establishes a network
lagin for each user on a networked systemn with shared file access. Clder
Windows systems used demains, and newer systems (P, 2000 3, usze
active directories. User names must match across the network for this
system to be valid

A newer approach 1z the Lighweight Directary-Access Pratocol, LDAP,
which provides a secure single sign-on for all users to access all resources
oft a network. This 12 a secure system which 1z gaining in populanty, and
which has the mantenance advantage of combining authorization
information in one central location.

When a local disk file 15 unavalable, the result 15 generally known
immediately, and i1z generally non-recoverable. The only reasonable
response 15 for the response to fal.

However when a remote file 15 unavailable, there are tnany possible
reasons, and whether or not it 15 unrecoverable is not readily apparent.
Hence most remote access systems allow for blecling or delayed
response, in the hopes that the remote system (or the networl) will come
back up eventually.



Protection

Files must be kept safe for reliability { against accidental damage ), and protection

{ against deliberate malicious access ) The former 1z usually managed with backup

copies. This section discusses the latter.

Cne simple protection scheme 15 to remove all access to a file. However this makes the

file unusable, so some sort of controlled access must be arranged.

1 Types of Access

The following low-level operations are often controlled:

u]

u]

]

u]

a

u]

Fead - View the contents of the file

Write - Change the contents of the file.

Ezecute - Load the file ento the CPTT and foll ow the instructions contained
therein.

Lppend - Add to the end of an existing file.

Delete - Eemove a file from the systetn.

List -View the name and other attributes of files on the system.

Higher-level operations, such as copy, can generally be performed through

combinations of the abowe.

2 Access Control

One approach 15 to have complicated Aecess Control Lists, ACL, which specify
exactly what access 15 allowed or dented for specific users or groups.

]

u]

The AFS uses this system for distributed access.

Control 18 wery finely adjustable, but may be complicated, particularly
when the specific users involved are unknown. ( AFS allows some wild
cards, so for example all users on a certain remote system may be trusted,
of a given username may be trusted when accessing from any remote
system. )

UMK uses a set of 9 access control bits, in three groups of three These

cotrespond to B, W, and X permissions for each of the Cwner, Group, and Others.
{See "man chmod" for full detals ) The EWZX bits control the following

privileges for ordinary files and directories:

hit |[Files Directories
Eead ' : : L :

R =& (view) Eead directory contents. Eequired to get alisting of the directory.
file contents.

W |Write { change )|Change directory contents. Eequired to create or delete files.




file contents.

Exzecute
X |contents as

Prograt.

file|or to access any specific file in the directory. Mote that if a user has X

Access detatled directory information. Eequired to get a long listing,

albut not E penmissions on a directory, they can still access specific
files, but only 1f they already know the name of the file they are trying
to access.

o« In addition there are some special bats that can also be applied:

u]

The set user 1D { STID ) it andior the set group ID ( SGID ) bits applied
to executakle files temporanly change the identity of whoever runs the
program to match that of the owner / group of the executable program.
Thiz all ows uzers running specific programs to have access to files ( while
running that pregrem ) to which they would nonmally be unable to
access. metting of these two bits 12 usually restricted to root, and must be
done with caution, as it introduces a potential security leak.

The sticky bit on a directory modifies write permission, allowing users to
only delete files for which they are the owner. Thiz allows everyone to
create files in ftmp, for example, but to only delete files which they have
created, and not anyone else's.

The SUID, 2GID, and sticky bits are indicated with an 3, 5, and T in the
positions for execute permission for the user, group, and others,
respectively. If the letter 15 lower case, (s, 5, t), then the corresponding
execute permission 18 not also given. If it 18 upper case, ( 3, 3, T, then the
cortesponding execute permission IS given.

File-System Implementation

File-System Structure

+» Hard disks have two important properties that make them swtable for secondary storage

of files in file systems: (1) Blocks of data can be rewntten in place, and (&) they are direct

access, allowing any block of data to be accessed with only ( relatively ) minor

movements of the disk heads and rotational latency.

o Disks are vsually accessed in physical blocks, rather than a byte at a ime. Block sizes

may range from 512 bytes to 4K or larger.

» File systems organize storage on disk drives, and can be viewed as alayered design:

o At the lowest layer are the physical devices, consisting of the magnetic media,

motors & controls, and the electronics connected to them and controlling them.

Modern disk put more and more of the electronic controls directly on the disk

drive itzelf, leawing relatively little work for the disk controller card to perform.



o 5O Cantrel consists of device drivers, special software programs { often written

in assembly ) which communicate with the devices by reading and writing special

codes directly to and from memory addresses corresponding to the controller

card's registers. Each controller card { device ) on a svstem has a different set of

addresses ( registers, aloa perfs) that it listens to, and a unique set of command

codes and results codes that it understands.

o The hasic file system level works directly with the dewice dnvers in terms of

application programs

{

logical file systemn

'

file-organization module

{

basic file system

{

I/O control

{

devices

retrieving and storing raw blocks of data, without
any consideration for what 1z in each block
Depending on the system, blocks may be referred to
with a single block number, { e.g. block # 234234 3,
of with head-zector-cylinder combinations.

The file arganization module knows about files and
their logical blocks, and how they map to physical
blocks on the disk In addition to translating from
logical to physical blocks, the file organization
module also maintains the list of free blocks, and
allocates free blocks to files as needed.

The lagical file system deals with all of the meta
data associated with a file { UID, GID, mode, dates,
etc ), 1.6, everything about the file except the data
itself. This level manages the directory structure and
the mapping of file names to file confrol blocks,
FCEs, which contain all of the meta data as well as
block number information for finding the data on
the disk

s Thelavered approach to file systems means that much of the code can be uzsed uniformly

for a wide variety of different file systems, and only certain layers need to be file system

specific. Common file systems in use include the TN file system, TUFS, the Berkeley
Fast File System, FFS, Windows systems FAT, FAT32, NTFS, CD-EOM systems 1[50
9660, and for Linuz the extended file systems ext? and ext? (atnong 40 others suppotted.

)

File-System Implementation

1 Overview

» File systems store several important data structures on the disk:
o A Baat-cantral Black, ([ per volume ) a ko a the boot block in TN or the
portition boot secior in Windows contains information about how to boot
the system off of thiz disk This will generally be the first sector of the



wolume 1f there 15 a bootable system loaded on that volume, or the block
will be left vacant otherwise.

& volume contrel block, ( per volume ) ak a the mugster file fuble in
ML or the superdlock 1n Windows, which contains information such as
the partition table, number of blocks on each filesystem, and pointers to
free blocks and free FCE blocks.

& directory structure { per file system ), containing file names and pointers
to corresponding FCBs TN uses inode numbers, and INTFS uses a
mster file fuble.

The File Confrel Block, FCE, ( per file ) contaning detals about
ownership, size, permissions, dates, etc. TN stores this information in
inodes, and MTFES in the master file table az a relational databasze structure.

file permissions

file dates (create, access, write)

file owner, group, ACL

file size

file data blocks or pointers to file data blocks

Fig - A typical file-control block,

o Thete are also several key data structures stored in memory:

u]

u]

]

a

An in-memory mount table.

Ann-memory directory cache of recently accessed directory infonm ati on.
A spstem-wide apen file fable, containing a copy of the FCE for every
currently open file in the systemn, as well as some other related
information.

A per-process open filz table, containing a pointer to the system open file
table as well as some other information. { For example the current file
position pointer may be either here or in the system file table, depending
ofl the implementation and whether the file 12 being shared or not. )

» Figure illustrates some of the interactions of file system components when files

are created andfor uzed:

u]

When a new file 15 created, a new FCEBE 1z allocated and filled out with
impottant informati on regarding the new file. The appropnate directory 13
modified with the new file name and FCE information.



When a file 15 accessed during a program, the open{ ) system call reads in
the FCE information from disk, and stores 1t in the system-wade open file
table. An entry iz added to the per-process open file table referencing the
system-wide takle, and an index into the per-process table 13 returned by
the open( ) system call. TTIHNEX refers to this index as a file descriptor, and
Windows refers to it as a file handle.

If another process already has afile open when a new request comes in for
the same file, and it iz sharable, then a counter in the system-wide table iz
incremented and the per-process table 15 adjusted to point to the existing
entry in the system-wide table.

When a file 15 closed, the per-process table entry 13 freed, and the counter
in the system -wide table 12 decremented. If that counter reaches zero, then
the system wide table 15 also freed. Any data currently stored in memory
cache for thiz file 13 wntten out to disk 1f necessary.

apen {file nama) -

— =
— [
——1:J [ I ]
directory structure

]

file-control block

directory structure

user space kemel memary semndéry siurage
(a)
i“,de’.‘. = = D T
| ‘ / data blocks
read (index) —— ' ‘h“‘“‘-—-_l
PE-Process system-wide file-contral block
open-file table open-file table
user space kernal memaory secondary storage
ib)

Fig- In-memory file-system structures. (o) File open. (b) File read.

2 Partitions and Mounting



3 Virtual File

Physical disks are commoenly divided into smaller units called partittons. They can
also be combined into larger units, but that 15 most commonly done for EATD
installations and is left for later chapters.

Partitions can either be used as raw devices { with no structure imposed upon
them ), or they can be formatted to hold a filesystem { 1e populated wath FCEs
and initial directory structures as appropriate. ) Eaw partitions are generally used
tor swap space, and may alse be used for certain programs such as databases that
choose to manage their own disk storage system. Partitions containing filesystems
can generally only be accessed using the file system stnicture by ordinary users,
btut can often be accessed as araw device also by root.

The boot block 15 accessed as patt of a raw pattition, by the boot program priot to
any operating system being loaded Modemn boot programs understand multiple
D5es and filesystem formats, and can give the user a choice of which of several
available systemns to boot.

The rmeat partitien contains the OF kernel and at least the key portions of the O3
needed to complete the boot process. At boot time the root partition 15 mounted,
and control 15 transferred from the boot program to the kernel found there { Clder
systems required that the root partition lie completely wathin the first 1024
cylinders of the disk, because that was as far as the boot program could reach.
Once the kernel had contrel, then it could access partitions beyond the 1024
cylinder boundary . )

Continuing with the boot process, additonal filesystems get mounted, adding
their infortation into the appropriate mount table structure. As a part of the
mounting process the file systems may be checked for errors or inconsistencies,
either because they are flagged as not having been clozed propetly the last time
they were used, or just for general principals. Filesystems may be mounted either
automatically or manually. In THEK a mount point 13 indicated by setting a flag in
the in-memoty copy of the thode, so all future references to that inode get re-
directed to the root directory of the mounted filesystem.

Systems

Virgucd File Systems, VFS, provide a commeon interface to multiple different
filesystem types In addition, it provides for a unique identifier { vnode ) for files
across the entire space, including across all filesystems of different types. ( TG
inodes are unique only across a single filesystem, and certainly do not carry
across networked file systems. )
The VFZ in Linux iz based upon four key object types:

o The inede obiject, representing an individual file

o The file object, representing an open file.
o The superblock object, representing a filesystemn.



o The denfry object, representing a directory entry.

o« Linux VES provides a set of common functionalities for each filesystem, using
function peointers accessed through a table. The same functionality 18 accessed
through the same table position for all fileswstem types, though the actual
functions pointed to by the pointers may be filesystem-specific.  See
fsrfincludefdinuz®s b for full detatls. Common operations provided include opend
1, read] ), write( ), and mmap( ).

file-system interface

VFS interface
y y 1 y 1
local file s:,.-sh;m local file SYEIEIT remate file S‘g,-‘SI-GI'I"I
ype 1 type 2 type 1

L L I

nethork

Fig - Schematic wiew of awirtual file system.

3 Directory Implementation

o Turectonies need to be fast to search, ingert, and delete, with a minimum of wasted disk
Space.

1 Linear List

» A linear list 15 the simplest and easiest directory structure to set up, but it does
have some drawbacls.

o« Finding afile { or venfying one does not already exist upon creation ) requires a
linear search.

» Deletions can be done by moving all entries, flagging an entry as deleted, or by
moving the last entry into the newly vacant position.

» sorting the list makes searches faster, at the expense of more complex inserhions
and deletions.

o A linkedlist malkes insertions and deletions into a sorted list easier, with overhead
for the linlks.



2 Hash Tahle

More complex data structures, such as B-trees, could also be considered.

A hash table can also be used to speed up searches.
Hash tables are generally implemented in addifion fo alinear or other structure

Allocation Methods

There are three major methods of storing files on disks: contiguous, linked, and indexed.

1 Contiguous Allocation

Configunous Allacation requires that all blocks of a file be kept together
contiguously.
Performance 13 very fast, because reading successive blocks of the same file
generally requires no movemnent of the disk heads, or at most one small step to the
next adjacent cylinder.
storage allecation involves the same 1ssues discussed earlier for the allocation of
contigueus blocks of memory ( first fit, best fit, fragmentation problems, etc. )
The distinction 1z that the high time penalty required for mowing the disk heads
from spot to spot may now qustify the benefits of keeping files contiguously when
possible.
(Ewven file systems that do not by default store files contiguously can benefit from
certan utlities that compact the disk and make all files contguous in the
process)
Problems can anse when files grow, or 1f the exact size of a file 15 unknown at
creation tme:

o Over-estitnation of the file's final size increases external fragmentation

and wastes disk space.

o Under-estimation may recuire that a file be moved or a process aborted if
the file grows beyond its originally allocated space.

o If afile grows slowly over a long time period and the total final space
must be allocated initally, then alot of space becomes unusable before the

file fills the space.
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Fig - Contiguous allocation of diskspace.

A wariation 15 to allocate file space in large contiguous chunks, called exfernss.

When afile cutgrows its original extent, then an additional one iz allocated. { For

exatnple an extent may be the size of a complete track or even cylinder, aligned
on an approptiate track or cylinder boundary. ) The high-performance files system

Wentas uses extents to ophimize performance.

2 Limlked Allocation

200 121]

L

1612 e[ Jra]|

Disk files can be stored as linked lists, with the expense of the storage space

. directory

— | file start end |

JE] ] 25
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2a[_J2sEx=eJer ] |
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Fig - Linked allocation of disk space.

consumed by each link ( E.g a block
may be 508 bytes instead of 5123

s Linked allocation involves no external
fragmentation, does not require pre-
known file sizes, and all ows files to grow
dynamically at any time.

o  UUnfortunately linked allocation 1z only
efficient for sequential access files, as
randotn  access regquires starting at the
beginning of the list for each new
location access,

o Allocating efusters of blocks reduces the
space wasted by pointers, at the cost of

internal fragmentati on.

Another big problem with linked allocation 1s reliability if a pointer 15 lost or
damaged Doubly linked lists provide some protection, at the cost of additional

ovethead and wasted space.



The File Allocation Tablz, FAT, used by DOS 15 a vanation of linked allocation, where all the
links are stored in a separate table at the

direciorny antry

4t beginning of the disk. The benefit of this
L i approach 1s that the FAT table can be cached in
s memotry, greatly improwing  randotn  access
speeds.
818 b b L] J

Fig- File-all ocation table.

3 Indexed Allocation

o Tndeved Allocation combines all of the indexes for accessing each file into a
cotmmon block ( for that file ), as opposed to spreading thetn all ower the disk or

storing them in a FAT table.

e = directory
o e o
) file Index block
1 jee 19
o1 1 201 a[] il :

4 1 el ] &l 1 7[] e

2al |28l lz2el lz7| | i \\-.. =
28 Jzal Jaol la1[ | - ==

",

Fig - Indexed allocation of disk space.

« =ome disk space i3 wasted (relative to linked lists or FAT tables ) becausze an
entire index block must be allocated for each file, regardless of how many data
blocks the file contains. This leads to questions of how big the index block should
ke, and how it should be implemented. There are several approaches:



u]

4 Performance

Linked Scheme - An index block 15 one disk block, which can be read
and written in a single disk operation. The first index block contains some
header information, the first M block addresses, and if necessatry a pointer
to addittonal linked index blocks.

MMulti-Level Index - The first index block contains a set of pointers to
secondary index blocks, which in turn contain pointers to the actual data
blocks.

Combined Scheme - This 15 the scheme used 1n TNIZ inodes, in which
the first 12 or so data block pointers are stored directly in the inode, and
then singly, doubly, and tnply indirect pointers provide access to more
datablocks as needed. ( See below. ) The advantage of this scheme 15 that
for small files { which many are ), the data blocks are readily accessible (
up to 45K with 4K block sizes ) files up to about 4144E ( using 4K
blocks ) are accessible with only a single indirect block ( which can be
cached ), and huge files are still accessible using a relatively small number
of disk accesses { larger in theory than can be addressed by a 22-kat
address, which 15 why some system s have moved to 64-bit file pointers. )

mada
owWmEIrs |2)
limestamips (3} ;
----------------- —=L.dala |
size béock counl
- | | — ==
| -+ data |
| -
1 -
direct blocks 7 i .

gingle indirect

chatble indirec _|

triple indirect

Fig - The TUNIX inode.

o The optimal allocation method 1z different for zequential access files than for
random access files, and 15 also different for small files than for large files.

« ome systems suppott more than one allocation method, which may require
specifying how the file 15 to be used ( sequential or random access ) at the time it
1z allocated. Such systems alzo provide conversion utilities.

« ome systems have been known to use contiguous access for stall files, and

automatically switch to an indexed scheme when file sizes surpass a certain
threshold.



»  Andof course some systems adjust their allocation schemes (e.g block sizes ) to
best match the characteristics of the hardware for optimum petformance.

Free Space Management

s« Another important aspect of disk management 15 keeping track of and allocating

free space.

1 Bit Vector

o One simple approach is to use a bif vector, in which each bit represents a disk
block, setto 11f free or O 1if allocated.

» Fast algorithm s exist for quickly finding contiguous blocks of a given size

o The down side 1s that a 40GE disk requires over SMEB just to store the bitmap. (
For example. )

2 Linked List

o A linkedlistcan also be used to keep track of all free blocks.

o Traversing the list andfor finding a contiguous block of a given size are not easy,
but fortunately are not frequently needed operations. Generally the system just
adds and removes single blocks from the beginning of the list.

o The FAT table keeps track of the free list as just one more linked list on the table.

free-space list head —
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Fig - Linked free-space list on disk.
3 Grouping

e A variation on linked list free lists 15 to use links of blocks of indices of free
blocks If a block holds up to I addresses, then the first block in the linked-list



4 Counting

5 Space Maps

contains up to I4-1 addresses of free blocks and a pointer to the next block of free
addresszes.

When there are multiple contiguous blocks of free space then the system can keep
track of the starting address of the group and the number of contiguous free
blocks. As long as the average length of a contiguous group of free blocks 1s
greater than two this offers a savings in space needed for the free list. { Similar to
compression techniques used for graphics images when a group of pixzels all the

same color 15 encountered. )

cun's ZFS file system was designed for HUGE numbers and sizes of files,
directories, and even file systems.

The resulting data structures could be VEEY inefficient if not implemented
carefully. For example, freeingup a 1 GB file on a 1 TE file system could inveolve
updating thousands of blocks of free list bit tnaps 1f the file was spread across the
disk.

ZFS uses a combination of techniques, staring with dividing the disk up into
hundreds of ) meetgslabs of amanageable size, each having their own space map.
Free blocks are managed using the counting technique, but rather than wnte the
information to a table, it 15 recorded 1 a log-structured transaction record
A djacent free blocks are also coalesced into alarger single free block,

An in-memory space map 13 consttucted using a balanced tree data structure,
constructed from the log data.

The combination of the in-mem oty tree and the on-disk log provide for very fast
and efficient management of these very large files and free blocks.

Efficiency and Performance

1 Efficiency

UMLK pre-allocates 1nodes, which occupies space even before any files are
created.

TTHEL also distributes inodes across the diske, and tries to store data files near their
inode, to reduce the distance of disk seels between the inodes and the data.

Some system s use variable size clusters depending on the file size.

The more data that 15 stored in a directory ( e.g. last access time ), the more often
the directory blocks have to be re-written.



»  Astechnology advances, addressing schemes have had to grow as well
o sun's ZFS file system uses 128-bit pointers, which should theoretically
never need to be expanded. ( The mass required to store 27128 bytes with
atomic storage would be at least 272 trillion kilograms! )
» Eernel table sizes used to be fized, and could only be changed by rebuilding the
kernels. Modern tables are dynamically allocated, but that redquires more
complicated al gonthms for accessing them.

2 Perform ance

» Disk contrellers generally include on-board caching. When a seek 13 requested,
the heads are moved into place, and then an entire track 13 read, starting from
whatever sector 18 currently under the heads { reducing latency. ) The requested
sector 13 returned and the unrequested portion of the track 1z cached in the disk's
electronics.

» ome O3es cache disk blocks they expect to need again in a buffer cache.

» A page cache connected to the virtual memory system is actually more efficient
as memoty addresses do not need to be converted to disk block addresses and
back again.

« ome systems { Solans, Linuz, Windows 2000, NT, 2P ) use page caching for
both process pages and file data in a unified virtual memor.

#» The following figures show the advantages of the anified huffer cache found in
sotne versions of NI and Linux - Data does not need to be stored twice, and

problems of inconsistent buffer informati on are avoided.
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« Dagereplacement strategies can be complicated with a unified cache, as one needs
to decide whether to replace process or file pages, and how many pages to

guarantee to each category of pages. Solaris, for example, has gone through many



variations, resulting in grierily paging giving process pages prionty over file IO
pages, and sething limits so that neither can knock the other completely out of
MEMOTY.

»  Another 1ssue affecting petformance 15 the question of whether to implement
syuchranous writes or asynchronons writes. Synchronous writes occur in the
order in which the disk subsystem receives them, without caching; Asynchronous
whtes are cached, allowing the disk subsystem to schedule wntes in a more
efficient order { See Chapter 12, ) hMetadata writes are often dene synchronously.
Some systems support flags to the open call requiring that writes be synchronous,
for example for the benefit of database systems that require their writes be
petformed in a required order.

o The type of file access can also hawve an impact on optimal page replacement
policies. For example, LETT 15 not necessarily a good policy for sequential access
files. For these types of files progression normally goes in a forward direction
only, and the most recently used page will not be needed again until after the file
has been rewound and re-read from the beginning, (1f 1t 15 ever needed at all. ) On
the other hand, we can expect to need the next page in the file fairly soon. For this
reason sequential access files often take advantage of two special policies:

o Free-behind frees up a page as soon as the next page in the file is
requested, with the assumption that we are now done with the old page
and won't need it again for along time.

o Read-akead reads the recquested page and several subsequent pages at the
same titne, with the assumption that those pages will be needed in the near
future. Thisi1s similar to the track caching that is already performed by the
disk controller, except it saves the future latency of transferring data from
the disk controller memory into motherboard matn memory.

» The caching system and asynchronous writes speed up disk writes considerably,
kecause the disk subsystem can schedule physical writes to the disk to minimize
head movement and disk seek times. ( See Chapter 12, Eeads, on the other hand,
must be done more synchronously in spite of the caching system, with the result
that disk writes can counterintuitively be much faster on average than disk reads.

Unit -V Operating System in Distributed Processing

Introduction: Manages a collection of independent computers and makes them appear to the
users of the system as if it were a single computer. Distnbuted Computing Systems comimn only
uze two types of Operating Systemn s MNetwork Operating System s Distributed Operating System.

w A distnbuted system 1z A collection of independent computers that appears to itz users as

asingle coherent systetn.



o  Distributed computing 15 a field of computer science that studies distnbuted systems 4
distributed system consists of multiple autenomeous computers that communi cate through a
computer netwotl, The computers interact with each other in order to achieve a commmon

goal

o A computer program that runs in a distributed system 13 called a distributed program, and

distributed programming iz the process of writing such programs.

» Dustributed computing also refers to the use of distributed systems to solve computati onal

problems. In distnbuted computing, a problem 15 divided into many tasks, each of which 15

solved by one of more computers.

o A distnbuted system 15 a collection of independent computers, interconnected via a
network, capable of collaborating on a task

o  Dustributed computing 13 computing petformed in a distributed system. Distributed
computing has become increasingly common due advances that have made both
machines and networtles cheaper and faster.

mome examples of distributed systems:
# Local Area Networl and Intranet

+ Database Management System
+ Automatic Teller Machine Metworl:

# Internet™World-"Wide "Web

+ Idobile and Ubiquitous Computing

Microcomputers are small computers having microprocessors as their central processor
mome of itz advantages are portability, less costly, userfriendliness, thus maling them i1deal as
home computers. There are mainframe computers, minl computers and microcomputers. Mainframes
are large scale computers, (search IBM Svatern360) min computer are smaller, a lot smaller than
mainframes (zearch IBR ASZ00) and minis are what's on your desltop like a DELL, HE, Sony, etc.

They are many different things between Micro and mim computers Micre Computer support one
user a the satne time desltop computers FDUA laptops these are called Micro computers or Carry Along
computers Mim computers support many users at the same time powetful than micre and expensive.

& distnbuted systemn contains multiple nodes that are physically separate but linked together
using the networl All the nodes in this system communicate with each other and handle
processes in tandem. Each of these nodes contans a small part of the distnnbuted operating
system software.



A diagram to better explain the distnbuted system 15
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Types of Distributed Systems

The nodes 1n the distnbuted systems can be arranged in the form of client/server systems or peer

to peer systems. Detals about these are as follows:

Client/Server Systems

In client server systems, the client requests a resource and the server provides that resource. 4
server may serve multiple clients at the same tune while a client 15 1n contact with only one
server. Both the client and server usually comimunicate via a computer networl and so they are a
part of distributed systems.

Peer to Peer Systems

The peer to peer systems contains nodes that are equal participants in data sharing. All the tasks
are equally divided between all the nodes. The nodes interact with each other as required as share
resources. Thisis done with the help of anetwork

Advantages of Distributed Systems

mome advantages of Distnbuted Systems are as follows:

o« Allthe nodes in the distributed system are connected to each other 5o nodes can easily
share data with other nodes.

s+ More nodes can easily be added to the distnbuted system 1.2 it can be scaled as required.

« Falure of one node does not lead to the falure of the entire distributed system. Other
nodes can stll communicate with each other.

+» Eesources like printers can be shared with multiple nodes rather than being restricted to

ust one.



Disadvantages of Distrihuted Systems

mome disadvantages of Distributed Systems are as foll owes:

It 15 difficult to provide adequate security in distributed systems because the nodes as
well as the connections need to be secured.
some messages and data can be lostin the network while moving from one node to

another,

The database connected to the distributed system s is quite complicated and difficult to
handle as compared to a single user system.
Cwvetloading may occur in the networls 1f all the nodes of the distnbuted system try to

send data at once.

Centralized and Distributed Computing

s asne Cogngrire

ceniralined comgmiiing

{Centralized System Characteristics

Cne component with non-autenom ous parts.
Component shared by users all the time

All resources accessible
Software mins in a single process
=ingle point of control

single point of fatlure

Distributed System Characteristics

Llultiple autonomous components
Components are shared by all users

Eesources may not be accessible
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o DNultiple points of contreol
»  Multiple points of falure

Advantages of Distributed Systems over Centralized System

+ Economics: a collection of microprocessors offer a better pricelperformance than
mainframes. Low pricefperfonmance ratio: cost effective way to ihcrease computing

POWEL.

« speed a distributed systemn may have more total computing power than a manframe. »
Inherent distribution: Some applications are inherently distributed. Ex. a supermarket
chain. « Eeliabality: If one machine crashes, the system as a wheole can still survive.
Higher avail ability and improved reliability.

+ Incremental growth: Computing power can be added 1n small increments. Modular

expandability

« Another denwing force: the existence of large number of personal computers, the need

for people to collaborate and share information.

The figure bel ow shows a simple distributed system s for a number of applications running
through different operating system where the middleware takes responsibility for the
heterogeneity of the communications.

Computer 1 Computer 2 Computer 3 Computer 4
1 |
Appl. A \ Appl. C

locai 051 || |[tocaios2 || [[tocaioss || [[Tocaioss]

Application B
—
Distributed system layer (middleware)

MNetwork

Why we need a distributed system 15 mainly for the following reasons:

o Economics: a collection of microprocessors offer a better price/performance than
mainframes.
o speed: a distributed system may have more total computing power than a manframe.

Enhanced petrformatce through load distribution.
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Inherent distribution: Some applications are inherently distributed. Ex. a supermarket
chain.

Reliahility: If cne machine crashes, the system as a whole can still survive Higher
avalability and improved reliabality.

Incremental growth: Computng power can be added in small increments. Modular
expandability

Data sharing: allow many users to access to a common data base

Resource Sharing: expensive peripherals like color printers

Communication: enhance human-to-human communication, e.g., email, chat

Flexibility: spread the worldoad over the available machines

Mlobility: Accessthe system, data or resources from any place or dewice.

& distributed system can be much larger and more powerful given the combined capabalities of

the distributed components, than combinati ons of stand-alone systetns. But it must be reliable.

Thiz 15 achallenging goal to achieve because of the complexity of the interactions between

sitnultanecusly running components. To be truly reliable, a distributed system must have the

following characteristics:

* Fault-Tolerant: It can recover from component fatlures without performing incorrect
actions.

» Highly Available: It can restore operations, permitting it to resutne providing services
even when some components have faled

* Hecoverahle: Failed components can restart themselves and re-join the system, after the
cause of falure has been repaired.

o Consistent: The system can coordinate actions by multiple components often in the
presence of concurrency and failure. This underlies the ability of a distnbuted system to
act like anon-distributed system.

o Scalable: It can operate correctly even as some aspect of the system 15 scaled to alarger
SiZE.

* Predictable Performance: The ability to provide desired responsiveness in a timely
tmanner.

o Secure: The system authenticates access to data and services Computers that are
connected by a network may be spatially separated by any distance. They may be on
separate continents, in the same building or in the same room. Our definition of
diztributed systems has the following significant conszequences:

» Concurrency: concurrent program execution is the nonm. I can do my work on my
computer while vou do your worlt on yours, sharing resources such as web pages or files
when necessary. The capacity of the system to handle shared resources can be increased
by adding more resources (for example. computers) to the network



® Mo glohal clock: "When program s need to cooperate they coordinate their actions by
exchanging messages. Close coordination often depends on a shared idea of the time at
which the programs’ actions occur. But it turns out that there are linits to the accuracy
with which the computers in a network can synchronize their clocks —there 12 no single
global notion of the correct time. Thiz 15 a direct consequence of the fact
that the only communication 15 by sending messages through a netwotl

o Independent failures: All computer systems can fail, and it 12 the responsibility of
system designers to plan for the consequences of posasible falures.

C ommon Examples for distributed systems include:

o network file system, network printer etc
o ATM (cash machine)

o Distnbuted databases

o Metwork computing

o Global positioning systems

o Eetail point-of-zale terminals

o Air-traffic control

o Enterprise computing

o WA

Parallel and distributed computing

Distnibuted systems are groups of networked computers which share a comtnon goal for
their work. The terms "concurrent computing', "parallel computing", and "distnbuted
computing” have alot of overlap, and no clear distinction exists between them. The same system
tmay be charactenized both as "parallel” and "distributed"; the processors in a typical distnbuted
system run concurrently in parallel Parallel computing may be seen as a particular tightly
coupled form of distnbuted computing, and distnbuted computing may be seen as a loosely
coupled form of parallel computing. MNewvertheless, it 18 possible to roughly classify concurrent
systems as "parallel” or "distributed” using the following critena:

o In parallel computing, all processors may have access to a shared mem oty to exchange
inform ati on between processors.

o Tn distnbuted computing, each processor has its own private memory (distnbuted
memory). Information 15 exchanged by passing messages between the processors,

The figure on the right illustrates the difference between distnbuted and parallel systems.
Figure (a) 15 a schematic wiew of a typical distnbuted system; the systern 15 represented as a
network topology in which each node 15 a computer and each line connecting the nodes 15 a
communication link. Figure (b) shows the same distibuted system in more detatl: each computer

has its own local memoty, and information can be exchanged only by passing tnessages from one



node to another by using the available communication links. Figure {c) shows a parallel system
in which each processor has a direct access to a shared memory.

The situation is further complicated by the traditional uses of the terms parallel and
distributed algorithm that do not  quite match the above definitions of parallel and
distributed sysfe. MNevertheless, as a rule of thumb, high-performance parallel computation ih a
shared-memaory multiprocessor uses parallel algonthms while the coordination of a large-scale
distributed system uses distributed algorithms.
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Prime difference between networke and distributed operating system 15 all of the above.

A networle operating system 18 made up of scftware and associated protocels that allow a set
of computer network to be used together. & distributed operating system 15 an ordinary centralized
operating system but runs on multiple independent CPTz. Environment users are aware of multiplicity
of machines.

A distnibuted operating system 15 a software over a collection of independent, networked,
comimunicating, and physically separate computational nodes. They handle jobs which are serviced by
multiple CPUs. Each individual node holds a specific software subset of the global aggregate
operating system.

A distributed systern 15 a system whose coamponents are located on different networked
computers, which then communicate and coordinate their actions by passing messages to one other
Examples of distnibuted systems wary from SOA-based systems to massively multiplayver online
gan es to peer-to-peer applications.

Hetwork OF and Distibuted OF have a common hardware base, but the difference lies in the
moftware, .. Control over file placement iz done manually by the user in network OSBut, in
distnbuted operating system it can be done automatically by the system itself



A process 15 the unit of work 1n a computer system. & process must be in maih memory
during execution. To improve the utilization of central processing unit (CPTT as well as the spesd of
itz response to its users, the computer must keep several processes in memotry. . A process can be
thought of as a program in execution.

Process management 15 an integral part of any modern-day operating system (O3). To meet
these requrements, the OF must maintain a data structure for each process, which describes the state
and resource ownership of that process, and which enables the O to exert control over sach process.

{Challen ges in distributed systems.

1 — Heterogeneity

Heterogeneity —“Describes a system consisting of multiple distinct components™ OF
course heterogeneity applies to pretty much anything which iz made up of many different itemns
or objects including Foodl

Anyway, in many systemns in order to overcome heterogeneity a software layer known
as Middlewareis often used to hide the differences amongst the components undetlying layers.
2 —Openness

Openness — Property of each subsystem to be open for interaction with other systems™

S0 once something has been published it cannot be talen back or reversed. Furthermore
in open distributed systems there 1z often no central authority, as different systems may have
their own intermediary.

3 — security
The 1zsues surrounding secunty are those of

o  Confidentiality

o  Integration

o Avalability

To combat these 1ssues encryption techniques such as those of cryptography can help but
they are still not absclute. Dental of Service attacks can still occur, where a server of service i3
bombarded with falze requests usually by botnets (zombie computers).
4 — Zealability

Basically a system 15 described as scalable if

“Agthe system, number of resources, or uszers increase the performance of the system iz
notlost and remains effective in accomplishing 1ts goals”

That' s a faitly self explanatory description, but there are a number of impotrtant 1ssues
that arise as aresult of increasing scalability, such as increase in cost and physical resources. It is
also important to avolrd performance bottlenecks by using caching and replication.

S5 —Faulthandling
Failures are inevitable in any system,; some components may stop functioning while

others continue running normmally. 5o naturally we need a way to
Detect Falures — Various mechanisms can be emploved such as checksums.



Maszk Failures — retransmit upon failure to receive acknowledgement

Eecowver from falures —if a server crashes roll back to previous state

Build Eedundancy — Eedundancy is the best way to deal with fatlures. Ttis achieved by
replicating data so that 1f one sub system crashes another may still be able to provide the required
inform ation.

& — Concurrency

Concurrency 1ssues arise when several clients attempt to request a shared resource at the
same time. Thisis problematic as the outcome of any such data may depend on the execution
order, and so synchronization 123 required.

7 — Transparency

& distributed system must be able to offer transparency to itz users. Asauser of a
distributed system vou do not care if we are using 20 or 1007s of machines, so we hide this
inform ati on, presenting the structure as anormal centralized systetmn.

o  Access Transparency — whete resources are accessed in auniform manner regardless of
location
o Location Transparency — the physical location of aresource is hidden from the user

® Falure Transparency — Always try and Hide falures from users {see challenge Mo . 5)



