
UNIT – I  

RELATIONAL DATABASE-MANAGEMENT SYSTEM 

 

File Management System 

A file system (or file system) is an abstraction to store, retrieve and update a set of files. The 
term also identifies the data structures specified by some of those abstractions, which are designed to 
organize multiple files as a single stream of bytes, and the network protocols specified by some other of 
those abstractions, which are designed to allow files on a remote machine to be accessed. 

The file system manages access to the data and the metadata of the files, and manages the available 
space of the device(s) which contain it. Ensuring reliability is a major responsibility of a file system. A 
file system organizes data in an efficient manner, and may be tuned to the characteristics of the backing 
device. 

FILENAMES 

A filename (or file name) is used to identify a storage location in the file system. Most file systems 
have restrictions on the length of filenames. In some file systems, filenames are case-insensitive (i.e., 
filenames such as FOO and foo refer to the same file); in others, filenames are case-sensitive (i.e., the 
names FOO and foo refer to two separate files). 

Most modern file systems allow filenames to contain a wide range of characters from the Unicode 
character set. Most file system interface utilities, however, have restrictions on the use of certain special 
characters, disallowing them within filenames (the file system may use these special characters to 
indicate a device, device type, directory prefix, or file type). 

DIRECTORIES 

File systems typically have directories (also called folders) which allow the user to group files into 
separate collections. This may be implemented by associating the file name with an index in a table of 
contents or an inode in a Unix-like file system. Directory structures may be flat (i.e. linear), or allow 
hierarchies where directories may contain subdirectories. The first file system to support arbitrary 
hierarchies of directories was used in the Multics operating system. 

METADATA 

The length of the data contained in a file may be stored as the number of blocks allocated for the file 
or as a byte count. The time that the file was last modified may be stored as the file's timestamp. File 
systems might store the file creation time, the time it was last accessed, the time the file's meta-data was 
changed, or the time the file was last backed up. Other information can include the file's device type 
(e.g. block, character, socket, subdirectory, etc.), its owner user ID and group ID, its access permissions 
and other file attributes (e.g. whether the file is read-only, executable, etc.). 

TYPES OF FILE SYSTEMS 

File system types can be classified into disk/tape file systems, network file systems and special-
purpose file systems. 

Disk file systems 



A disk file system takes advantages of the ability of disk storage media to randomly address data in a 
short amount of time. Additional considerations include the speed of accessing data following that 
initially requested and the anticipation that the following data may also be requested. This permits 
multiple users (or processes) access to various data on the disk without regard to the sequential location 
of the data.      
           Examples include  

FAT – File Allocation Table (FAT12, FAT16, FAT32), exFAT,  

NTFS (NT file system; sometimes New Technology File System),  

Optical discs 

ISO 9660 and Universal Disk Format (UDF) are two common formats that target Compact Discs, 
DVDs and Blu-ray discs. Mount Rainier is an extension to UDF supported by Linux 2.6 series and 
Windows Vista that facilitates rewriting to DVDs. 

Flash file systems 

A flash file system considers the special abilities, performance and restrictions of flash memory 
devices. Frequently a disk file system can use a flash memory device as the underlying storage media 
but it is much better to use a file system specifically designed for a flash device. 

Tape file systems 

 A tape file system is a file system and tape format designed to store files on tape in a self-
describing form. Magnetic tapes are sequential storage media with significantly longer random data 
access times than disks, posing challenges to the creation and efficient management of a general-purpose 
file system. 

In a disk file system there is typically a master file directory, and a map of used and free 
data regions. Any file additions, changes, or removals require updating the directory and the 
used/free maps. Random access to data regions is measured in milliseconds so this system works 
well for disks. 

       Tape requires linear motion to wind and unwind potentially very long reels of media. 
This tape motion may take several seconds to several minutes to move the read/write head from 
one end of the tape to the other. 

  
   Consequently, a master file directory and usage map can be extremely slow and 
inefficient with tape. Writing typically involves reading the block usage map to find free blocks 
for writing, updating the usage map and directory to add the data, and then advancing the tape to 
write the data in the correct spot. Each additional file write requires updating the map and 
directory and writing the data, which may take several seconds to occur for each file. 

  

    Tape file systems instead typically allow for the file directory to be spread across the tape 
intermixed with the data, referred to as streaming, so that time-consuming and repeated tape 
motions are not required to write new data. 
  

HIERARCHY OF DATA 

Data are the principal resources of an organization. Data stored in computer systems form a 
hierarchy extending from a single bit to a database, the major record-keeping entity of a firm. Each 
higher rung of this hierarchy is organized from the components below it. 



Data are logically organized into: 

Bit (Character) - a bit is the smallest unit of data representation (value of a bit may be a 0 or 1). 
Eight bits make a byte which can represent a character or a special symbol in a character code. 

Field - a field consists of a grouping of characters. A data field represents an attribute (a 

characteristic or quality) of some entity (object, person, place, or event). 

Record - a record represents a collection of attributes that describe a real-world entity. A record 
consists of fields, with each field describing an attribute of the entity. 

File - a group of related records. Files are frequently classified by the application for which they 
are primarily used (employee file). A primary key in a file is the field (or fields) whose value 
identifies a record among others in a data file. 

Magnetic disk 

The primary computer storage device. Like tape, it is magnetically recorded and can be re-
recorded over and over. Disks are rotating platters with a mechanical arm that moves a 
read/write head between the outer and inner edges of the platter's surface. It can take as long as 
one second to find a location on a floppy disk to as little as a couple of milliseconds on a fast 
hard disk. See hard disk for more details. 

Tracks and Spots 

The disk surface is divided into concentric tracks (circles within circles). The thinner the tracks, 
the more storage. The data bits are recorded as tiny magnetic spots on the tracks. The smaller 
the spot, the more bits per inch and the greater the storage. 

Sectors 

Tracks are further divided into sectors, which hold 
a block of data that is read or written at one time; for 
example, READ SECTOR 782, WRITE SECTOR 5448. In 
order to update the disk, one or more sectors are read into 
the computer, changed and written back to disk. The 
operating system figures out how to fit data into these fixed 
spaces.Modern disks have more sectors in the outer tracks 
than the inner ones because the outer radius of the platter is 
greater than the inner radius 

Magnetic tape 

A sequential storage medium used for data 
collection, backup and archiving.  Like videotape, computer tape is made of flexible plastic with one 
side coated with a ferromagnetic material. Tapes were originally open reels, but were superseded by 
cartridges and cassettes of many sizes and shapes. 

Tape has been more economical than disks for archival data, but that is changing as disk 
capacities have increased enormously. If tapes are stored for the duration, they must be periodically 
recopied or the tightly coiled magnetic surfaces may contaminate each other. 

Sequential Medium 



 The major drawback of tape is its sequential format. Locating a specific record requires reading 
every record in front of it or searching for markers that identify predefined partitions. Although most 
tapes are used for archiving rather than routine updating, some drives allow rewriting in place if the byte 
count does not change. Otherwise, updating requires copying files from the original tape to a blank tape 
(scratch tape) and adding the new data in between. 

FILE ORGANIZATION 

Data files are organized so as to facilitate access to records and to ensure their efficient storage. 
A tradeoff between these two requirements generally exists: if rapid access is required, more storage is 
required to make it possible. 

Access to a record for reading it is the essential operation on data. There are two types of access: 
 Sequential access - is performed when records are accessed in the order they are stored. 

Sequential access is the main access mode only in batch systems, where files are used and 
updated at regular intervals. 

 Direct access - on-line processing requires direct access, whereby a record can be accessed 

without accessing the records between it and the beginning of the file. The primary key serves to 
identify the needed record. 

There are three methods of file organization: 

 Sequential organization 
 Indexed-sequential organization 
 Direct organization 

FILE SYSTEMS VERSUS A DBMS: 

To understand the need for a DBMS, let us consider a motivating scenario: A company has a 
large collection (say, 500 GB) of data on employees, departments, products, sales, and so on. This data 
is accessed concurrently by several employees. Questions about the data must be answered quickly, 
changes made to the data by different users must be applied consistently, and access to certain parts of 
the data (e.g., salaries) must be restricted. 

We can try to deal with this data management problem by storing the data in a collection of operating 
system files. This approach has many drawbacks, including the following: 

• We probably do not have 500 GB of main memory to hold all the data. We must therefore store 
data in a storage device such as a disk or tape and bring relevant parts into main memory for 
processing as needed. Even if we have 500 GB of main memory, on computer systems with 32-
bit addressing, we cannot refer directly to more than about 4 GB of data! We have to program 
some method of identifying all data items. 

• We have to write special programs to answer each question that users may want to ask about the 
data. These programs are likely to be complex because of the large volume of data to be 
searched. We must protect the data from inconsistent changes made by different users accessing 
the data concurrently. If programs that access the data are written with such concurrent access in 
mind, this adds greatly to their complexity. We must ensure that data is restored to a consistent 
state if the system crashes while changes are being made. Operating systems provide only a 
password mechanism for security. This is not sufficiently flexible to enforce security policies in 
which different users have permission to access different subsets of the data. 

A DBMS is a piece of software that is designed to make the preceding tasks easier. By storing 
data in a DBMS, rather than as a collection of operating system files, we can use the DBMS’s features to 
manage the data in a robust and efficient manner. As the volume of data and the number of users grow 



hundreds of gigabytes of data and thousands of users are common in current corporate databases DBMS 
support becomes indispensable. 

INTRODUCTION to DBMS 

What is Data ?  

 
Data is stored raw facts ( or real world facts) that can be processed for any computing machine. 
 
Data is collection of facts, which is in unorganized but they can be organized into useful form. Data may be 

numerical data which may be integers or floating point numbers and non-numerical data such as characters, date 
and etc.,  Data is of two types : 
 

Raw data : it is a data which are collected from different sources and has no meaning. 
Derived data : it is a data that are extracted from raw data and used for getting useful information. 
 
Example: The above numbers may be anything: It may be distance in kms or amount in rupees or no of days 

or marks in each subject etc., 

Information: 

 Information is data that has been converted into more useful or intelligible form. Example is Student 

Mark Sheet. 

 Information is RELATED DATA. The data (information) which is used by an organization – a college, a 

library, a bank, a manufacturing company – is one of its most valuable resources. 

Knowledge: 

 Human mind purposefully organized the information and evaluate it to produce knowledge. 

   Example:  238 is a data,  
Marks of student is information and  
The hard work require to get mark is knowledge. 

1. Fact based Knowledge :  

It is knowledge gain from fundamental and through experiment. 
The result is guaranteed. 
 

2. Heuristic based Knowledge:  

It is the knowledge of good practice and good judgment like hypothesis. 
The result is not guaranteed. 
 

Database : 

  Databases and database systems have become an essential component of everyday life in modern 
society. In the course of a day, most of us encounter several activities that involve some interaction 
with a database.  

  For example, if we go to the bank to deposit or withdraw funds, if we make a hotel or airline 
reservation, if we access a computerized library catalog to search for a bibliographic item, or if we buy 
some item-such as a book, toy, or computer-from an Internet vendor through its Web page, chances are 
that our activities will involve someone or some computer program accessing a database. Even 
purchasing items from a supermarket nowadays in many cases involves an automatic update of the 
database that keeps the inventory of supermarket items.  



• These interactions are examples of what we may call traditional database applications, 
in which most of the information that is stored and accessed is either textual or numeric.  

• In the past few years, advances in technology have been leading to exciting new 
applications of database systems. Multimedia databases can now store pictures, video 
clips, and sound messages.  

• Geographic information systems (CIS) can store and analyze maps, weather data, and 
satellite images.  

• Data warehouses and online analytical processing (OLAP) systems are used in many 
companies to extract and analyze useful information from very large databases for 
decision making.  

• Real-time and active database technology is used in controlling industrial and 
manufacturing processes.  

• And database search techniques are being applied to the World Wide Web to improve 
the search for information that is needed by users browsing the Internet. 

Databases and database technology are having a major impact on the growing use of computers. 
It is fair to say that databases play a critical role in almost all areas where computers are used, including 
business, electronic commerce, engineering, medicine, law, education, and library science, to name a 
few. 

Database 

A database is a collection of related data.  By data, we mean known facts that can be recorded 
and that have implicit and useful meaning.  

For example, consider the names, telephone numbers, and addresses of the people you know. 
You may have recorded this data in an indexed address book, or you may have stored it on a hard drive, 
using a personal computer and software such as Microsoft Access, or Excel. This is a collection of 
related data with an implicit meaning and hence is a database. 

Characteristics of the database in the DBMS: 

1.Sharing of the data takes place amongst the different type of the users and the applications. 
2.Data exists permanently. 
3.Data must be very much correct in the nature and should also be in accordance with the real  

 world entity that they represent. 
4.Data can live beyond the scope of the process that has created it. 
5.Data is not at all repeated. 
6.Changes that are made in the schema at one level should not at all affect the other levels. 
7.Database should also provide security, 

 
Database-Management System: 

A database-management system (DBMS) is a collection of interrelated data and a set of 
programs to access those data. The collection of data, usually referred to as the database, contains 
information relevant to an enterprise. The primary goal of a DBMS is to provide a way to store and 
retrieve database information that is both convenient and efficient. 

Database systems are designed to manage large bodies of information. Management of data 
involves both defining structures for storage of information and providing mechanisms for the 
manipulation of information.  



In addition, the database system must ensure the safety of the information stored, despite system 
crashes or attempts at unauthorized access. If data are to be shared among several users, the system must 
avoid possible anomalous results. 

There are several Database Management Systems (DBMS), such as: 

• Microsoft SQL Server 

• Oracle 

• Sybase 

• DBase 

• Microsoft Access 

• MySQL from Sun Microsystems (Oracle) 

• DB2 from IBM   etc. 
 

What is the need of DBMS? 

Database systems are basically developed for large amount of data. When dealing with huge 
amount of data, there are two things that require optimization: Storage of data and retrieval of data. 

Storage: According to the principles of database systems, the data is stored in such a way 
that it acquires lot less space as the redundant data (duplicate data) has been removed before 
storage. Let’s take a layman example to understand this: 

In a banking system, suppose a customer is having two accounts, one is saving account 
and another is salary account. Let’s say bank stores saving account data at one place (these 
places are called tables we will learn them later) and salary account data at another place, in that 
case if the customer information such as customer name, address etc. are stored at both places 
then this is just a wastage of storage (redundancy/ duplication of data), to organize the data in a 
better way the information should be stored at one place and both the accounts should be linked 
to that information somehow. The same thing we achieve in DBMS. 

Fast Retrieval of data: Along with storing the data in an optimized and systematic 
manner, it is also important that we retrieve the data quickly when needed. Database systems 
ensure that the data is retrieved as quickly as possible. 

Database-System Applications 

Databases are widely used. Here are some representative applications: 

Enterprise Information 

 Sales: For customer, product, and purchase information. 
 Accounting: For payments, receipts, account balances, assets and other accounting information. 
 Human resources: For information about employees, salaries, payroll taxes, and benefits, and 

for generation of paychecks. 
 Manufacturing: For management of the supply chain and for tracking production of items in 

factories, inventories of items in warehouses and stores, and orders for items. 
 Online retailers: For sales data noted above plus online order tracking, generation of 

recommendation lists, and maintenance of online product evaluations. 
 



 

Banking and Finance 

 Banking: For customer information, accounts, loans, and banking transactions. 
 Credit card transactions: For purchases on credit cards and generation of monthly statements. 
 Finance: For storing information about holdings, sales, and purchases of financial instruments 

such as stocks and bonds; also for storing real-time market data to enable online trading by 
customers and automated trading by the firm. 

Universities: For student information, course registrations, and grades (in addition to standard enterprise 
information such as human resources and accounting). 
Airlines: For reservations and schedule information. Airlines were among the first to use databases in a 
geographically distributed manner. 
Telecommunication: For keeping records of calls made, generating monthly bills, maintaining balances 
on prepaid calling cards, and storing information about the communication networks. 

 

 PURPOSE OF DATA BASE SYSTEMS: 

Before DBMS was invented, Information was stored using File Processing System. In this 
System, data is stored in permanent system files (secondary Storage). Different application programs are 
written to extract data from these files and to add record to these files. But, there are Number of 
disadvantages in using File Processing System, to store the data. 

One way to keep the information on a computer is to store it in permanent system files. To allow 
users to manipulate the stored information, the system has a number of application programs that 
manipulate the organized files. These application programs are written by system programmers in 
response to the needs of the organizations. New application programs are added to the system as the need 
arises. Thus, as the time goes more files and more application programs are added to the system. A 
typical file processing system described above is the system used to store information before the advent 
of DBMS. 

Characteristics of Traditional File Processing System: 

• It stores data of an organization in group of files. 
• Files carrying data are independent on each other. 
• COBOL, C, C++ programming languages were used to design the files. 
• Each file contains data for some specific area or department like library, student fees, and student 

examinations. 
• It is less flexible and has many limitations. 
• It is very difficult to maintain file processing system. 
• Any change in one file affects all the files that creates burden on the programmer. 
• File in Traditional File Processing Systems are called flat files. 

Overall, Traditional File Processing Systems was good in many cases in compare to manual non 
computer based system but still it had many disadvantages that were overcome by Data Base 
Management System. 

Keeping the information of an organization in a file processing system has a number of 
disadvantages, namely 

 

 



FILE MANAGEMENT SYSTEM PROBLEMS 

• Data Redundancy and Inconsistency: Since the files and applications programs are created by 
different programmers over a long period, the various files are likely to have different formats 
and the programs may be written in several programming languages. Moreover, the same 
information may be duplicated in several places. This redundancy leads too higher storage and 
access cost. In addition, it may lead to data inconsistency. 

• Difficulty in Accessing Data: The file processing system does not allow needed data to be 
retrieved in a convenient and efficient manner. 

• Data Isolation: I a file processing system, as the data are scattered in various files, and files may 
be in different formats. It is very difficult to write new application programs to retrieve the 
appropriate data. 

• Integrity problems: The data values stored in the database must satisfy certain types of 
consistency Constraints (Conditions).  

  For example, the minimum balance in a bank account may never fall 
below an amount of Rs. 500. Developers enforce these constraints in the system by 
adding appropriate code in the application programs. However, when new 
constraints are added, it is difficult to change the application programs to enforce 
them. 

• Atomicity problems. A computer system, like any other device, is subject to failure. In many 
applications, it is crucial that, if a failure occurs, the data be restored to the consistent state that 
existed prior to the failure.  

  Consider a program to transfer Rs.500 from the account balance of 
department A to the account balance of department B. If a system failure occurs 
during the execution of the program, it is possible that the Rs.500 was removed 
from the balance of department A but was not credited to the balance of department 
B, resulting in an inconsistent database state. Clearly, it is essential to database 
consistency that either both the credit and debit occur, or that neither occur. That is, 
the funds transfer must be atomic — it must happen in its entirety or not at all. It is 
difficult to ensure atomicity in a conventional file-processing system. 

• Concurrent-access anomalies. For the sake of overall performance of the system and faster 
response, many systems allow multiple users to update the data simultaneously 

• Security problems: Not every user of the database system should be able to access all the data.  
  For example, in a banking system, payroll personnel need to see only that 
part of the database that has information about various bank employees. They do 
not need access to information about customer accounts. 

  
In the file processing systems, as the application programs are added to the system in an adhoc 
manner, it is difficult to enforce security. 

 

The above disadvantages can be overcome by use of DBMS and it provides the following 
advantages. 

1. Provides for mass storage of relevant data. 
2. Make easy access of the data to user. 
3. Allows for the modification of data in a consistent manner. 
4. Allows multiple users to be active at a time 
5. Eliminate or reduce the redundant data. 
6. Provide prompt response to the users request for data. 
7. Supports Backup and recovery of data. 
8. Protect data from physical hardware failure and unauthorized access. 



9. Constraints can be set to database to maintain data integrity. 
 

ADVANTAGES AND DISADVANTAGES OF A DBMS 
 

Using a DBMS to manage data has many advantages: 

Reduction of Redundancy: This is perhaps the most significant advantage of using DBMS. 

Redundancy is the problem of storing the same data item in more one place. Redundancy creates 

several problems like requiring extra storage space, entering same data more than once during data 

insertion, and deleting data from more than one place during deletion. Anomalies may occur in the 

database if insertion, deletion etc are not done properly. 

 

Sharing of Data: In a paper-based record keeping, data cannot be shared among many users. But in 

computerized DBMS, many users can share the same database if they are connected via a network. 

Data Integrity: We can maintain data integrity by specifying integrity constrains, which are rules 

and restrictions about what kind of data may be entered or manipulated within the database. This 

increases the reliability of the database as it can be guaranteed that no wrong data can exist within 

the database at any point of time. 

 

Data independence: Application programs should be as independent as possible from details of data 

representation and storage. The DBMS can provide an abstract view of the data to insulate 

application code from such details. 

Efficient data access: A DBMS utilizes a variety of sophisticated techniques to store and retrieve 

data efficiently. This feature is especially important if the data is stored on external storage devices. 

 

Data integrity and security: If data is always accessed through the DBMS, the DBMS can enforce 

integrity constraints on the data. For example, before inserting salary information for an employee, 

the DBMS can check that the department budget is not exceeded. Also, the DBMS can enforce 

access controls that govern what data is visible to different classes of users. 

Data administration: When several users share the data, centralizing the administration of data  can  

offer  significant  improvements.  Experienced  professionals  who  understand  the nature  of  the  

data  being  managed,  and  how  different  groups  of  users  use  it,  can  be responsible for 

organizing the data representation to minimize redundancy and fine-tuning the storage of the data to 

make retrieval efficient. 

 

Concurrent access and crash recovery: A DBMS schedules concurrent accesses to the data in such 

a manner that users can think of the data as being accessed by only one user at a time. Further, the 

DBMS protects users from the effects of system failures. 

 

Reduced application  development  time: Clearly,  the  DBMS  supports  many important functions 

that are common to many applications accessing data stored in the DBMS. This, in conjunction  with  

the  high-level  interface  to  the  data,  facilitates  quick  development  of applications. Such 



applications are also likely to be more robust than applications developed from scratch because many 

important tasks are handled by the DBMS instead of being implemented by the application. 

 

DISADVANTAGES OF A DBMS 

Danger of a Overkill: For small and simple applications for single users a database system is often not 
advisable. 

Complexity: A database system creates additional complexity and requirements. The supply and 
operation of a database management system with several users and databases is quite costly and 
demanding. 

Qualified Personnel: The professional operation of a database system requires appropriately trained staff. 
Without a qualified database administrator nothing will work for long. 

Costs: Through the use of a database system new costs are generated for the system itselfs but also for 
additional hardware and the more complex handling of the system. 

Lower Efficiency: A database system is a multi-use software which is often less efficient than specialised 
software which is produced and optimised exactly for one problem. 

 

VIEW OF DATA: 

A DBMS is a collection of interrelated files and set of programs which allows the users to access 
and modify these files.  

 

 

 

 

 

 

 

Data Abstraction 

A major purpose of a database system is to provide users with an abstract view of the data. That 
is, the system hides certain details of how the data are stored and maintained. It is called data abstraction. 

Level of Abstraction: basically, Abstraction can be divided in to 3 levels. They are 

1. Physical Level : The lowest of abstraction describes how the data are actually stored. At the 
physical level, complex low-level data structures are described in detail. 

 

2. Logical Level (Conceptual Level) : This next higher level of abstraction describes what 
data are stored in the database, and what relationship exist among those data. This level of abstraction is 



used by Database Administrators (DBA), Who must decide what information is to be kept in the 
database. 

 

3. View Level : This Highest level of abstraction describes only part of the entire database. The 
use of simpler structures at the logical level, some complexity remains, because of the large databases. 
Many users of the database system will not be concerned with all this information. Such users need to 
access only a Part of the database. So that their interaction with the system is simplified, the view level 
of abstraction is defined. The system may provide views for the same database. 

 

An analogy to the concept of data types in programming languages may clarify the distinction 
among levels of abstraction. Many high-level programming languages support the notion of a structured 
type. For example, we may describe a record as follows: 

type instructor = record 

ID : char (5); 
name : char (20); 
dept name : char (20); 
salary : numeric (8,2); 

end; 
 

This code defines a new record type called instructor with four fields. Each field has a name and 
a type associated with it. A university organization may have several such record types, including 

 department, with fields dept name, building, and budget 
 

 course, with fields course id, title, dept name, and credits 
 

 student, with fields ID, name, dept name, and tot cred 
 

At the physical level, an instructor, department, or student record can be de-scribed as a block of 
consecutive storage locations. The compiler hides this level of detail from programmers. Similarly, the 
database system hides many of the lowest-level storage details from database programmers. Database 
administrators, on the other hand, may be aware of certain details of the physical organization of the data. 

At the logical level, each such record is described by a type definition, as in the previous code 
segment, and the interrelationship of these record types is defined as well. Programmers using a 
programming language work at this level of abstraction. Similarly, database administrators usually work 
at this level of abstraction. 

Finally, at the view level, computer users see a set of application programs that hide details of 
the data types. At the view level, several views of the database are defined, and a database user sees 
some or all of these views. In addition to hiding details of the logical level of the database, the views 
also provide a security mechanism to prevent users from accessing certain parts of the database. For 
example, clerks in the university registrar office can see only that part of the database that has 
information about students; they cannot access information about salaries of instructors. 

 

INSTANCES AND SCHEMAS: 

Databases change over time as information is inserted and deleted.  

Instances 



The collection of information stored in the database at a particular moment is called an instance of the 
database.  It is also called as snapshot or set of occurrence or current state of the database.  

 

Example: Instance of the employee schema 

Eno Ename Salary Address 

1 A 10000 1st street 

2 B 20000 2nd steet 

3 C 30000 3rd street 

 

Schemas 

The overall design of the database is called the database schema. Schemas are changed infrequently, if 
at all. 

The concept of database schemas and instances can be understood by analogy to a program 
written in a programming language. A database schema corresponds to the variable declarations (along 
with associated type definitions) in a program. Each variable has a particular value at a given instant. The 
values of the variables in a program at a point in time correspond to an instance of a database schema. In 
general, database system supports one physical schema, one logical schema and several subschema’s. 

Database systems have several schemas, partitioned according to the levels of abstraction.  

• The physical schema describes the database design at the physical level,  

• The logical schema describes the database design at the logical level.  

• A database may also have several schemas at the view level, sometimes called   

 subschemas, that describe different views of the database. 

 

Database Schema diagram for a company: 

EMPLOYEE       DEPARTMENT 

 

  

 

 

DATA INDEPENDENCE 

The three-schema architecture can be used to further explain the concept of data independence, 
which can be defined as the capacity to change the schema at one level of a database system without 
having to change the schema at the next higher level.  

We can define two types of data independence: 

Dno Dname Dlocation Eno Ename Salary Address 



1. Logical data independence is the capacity to change the conceptual schema without having 
to change external schemas or application programs. We may change the conceptual schema to 
expand the database (by adding a record type or data item), to change constraints, or to reduce 
the database (by removing a record type or data item).  

Only the view definition and the mappings need be changed in a DBMS that supports logical 
data independence. After the conceptual schema undergoes a logical reorganization, application 
programs that reference the external schema constructs must work as before. Changes to 
constraints can be applied to the conceptual schema without affecting the external schemas or 
application programs. 

2. Physical data independence is the capacity to change the internal schema without having to 
change the conceptual schema. Hence, the external schemas need not be changed as well. 
Changes to the internal schema may be needed because some physical files had to be 
reorganized. 

For example, by creating additional access structures to improve the performance of 
retrieval or update. If the same data as before remains in the database, we should not have to 
change the conceptual schema.  

Whenever we have a multiple-level DBMS, its catalog must be expanded to include information 
on how to map requests and data among the various levels. The DBMS uses additional software to 
accomplish these mappings by referring to the mapping information in the catalog. 

 Data independence occurs because when the schema is changed at some level, the schema at the 
next higher level remains unchanged; only the mapping between the two levels is changed. Hence, 
application programs referring to the higher-level schema need not be changed. The three-schema 
architecture can make it easier to achieve true data independence, both physical and logical. However, the 
two levels of mappings create an overhead during compilation or execution of a query or program, 
leading to inefficiencies in the DBMS. Because of this, few DBMSs have implemented the full three-
schema architecture. 

DATA MODELS: 

A collection of tools for describing Data, Data relationships,Data semantics and Data constraints. 

The data models can be classified into four different categories: 

� Relational model   
� Entity-Relationship data model (mainly for database design) 
� Object-based data models (Object-oriented and Object-relational)   
� Semi-structured data model (XML)   
� Other older models: 

• Network model  

• Hierarchical model 

 

 

Relational Model 
 The relational model is currently the most popular data model in the database management 
systems. The popularity is because of simplicity and understandability. This data model is developed by 
E.F.Codd in 1970 which is based on relation, two dimensional table. 

The relational data model uses a collection of tables (also called as relation) to both data and the 
relationships among those data. Each table has multiple columns and each column has unique name. A 



relation consists of rows and columns. The row in table (relation) is called as Tuple and column name 
are known as attribute. 

Ex : Customer Table 

Customer Name UID Address Account No 

Tanveer A12345 Hyd A – 101

Ramesh B23456 Sec’bad A – 215

Ravi C34567 Charminar A – 305

Prasad A345789 Banglore A – 201

Smith Z459087 Delhi A - 405 

 

Advantages 

1. In this model, data redundancy is controlled to a greater extent 
2. The relational data model allows many-to-many relationships. 
3. The relational data model structures are very simple and easy to build 
4. Faster access of data is possible and storage space required is greatly 

reduced. 

 

Entity-Relationship Model 
 The entity-relationship (E-R) data model uses a collection of basic objects, called entities, 
and relationships among these objects. An entity is a “thing” or “object” in the real world that is 
distinguishable from other objects. The entity-relationship model is widely used in database design. 

It is a high level conceptual data model that describes the structure of database in terms of 
entities, relationship among entities & constraints on 
them. 

Basic Concepts of E-R Model:  

Entity 

Entity Set 

Attributes 

Relationship 

Relationship set 

Identifying Relationship 

which is made up of components. Some of they are 

• Rectangles : Which represent entity sets. 
• Ellipses : Which represent attributes 

• Diamonds : Which represent relationship sets 

• Lines : Which link attributes to entity sets and entity sets to relationship sets. 
 

 



Object-Based Data Model 
 Object-oriented programming (especially in Java, C++, or C#) has become the dominant 
software-development methodology. This led to the development of an object-oriented data model that 
can be seen as extending the E-R model with notions of encapsulation, methods (functions), and object 
identity. The object-relational data model combines features of the object-oriented data model and 
relational data model.  
 

Semi-structured Data Model 
 The semi-structured data model permits the specification of data where individual data 
items of the same type may have different sets of attributes. This is in contrast to the data models 
mentioned earlier, where every data item of a particular type must have the same set of attributes. The 
Extensible Markup Language (XML) is widely used to represent semi-structured data. 

 

 

Historically, the network data model and the hierarchical data model preceded the 
relational data model. These models were tied closely to the underlying implementation, and 
complicated the task of modeling data. As a result they are used little now, except in old database 
code that is still in service in some places.  

Network Data Model:  

 Data in the network model are represented by collections of records and relationships among 
data are represented by links,which can be viewed as pointers. The records in the database can be 
organized as a collection of arbitrary graphs. The Network data model is similar to Hierarchical model 
except that one data can have more than one parent. Any record in the database is allowed to own sets of 
other type of record. 

Advantages 

o It can be used to represent many-to-many relationships 

o It offers integration of data 

o The storage space is reduced considerably due to less redundancy 

o It provides faster access of data. 
 

Hierarchical Data Model :  

 

   A hierarchical database model is a data model in which the data is organized into a tree-like 
structure. The data is stored as records which are connected to one another through links. A record is a 
collection of fields, with each field containing only one value. 
 In this model the relationship among the data is represented by records and links. It consists of 
records which are connected to another through links. A link can be defined as an association between 
two records. This hierarchical data model can do considered as an upside –down tree, with the highest 
level of tree kept as root. 

Advantages 

o The hierarchical model, allows one-to-one-and one-to-many relationships. 
o The model has got the ability to handle large amount of data. 

Disadvantages 

o The model involves with complicated querying. 
o As duplication of data takes place, there is wastage of storage space. 
o During updating of data inconsistency exists. 
o The model does not allow many-to-many relationships. 



 

DATA BASE LANGUAGES: 

A database system provides two different types of Languages, one will specify the schema, and 
other will express database queries and updates. They are 

• Data-Definition Languages (DDL) 

• Data-Manipulation Language (DML) 

• Data Control language (DCL) 

 

1. Data-Definition Languages (DDL) : A database scheme is specified by set of definitions 
which are expressed by special language called Data Definition Language (DDL). The result of 
compilation of DDL statements is a set of tables that is stored in a special file called ‘Data dictionary’ or 
“data directory. 

A data dictionary is a file that contains metadata, i.e. Data about data. This file is consulted 
before actual data are read or modified in the database system 

The storage structure and access methods used by the database system are specified by a set of 
definitions in a special type of DDL called a ‘data storage and data definition language’. The result of 
consultation of these definitions is a set instruction to specify the implementation details of the database 
schemas. Which are usually hidden form the users. 

The  database systems implement integrity constraints that can be tested with minimal overhead: 

 Domain Constraints: A domain of possible values must be associated with every attribute (for 
example, integer types, character types, date/time types). Declaring an attribute to be of a 
particular domain acts as a constraint on the values that it can take. Domain constraints are the 
most elementary form of integrity constraint. They are tested easily by the system whenever a 
new data item is entered into the database. 

  
 Referential Integrity: There are cases where we wish to ensure that a value that appears in one 

relation for a given set of attributes also appears in a certain set of attributes in another relation 
(referential integrity).  

  
 Assertions: An assertion is any condition that the database must always satisfy. Domain 

constraints and referential-integrity constraints are special forms of assertions.  
  
       For example, “Every department must have at least five courses offered every 

semester”  must be expressed as an assertion. When an assertion is created, the system tests it for 
validity. If the assertion is valid, then any future modification to the database is allowed only if it 
does not cause that assertion to be violated. 

  
 Authorization: We may want to differentiate among the users as far as the type of access they are 

permitted on various data values in the database. These differentiations are expressed in terms of 
authorization, the most common being:  

     read authorization, which allows reading, but not modification, of data; 
          insert authorization, which allows insertion of new data, but not modification of  

          existing data;  
        update authorization, which allows modification, but not deletion, of data; and  

        delete authorization, which allows deletion of data. We may assign the user all,        
              none, or a combination of these types of authorization. 

The DDL commands are 



• To create the database instance – CREATE 
• To alter the structure of database – ALTER 
• To drop database instances – DROP 
• To delete tables in a database instance – TRUNCATE 
• To rename database instances – RENAME 

All these commands specify or update the database schema that’s why they come under Data 
Definition language. 

o Used by the DBA and database designers to specify the conceptual schema of a database. 
o In many DBMSs, the DDL is also used to define internal and external schemas (views). 
o In some DBMSs, separate storage definition language (SDL) and view definition language 

(VDL) are used to define internal and external schemas. 
o SDL is typically realized via DBMS commands provided to the DBA and database designers 
o DDL compiler generates a set of tables stored in a data dictionary 
o Data dictionary contains metadata (i.e., data about data) 

 
2. Data-Manipulation Language (DML) : A DML is language which enables users to access or 

manipulate data as organized by appropriate data model. The goal is to provide efficient human 
interaction with the system. The DML allows following 

(a) The retrieval information form the database 

(b) The Insertion of new information in to existing database 

(c) The deletion of existing information from database 

(d) The modification of information stored in the database. 
The DML commands are 

• To read records from table(s) – SELECT 
• To insert record(s) into the table(s) – INSERT 
• Update the data in table(s) – UPDATE 
• Delete all the records from the table – DELETE 

o Used to specify database retrievals and updates 
o DML commands (data sublanguage) can be embedded in a general-purpose 

programming language (AKA host language), such as COBOL, C, C++, or Java. 
o Alternatively, stand-alone DML commands can be applied directly (called a query 

language). 
o Language for accessing and manipulating the data organized by the appropriate 

data model 
o DML also known as query language 

 

A DML is language which enables users to access or manipulate data. There are basically two types. 

• Procedural DML: This requires a user to specify what data are needed and how to get those 
data from existing database. 

• Non procedural DML: Which require a user to specify what data are needed ‘without’ 
specifying how to get those data. 

•  

Non procedural DMLs are usually easier to learn and use than procedural DMLs. A user does not 
have to specify how to the data, these languages may generate code that is not as that produced by 
Procedural DML. Hence we can make remedy this difficulty by various optimization techniques. 



A Query is a statement, a request for retrieval information. The portion of a DML, that involves 
information retrieval is called a ‘Query Language’. 

This query in the SQL language finds the name of the customer whose customer-id is 192-83-7465: 

Select customer.customer-name from customer  wherecustomer.customer-id = 192-83-7465 

The query specifies that those rows from the table customer where the customer-id is 192-83-
7465 must be retrieved, and the customer-name attribute of these rows must be displayed. 

Queries may involve information from more than one table. For instance, the following query finds the 
balance of all accounts owned by the customer with customerid 192-83-7465. 

Select account.balance from depositor, account where depositor.customer-id = 192-83-7465  

and depositor.account-number= account.account-number 

 

There are a number of database query languages in use, either commercially or experimentally. 

The levels of abstraction apply not only to defining or structuring data, but also to manipulating data. 
At the physical level, we must define algorithms that allow efficient access to data. At higher levels of 
abstraction, we emphasize ease of use. The goal is to allow humans to interact efficiently with the 
system. The query processor component of the database system translates DML queries into sequences 
of actions at the physical level of the database system. 

• Data Control language (DCL): DCL is used for granting and revoking user access on a 
database  

• To grant access to user – GRANT 
• To revoke access from user – REVOKE 

In practical data definition language, data manipulation language and data control languages are 
not separate language; rather they are the parts of a single database language such as SQL. 

DATA DICTIONARY 

We can define a data dictionary as a DBMS component that stores the definition of data 
characteristics and relationships. You may recall that such “data about data” were labeled metadata. The 
DBMS data dictionary provides the DBMS with its self describing characteristic. In effect, the data 
dictionary resembles and X-ray of the company’s entire data set, and is a crucial element in the data 
administration function. 

The two main types of data dictionary exist, integrated and stand alone.   

An integrated data dictionary is included with the DBMS. For example, all relational 
DBMSs include a built in data dictionary or system catalog that is frequently accessed and 
updated by the RDBMS.  

Other DBMSs – Stand alone especially older types, do not have a built in data dictionary 
instead the DBA may use third party stand alone data dictionary systems. 

Data dictionaries can also be classified as active or passive.  

An active data dictionary is automatically updated by the DBMS with every database 
access, thereby keeping its access information up-to-date.   



A passive data dictionary is not updated automatically and usually requires a batch 
process to be run. Data dictionary access information is normally used by the DBMS for query 
optimization purpose. 

The data dictionary’s main function is to store the description of all objects that interact with the 
database. Integrated data dictionaries tend to limit their metadata to the data managed by the DBMS. 
Stand alone data dictionary systems are more usually more flexible and allow the DBA to describe and 
manage all the organization’s data, whether or not they are computerized. Whatever the data dictionary’s 
format, its existence provides database designers and end users with a much improved ability to 
communicate. In addition, the data dictionary is the tool that helps the DBA to resolve data conflicts. 

Although, there is no standard format for the information stored in the data dictionary several 
features are common. For example, the data dictionary typically stores descriptions of all: 

• Data elements that are define in all tables of all databases. Specifically the data dictionary stores 
the name, data types, display formats, internal storage formats, and validation rules. The data 
dictionary tells where an element is used, by whom it is used and so on. 

• Tables define in all databases. For example, the data dictionary is likely to store the name of the 
table creator, the date of creation access authorizations, the number of columns, and so on. 

• Indexes define for each database tables. For each index the DBMS stores at least the index name 
the attributes used, the location, specific index characteristics and the creation date. 

• Define databases: who created each database, the date of creation where the database is located, 
who the DBA is and so on. 

• End users and The Administrators of the data base 

• Programs that access the database including screen formats, report formats application formats, 
SQL queries and so on. 

• Access authorization for all users of all databases. 

• Relationships  among  data  elements  which  elements  are  involved:  whether  the relationship 
are mandatory or optional, the connectivity and cardinality and so on. 

 

If the data dictionary can be organized to include data external to the DBMS itself, it becomes an 
especially flexible to for more general corporate resource management. The management of such an 
extensive data dictionary, thus, makes it possible to manage the use and allocation of all of the 
organization information regardless whether it has its roots in the database data. 

  



RELATIONAL DATABASES : 

A relational database is based on the relational model and uses a collection of tables to represent 
both data and the relationships among those data. It also includes a DML and DDL. 

The purpose of the relational model is to provide a declarative method for specifying data and 
queries: users directly state what information the database contains and what information they want from 
it, and let the database management system software take care of describing data structures for storing 
the data and retrieval procedures for answering queries. 

Relational Database: One of the major advantages of using a relational database is its structural 
flexibility. It allows the users to retrieve the data in any combination 

A relation is a two-dimensional array, consisting of horizontal rows and vertical columns. Each 
row, column ie a cell contains a unique value and no two rows are identical with respect to one another. 

Columns are always self-consistent in the sense that it has the same meaning in every row. This 
means that the database management system (DBMS) is not concerned with its appearance, either first 
or next. The table will be processed the same way, regardless of the order of the columns. 

Relations are commonly referred as tables.. Every column in a database table acts as attribute 
since the meaning of the column is same for every row of the database .A row consists of a set of fields 
and hence commonly referred as a record. 

Properties of Relational Database: The important properties of a relational database are listed 
below: 

1. A relational database is a collection of relations. 
2. The database tables have a row column format. 
3. Operators are available either to join or separate columns of the database table. 
4. Relations are formed with respect to data only. 
5. The tables can be accessed by using simple non-procedural statements. 
6. The data is fully independent, that is it will be the same irrespective of the access path used. 

 

Database Access from Application Programs 

SQL is not as powerful as a universal Turing machine; that is, there are some computations that 
are possible using a general-purpose programming language but are not possible using SQL. SQL also 
does not support actions such as input from users, output to displays, or communication over the 
network. Such computations and actions must be written in a host language, such as C, C++, or Java, 
with embedded SQL queries that access the data in the database. Application programs are programs 
that are used to interact with the database in this fashion. 

Examples in a university system are programs that allow students to register for courses, 
generate class rosters, calculate student GPA, generate payroll checks, etc. To access the database, DML 
statements need to be executed from the host language. There are two ways to do this: 

By providing an application program interface (set of procedures) that can be used to send DML 
and DDL statements to the database and retrieve the results. 

The Open Database Connectivity (ODBC) standard for use with the C language is a commonly 
used application program interface standard. The Java Database Connectivity (JDBC) standard provides 
corresponding features to the Java language. 

By extending the host language syntax to embed DML calls within the host language program. 
Usually, a special character prefaces DML calls, and a preprocessor, called the DML precompiler, 
converts the DML statements to normal procedure calls in the host language. 

DATABASE DESIGN: 



Database systems are designed to manage large bodies of information. These large bodies of 
information do not exist in isolation. They are part of the operation of some enterprise whose end 
product may be information from the database or may be some device or service for which the database 
plays only a supporting role. 

Database Design is a collection of processes that facilitate the designing, development, 
implementation and maintenance of enterprise data management systems. 

It helps produce database systems  

1. That meet the requirements of the users 
2. Have high performance. 

A high-level data model provides the database designer with a conceptual frame-work in which to 
specify the data requirements of the database users, and how the database will be structured to fulfill 
these requirements. The initial phase of database design, then, is to characterize fully the data needs of 
the prospective database users. The database designer needs to interact extensively with domain experts 
and users to carry out this task. The outcome of this phase is a specification of user requirements. 

Design Process: 

 

The database development life cycle has a number of stages that are followed when developing 
database systems. The steps in the development life cycle do not necessary have to be followed 
religiously in a sequential manner.  

On small database systems, the database system development life cycle is usually very simple 
and does not involve a lot of steps.  

In order to fully appreciate the above diagram, let's look at the individual components listed in each step. 

Requirements analysis 

• Planning - This stages concerns with planning of entire Database Development Life-  
                      Cycle.  It takes into consideration the Information Systems strategy of the  
                      organization. 

• System definition - This stage defines the scope and boundaries of the proposed database 
system. 

Database designing 



The process of moving from an abstract data model to the implementation of the database proceeds in 
two final design phases. 

 In the logical-design phase, the designer maps the high-level conceptual schema onto the 
implementation data model of the database system that will be used.  

The designer uses the resulting system-specific database schema in the subsequent physical-design 

phase, in which the physical features of the database are specified. 

Implementation 

A fully developed conceptual schema indicates the functional requirements of the enterprise. In a 
specification of functional requirements, users describe the kinds of operations (or transactions) that 
will be performed on the data. Example operations include modifying or updating data, searching for 
and retrieving specific data, and deleting data. At this stage of conceptual design, the designer can 
review the schema to ensure it meets functional requirements. 

• Data conversion and loading - this stage is concerned with importing and converting data from 
the old system into the new database. 

• Testing - this stage is concerned with the identification of errors  in the newly implemented 
system .It checks the database against requirement specifications. 

 

Database Design for a University Organization 

 
To illustrate the design process, let us examine how a database for a university could be designed. 

The initial specification of user requirements may be based on interviews with the database users, and 
on the designer’s own analysis of the organization. The description that arises from this design phase 
serves as the basis for specifying the conceptual structure of the database. Here are the major 
characteristics of the university. 

 
The university is organized into departments. Each department is identified by a unique name (dept 

name), is located in a particular building, and has a budget. 
 
 Each department has a list of courses it offers. Each course has associated with it a course id, title, 
dept name, and credits, and may also have have associated prerequisites. 
 
Instructors are identified by their unique ID. Each instructor has name, associated department (dept 

name), and salary. 
 
Students are identified by their unique ID. Each student has a name, an associated major department 
(dept name), and tot cred (total credit hours the student earned thus far). 
 
The university maintains a list of classrooms, specifying the name of the building, room number, and   
room capacity. 

 
The university maintains a list of all classes (sections) taught. Each section is identified by a course 

id, sec id, year, and semester, and has associated with it a semester, year, building, room number, 
and time slot id (the time slot when the class meets). 

 



The department has a list of teaching assignments specifying, for each instructor, the sections the 
instructor is teaching. 

 
The university has a list of all student course registrations, specifying, for each student, the courses 
and the associated sections that the student has taken (registered for). 

Two Types of Database Techniques: 

1.     Normalization 
2.     ER Modeling 

NORMALIZATION : 

Another method for designing a relational database is to use a process commonly known as 
normalization. The goal is to generate a set of relation schemas that allows us to store information 
without unnecessary redundancy, yet also allows us to retrieve information easily. The approach is to 
design schemas that are in an appropriate normal form. To determine whether a relation schema is in one 
of the desirable normal forms, we need additional information about the real-world enterprise that we 
are modeling with the database. The most common approach is to use functional dependencies. 

To understand the need for normalization, let us look at what can go wrong in a bad database 
design. Among the undesirable properties that a bad design may have are: 

• Repetition of information 

• Inability to represent certain information 

Normalization is a process of organizing the data in database to avoid data redundancy, insertion 
anomaly, update anomaly & deletion anomaly. Let’s discuss about anomalies first then we will discuss 
normal forms with examples. 

Anomalies in DBMS  : There are three types of anomalies that occur when the database is not 
normalized. These are – Insertion, update and deletion anomaly. Let’s take an example to understand 
this. 

Example: Suppose a manufacturing company stores the employee details in a table named employee 
that has four attributes: emp_id for storing employee’s id, emp_name for storing employee’s name, 
emp_address for storing employee’s address and emp_dept for storing the department details in which 
the employee works. At some point of time the table looks like this: 

emp_id emp_name emp_address emp_dept 

101 Rick Delhi D001 

101 Rick Delhi D002 

123 Maggie Agra D890 

166 Glenn Chennai D900 

166 Glenn Chennai D004 

The above table is not normalized. We will see the problems that we face when a table is not 
normalized. 



Update anomaly: In the above table we have two rows for employee Rick as he belongs to two 
departments of the company. If we want to update the address of Rick then we have to update the same 
in two rows or the data will become inconsistent. If somehow, the correct address gets updated in one 
department but not in other then as per the database, Rick would be having two different addresses, 
which is not correct and would lead to inconsistent data. 

Insert anomaly: Suppose a new employee joins the company, who is under training and currently not 
assigned to any department then we would not be able to insert the data into the table if emp_dept field 
doesn’t allow nulls. 

Delete anomaly: Suppose, if at a point of time the company closes the department D890 then deleting 
the rows that are having emp_dept as D890 would also delete the information of employee Maggie since 
she is assigned only to this department. 

To overcome these anomalies we need to normalize the data. 

The Entity-Relationship Model 

The entity-relationship (E-R) data model uses a collection of basic objects, called entities, and 

relationships among these objects. An entity is a “thing” or “object” in the real world that is 
distinguishable from other objects. For example, each person is an entity, and bank accounts can be 
considered as entities. 

Entities are described in a database by a set of attributes. For example, the attributes dept name, 
building, and budget may describe one particular department in a university, and they form attributes of 
the department entity set. Similarly, attributes ID, name, and salary may describe an instructor entity. 

The extra attribute ID is used to identify an instructor uniquely (since it may be possible to have two 
instructors with the same name and the same salary). A unique instructor identifier must be assigned to 
each instructor. In the United States, many organizations use the social-security number of a person (a 
unique number the U.S. government assigns to every person in the United States) as a unique identifier. 

A relationship is an association among several entities. For example, a member relationship 
associates an instructor with her department. The set of all entities of the same type and the set of all 
relationships of the same type are termed an entity set and relationship set, respectively. 

The overall logical structure (schema) of a database can be expressed graph-ically by an entity-

relationship (E-R) diagram. There are several ways in which to draw these diagrams. One of the most 
popular is to use the Unified Modeling Language (UML). In the notation we use, which is based on 

UML, an E-R diagram is represented as follows: 

 

  
  
  
  
  
 Entity sets are represented by a rectangular box with the entity set name in the header and 

the attributes listed below it. 
 Relationship sets are represented by a diamond connecting a pair of related entity sets. The 

name of the relationship is placed inside the diamond. 
 

Member 

Instructor 

ID 
Name 
Salary 

Department 

Dept_Name 
Building 

budget 

Member 



As an illustration, consider part of a university database consisting of instruc-tors and the 
departments with which they are associated. In the above Figure shows the corresponding E-R diagram. 
The E-R diagram indicates that there are two entity sets, instructor and department, with attributes as 
outlined earlier. The diagram also shows a relationship member between instructor and department. 

In addition to entities and relationships, the E-R model represents certain constraints to which the 
contents of a database must conform. One important constraint is mapping cardinalities, which 
express the number of entities to which another entity can be associated via a relationship set. For 
example, if each instructor must be associated with only a single department, the E-R model can 
express that constraint. 

 

DATA  ARCHITECTURE: 

 
Three important characteristics of the database approach are  

(1) Insulation of programs and data (program-data and program-operation independence);  

(2) Support of multiple user views; and  

(3) Use of a catalog to store the database description (schema).  

In this section we specify an architecture for database systems, called the three-schema 

architecture, which was proposed to help achieve and visualize these characteristics. 

The goal of the three-schema architecture, illustrated in Figure 1.1, is to separate the user 
applications and the physical database. In this architecture, schemas can be defined at the following 
three levels: 

 The internal level has an internal or Physical schema, which describes the physical storage 
structure of the database. The internal schema uses a physical data model and describes the 
complete details of data storage and access paths for the database. 

 

 The conceptual level has a conceptual or Logical schema, which describes the structure of the 
whole database for a community of users. The conceptual schema hides the details of physical 
storage structures and concentrates on describing entities, data types, relationships, user 
operations, and constraints. A high-level data model or an implementation data model can be 
used at this level. 

 

 The external or view level includes a number of external or View schemas or user views. Each 
external schema describes the part of the database that a particular user group is interested in and 
hides the rest of the database from that user group. A high-level data model or an implementation 
data model can be used at this level. 

 

Hence, the DBMS must transform a request specified on an external schema into a request against 
the conceptual schema, and then into a request on the internal schema for processing over the stored 
database. If the request is a database retrieval, the data extracted from the stored database must be 
reformatted to match the user’s external view.  

The processes of transforming requests and results between levels are called mappings. These 
mappings may be time-consuming, so some DBMSs—especially those that are meant to support small 



databases—do not support external views. Even in such systems, however, a certain amount of mapping 
is necessary to transform requests between the conceptual and internal levels. 

The DBMS accepts SQL commands generated from a variety of user interfaces, produces query 
evaluation plans, executes these plans against the database, and returns the answers. (This is a 
implication: SQL commands can be embedded in host language application programs, e.g., Java or 
COBOL programs. We ignore these issues to concentrate on the core DBMS functionality.) 

 
When a user issues a query, the parsed query is presented to a query optimizer, which uses 

information about how the data is stored to produce an efficient execution plan for evaluating the query. 
An execution plan is a blueprint for evaluating a query, and is usually represented as a tree of relational 
operators  
 

The files and access methods layer code sits on top of the buffer manager, which brings pages in 
from disk to main memory as needed in response to read requests.  
 

The lowest layer of the DBMS software deals with management of space on disk, where the data 
is stored. Higher layers allocate, de-allocate, read, and write pages through (routines provided by) this 
layer, called the disk space manager.  

 
The DBMS supports concurrency and crash recovery by carefully scheduling user requests and 

maintaining a log of all changes to the database. DBMS components associated with concurrency 
control and recovery include the transaction manager, which ensures that transactions request and 
release locks according to a suitable locking protocol and schedules the execution transactions; the lock 
manager, which keeps track of requests for locks and grants locks on database objects when they 
become available; and the recovery manager, which is responsible for maintaining a log, and restoring 
the system to a consistent state after a crash. The disk space manager, buffer manager, and file and 
access method layers must interact with these components. 

  

The architecture of a database systems is greatly influenced by the underlying computer system 
on which the database is running:   

• Centralized 

• Client-server 

• Parallel (multi-processor) 

• Distributed 

 

The database and the DBMS catalog are usually stored on disk. Access to the disk is controlled 
primarily by the operating system (OS), which schedules disk read/write. Many DBMSs have their own 
buffer management module to schedule disk read/write, because this has a considerable effect on 
performance. Reducing disk read/write improves performance considerably. A higher-level stored data 
manager module of the DBMS controls access to DBMS information that is stored on disk, whether it is 
part of the database or the catalog. 

 
  In the following Figure, in a simplified form, the typical DBMS components. The figure is 
divided into two parts. The top part of the figure refers to the various users of the database environment 
and their interfaces. The lower part shows the internals of the DBMS responsible for storage of data and 
processing of transactions. 



 

 

 
 

The architecture of a database system is greatly influenced by the underlying computer system on 
which the database system runs. Database systems can be centralized, or client-server, where one server 
machine executes work on behalf of multiple client machines. Database systems can also be designed to 
exploit parallel computer architectures. Distributed databases span multiple geographically separated 
machines. 

 
Most users of a database system today are not present at the site of the database system, but 

connect to it through a network. We can therefore differentiate between client machines, on which 
remote database users work, and server machines, on which the database system runs. 

 
One-tier architecture 

 
Imagine a person on a desktop computer who uses Microsoft Access to load up a list of personal 

addresses and phone numbers that he or she has saved in MS Windows' “My Documents” folder.   



This is an example of a one-tier database architecture.  The program (Microsoft Access) runs on 
the user's local machine, and references a file that is stored on that machine's hard drive, thus using a 
single physical resource to access and process information.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Two-tier architecture 

 
Database applications are usually partitioned into two or three parts, as in Figure (a).  

In a Two-tier architecture, the application resides at the client machine, where it invokes database 
system functionality at the server machine through query language statements. Application program 
interface standards like ODBC and JDBC are used for interaction between the client and the server. 
 

Advantages: 

 
1. Easy to maintain and modification is bit easy. 
2. Communication is faster. 

 

Disadvantages: 

 
1. In two tier architecture application performance will be degrade upon increasing the users. 
2. Cost-ineffective. 

 
Three-tier architecture 
 

In contrast (Figure (b)), in a Three-tier architecture, the client machine acts as merely a front 
end and does not contain any direct database calls. Instead, the client end communicates with an 
Intermediate layer called application server, usually through a forms interface. The application server 
in turn communicates with a database system to access data.  It is commonly used architecture for web 
applications.  
 

Advantages 



1.    High performance, lightweight persistent objects. 
2.    Scalability – Each tier can scale horizontally. 
3.    Performance – Because the Presentation tier can cache requests, network utilization is    
       minimized, and the load is reduced on the Application and Data tiers. 
4.    Better Re-usability. 
5.    Improve Data Integrity. 
6.    Improved Security – Client is not direct access to database. 
7.    Easy to maintain, to manage, to scale, loosely coupled etc. 

Disadvantages 

1.    Increase Complexity/Effort 

 

DATA STORAGE AND QUERYING: 

 A database system is partitioned into modules that deal with each of the responsibilities of the 
overall system. The functional components of a database system can be broadly divided into the storage 
manager and the query processor components. 

The storage manager is important because databases typically require a large amount of storage 
space. Corporate databases range in size from hundreds of gigabytes to, for the largest databases, 
terabytes of data. A gigabyte is approximately 1000 megabytes (actually 1024) (1 billion bytes), and a 
terabyte is 1 million megabytes (1 trillion bytes).  

Since the main memory of computers cannot store this much information, the information is 
stored on disks. Data are moved between disk storage and main memory as needed. Since the movement 
of data to and from disk is slow relative to the speed of the central processing unit, it is imperative that 
the database system structure the data so as to minimize the need to move data between disk and main 
memory. 

The query processor is important because it helps the database system to simplify and facilitate 
access to data. The query processor allows database users to obtain good performance while being able 
to work at the view level and not be burdened with understanding the physical-level details of the 
implementation of the system. It is the job of the database system to translate updates and queries 
written in a nonprocedural language, at the logical level, into an efficient sequence of operations at the 
physical level. 
 

Storage Manager 

 

The storage manager is the component of a database system that provides the interface between 
the low-level data stored in the database and the application programs and queries submitted to the 
system. The storage manager is responsible for the interaction with the file manager. The raw data are 
stored on the disk using the file system provided by the operating system. The storage manager 
translates the various DML statements into low-level file-system commands. 

 
 
Thus, the storage manager is responsible for storing, retrieving, and updating data in the 

database. 
 
The storage manager components include: 



 
• Authorization and integrity manager, which tests for the satisfaction of integrity constraints 

and checks the authority of users to access data. 
• Transaction manager, which ensures that the database remains in a consistent (correct) state 

despite system failures, and that concurrent transaction executions proceed without 
conflicting. 

• File manager, which manages the allocation of space on disk storage and the data structures 
used to represent information stored on disk. 

• Buffer manager,which is responsible for fetching data from disk storage into main memory, 
and deciding what data to cache in main memory. The buffer manager is a critical part of the 
database system, since it enables the database to handle data sizes that are much larger than 
the size of main memory. 

•  
The storage manager implements several data structures as part of the physical system implementation: 
 

• Data files, which store the database itself. 
• Data dictionary, which stores metadata about the structure of the database, in particular the 

schema of the database. 
• Indices, which can provide fast access to data items. Like the index in this textbook, a database 

index provides pointers to those data items that hold a particular value. For example, we could 
use an index to find the instructor record with a particular ID, or all instructor records with a 
particular name. Hashing is an alternative to indexing that is faster in some but not all cases. 

 

The Query Processor 

 

The query processor components include: 
 

• DDL interpreter,which interprets DDL statements and records the definitions in the data 
dictionary. 

• DML compiler,which translates DML statements in a query language into an evaluation plan 
consisting of low-level instructions that the query evaluation engine understands. 

A query can usually be translated into any of a number of alternative evaluation plans 
that all give the same result. The DML compiler also performs query optimization; that is, it 
picks the lowest cost evaluation plan from among the alternatives. 

• Query evaluation engine, which executes low-level instructions generated by the DML 
compiler. 

 

 

 

TRANSACTION MANAGEMENT: 
 
A transaction is a collection of operations that performs a single logical function in a database 

application. Each transaction is a unit of both atomicity and consistency.  A transaction can be defined 
as a group of tasks. A single task is the minimum processing unit which cannot be divided further. 

Let’s take an example of a simple transaction. Suppose a bank employee transfers Rs 500 from A's 
account to B's account. This very simple and small transaction involves several low-level tasks. 

 

A’s Account      B’s Account 



Open_Account(A)   
Old_Balance = A.balance  
New_Balance = Old_Balance – 500
A.balance = New_Balance  
Close_Account(A)   
  

ACID Properties 

A transaction is a very small unit of a program and it may contain several lowlevel tasks. A 
transaction in a database system must maintain 
commonly known as ACID properties 

• Atomicity − This property states that a transaction must be treated as an atomic unit, that is, 
either all of its operations are executed or none. There
transaction is left partially completed. States should be defined either before the execution of the 
transaction or after the execution/abortion/failure of the transaction.

• Consistency − The database must remain in a
transaction should have any adverse effect on the data residing in the database. If the database 
was in a consistent state before the execution of a transaction, it must remain consistent after the 
execution of the transaction as well.

• Durability − The database should be durable enough to hold all its latest updates even if the 
system fails or restarts. If a transaction updates a chunk of data in a database and commits, then 
the database will hold the modified dat
data could be written on to the disk, then that data will be updated once the system springs back 
into action. 

• Isolation − In a database system where more than one transaction are being executed 
simultaneously and in parallel, the property of isolation states that all the transactions will be 
carried out and executed as if it is the only transaction in the system. No transaction will affect 
the existence of any other transaction.

States of Transactions 

A transaction in a database can be in one of the following states 

 

 

 

 

 

Active − In this state, the transaction is being executed. This is the initial state of every transaction.

Partially Committed − When a transaction executes its final operation, it is said to be in a partially committed 
state. 

Failed − A transaction is said to be in a failed state if any of the checks made by the database recovery system 
fails. A failed transaction can no longer 

  Open_Account(B) 
  Old_Balance = B.balance

500   New_Balance = Old_Balance + 500
  B.balance = New_Balance
  Close_Account(B) 

A transaction is a very small unit of a program and it may contain several lowlevel tasks. A 
transaction in a database system must maintain Atomicity, Consistency, Isolation, and 
commonly known as ACID properties − in order to ensure accuracy, completeness, and data integrity.

− This property states that a transaction must be treated as an atomic unit, that is, 
either all of its operations are executed or none. There must be no state in a database where a 
transaction is left partially completed. States should be defined either before the execution of the 
transaction or after the execution/abortion/failure of the transaction. 

− The database must remain in a consistent state after any transaction. No 
transaction should have any adverse effect on the data residing in the database. If the database 
was in a consistent state before the execution of a transaction, it must remain consistent after the 

he transaction as well. 
− The database should be durable enough to hold all its latest updates even if the 

system fails or restarts. If a transaction updates a chunk of data in a database and commits, then 
the database will hold the modified data. If a transaction commits but the system fails before the 
data could be written on to the disk, then that data will be updated once the system springs back 

− In a database system where more than one transaction are being executed 
imultaneously and in parallel, the property of isolation states that all the transactions will be 

carried out and executed as if it is the only transaction in the system. No transaction will affect 
the existence of any other transaction. 

A transaction in a database can be in one of the following states − 

− In this state, the transaction is being executed. This is the initial state of every transaction.

− When a transaction executes its final operation, it is said to be in a partially committed 

− A transaction is said to be in a failed state if any of the checks made by the database recovery system 
fails. A failed transaction can no longer proceed further. 

Old_Balance = B.balance 
New_Balance = Old_Balance + 500 

New_Balance 

A transaction is a very small unit of a program and it may contain several lowlevel tasks. A 
solation, and Durability − 

− in order to ensure accuracy, completeness, and data integrity. 

− This property states that a transaction must be treated as an atomic unit, that is, 
must be no state in a database where a 

transaction is left partially completed. States should be defined either before the execution of the 

consistent state after any transaction. No 
transaction should have any adverse effect on the data residing in the database. If the database 
was in a consistent state before the execution of a transaction, it must remain consistent after the 

− The database should be durable enough to hold all its latest updates even if the 
system fails or restarts. If a transaction updates a chunk of data in a database and commits, then 

a. If a transaction commits but the system fails before the 
data could be written on to the disk, then that data will be updated once the system springs back 

− In a database system where more than one transaction are being executed 
imultaneously and in parallel, the property of isolation states that all the transactions will be 

carried out and executed as if it is the only transaction in the system. No transaction will affect 

− In this state, the transaction is being executed. This is the initial state of every transaction. 

− When a transaction executes its final operation, it is said to be in a partially committed 

− A transaction is said to be in a failed state if any of the checks made by the database recovery system 



Aborted − If any of the checks fails and the transaction has reached a failed state, then the recovery manager rolls 
back all its write operations on the database to bring the database back to its original state where it was prior to 
the execution of the transaction. Transactions in this state are called aborted. The database recovery module can 
select one of the two operations after a transaction aborts − 

o Re-start the transaction 
o Kill the transaction 

Committed − If a transaction executes all its operations successfully, it is said to be committed. All its effects are 
now permanently established on the database system. 

 

A transaction is a collection of operations that performs a single logical function in a database 
application. Each transaction is a unit of both atomicity and consistency. Thus, we require that 
transactions do not violate any database consistency constraints. That is, if the database was consistent 
when a transaction started, the database must be consistent when the transaction successfully terminates. 
However, during the execution of a transaction, it may be necessary temporarily to allow inconsistency, 
since either the debit of A or the credit of B must be done before the other. This temporary 
inconsistency, although necessary, may lead to difficulty if a failure occurs.  

It is the programmer’s responsibility to define properly the various transactions, so that each 
preserves the consistency of the database. For example, the transaction to transfer funds from the 
account of department A to the account of department B could be defined to be composed of two 
separate programs: one that debits account A, and another that credits account B. The execution of these 
two programs one after the other will indeed preserve consistency. However, each program by itself 
does not transform the database from a consistent state to a new consistent state. Thus, those programs 
are not transactions. Ensuring the atomicity and durability properties are the responsibility of the 
database system itself specifically, of the recovery manager. In the absence of failures, all transactions 
complete successfully, and atomicity is achieved easily. 

However, because of various types of failure, a transaction may not always complete its execution 
successfully. If we are to ensure the atomicity property, a failed transaction must have no effect on the 
state of the database. Thus, the database must be restored to the state in which it was before the 
transaction in question started executing. The database system must therefore perform failure recovery, 
that is, detect system failures and restore the database to the state that existed prior to the occurrence of 
the failure.  

Finally, when several transactions update the database concurrently, the consistency of data may no 
longer be preserved, even though each individual transaction is correct. It is the responsibility of the 
concurrency-control manager to control the interaction among the concurrent transactions, to ensure the 
consistency of the database. The transaction manager consists of the concurrency-control manager 

and the recovery manager. 

 

 

 

DATA MINING AND INFORMATION RETRIEVAL: 

 
The term data mining refers loosely to the process of semi-automatically analyzing large 

databases to find useful patterns. Like knowledge discovery in artificial intelligence (also called 
machine learning) or statistical analysis, data mining attempts to discover rules and patterns from data. 



However, data mining differs from machine learning and statistics in that it deals with large volumes of 
data, stored primarily on disk. That is, data mining deals with “knowledge discovery in databases.” 

The practice of examining large pre-existing database in order to generate new information or 
pattern. 

 
Data mining applications that analyze large amounts of data searching for the occurrences of 

specific patterns or relationships, and for identifying unusual patterns in areas such as credit card usage. 
It was quickly apparent that basic relational systems were not very suitable for many of these 
applications, usually for one or more of the following reasons:  

 
� More complex data structures were needed for modeling the application than the simple relational 

representation.  
� New data types were needed in addition to the basic numeric and character string types.  
� New operations and query language constructs were necessary to manipulate the new data types.  
� New storage and indexing structures were needed for efficient searching on the new data types.  

 
This led DBMS developers to add functionality to their systems. Some functionality was general 

purpose, such as incorporating concepts from object-oriented databases into relational systems. Other 
functionality was special purpose, in the form of optional modules that could be used for specific 
applications.  

 
Data mining is a process used by companies to turn raw data into useful information.  By using 

software, to look for pattern in large batch of data. Business can learn more about their customers and 
develop more effective marketing strategies as well as increase sales and decrease costs. 

 
The major steps involved in a data mining process are: 

• Extract, transform and load data into a data warehouse 
• Store and manage data in a multidimensional databases 
• Provide data access to business analysts using application software 
• Present analyzed data in easily understandable forms, such as graphs. 

Data mining process depends on effective data collection and warehousing as well as computer 
processing. When companies centralize their data into one database or program, It is called data 
warehousing.  Such as data warehouses, for efficient analysis, data mining algorithms, facilitating 
business decision making and other information requirements to kindly cut costs and increase the sales. 

 
 

Databases versus Information Retrieval 

 
Textual data, too, has grown explosively. Textual data is unstructured, unlike the rigidly 

structured data in relational databases. Querying of unstructured textual data is referred to as 
information retrieval. 
   

Traditionally, database technology applies to structured and formatted data that arises in routine 
applications in government, business and industry. Database technology is heavily used in 
manufacturing, retail, banking, insurance, finance, and health care industries, where structured data is 
collected through forms, such as invoices or patient registration documents. An area related to database 
technology is Information Retrieval (IR), which deals with books, manuscripts, and various forms of 
library-based articles. Data is indexed, cataloged and annotated using keywords.  



Information retrieval, as the name implies, concerns the retrieving of relevant information from 
databases. It is basically concerned with facilitating the user's access to large amounts of (predominantly 
textual) information.  

The process of information retrieval involves the following stages: 

1. Representing Collections of Documents  
- how to represent, identify and process the collection of documents. 

2. User-initiated querying  
- understanding and processing of the queries. 

3. Retrieval of the appropriate documents  
- the searching mechanism used to obtain and retrieve the relevant documents 

 
 
Applications of Information retrieval: 

1. Text Information Retrieval 
 

Terabytes of data are being cumulated on the internet which includes Facebook and Twitter 
data as well as Instagrams and other social networking sites. This vast repository may be 
mined, and controlled to some extent, to swerve public opinion in a candidate's favor 
(election strategy) or evaluate a product's performance (marketing and sales strategy) 

2.  Multimedia Information Retrieval 

 
Storage, indexing, search, and delivery of multimedia data such as images, videos, sounds, 
3D graphics or their combination. By definition, it includes works on, for example, 
extracting descriptive features from images, reducing high-dimensional indexes into low-
dimensional ones, defining new similarity metrics, efficient delivery of the retrieved data, 
and so forth. Systems that provide all or part of the above functionalities are multimedia 

retrieval systems.  
The Google image search engine is a typical example of such a system. A video-

on-demand site that allows people to search movies by their titles is another example 
 

 

DATABASE USERS AND ADMINISTRATORS: 

 
A primary goal of a database system is to retrieve information from and store new information 

into the database. People who work with a database can be categorized as database users or database 
administrators. 
Database Users and User Interfaces 

 There are four different types of database-system users, differentiated by the way they expect to 
interact with the system. Different types of user interfaces have been designed for the different types of 
users. 

• Naive users are unsophisticated users who interact with the system by invoking one of the 
application programs that have been written previously.  

o Bank tellers check account balances and post withdrawals and deposits.  
o  Reservation agents for airlines, hotels, and car rental companies check availability for a 

given request and make reservations. 
o  Employees at receiving stations for shipping companies enter package identifications via 

bar codes and descriptive information through buttons to update a central database of 
received and in-transit packages. 



o As another example, consider a student, who during class registration period, wishes to 
register for a class by using a Web interface. Such a user connects to a Web application 
program that runs at a Web server. The application first verifies the identity of the user, 
and allows her to access a form where she enters the desired information. The form 
information is sent back to the Web application at the server, which then determines if 
there is room in the class (by retrieving information from the database) and if so adds the 
student information to the class master in the database. 

• Application programmers are computer professionals who write application programs. 
Application programmers can choose from many tools to develop user interfaces. Rapid 
application development (RAD) tools are tools that enable an application programmer to 
construct forms and reports with minimal programming effort.  

• Sophisticated users interact with the system without writing programs. Instead, they form their 
requests either using a database query language or by using tools such as data analysis software. 
Analysts who submit queries to explore data in the database fall in this category. 

• Specialized users are sophisticated users who write specialized database applications that do not 
fit into the traditional data-processing framework. Among these applications are computer-aided 
design systems, knowledge-base and expert systems, systems that store data with complex data 
types (for example, graphics data and audio data), and environment-modeling systems. 

 

• Database Administrator One of the main reasons for using DBMSs is to have central control of 
both the data and the programs that access those data. A person who has such central control 
over the system is called a database administrator (DBA). The functions of a DBA include: 

• Schema definition. The DBA creates the original database schema by executing a set of 
data definition statements in the DDL. 

• Storage structure and access-method definition.  

• Schema and physical-organization modification. The DBA carries out changes to the 
schema and physical organization to reflect the changing needs of the organization, or to 
alter the physical organization to improve performance. 

• Granting of authorization for data access. By granting different types of authorization, 
the database administrator can regulate which parts of the Database various users can 
access. The authorization information is kept in a special system structure that the database 
system consults whenever someone attempts to access the data in the system.  

• Routine maintenance. Examples of the database administrator’s routine maintenance 
activities are:  

o Periodically backing up the database, either onto tapes or onto remote servers, to 
prevent loss of data in case of disasters such as flooding. 

o Ensuring that enough free disk space is available for normal operations, and 
upgrading disk space as required. 

o Monitoring jobs running on the database and ensuring that performance is not 
degraded by very expensive tasks submitted by some users. 

 

As a whole, the DBA jobs are 

• Creating primary database storage structures 

• Modifying the structure of the database 

• Monitoring database performance and efficiently 

• Transferring data between the database and external file 

• Monitoring and reestablishing database consistency 

• Controlling and monitoring user access to the database 

• Manipulating the physical location of the database. 



 

HISTORY OF DATABASE SYSTEMS: 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Information processing drives the growth of computers, as it has from the earliest days of 

commercial computers. In fact, automation of data processing tasks predates computers. Punched cards, 
invented by Herman Hollerith, were used at the very beginning of the twentieth century to record U.S. 
census data, And Mechanical systems were used to process the cards and tabulate results. Punched cards 
were later widely used as a means of entering data into computers. Techniques for data storage and 
processing have evolved over the years: 
• 1950s and early 1960s:  

Magnetic tapes were developed for data storage. Data processing tasks such as payroll were 
automated, with data stored on tapes. Processing of data consisted of reading data from one or more 
tapes and writing data to a new tape. Data could also be input from punched card decks, and output to 
printers. For example, salary raises were processed by entering the raises on punched cards and reading 
the punched card deck in synchronization with a tape containing the master salary details. The records 
had to be in the same sorted order. The salary raises would be added to the salary read from the master 
tape, and written to a new tape; the new tape would become the new master tape. Tapes (and card decks) 
could be read only sequentially, and data sizes were much larger than main memory; thus, data 
processing programs were forced to process data in a particular order, by reading and merging data from 
tapes and card decks.  
• Late 1960s and 1970s: 

Wide spread use of hard disks in the late1960s changed the scenario for data processing greatly, 
since hard disks allowed direct access to data. The position of data on disk was immaterial, since any 

1950s and early 1960s: 
 

Data processing using magnetic tapes for storage  
-Tapes provide only sequential access 

Punched cards for input 
 

Late 1960s and 1970s: 
Hard disks allow direct access to data 
Network and hierarchical data models in widespread use 
Ted Codd defines the relational data model 

-Would win the ACM Turing Award for this work 
-IBM Research begins System R prototype 
-UC Berkeley begins Ingres prototype 

High-performance (for the era) transaction processing 
 

1980s: 
Research relational prototypes evolve into commercial systems 

-SQL becomes industrial standard 
Parallel and distributed database systems 
Object-oriented database systems 

1990s: 
Large decision support and data-mining applications 
Large multi-terabyte data warehouses 
Emergence of Web commerce 

2000s: 
XML and XQuery standards 

                          Automated database administration 



location on disk could be accessed in just tens of milliseconds. Data were thus freed from the tyranny of 
sequentially. With disks, network and hierarchical databases could be created that allowed data 
structures such as lists and trees to be stored on disk. Programmers could construct and manipulate these 
data structures.  

A landmark paper by Codd [1970] defined the relational model and nonprocedural ways of 
querying data in the relational model, and relational databases were born. The simplicity of the relational 
model and the possibility of hiding implementation details completely from the programmer were 
enticing indeed. Codd later won the prestigious Association of Computing Machinery Turing Award for 
his work.  
•1980s: 

 Although academically interesting, the relational model was not used in practice initially, 
because of its perceived performance disadvantages; relational databases could not match the 
performance of existing network and hierarchical databases. That changed with System R, a ground 
breaking project at IBM Research that developed techniques for the construction of an efficient 
relational database system. Excellent overviews of System R are provided by Astrahan et al. [1976] and 
Chamberlin et al. [1981]. The fully functional System R prototype led to IBM’s first relational database 
product, SQL/DS. At the same time, the Ingres system was being developed at the University of 
California at Berkeley. It led to a commercial product of the same name. Initial commercial relational 
database systems, such as IBM DB2, Oracle, Ingres, and DEC Rdb, played a major role in advancing 
techniques for efficient processing of declarative queries.  

By the early 1980s, relational databases had become competitive with network and hierarchical 
database systems even in the area of performance. Relational databases were so easy to use that they 
eventually replaced network and hierarchical databases; programmers using such databases were forced 
to deal with many low-level implementation details, and had to code their queries in a procedural 
fashion. Most importantly, they had to keep efficiency in mind when designing their programs, which 
involved a lot of effort.  

In contrast, in a relational database, almost all these low-level tasks are carried out automatically 
by the database, leaving the programmer free to work at a logical level. Since attaining dominance in the 
1980s, the relational model has reigned supreme among data models. The 1980s also saw much research 
on parallel and distributed databases, as well as initial work on object-oriented databases.  
• Early 1990s:  

The SQL language was designed primarily for decision support applications, which are query-
intensive, yet the main stay of databases in the 1980s was transaction-processing applications, which are 
update-intensive. Decision support and querying re-emerged as a major application area for databases. 
Tools for analyzing large amounts of data saw large growths in usage. Many database vendors 
introduced parallel database products in this period. Database vendors also began to add object-
relational support to their databases. 
• 1990s:  

The major event of the 1990s was the explosive growth of the World Wide Web. Databases were 
deployed much more extensively than ever before. Database systems now had to support very high 
transaction-processing rates, as well as very high reliability and 24×7 availability (availability 24 hours a 
day, 7 days a week, meaning no downtime for scheduled maintenance activities).Database systems also 
had to support Web interfaces to data.  
• 2000s:  

The first half of the 2000s saw the emerging of XML and the associated query language XQuery 
as a new database technology. Although XML is widely used for data exchange, as well as for storing 
certain complex data types, relational databases still form the core of a vast majority of large-scale 
database applications. In this time period we have also witnessed the growth in “autonomic-
computing/auto-admin” techniques for minimizing system administration effort. This period also saw a 
significant growth in use of open-source database systems, particularly PostgreSQL and MySQL. The 
latter part of the decade has seen growth in specialized databases for data analysis, in particular column-



stores, which in effect store each column of a table as a separate array, and highly parallel database 
systems designed for analysis of very large data sets. Several novel distributed data-storage systems 
have been built to handle the data management requirements of very large Web sites such as Amazon, 
Facebook, Google, Microsoft and Yahoo!, and some of these are now offered as Web services that can 
be used by application developers. There has also been substantial work on management and analysis of 
streaming data, such as stock-market ticker data or computer network monitoring data. Data-mining 
techniques are now widely deployed; example applications include Web-based product-recommendation 
systems and automatic placement of relevant advertisements on Web pages. 

------- 

When Not to Use a DBMS  

In spite of the advantages of using a DBMS, there are a few situations in which a DBMS may 
involve unnecessary overhead costs that would not be incurred in traditional file processing. The 
overhead costs of using a DBMS are due to the following:  

• High initial investment in hardware, software, and training  

• The generality that a DBMS provides for defining and processing data  

• Overhead for providing security, concurrency control, recovery, and integrity functions  
      Therefore, it may be more desirable to use regular files under the following 

circumstances:  

• Simple, well-defined database applications that are not expected to change at all 

• Stringent, real-time requirements for some application programs that may not be met 
because of DBMS overhead. 

• Embedded systems with limited storage capacity, where a general-purpose DBMS would 
not fit. 

• No multiple-user access to data  
Certain industries and applications have elected not to use general-purpose DBMSs.  

For example, many computer-aided design (CAD) tools used by mechanical and civil 
engineers have proprietary file and data management software that is geared for the internal 
manipulations of drawings and 3D objects. Similarly, communication and switching systems 
designed by companies like AT&T were early manifestations of database software that was 
made to run very fast with hierarchically organized data for quick access and routing of calls. 
Similarly, GIS implementations often implement their own data organization schemes for 
efficiently implementing functions related to processing maps, physical contours, lines, 
polygons, and so on. General-purpose DBMSs are inadequate for their purpose. 



  

 
 

UNIT -II 
 

The Relational Data Model  

• The relational model was first proposed by E.F. Codd in 1970 and the first such system (notably 
INGRES and System/R) was developed in 1970s. The relational model is now the dominant model 
for commercial data processing applications. By far the most likely data model in which you’ll 
implement a database application today. 
 

• Of historical interest: the relational model is not the first implementation data model. Prior to that 
were the network data model, exemplified by CODASYL, and the hierarchical model, 
implemented by IBM’s IMS. 

 
• Salient features of the relational model: 

– Conceptually simple; the fundamentals are intuitive and easy to pick up. 

– Powerful underlying theory: the relational model is the only database model that is  
powered by formal mathematics, which results in excellent dividends when developing 
database algorithms and techniques. 

– Easy-to-use database language: though not formally part of the relational model, part of its 
success is due to SQL, the default language for working with relational databases. 

 
Relational database systems are the most common DBMS today. These relational DBMSs 

organize data into separate structures called tables, which can be linked via common information to 

make data storage more efficient. A DBMS is like a traditional filing system in that it stores individual 

groups and pieces of information. Like a filing system, a DBMS consists of separate components, like 

the cabinet, drawers and folders. A relational DBMS has the following basic components: 

· database - the complete collection of information 

· tables - a group of data items with a common theme 

· records - an individual data item 

· fields - a separate piece of information which describe the data item 

 
 
 
 
Basic Structure 

 
• A relational database is a collection of tables. 

– Each table has a unique name. 



– Each table consists of multiple rows. 

– Each row is a set of values that by definition are related to each other in some way; these 
values conform to the attributes or columns of the table. 

– Each attribute of a table defines a set of permitted values for that attribute; this set of 
permitted set is the domain of that attribute. 

 

• This definition of a database table originates from the pure mathematical concept of a relation, 
from which the term “relational data model” originates. 

– Formally, for a table r with n attributes a1 . . . an, each attribute ak has a domain Dk, and any 

given row of r is an n-tuple (v1, . . . , vn) such that vk ∈ Dk. 

– Thus, any instance of table r is a subset of the Cartesian product D1 × · ·  ·  ×   

    Dn. 

– We require that a domain Dk be atomic - that is, we do not consider the elements of Dk to be 
breakable into subcomponents. 

[We require that, for all relations r, the domains of all attributes of r be atomic. A domain is 
atomic if elements of the domain are considered to be indivisible units. For example, suppose the table 
instructor had an attribute phone number, which can store a set of phone numbers corresponding to the 
instructor. Then the domain of phone number would not be atomic, since an element of the domain is a 
set of phone numbers, and it has subparts, namely the individual phone numbers in the set.] 

– A possible member of any domain is null - that is, an unknown or non-existent value; in 
practice, we try to avoid the inclusion of null in our databases because they can cause a 
number of practical issues. 

 
[The null value is a special value that signifies that the value is unknown or does not exist. For 

example, suppose as before that we include the attribute phone number in the instructor relation. It may 
be that an instructor does not have a phone number at all, or that the telephone number is unlisted. We 
would then have to use the null value to signify that the value is unknown or does not exist.] 

 

• More notation: 
– Given a tuple t that belongs to a relation r, we can say that t ∈ R since after all r is a set of 

tuples. 

∗ By “set of tuples” we do mean the mathematical concept of a set; thus order doesn’t 
matter. 

– To talk about a specific attribute ak of t, we write t[ak]. 

– This notation also applies to a set of attributes A — the notation t[A] refers to the “sub-tuple” 
of t consisting only of the attributes in A. 

– Alternatively, t[k] can refer to that same attribute of t, as long as we are consistent about how 
attributes are ordered in the relation. 

In general, a row in a table represents a relationship among a set of values. Since a table is a 
collection of such relationships, there is a close correspondence between the concept of table and the 
mathematical concept of relation, from which the relational data model takes its name.  



In mathematical terminology, a tuple is simply a sequence (or list) of values. A relationship between 
n values is represented mathematically by an n-tuple of values, i.e., a tuple with n values, which 
corresponds to a row in a table. 

A relational database consists of a collection of tables, each of which is assigned a unique name. 

A row in a table represents a relationship among a set of values. 

Example of Employee table of information in relational database 

 

 

 

 

 

 

 

 

The table gives the information about a list of employees working in an organization. Every 

employee number (ENO) corresponds to a particular employee in the organization. ENO, ENAME, DESGN, 

SDALARY, DNO, DNAME and JOINDATE are called the columns (attributes) of the table EMPLOYEE. 

For each of the above attributes, there is a set of values, which is known as the DOMAIN of the attribute. 

For example, for the DESGN attributes, the domain is the set of all designations of employees 

and for DNAME attribute, the domain is the set of all department names and so on. 

In the above relation EMPLOYEE, there are four tuples (Rows), each row identifying the details of a 

particular employee with respect to attributes. 

For example, the first row specifies that employee number is 20, named Naresh, who is clerk in 

the Sales department earning 3000 and joined the organization on 20th July 1995. 

Terminologies: 

Relation :  A relation is defined as a table with columns and rows.  According to E.F. Codd data can be 

stored in form of a two- dimensional (2D) table. 

  Row – will be the record and column – will be the attributes. 

Attributes :  It is defined as a named columns of a relation.  Attributes are nothing else but column of 

the relation.  So, the relation hold the information about the objects to represents the entire database.  It 

can appear in any order it cannot change the meaning of the database. 

Each entity has certain characteristics knows as attributes. 

Tuple : “Row of relation (Table) is referred as tuple. Tuple having a set of ‘n’ numbers of attributes are 

called as n-tuple. 

Domain: The values for an attribute or a column are drawn from a set of permitted values known as a Domain. 

The domain of an attribute contains the set of values that the attribute may assume.  



In the relation model, no two rows of relation are identical and the ordering of rows is not significant, the 

domain of Die is 1, 2,3,4,5 and 6. Similarly, domain of coin is Head or Tail. 

Degree of a table:  

A relationship’s degree indicates the number of associated entities or attributes.  

A unary relationship exists when an association is maintained within a single entity. A binary 

relationship exists when two entities are associated. A ternary relationship exists when three entities 

are associated. Although higher degrees exist, they are rare and are specifically named. 

Unary relationship:  Course ————— participant 

Binary Relationship: Lecturer ——— Batches ——— Class 

 Ternary relationship: Contributor — CFR —— recipient Fund 

Extension (or state) of a relation:  it is defined as the set of row that appear in that relation at any given 
instant of time.  It various with time ie, it changes as the rows are created, deleted and updated 

Intension of a relation: it is a permanent part of the table and is independent of time.  So, it corresponds 
to what is specified in the relational schema. 

Cardinality: it is defined as the number of rows or tuples it contains.  So it changes as we add new rows 
or delete them.  It is a property of the extension of the table or relation. 
 

NULL : 

The NULL value indicates that the value does not exist or is not known.  An unknown value may 

be either missing or not known. 

Missing – the value does exist, but we do not have that information 

Not known – we do not known whether or not the value actually exist 

An attribute takes a null value when an entity does not have a value for it. The null value may 

indicate “not applicable” – that is, that the value does not exist for the entity. 

Relational database: It is defined as the collection of normalized or structured relations with distinct 

relation names. 

Attributes - types of attributes 

It is defined as named columns of a relation.  Attributes are nothing else but column of the 

relation.  So, the relation hold the information about the objects to represents the entire database.  It can 

appear in any order it cannot change the meaning of the database. 

Each entity has certain characteristics knows as attributes. For instance the student entity might 

include the following attributes, Student name, Roll Number etc.  

For each attribute, there is a set of permitted values, called the domain, or value set, of that attribute. 

An attribute of an entity set is a function that maps from the entity set into a domain. Since an entity set may 

have several attributes, each entity can be described by a set of (attribute, data value) pairs, one pair for each 

attribute of the entity set. 



The attributes can be classified in to 

1. Simple attributes 

2. Complex/ composite attributes 

3. Single – valued attributes 

4. Multi - valued attributes 

5. Derived attribute 

6. Null Attribute 
 

Mapping Cardinalities: 

Mapping cardinalities, or cardinality ratios, express the number of entities to which another entity can be 

associated via a relationship set. Mapping cardinalities are most useful in describing binary relationship sets, 

although they can contribute to the description of relationship sets that involve more than two entity sets. 

 One to one. An entity in A is associated with at most one entity in B, and an entity in B is associated with 

at most one entity in A. 
 

 One to many. An entity in A is associated with any number (zero or more) of entities in B. An entity in 

B, however, can be associated with at most one entity in A. 
 

 Many to one. An entity in A is associated with at most one entity in B. An entity in B, however, can be 

associated with any number (zero or more) of entities in A. 
 

 Many to many. An entity in A is associated with any number (zero or more) of entities in B, and an entity 

in B is associated with any number (zero or more) of entities in A. 
 

Keys: 

A relation always has a unique identifier, a field or group of fields (attributes) whose values are 

unique throughout all of the rows of the table.  Each row is distinct and can be identified by the values of 

one or more of its attributes called key. 

 

A key allows us to identify a set of attributes that suffice to distinguish entities from each other. 

Keys also help uniquely identify relationships, and thus distinguish relationships from each other. 

The keys can be categorized in to 

 

 Superkey: A superkey is a set of one or more attributes that, taken collectively, allow us to identify 

uniquely  a tow in a table. 

 For example, the customer-id attribute of the entity set customer is sufficient to distinguish one 

customer entity from another. Thus, customer-id is a superkey. Similarly, the combination of 

customer-name and customer-id is a superkey for the entity set customer. The customer-name 

attribute of customer is not a superkey, because several people might have the same name. 

 For example, the ID attribute of the relation instructor is sufficient to distinguish one 
instructor tuple from another. Thus, ID is a superkey. The name attribute of instructor, on the 
other hand, is not a superkey, because several instructors might have the same name. 
  



 Formally, let R denote the set of attributes in the schema of relation r . If we say that a 
subset K of R is a superkey for r , we are restricting consideration to instances of relations r in 
which no two distinct tuples have the same values on all attributes in K. That is, if t1 and t2 are in 

r and t1  =t2, then t1.K  =t2.K . 

   

 Candidate key: Minimal superkeys are called candidate keys. 

 If K is a superkey, then so is any superset of K. We are often interested in superkeys for which no 

proper subset is a superkey. It is possible that several distinct sets of attributes could serve as a 

candidate key.  

 Suppose that a combination of customer-name and customer-street is sufficient to distinguish 

among members of the customer entity set. Then, both {customer-id} and {customer-name, customer-

street} are candidate keys. Although the attributes customerid and customer-name together can 

distinguish customer entities, their combination does not form a candidate key, since the attribute 

customer-id alone is a candidate key. 

 A superkey may contain extraneous attributes. For example, the combination of ID and 
name is a superkey for the relation instructor. If K is a superkey, then so is any superset of K. We 
are often interested in superkeys for which no proper subset is a superkey. Such minimal 
superkeys are called candidate keys.   
 It is possible that several distinct sets of attributes could serve as a candidate key. 
Suppose that a combination of name and dept name is sufficient to distinguish among members 
of the instructor relation. Then, both {ID} and {name, dept name} are candidate keys. Although 
the attributes ID and name together can distinguish instructor tuples, their combination, {ID, 
name}, does not form a candidate key, since the attribute ID alone is a candidate key. 

 

 Primary key:   

 when one or more number of attributes uniquely identify the row is called primary key.  It cannot 

contain any null value. It has minimal number of attributes 

 We shall use the term primary key to denote a candidate key that is chosen by the 
database designer as the principal means of identifying tuples within a relation. A key (whether 
primary, candidate, or super) is a property of the entire relation, rather than of the individual 
tuples. Any two individual tuples in the relation are prohibited from having the same value on 
the key attributes at the same time. The designation of a key represents a constraint in the real-
world enterprise being modeled. 
  
  
 The primary key should be chosen such that its attribute values are never, or very rarely, 
changed.  
 

 For instance, the address field of a person should not be part of the primary key, 
since it is likely to change. Social-security numbers, on the other hand, are guaranteed 
never to change. Unique identifiers generated by enterprises generally do not change, 
except if two enterprises merge; in such a case the same identifier may have been issued 
by both enterprises, and a reallocation of identifiers may be required to make sure they 
are unique.   

  
 t is customary to list the primary key attributes of a relation schema before the other 
attributes; for example, the dept name attribute of department is listed first, since it is the primary 
key. Primary key attributes are also underlined. 



Alternate key : 

 The alternate key of any table are those candidate keys which are not currently selected as the 

primary key.   

 Example : The combination of  Rollno and name as candidate key.  Rollno alone is primary 

key and name alone is alternate key. 

Composite key :   

 A primary key that is made up of more than one attributes known as a composite key. 

 Ex; Project (P_id, E_id, E_name, Hours_works) 

Secondary key :  

 Other than primary key, candidate key and alternate key  attributes are called secondary key.  

An attribute ( or ) Combination of attributes used strictly for data retrieval purposes. 

Foreign key :  

 The attribute of one table that references a primary key of the another table is called s a 

foreign key. Foreign key provide a method for maintaining integrity and for navigation between 

different instances of an tables.  Foreign key values must be matched by the corresponding primary key 

values. 

 
A relation, say r1, may include among its attributes the primary key of an-other relation, say r2. This 

attribute is called a foreign key from r1, referencing r2. 
The relation r1 is also called the referencing relation of the foreign key dependency, and 
The relation  r2 is called the referenced relation of the foreign key.  
 
For example, the attribute dept name in instructor is a foreign key from instructor, referencing 

depart-ment, since dept name is the primary key of department. In any database instance, given any 
tuple, say ta , from the instructor relation, there must be some tuple, say tb , in the department relation 
such that the value of the dept name attribute of ta is the same as the value of the primary key, dept 

name, of tb .  

The constraint from section to teaches is an example of a referential integrity constraint; a 
referential integrity constraint requires that the values appearing in specified attributes of any tuple in 
the referencing relation also appear in specified attributes of at least one tuple in the referenced relation. 

 

 

 

 

Database Schema 

When we talk about a database, we must differentiate between the database schema, which is 
the logical design of the database, and the database instance, which is a snapshot of the data 
in the database at a given instant in time. 



The concept of a relation corresponds to the programming-language notion of a variable, 
while the concept of a relation schema corresponds to the programming-language notion of 
type definition. 

 

 
 

 

In general, a relation schema consists of a list of attributes and their corresponding domains. We 

shall not be concerned about the precise definition of the domain of each attribute  

The concept of a relation instance corresponds to the programming-language notion of a value of 

a variable. The value of a given variable may change with time similarly the contents of a relation 

instance may change with time as the relation is updated. In contrast, the schema of a relation does not 

generally change. 

Although it is important to know the difference between a relation schema and a relation instance, 
we often use the same name, such as instructor, to refer to both the schema and the instance. Where 
required, we explicitly refer to the schema or to the instance, for example “the instructor schema,” or 
“an instance of the instructor relation.” However, where it is clear whether we mean the schema or the 
instance, we simply use the relation name. 

Consider the department relation of above Figure. The schema for that relation is 

department (dept name, building, budget) 

Note that the attribute dept name appears in both the instructor schema and the department 

schema. This duplication is not a coincidence. Rather, using common attributes in relation schemas is 
one way of relating tuples of distinct relations. For example, suppose we wish to find the information 
about all the instructors who work in the Watson building. We look first at the department relation to 
find the dept name of all the departments housed in Watson. Then, for each such department, we look in 
the instructor relation to find the information about the instructor associated with the corresponding dept 

name. 
 

  

Dept Name Building  Budget 
Biology Watson 90000 

Comp. Sci. Taylor 100000 

Elec. Eng. Taylor 85000 



Relational Schema Diagram Notation 
 

 

 

Figure 1: Sample relational schema diagram for our sample university database. 

• A relational database schema can be depicted pictorially through a relational schema diagram. 
Yes, it’s yet another notation like E-R and UML, but this notation is very focused and specific to 
the relational data model: 

 

– Relations are drawn as boxes with the relation name above the box. 

–  A relation’s attributes are listed within its box. 

– The attributes that belong to the relation’s primary key (if it has one) are listed first, with a 
line separating this primary key from the other attributes and their background shaded in 
gray. 

– Foreign key dependencies are illustrated as arrows from the foreign key attributes of the 
referencing relation to the primary key attributes of the referenced relation. 

 

  



RELATIONAL QUERY LANGUAGES 

A query language is a language in which a user requests information from the database. These 
languages are usually on a level higher than that of a standard programming language.  

Query languages can be categorized as either  
Procedural  or   
Nonprocedural.  

In a procedural language, the user instructs the system to perform a sequence of operations on 
the database to compute the desired result.   

In an Nonprocedural language, the user describes the desired information without giving a 
specific procedure for obtaining that information. 

Query languages used in practice include elements of both the procedural and the non 
procedural approaches. 

There are a number of “pure” query languages:  
The relational algebra is procedural,  
whereas the tuple relational calculus and domain relational calculus are non procedural.  

 
These query languages are terse and formal, lacking the “syntactic sugar” of commercial 

languages, but they illustrate the fundamental techniques for extracting data from the database 
 
The relational algebra consists of a set of operations that take one or two relations as input and 

produce a new relation as their result. The relational calculus uses predicate logic to define the result 
desired without giving any specific algebraic procedure for obtaining that result. 

 

RELATIONAL OPERATIONS 

 

All procedural relational query languages provide a set of operations that can be applied to 
either a single relation or a pair of relations.  

These operations have the nice and desired property that their result is always a single relation. 
This property allows one to combine several of these operations in a modular way. Specifically, since 
the result of a relational query is itself a relation, relational operations can be applied to the results of 
queries as well as to the given set of relations. 

The join operation allows the combining of two relations by merging pairs of tuples, one from 
each relation, into a single tuple. There are a number of different ways to join relations 

In general, the natural join operation on two relations matches tuples whose values are the same on all 
attribute names that are common to both relations. 
 

The Cartesian product operation combines tuples from two relations, but unlike the join operation, its 
result contains all pairs of tuples from the two relations, regardless of whether their attribute values 
match. 

Because relations are sets, we can perform normal set operations on relations.  

The union operation performs a set union of two “similarly structured” tables (say a table of all 
graduate students and a table of all undergraduate students). For example, one can obtain the set of all 
students in a department. Other set operations, such as intersection and set difference can be performed 
as well. 

 



Given this simple and restricted data structure, it is possible to define some very powerful relational 
operators which, from the users' point of view, act in parallel' on all entries in a table simultaneously, 
although their implementation may require conventional processing. 

Codd originally defined eight relational operators. 

   1. SELECT originally called RESTRICT 
   2. PROJECT 
   3. JOIN 
   4. PRODUCT 
   5. UNION 
   6. INTERSECT 
   7. DIFFERENCE 
   8. DIVIDE 

The most important of these are (1), (2), (3) and (8), which, together with some other aggregate 
functions, are powerful enough to answer a wide range of queries. The eight operators will be 
described as general procedures - i.e. not in the syntax of SQL or any other relational language. The 
important point is that they define the result required rather than the detailed process of obtaining it - 
what but not how. 

 
SELECT 

RESTRICTS the rows chosen from a table to those entries with specified attribute values. 

     SELECT item 
     FROM stock_level 
     WHERE quantity > 100 

constructs a new, logical table - an unnamed relation - with one column per row (i.e. item) containing 
all rows from stock_level that satisfy the WHERE clause. 
 

PRODUCT  
Builds a relation from two specified relations consisting of all possible combinations of rows, one 
from each of the two relations. 

For example, consider two relations, A and B, consisting of rows: 

     A: a     B: d     =>   A product B: a   d 
          b          e                                  a   e 
          c                                              b   d 
                                                          b   e 
                                                          c   d 
PROJECT 

Selects rows made up of a sub-set of columns from a table. 

     PROJECT stock_item 
     OVER item AND description 

produces a new logical table where each row contains only two columns - item and description. The 
new table will only contain distinct rows from stock_item; i.e. any duplicate rows so formed will be 
eliminated. 
JOIN 

Associates entries from two tables on the basis of matching column values. 

     JOIN stock_item 
     WITH stock_level 
     OVER item 



It is not necessary for there to be a one-to-one relationship between entries in two tables to be joined 
- entries which do not match anything will be eliminated from the result, and entries from one table 
which match several entries in the other will be duplicated the required number of times. 

UNION  
Builds a relation consisting of all rows appearing in either or both of the two relations. 

For example, consider two relations, A and B, consisting of rows: 

     A: a     B: a     =>     A union B: a 
          b         e                                  b 
          c                                             c 
                                                         e 

INTERSECT  
Builds a relation consisting of all rows appearing in both of the two relations. 

For example, consider two relations, A and B, consisting of rows: 

     A: a     B: a     =>     A intersect B: a 
          b         e 
          c  

DIFFERENCE  
Builds a relation consisting of all rows appearing in the first and not in the second of the two 
relations. 

For example, consider two relations, A and B, consisting of rows: 

     A: a     B: a     =>  A - B: b   and   B - A: e 
          b          e                       c 
          c 

DIVIDE  
Takes two relations, one binary and one unary, and builds a relation consisting of all values of one 
column of the binary relation that match, in the other column, all values in the unary relation. 

     A: a  x     B: x     =>     A divide B: a 
          a  y          y 
          a  z 
          b  x 
          c  y 

 

Of the relational operators 3.2.4. to 3.2.8.defined by Codd, the most important is DIVISION. For 
example, suppose table A contains a list of suppliers and commodities, table B a list of all 
commodities bought by a company. Dividing A by B produces a table listing suppliers who sell all 
commodities. 

  



FORMAL RELATIONAL QUERY LANGUAGES 

 Two mathematical Query Languages form the basis for “real” languages (e.g. SQL), and for 

implementation: 

Relational Algebra: More operational, very useful for representing execution plans. 
 

Relational algebra is one of the two formal query languages associated with the relational 
model. Queries in algebra are composed using a collection of operators. A fundamental property is that 
every operator in the algebra accepts (one or two) relation instances as arguments and returns a relation 
instance as the result. 

This property makes it easy to compose operators to form a complex query—a relational 
algebra expression is recursively defined to be a relation, 

 a unary algebra operator applied to a single expression, or  
 a binary algebra operator applied to two expressions.  
 
We describe the basic operators of the algebra (selection, projection, union, cross-product, and 

difference), as well as some additional operators that can be defined in terms of the basic operators but 
arise frequently enough to warrant special attention, in the following sections. 
 

Each relational query describes a step-by-step procedure for computing the desired answer, 
based on the order in which operators are applied in the query. The procedural nature of the algebra 
allows us to think of an algebra expression as a recipe, or a plan, for evaluating a query, and relational 
systems in fact use algebra expressions to represent query evaluation plans. 
 

Relational Calculus:   Lets users describe what they want, rather than how to compute it.  
                                   (Non-operational, declarative.) 
 

Relational calculus is an alternative to relational algebra. In contrast to the algebra, which is 
procedural, the calculus is nonprocedural, or declarative, in that it allows us to describe the set of 
answers without being explicit about how they should be computed.  

Relational calculus has had a big influence on the design of commercial query languages such 
as SQL and, especially, Query-by-Example (QBE). 

 
The variant of the calculus that we present in detail is called the  

tuple relational calculus (TRC). Variables in TRC take on tuples as values.  
In another variant, called the domain relational calculus (DRC), the variables range over field 

values.  
TRC has had more of an influence on SQL, while DRC has strongly influence QBE. 
 

  



Relational Algebra 

The relational algebra is a procedural query language. It consists of a set of operations that take 

one or two relations as input and produce a new relation as their result. The fundamental operations in 

the relational algebra are select, project, union, set difference, Cartesian product, and rename.  

Fundamental Operations  

The select, project, and rename operations are called unary operations, because they operate 

on one relation.  

The other three operations operate on pairs of relations and are, therefore, called binary 

operations. 

The primary operations of relational algebra are as follows: 

• Select 
• Project 
• Union 
• Set different 
• Cartesian product 
• Rename 

• In addition to the fundamental operations, there are several other operations—namely, set 

intersection, natural join and assignment. 

Formal Definition of the Relational Algebra 

The operations in Section 6.1.1 allow us to give a complete definition of an expres-sion in the relational 
algebra. A basic expression in the relational algebra consists of either one of the following: 

• A relation in the database 

• A constant relation 
A constant relation is written by listing its tuples within { }, for example 

{ (22222, Einstein, Physics, 95000), (76543, Singh, Finance, 80000) }. 

A general expression in the relational algebra is constructed out of smaller sub expressions. Let E1 
and E2 be relational-algebra expressions. Then, the following are all relational-algebra expressions: 

• E1  ∪  E2 
 

• E1  −  E2  

• E1  ×  E2 
 

•    sP (E1), where P is a predicate on attributes in E1  

•      S(E1), where S is a list consisting of some of the attributes in E1  

•    rx (E1), where x is the new name for the result of E1 

 



The SELECT Operation (σ) 

The SELECT operator is used to choose a subset of the tuples (rows) from a relation that satisfies a 

selection condition, acting as a filter to retain only tuples that fulfills a qualifying requirement. 

 The SELECT operator is relational algebra is denoted by the symbol σ (sigma). 
 

  

  

 The syntax for the SELECT statement is then as follows: 
σ<Selection condition>(R) 

 The σ would represent the SELECT command 
 

 The <selection condition> would represent the condition for selection. 
 

 The (R) would represent the Relation or the Table from which we are making a selection of the tuples. 

 

To implement the SELECT statement in SQL, we take a look at an example in which we would like to 

select the EMPLOYEE tuples whose employee number is 7, or those whose date of birth is before 1980… 

σempno=7(EMPLOYEE) 

σdob<’01-Jan-1980 ′(EMPLOYEE) 

The SQL implementation would translate into: 

SELECT empno FROM EMPLOYEE WHERE empno=7 

SELECT dob FROM EMPLOYEE WHERE DOB < ’01-Jan-1980′ 

The PROJECT Operation (∏) 

This operator is used to reorder, select and get rid of attributes from a table. At some point we might 

want only certain attributes in a relation and eliminate others from our query result. Therefore the 

PROJECT operator would be used in such operations. 

 The symbol used for the PROJECT operation is ∏ (pi). 
 

 The general syntax for the PROJECT operator is: 

 

∏<attribute list>(R ) 

 ∏ would represent the PROJECT. 
 

 <attribute list> would represent the attributes(columns) we want from a relational. 
 

 (R ) would represent the relation or table we want to choose the attributes from. 

 

To implement the PROJECT statement in SQL, we take a look at an example in which we would like to 

choose the Date of Birth (dob) and Employee Number (empno) from the relation EMPLOYE… 



 ∏dob, empno(EMPLOYEE ) 

 

In SQL this would translate to: 

SELECT dob, empno FROM EMPLOYEE 

 

The RENAME Operator ρ (rho): 

The RENAME operator is used to give a name to results or output of queries, returns of 

selection statements, and views of queries that we would like to view at some other point in time: 

 The RENAME operator is symbolized by ρ (rho). 
 

 The general syntax for RENAME operator is: ρ s(B1, B2, B3,….Bn)  (R ) 
 

 ρ is the RENAME operation. 
 

 S is the new relation name. 
• B1, B2, B3, …B n are the new renamed attributes (columns). 

 

 R is the relation or table from which the attributes are chosen. 
To implement the RENAME statement in SQL, we take a look at an example in which we would 

like to choose the Date of Birth and Employee Number attributes and RENAME them as 

‘Birth_Date’ and ‘Employee_Number’ from the EMPLOYE E relation… 

 s(Birth_Date, Employee_Number)(EMPLOYEE ) ← ∏dob, empno(EMPLOYEE ) 

 

 The arrow symbol ← means that we first get the PROJECT operation results on the right side of the 

arrow then apply the RENAME operation on the results on the left side of the arrow. 

 

In SQL we would translate the RENAME operator using the SQL ‘AS’ statement: 

SELECT dob AS ‘Birth_Date’, empno AS ‘Employee_Numb er’ FROM EMPLOYEE 

 

UNION:  

The UNION operation on relation A UNION relation B designated as A ∪ B, joins or includes all 
tuples that are in A or in B, eliminating duplicate tuples. The SQL implementation of the UNION 
operations would be as follows: 

• A and B must have the same quantity of attributes. 
• Attribute domains must be compatible. 
• Duplicate tuples gets automatically eliminated. 

UNION 

RESULT ← A ∪ B 

SQL Statement:  SELECT * From A UNION  SELECT * From B 



The Set-Difference Operation 

 

The set-difference operation, denoted by −, allows us to find tuples that are in one relation but are 
not in another. The expression r − s produces a relation containing those tuples in r but not in s. 

 

Ex:  ∏customer name(depositor) - ∏customername(borrower) 

 

As with the union operation, we must ensure that set differences are taken between compatible 
relations. Therefore, for a set-difference operation r − s to be valid, we require that the relations r and s 
be of the same arity, and that the domains of the ith attribute of r and the ith attribute of s be the same, 
for all i. 

 

CARTESIAN PRODUCT Operator 

The CARTERSIAN PRODUCT operator, also referred to as the cross product or cross join, creates 

a relation that has all the attributes of A and B, allowing all the attainable combinations of tuples from A 

and B in the result. The CARTERSIAN PRODUCT A and B is symbolized by X as in A X B. 

Let there be Relation A(A1, A2) and Relation B(B1, B2) 

The CARTERSIAN PRODUCT C of A and B which is A X B is 

C = A X B 

C = (A1B1, A1B2 , A2B1, A2B2 ) 

The SQL implementation would be something like: 

SELECT A.dob, B.empno from A, B 

 

INTERSECTION: 

The INTERSECTION operation on a relation A INTERSECTION relation B, designated by A ∩ B, 

includes tuples that are only in A and B. In other words only tuples belonging to A and B, or shared by both 

A and B are included in the result. The SQL implementation of the INTERSECTION operations would be 

as follows: 

INTERSECTION 

RESULT ← A ∩ B 

SQL Statement: 

SELECT dob From A  INTERSECT SELECT dob from B 

 

 

 



Additional Relational – Algebra Operations: 

The Set-Intersection Operation 

 

The first additional relational-algebra operation that we shall define is set inter-section (∩). Suppose 
that we wish to find the set of all courses taught in both the Fall 2009 and the Spring 2010 semesters. 
Using set intersection, we can write 

 

course id 

(
ssemester = “Fall” ∧ year =2009 

(section))
    ∩    course id 

(
ssemester = “Spring” ∧ year =2010 

(section)) 

 
 
 

Note that we can rewrite any relational-algebra expression that uses set in-tersection by replacing 
the intersection operation with a pair of set-difference operations as: 

 

 ∩  s = r −  (r −  s) 
 

Thus, set intersection is not a fundamental operation and does not add any power to the relational 

algebra. It is simply more convenient to write r ∩ s than to write  −  (r −  s). 

NATURAL JOIN Operator   

The NATURAL JOIN operation returns results that does not include the JOIN attributes of the 
second Relation B. It is not required that attributes with the same name be mentioned. The 
NATURAL JOIN operator is symbolized by: 

 A            B,  
 

SQL translation example where attribute dob is Date of Birth and empno is Employee Number: 

SELECT A.dob, B.empno FROM A NATURAL JOIN B //where depno =5 

 

We can always use the ‘where’ clause to further res trict our output and stop a Cartesian product 

output. 

The Assignment Operation 

It is convenient at times to write a relational-algebra expression by assigning parts of it to 
temporary relation variables. The assignment operation, denoted by ←, works like assignment in a 
programming language. To illustrate this operation, consider the definition of the natural-join 
operation. We could write r s as: 

 

temp1 ←  R ×  S 

temp2 ←  sr. A1 = s. A1 ∧ r. A2 = s. A2 ∧ ... ∧ r. An = s. An  
(temp1) 

result =R ∪ S (temp2) 
 



The evaluation of an assignment does not result in any relation being displayed to the user. 
Rather, the result of the expression to the right of the ← is assigned to the relation variable on the left 
of the ←. This relation variable may be used in subsequent expressions. 
 

With the assignment operation, a query can be written as a sequential program consisting of a 
series of assignments followed by an expression whose value is displayed as the result of the query. For 
relational-algebra queries, assignment must always be made to a temporary relation variable. 
Assignments to permanent relations constitute a database modification. Note that the assignment 
operation does not provide any additional power to the algebra. It is, however, a convenient way to 
express complex queries. 

Extended Relational-Algebra Operations 

 

We now describe relational-algebra operations that provide the ability to write queries that cannot be 
expressed using the basic relational-algebra operations. These operations are called extended 

relational-algebra operations. 

Generalized Projection 

The first operation is the generalized-projection operation, which extends the projection 
operation by allowing operations such as arithmetic and string functions to be used in the projection 
list. The generalized-projection operation has the form: 

                         ∏    F1, F2,..., Fn 

(E) 

 

where E is any relational-algebra expression, and each of F1, F2, . . . , Fn is an arithmetic 
expression involving constants and attributes in the schema of E. As a base case, the expression may be 
simply an attribute or a constant. In general, an expression can use arithmetic operations such as +, −, ∗, 
and ÷ on numeric valued attributes, numeric constants, and on expressions that generate a numeric 
result. Generalized projection also permits operations on other data types, such as concatenation of 
strings. 

 

For example, the expression: 

∏ID,name,dept name,salary ÷12

(instructor
 

) 

 

gives the ID, name, dept name, and the monthly salary of each instructor. 
 

Aggregation 

The second extended relational-algebra operation is the aggregate operation G, which permits 
the use of aggregate functions such as min or average, on sets of values. 

Aggregate functions take a collection of values and return a single value as a result. For 
example, the aggregate function sum takes a collection of values and returns the sum of the values. 
Thus, the function sum applied on the collection: 

{1, 1, 3, 4, 4, 11} 



returns the value 24. The aggregate function avg returns the average of the values. When applied to the 
preceding collection, it returns the value 4. The aggregate function count returns the number of the 
elements in the collection, and returns 6 on the preceding collection. Other common aggregate 
functions include min and max, which return the minimum and maximum values in a collection; they 
return 1 and 11, respectively, on the preceding collection. 
 

The collections on which aggregate functions operate can have multiple occurrences of a value; 
the order in which the values appear is not relevant. Such collections are called multisets. Sets are a 
special case of multisets where there is only one copy of each element. 
 

To illustrate the concept of aggregation, we shall use the instructor relation. Suppose that we 
want to find out the sum of salaries of all instructors; the relational-algebra expression for this query is: 

 

Gsum(salar y)(instructor ) 

The symbol G is the letter G in calligraphic font; read it as “calligraphic G.” The relational-
algebra operation G signifies that aggregation is to be applied, and its subscript specifies the aggregate 
operation to be applied. The result of the expression above is a relation with a single attribute, 
containing a single row with a numerical value corresponding to the sum of the salaries of all 
instructors. 

 

Outer join Operations 

 

The outer-join operation is an extension of the join operation to deal with missing 
information.  
 
More generally, some tuples in either or both of the relations being joined may be “lost” in this way. 
The outer join operation works in a manner similar to the natural join operation we have already 
studied, but preserves those tuples that would be lost in an join by creating tuples in the result 
containing null values. We can use the outer-join operation to avoid this loss of information. There 
are actually three forms of the operation:  

left outer join, denoted   _;  
right outerjoin, denoted    _ ; and  
full outer join, denoted   _ .  

All three forms of outer join compute the join, and add extra tuples to the result of the join. 
 
The left outer join  ( _) takes all tuples in the left relation that did not match with any tuple in 

the right relation, pads the tuples with null values for all other attributes from the right relation, and 
adds them to the result of the natural join. 

The right outer join  (_ ) is symmetric with the left outer join: It pads tuples from the right 
relation that did not match any from the left relation with nulls and adds them to the result of the natural 
join. Thus, all information from the right relation is present in the result of the right outer join. 

The full outer join ( _ ) does both the left and right outer join operations, padding tuples from 
the left relation that did not match any from the right relation, as well as tuples from the right relation 
that did not match any from the left relation, and adding them to the result of the join. 
 



 

RELATIONAL CALCULUS 

In relational calculus, a query is expressed as a formula consisting of a number of variables 

and an expression involving these variables. It is up to the DBMS to transform these nonprocedural 

queries into equivalent, efficient, procedural queries. The concept of relational calculus was first 

proposed by Codd. The relational calculus is used to measure the selective power of relational 

languages. A language that can be used to produce any relation that can be derived using the 

relational calculus is said to be relationally complete. 

Relation calculus, which in effect means calculating with relations, is based on predicate 

calculus, which is calculating with predicates. It is a formal language used to symbolize logical 

arguments in mathematics. Propositions specifying a property consist of an expression that names an 

individual object, and another expression, called the predicate, that stands for the property that the 

individual object possesses. If for instance, p and q are propositions, we can build other propositions 

"not p", "p or q", "p and q" and so on. In predicate calculus, propositions may be built not only out 

of other propositions but also out of elements that are not themselves propositions. In this manner 

we can build a proposition that specifies a certain property or characteristic of an object. 

The Tuple Relational Calculus 

When we write a relational-algebra expression, we provide a sequence of procedures that 
generates the answer to our query. The tuple relational calculus, by contrast, is a nonprocedural 
query language. It describes the desired information without giving a specific procedure for 
obtaining that information. 

A query in the tuple relational calculus is expressed as: 

{t | P(t)} 

That is, it is the set of all tuples t such that predicate P is true for t. Following our earlier 
notation, we use t[A] to denote the value of tuple t on attribute A, and we use t ∈ r to denote that 
tuple t is in relation r. 
 

Before we give a formal definition of the tuple relational calculus, we re-turn to some of the 
queries for which we wrote relational-algebra expressions in Section 6.1.1. 

Formal Definition 

We are now ready for a formal definition. A tuple-relational-calculus expression is of the 

form: 

{t | P (t )} 

where P is a formula. Several tuple variables may appear in a formula. A tuple variable is said 

to be a free variable unless it is quantified by a ∃ or ∀. Thus, in: 

 

t ∈  instructor ∧  ∃ s ∈  department(t[dept name] =  s[dept name]) 
 



t is a free variable. Tuple variable s is said to be a bound variable. 
 

A tuple-relational-calculus formula is built up out of atoms. An atom has one of the 
following forms: 

 s ∈ r, where s is a tuple variable and r is a relation (we do not allow use of the ∈/ operator).  

 s[x]    u[y], where s and u are tuple variables, x is an attribute on which s is defined, y is an 
attribute on which u is defined, and      is a comparison operator (<, ≤, =,  =,>, ≥); we 
require that attributes x and y have domains whose members can be compared by . 

 

 s[x]     c, where s is a tuple variable, x is an attribute on which s is defined,      is a 
comparison operator, and c is a constant in the domain of attribute x. 

 

We build up formulae from atoms by using the following rules: 

 An atom is a formula.  

 If P1 is a formula, then so are ¬ P1 and (P1). 
 

• If P1 and P2 are formulae, then so are P1  ∨  P2, P1  ∧  P2, and P1  ⇒  P2. 

 If P1(s) is a formula containing a free tuple variable s, and r is a relation, then 
 

∃ s ∈  r (P1(s)) and ∀ s ∈  r (P1(s)) 

are also formulae. 

As we could for the relational algebra, we can write equivalent expressions that are not 
identical in appearance. In the tuple relational calculus, these equiv-alences include the 
following three rules: 

 P1  ∧  P2 is equivalent to ¬ (¬(P1) ∨  ¬(P2)). 

 ∀ t ∈  r (P1(t)) is equivalent to ¬ ∃ t ∈  r (¬ P1(t)). 

 P1  ⇒  P2 is equivalent to ¬(P1) ∨  P2. 
 

Example Queries 

Find the ID, name, dept name, salary for instructors whose salary is greater than 
$80,000: 

 

{t | t ∈  instructor ∧  t[salary] >  80000} 

Suppose that we want only the ID attribute, rather than all attributes of the 
instructor relation. To write this query in the tuple relational calculus, we need to write 
an expression for a relation on the schema (ID). We need those tuples on (ID) such that 
there is a tuple in instructor with the salary attribute > 80000. To express this request, 
we need the construct “there exists” from mathematical logic. The notation: 



 t ∈  r (Q(t)) 
 

means “there exists a tuple t in relation r such that predicate Q(t) is true.” 
 

Using this notation, we can write the query “Find the instructor ID for each 

instructor with a salary greater than $80,000” as: 

{t | ∃ s ∈  instructor (t[ID ] = s[ID ] 

∧ s[salary] > 80000)} 

In English, we read the preceding expression as “The set of all tuples t such that there 
exists a tuple s in relation instructor for which the values of t and s for the ID attribute 
are equal, and the value of s for the salary attribute is greater than $80,000.” 

 

Consider the query that “Find all students who have taken all courses offered in the 

Biology department.” To write this query in the tuple relational calculus, we introduce 

the “for all” construct, denoted by ∀. The notation: 

 t ∈  r (Q(t))  

means “Q is true for all tuples t in relation r.” 

We write the expression for our query as follows: 

{t | ∃ r  ∈  student (r [ID] = t[ID]) ∧ 

( ∀ u ∈  cour se (u[dept name] =  “ Biology” ⇒ 
 

 s ∈  takes (t[ID] =  s[ID ] 
 s[course id ] =  u[course id ]))}  

In English, we interpret this expression as “The set of all students (that is, (ID) tuples t) 
such that, for all tuples u in the course relation, if the value of u on attribute dept name 

is ’Biology’, then there exists a tuple in the takes relation that includes the student ID 
and the course id.” 

 

Note that there is a subtlety in the above query: If there is no course offered in the 
Biology department, all student IDs satisfy the condition. The first line of the query 
expression is critical in this case —without the condition 

 r  ∈  student (r [ID] = t[ID]) 
 

if there is no course offered in the Biology department, any value of t (including values 

that are not student IDs in the student relation) would qualif 

 



Safety of Expressions 

There is one final issue to be addressed. A tuple-relational-calculus expression may 
generate an infinite relation. Suppose that we write the expression: 

{t |¬ (t ∈  instructor )} 

There are infinitely many tuples that are not in instructor. Most of these tuples contain 
values that do not even appear in the database! Clearly, we do not wish to allow such 
expressions. 
 

To help us define a restriction of the tuple relational calculus, we introduce the concept of 
the domain of a tuple relational formula, P.  

Intuitively, the domain of P, denoted dom(P), is the set of all values referenced by P. 
They include values mentioned in P itself, as well as values that appear in a tuple of a relation 
mentioned in P. Thus, the domain of P is the set of all values that appear explicitly in P or that 
appear in one or more relations whose names appear in P. For example, dom(t ∈ instructor ∧ 
t[salary] > 80000) is the set containing 80000 as well as the set of all values appearing in any 
attribute of any tuple in the instructor relation. Similarly, dom(¬ (t ∈ i nstr uctor )) is also the set 
of all values appearing in instructor, since the relation i nstr uctor is mentioned in the expression. 
 

We say that an expression {t | P(t)} is safe if all values that appear in the result are values 
from dom(P). The expression {t |¬ (t ∈ instructor )} is not safe. Note that dom(¬ (t ∈ instructor )) 
is the set of all values appearing in instructor. However, it is possible to have a tuple t not in 
instructor that contains values that do not appear in instructor. The other examples of tuple-
relational-calculus expressions that we have written in this section are safe 

The number of tuples that satisfy an unsafe expression, such as {t |¬ (t ∈ instructor )}, could be 
infinite, whereas safe expressions are guaranteed to have finite results. The class of tuple-
relational-calculus expressions that are allowed is therefore restricted to those that are safe. 

Expressive Power of Languages 

The tuple relational calculus restricted to safe expressions is equivalent in expressive 
power to the basic relational algebra (with the operators ∪, −, ×, s, and r, but without the 
extended relational operations such as generalized projection and aggregation (G)).  

Thus, for every relational-algebra expression using only the basic operations, there is an 
equivalent expression in the tuple relational calculus, and for every tuple-relational-calculus 
expression, there is an equivalent relational-algebra expression.  

We shall not prove this assertion here; the bibliographic notes contain references to the 
proof. Some parts of the proof are included in the exercises. We note that the tuple relational 
calculus does not have any equivalent of the aggregate operation, but it can be extended to 
support aggregation. Extending the tuple relational calculus to handle arithmetic expressions is 
straightforward. 

  



The Domain Relational Calculus 

A second form of relational calculus, called domain relational calculus, uses domain 

variables that take on values from an attributes domain, rather than values for an entire tuple. The 
domain relational calculus, however, is closely related to the tuple relational calculus. 
 

Domain relational calculus serves as the theoretical basis of the widely used QBE 

language (see Appendix B.1), just as relational algebra serves as the basis for the SQL language. 

Formal Definition 

An expression in the domain relational calculus is of the form 

{< x1,  x2, . . . , xn >  | P(x1,  x2, . . . , xn)} 

where x1, x2, . . . , xn represent domain variables. P represents a formula composed of 
atoms, as was the case in the tuple relational calculus. An atom in the domain relational calculus 
has one of the following forms: 

 

 < x1, x2, . . . , xn > ∈ r, where r is a relation on n attributes and x1, x2, . . . , xn are 
domain variables or domain constants. 

 

 x y, where x and y are domain variables and is a comparison operator (<, ≤, =,  =,>, 

≥). We require that attributes x and y have domains that can be compared by . 
 

 x c, where x is a domain variable, is a comparison operator, and c is a constant in 
the domain of the attribute for which x is a domain variable. 

 

We build up formulae from atoms by using the following rules: 

 An atom is a formula.  

 If P1 is a formula, then so are ¬ P1 and (P1). 
 

• If P1 and P2 are formulae, then so are P1  ∨  P2, P1  ∧  P2, and P1  ⇒  P2. 

 If P1(x) is a formula in x, where x is a free domain variable, then 
 

 x (P1(x)) and ∀ x (P1(x)) 

are also formulae. 

As a notational shorthand, we write  

∃ a , b, c (P(a , b, c)) for ∃ a (∃ b (∃ c (P(a , b, c)))). 

 



Example Queries 

 

We now give domain-relational-calculus queries for the examples that we considered 
earlier. Note the similarity of these expressions and the corresponding tuple-relational-calculus 
expressions. 

 Find the instructor ID, name, dept name, and salary for instructors whose salary is 
greater than $80,000:  

{< i, n, d, s >  |  < i, n, d, s > ∈ instructor ∧  s >  80000} 

 Find all instructor ID for instructors whose salary is greater than $80,000: 

 

{< n >  | ∃ i, d, s (< i, n, d, s > ∈ instructor ∧  s >  80000)} 

Although the second query appears similar to the one that we wrote for the tuple 
relational calculus, there is an important difference. In the tuple calculus, when we write ∃ s for 
some tuple variable s, we bind it immediately to a relation by writing ∃ s ∈ r . However, when 
we write ∃ n in the domain calculus, n refers not to a tuple, but rather to a domain value. Thus, 
the domain of variable n is unconstrained until the subformula < i, n, d, s > ∈ instructor 
constrains n to instructor names that appear in the instructor relation. 
 

We now give several examples of queries in the domain relational calculus. 

 Find the names of all instructors in the Physics department together with the 
course id of all courses they teach:  

{< n, c >  | ∃  i, a (< i, c, a , s, y > ∈  teaches 

 ∃ d, s (< i, n, d, s > ∈  instructor ∧  d =  “Physics”))} 
 

 Find the set of all courses taught in the Fall 2009 semester, the Spring 2010 
semester, or both: 

{< c >  | ∃ s (< c, a , s, y, b, r, t > ∈ section 

 s =  “Fall” ∧ y =  “2009” 
 ∃ u (< c, a , s, y, b, r, t > ∈ section 

 s =  “Spring” ∧ y =  “2010” 
 

Find all students who have taken all courses offered in the Biology depart-ment: 

{< i >  | ∃ n, d, t (< i, n, d, t > ∈ student ) ∧ 

 x, y, z, w (< x, y, z, w > ∈  course ∧  z =  “Biology” ⇒ 
∃ a , b (< a , x, b, r, p, q > ∈  takes ∧  < c, a > ∈  depositor ))} 

 

Note that as was the case for tuple-relational-calculus, if no courses are offered in the Biology 

department, all students would be in the result. 



Safety of Expressions 

We noted that, in the tuple relational calculus (Section 6.2), it is possible to write 
expressions that may generate an infinite relation. That led us to define safety for tuple-
relational-calculus expressions. A similar situation arises for the domain relational calculus. An 
expression such as 

{< i, n, d, s >  | ¬(< i, n, d, s > ∈  instructor )} 

is unsafe, because it allows values in the result that are not in the domain of the expression. 
 

For the domain relational calculus, we must be concerned also about the form of formulae 
within “there exists” and “for all” clauses. Consider the expression 

{< x >  | ∃ y (< x, y >∈  r ) ∧  ∃ z (¬(< x, z >∈  r ) ∧ P(x, z))} 

where P is some formula involving x and z. We can test the first part of the formula, ∃ y (< x, 
y > ∈ r ), by considering only the values in r. However, to test the second part of the formula, ∃ z 
(¬ (< x, z > ∈ r ) ∧ P(x, z)), we must consider values for z that do not appear in r. Since all 
relations are finite, an infinite number of values do not appear in r. Thus, it is not possible, in 
general, to test the second part of the formula without considering an infinite number of potential 
values for z. Instead, we add restrictions to prohibit expressions such as the preceding one. 

In the tuple relational calculus, we restricted any existentially quantified vari-able to 
range over a specific relation. Since we did not do so in the domain calculus, we add rules to 
the definition of safety to deal with cases like our example. We say that an expression 

{< x1,  x2, . . . , xn >  | P (x1,  x2, . . . , xn)} 

is safe if all of the following hold: 

 All values that appear in tuples of the expression are values from dom(P).  

 For every “there exists” subformula of the form ∃ x (P1(x)), the subformula is true if and 

only if there is a value x in dom(P1) such that P1(x) is true.  

 For every “for all” subformula of the form ∀x (P1(x)), the subformula is true if and only 

if P1(x) is true for all values x from dom(P1). 
 

The purpose of the additional rules is to ensure that we can test “for all” and “there exists” 

subformulae without having to test infinitely many possibilities. Consider the second rule in 

the definition of safety. For ∃ x (P1(x)) to be true, 

we need to find only one x for which P1(x) is true. In general, there would be infinitely 
many values to test. However, if the expression is safe, we know that we can restrict 
our attention to values from dom(P1). This restriction reduces to a finite number the 
tuples we must consider. 

 

The situation for subformulae of the form ∀x (P1(x)) is similar. To assert that ∀x 
(P1(x)) is true, we must, in general, test all possible values, so we must examine 



infinitely many values. As before, if we know that the expression is safe, it is sufficient 
for us to test P1(x) for those values taken from dom(P1). 

 

All the domain-relational-calculus expressions that we have written in the example 
queries of this section are safe, except for the example unsafe query we saw earlier. 

Expressive Power of Languages 

When the domain relational calculus is restricted to safe expressions, it is equivalent in 
expressive power to the tuple relational calculus restricted to safe expressions. Since we noted 
earlier that the restricted tuple relational calculus is equivalent to the relational algebra, all three 
of the following are equivalent: 

The basic relational algebra (without the extended relational-algebra operations) 
 The tuple relational calculus restricted to safe expressions 
 The domain relational calculus restricted to safe expressions 

 

We note that the domain relational calculus also does not have any equivalent of the 
aggregate operation, but it can be extended to support aggregation, and extending it to handle 
arithmetic expressions is straightforward. 

 

Overview of the Design Process 

The task of creating a database application is a complex one, involving  

• design of the database schema 

• design of the programs that access and update the data and 

• Design of a security scheme to control access to data.  

The needs of the users play a central role in the design process. The design of a complete 
database application environment that meets the needs of the enterprise being modeled requires 
attention to a broad set of issues. These additional aspects of the expected use of the database 
influence a variety of design choices at the physical, logical, and view levels. 

Design Phases 

For small applications, it may be feasible for a database designer who understands the 
application requirements to decide directly on the relations to be created, their attributes, and 
constraints on the relations.  

However, such a direct design process is difficult for real-world applications, since they 
are often highly complex. Often no one person understands the complete data needs of an 
application.  

The database designer must interact with users of the application to understand the needs 
of the application, represent them in a high-level fashion that can be understood by the users, and 
then translate the requirements into lower levels of the design. A high-level data model serves 



the database designer by providing a conceptual framework in which to specify, in a systematic 
fashion, the data requirements of the database users, and a database structure that fulfills these 
requirements. 

• The initial phase of database design is to characterize fully the data needs of the 
prospective database users. The database designer needs to interact ex-tensively with 
domain experts and users to carry out this task. The outcome of this phase is a 
specification of user requirements. 

• Next, the designer chooses a data model and, by applying the concepts of the chosen data 
model, translates these requirements into a conceptual schema of the database. The 
schema developed at this conceptual-design phase pro-vides a detailed overview of the 
enterprise. Typically, the conceptual-design phase re-sults in the creation of an entity-
relationship diagram that provides a graphic representation of the schema. 

• A fully developed conceptual schema also indicates the functional require-ments of the 
enterprise. In a specification of functional requirements, users describe the kinds of 
operations (or transactions) that will be performed on the data. Example operations 
include modifying or updating data, searching for and retrieving specific data, and 
deleting data. At this stage of conceptual design, the designer can review the schema to 
ensure it meets functional requirements. 

 

 The process of moving from an abstract data model to the implementation of the database proceeds in 
two final design phases. 
 

o In the logical-design phase, the designer maps the high-level conceptual schema 
onto the implementation data model of the database system that will be used. The 
implementation data model is typically the relational data model, and this step 
typically consists of mapping the conceptual schema defined using the entity-
relationship model into a relation schema. 

 

o Finally, the designer uses the resulting system-specific database schema in the 
subsequent physical-design phase, in which the physical features of the database 
are specified. 

Design Alternatives 

A major part of the database design process is deciding how to represent in the design the 
various types of “things” such as people, places, products, and the like. We use the term entity to 
refer to any such distinctly identifiable item.  

In a university database, examples of entities would include instructors, students, 
departments, courses, and course offerings. The various entities are related to each other in a 
variety of ways, all of which need to be captured in the database design.  

For example, a student takes a course offering, while an instructor teaches a course 
offering; teaches and takes are examples of relationships between entities. 

In designing a database schema, we must ensure that we avoid two major pitfalls: 



 Redundancy: A bad design may repeat information. For example, if we store the 
course identifier and title of a course with each course offering, the title would be stored 
redundantly (that is, multiple times, unnecessarily) with each course offering. It would 
suffice to store only the course identifier with each course offering, and to associate the 
title with the course identifier only once, in a course entity. 
 Incompleteness: A bad design may make certain aspects of the enterprise difficult 
or impossible to model. For example, suppose that, as in case (1) above, we only had 
entities corresponding to course offering, without having an entity corresponding to 
courses. Equivalently, in terms of relations, suppose we have a single relation where we 
repeat all of the course information once for each section that the course is offered. It 
would then be impossible to represent information about a new course, unless that course 
is offered. We might try to make do with the problematic design by storing null values 
for the section information. Such a work-around is not only unattractive, but may be 
prevented by primary-key constraints. 
 

Avoiding bad designs is not enough. There may be a large number of good designs from 
which we must choose. As a simple example, consider a customer who buys a product. Is the 
sale of this product a relationship between the customer and the product? Alternatively, is the 
sale itself an entity that is related both to the customer and to the product? This choice, though 
simple, may make an important difference in what aspects of the enterprise can be modeled well.  

 



The Entity-Relationship Model 

Introduction 

 

The Entity – Relationship ( E - R) data model was developed to facilitate database design by 

allowing specification of an enterprise schema that represents the overall logical by structure of a data 

base. The E-R model lies in its representation of the several semantic data models; the semantic aspect of 

the model lies in its pre presentation of the meaning of the data. The E-R model is very useful in mapping 

the meanings and interactions of real – world enterprises into a conceptual schema. Because of this 

usefulness, many database design tools draw on concepts from the E – R Model. The E – R data model 

employs three basic notions: Entity, Relationship sets and Attributes. 

Entity  

An Entity is an “object” that exists and is distinguishable from other objects. An Entity is 

represented by a set of attributes. These attributes are the descriptive properties possessed by each entity. 

For example, Roll Number of a Student, is an entity, it is uniquely identifies a person in a class. i.e the 

Roll Number of a student is distinguishable from one other . 

Entity Sets 

The Entity Set is a set of entities of the same type, that share the same properties or 

Attributes. Ex : Persons having an account at bank. or Each student having Admission Number. 

The set of all students in a class., can be defined as the entity-set. Who are students of an 

university, for example, can be defined as the entity set student. Similarly, the entity set Admission 

might represent the set of all admission awarded by a particular university. The individual entities 

that constitute a set are said to be the extension of the entity set. Thus, all the individual students are 

the extension of the entity set student. 

Example: Student Table 

 Student Name Address Admission No 

 Salman Hyderabad 27096-12- 101 

 Muneer Sec’bad 27096-12- 102 

 Imran Charminar 27096-12- 103 

 Ravi Banglore 27096-12- 104 

 Raja Delhi 27096-12- 105 

 

 

 



Bank Account 

Account No Name of the Bank Branch Balance 

A – 101 HDFC Malakpet 500 

A – 215 SBI Saidabad 800 

A – 305 SBH YMCA 400 

A – 201 CANARABANK Narayanguda 900 

A - 405 HDFC Malakpet 750 

  

Attributes 

Each entity has certain characteristics knows as attributes. For instance the student entity 
might include the following attributes, Student name, Roll Number etc. For each attribute, there is a 
set of permitted values, called the domain, or value set, of that attribute. An attribute of an entity set 
is a function that maps from the entity set into a domain. Since an entity set may have several 
attributes, each entity can be described by a set of (attribute, data value) pairs, one pair for each 
attribute of the entity set. 

 

The attributes can be classified in to 

1. Simple attributes 
2. Complex/ composite attributes 
3. Single – valued attributes 
4. Multi - valued attributes 
5. Derived attribute 
6. Null Attribute 

 

An attribute, as used in the E – R model, can be characterized by the following 

attribute types. 

• Simple attributes : The attributes have been simple; that is, they have not been divided into 

subparts. Example : Student class Roll Number. 
 

• Composite attributes : The attributes, which can be sub divided in to sub parts. 
 

Example : Student Name, Which can be divided in parts like First name, Middle name and 

Last name. Note also that a composite attribute may appear as a hierarchy. In the composite 

attribute address, its component attribute street can be further divided into street_number, 

street_name, and Door _ number etc. 



• Single valued attributes : The attribute which contain/ accept only one value/character. 
 

Example:  Sex : Male or Female 

Marital status : Married or Unmarried 
 

• Multivalued attributes : The attributes which has set of values for a specific entity. in our example all 

have a single value for a particular entity. 
 

Example 1 : Number of dependents in a family may 0,1,2,3,4….. 

Example 2 : A student may have several phone numbers, and different students may 

have different numbers of phones. 

• Derived attribute : The value of this type of attribute can be derived from the values of other 

related attributes or entities. The value of a derived attribute is not stored but is computed when 

required. 
 

• Null Attributes : An attribute takes a null value when an entity does not have a value for it. 

The null value may indicate “not applicable” – that is, that the value does not exist for the entity. 

Relationship Sets 

A Relationship is an association among several entities. For example, we can define a 

relationship between student entity and bank account entity. The student named Rahul having 

bank account in HDFC ,Malakpet branch with an account number A-101. 

 

The Relationship also can be define as 

A Relationship set is a set of relationships of the same type. Formally, it is a mathematical 

relation on n e” 2 (possibly non distinct) entity sets. If E1 ,E2, ……., En are entity sets, then a relationship 

set R is a subset of 

 

{ (e1, e2, …………,en ) |e1 º E1, e2 º E2, ……….. en º E n } Where (e1, e2, .……,en) is a 

relationship. 

 

The association between entity sets is referred to as participation; that is, the entity sets  

E1, E2, …….., En participate in relationship set R. 

 A relationship instance in an E – R schema represents an association between the named 

entities in the real – world enterprise that is being modeled. 

 

The function that an entity plays in a relationship is called that entity’s role. Since entity 

sets participating in a relationship set are generally distinct, roles are implicit and are not usually 



specified. However, they are useful when the meaning of a relationship needs clarification. Such 

is the case when the entity sets of a relationship set are not distinct; the same entity set 

participates in a relationship 

A relationship may also have attributes called descriptive attributes. A relationship instance in a 

given relationship set must be uniquely identifiable from its participating entities, without using the 

descriptive attributes. 

 Mapping  Constraints 

An E – R enterprise schema may define certain constraints to which the contents of a 

database must conform. In this section, we examine mapping cardinalities, key constraints, and 

participation constraints. 

Cardinalities : Mapping Cardinalities, or cardinality ratios, express the number of 

entities to which another entity can be associated via a relationship set. 

Mapping Cardinalities are most useful in describing binary relationship sets, although 

they can contribute to the description of relationship sets that involve more than two entity sets. 

In this section, we shall concentrate on only binary relationship sets. 

For a binary relationship set R between entity sets A and B, the mapping cardinality must 

be one of the following. 

There are 4 types of mapping cardinalities. 

1. ONE – to – ONE Relationship 
2. MANY – to – MANY Relationship 
3. ONE – to – MANY Relationship    
4. MANY – to – MANY Relationship 

 

1. ONE – to – ONE Relationship : An entity in A is associated with at most one entity in 

B is also associated with at most one entity in A. 
 

  

 

  A         B 

 

 

 

Example : Relationship between the entities principal and college. i.e., Principals can lead a single 

college and a principal can have only one college 

 



2. Many – to – One Relationship : An entity set in A is associated with at most one 

entity in B, An entity in B however can be associated with any number of entities in A. 
 

 

 

A          B 

 

 

 

 

Example : Relationship between the entities Districts and state .i.e. many districts belong 

to a single state but many states cannot belong to single district. 

3. ONE – to - MANY Relationship : An entity set A is associated with any number of 

entities in B. An entity in B, however can be associated with at most one entity in A. 
 

Example : Relationship between the entities class and student i.e., a class can have many 

students but a student cannot be in more than one class at a time. 

 

 

 

 

 A           B 

 

 

4. MANY – to – MANY Relationship : An entity set in A is associated with any 

number of entities in B and an entity set in B is associated with any number of entities in A. 
 

 

A                      B 

 

 

 

 



Example : Relationship between the Entities College and course .i.e. a college can have many 

courses and course can be offered by many colleges 

The appropriate mapping cardinality for a particular relationship set obviously depends 

on the real – world situation that the relationship set is modeling. 

 

Participation Constraints 

 

The participation of an entity set E in a relationship set R is said to be total if every entity in E 
participates in at least one relationship in R. If only some entities in E participate in relationships 
in R, the participation of entity set E in relationship R is said to be partial.  In the participation of 
B in the relationship set is total while the participation of A in the relationship set is partial. In the 
participation of both A and B in the relationship set are total. 
 

For example, we expect every student entity to be related to at least one instructor through the 
advisor relationship. Therefore the participation of student in the relationship set advisor is total. 
In contrast, an instructor need not advise any students. Hence, it is possible that only some of the 
instructor entities are related to the student entity set through the advisor relationship, and the 
participation of instructor in the advisor relationship set is therefore partial. 

Removing Redundant Attributes in Entity Sets 

When we design a database using the E-R model, we usually start by identifying those entity 
sets that should be included. For example, in the university organization we have discussed thus 
far, we decided to include such entity sets as student, instructor, etc. Once the entity sets are 
decided upon, we must choose the appropriate attributes. These attributes are supposed to 
represent the various values we want to capture in the database. In the university organization, 
we decided that for the instructor entity set, we will include the attributes ID, name, dept name, 
and salary. We could have added the attributes: phone number, office number, home page, etc. 
The choice of what attributes to include is up to the designer, who has a good understanding of 
the structure of the enterprise. 
 

Once the entities and their corresponding attributes are chosen, the relation-ship sets among 
the various entities are formed. These relationship sets may result in a situation where attributes 
in the various entity sets are redundant and need to be removed from the original entity sets. To 
illustrate, consider the entity sets instructor and department: 

 The entity set instructor includes the attributes ID, name, dept name, and salary, with ID 
forming the primary key. 
 

 The entity set department includes the attributes dept name, building, and bud-get, with dept 
name forming the primary key.  

We model the fact that each instructor has an associated department using a relationship set inst 

dept relating instructor and department. 

The attribute dept name appears in both entity sets. Since it is the primary key for the entity 
set department, it is redundant in the entity set instructor and needs to be removed. 



 

Removing the attribute dept name from the instructor entity set may appear rather 
unintuitive, since the relation instructor that we used in the earlier chap-ters had an attribute dept 

name. As we shall see later, when we create a relational schema from the E-R diagram, the 
attribute dept name in fact gets added to the relation instructor, but only if each instructor has at 
most one associated depart-ment. If an instructor has more than one associated department, the 
relationship between instructors and departments is recorded in a separate relation inst dept. 
 

Treating the connection between instructors and departments uniformly as a relationship, 
rather than as an attribute of instructor, makes the logical relationship explicit, and helps avoid a 
premature assumption that each instructor is associated with only one department. 
 

Similarly, the student entity set is related to the department entity set through the relationship 
set student dept and thus there is no need for a dept name attribute in student. 
 

As another example, consider course offerings (sections) along with the time slots of the 
offerings. Each time slot is identified by a time slot id, and has associated with it a set of weekly 
meetings, each identified by a day of the week, start time, and end time. We decide to model the 
set of weekly meeting times as a multivalued composite attribute. Suppose we model entity sets 
section and time slot as follows: 
 

 The entity set section includes the attributes course id, sec id, semester, year, building, room 
number, and time slot id, with (course id, sec id, year, semester) forming the primary key. 
 

 The entity set time slot includes the attributes time slot id, which is the primary key,4 and a 

multivalued composite attribute {(day, start time, end time)}.5  

These entities are related through the relationship set sec time slot. 
 

The attribute time slot id appears in both entity sets. Since it is the primary key for the entity 
set time slot, it is redundant in the entity set section and needs to be removed. 
 

As a final example, suppose we have an entity set classroom, with attributes building, room 

number, and capacity, with building and room number forming the primary key. Suppose also 
that we have a relationship set sec class that relates section to classroom. Then the attributes 

{building, room number} are redundant in the entity set section. 
 

 good entity-relationship design does not contain redundant attributes. For our 
university example, we list the entity sets and their attributes below, with primary keys 
underlined: 

  
 classroom: with attributes (building, room number, capacity). 
 department: with attributes (dept name, building, budget). 
 course: with attributes (course id, title, credits). 
 instructor: with attributes (ID, name, salary). 
 section: with attributes (course id, sec id, semester, year). 



 student: with attributes (ID, name, tot cred). 
 time slot: with attributes (time slot id, {(day, start time, end time) }). 

 
 
The relationship sets in our design are listed below: 
 

 inst dept: relating instructors with departments. 
 stud dept: relating students with departments. 
 teaches: relating instructors with sections. 
 takes: relating students with sections, with a descriptive attribute grade. 
 course dept: relating courses with departments. 
 sec course: relating sections with courses. 
 sec class: relating sections with classrooms. 
 sec time slot: relating sections with time slots. 
 advisor: relating students with instructors. 
 prereq: relating courses with prerequisite courses.  

 

You can verify that none of the entity sets has any attribute that is made redundant by one of 
the relationship sets. Further, you can verify that all the information (other than constraints) in 
the relational schema for our university database, which we saw earlier in Figure 2.8 in Chapter 
2, has been captured by the above design, but with several attributes in the relational design 
replaced by relationships in the E-R design. 

 

Entity – Relationship Diagrams 

An E-R diagram can express the overall logical structure of a database graphically. E-R 

diagrams are simple and clear – qualities that may well account in large part for the widespread 

use of the E-R model. Such diagram consists of the following major components. 

An E-R diagram consists of the following major components: 

 

 

  
  
  
  

•  
•  

• Rectangles : Which represent entity sets. 
• Ellipses : Which represent attributes 
• Diamonds : Which represent relationship sets 



• Lines : Which link attributes to entity sets and entity sets to 
relationship sets 

• Double ellipses : Which represents multivalued attributes 
• Dashed ellipses : Which denote derived attributes. 
• Double Lines : Which indicate total participation of an entity 

in a relationship set. 
• Double Rectangles : Which represent weak entity sets 

 

Symbols used in E-R diagram representation 

                                                  Symbol Represented ERD Property 

Entity 

 

Weak Entity 

 

 

Relation Ship 

 

 

 

Identifying Relationship 

 

Attribute 



 

Key Attribute 

 

Multivalued Attribute 

 

 

Composite Attribute 

 

 

Derived Attribute 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Drawing E-R diagrams 

 

Example I - ER diagram with the entity sets Customer (Customer-name, Social-security, Street, Customer-

city), Account (Account-Number, Balance with a relationship Custacct (date), i.e. date is attribute of 

relationship as shown below. 
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Example : 3 

ER diagram showing the many - to one relationship between customer and account is as 

shown below. (Observe the arrow mark is towards account) 

 



 

Role in E-R Diagrams 

 

The function that an entity plays in a relationship is called its role. Roles are normally 

explicit and not specified. 

They are useful when the meaning of a relationship set needs clarification. 

For example, the entity sets of a relationship may not be distinct. The relationship works - 

for might be ordered pairs of employee (first is manager, second is worker). 



In the E-R diagram, this can be shown by labeling the lines 

connecting entities (rectangles) to relationships (diamonds). 

 

 

 

 

 

 

Weak Entity sets E-R Diagrams 

Weak entity set: An entity set that does not possess sufficient attributes to 

form a primary key is called a weak entity set. 

Strong Entity set: An entity set that has a primary key is called a strong 

entity set. 

For example 

The entity set transaction has attributes transaction - number, date and 

amount. Different transaction on different accounts could share the same number. 

These are not sufficent to form a primary key (uniquely identify a transaction). Thus 

transaction is a weak entity set. 

For weak entity set to be meaningful, it must be part of a one - many 

relationship set. This relationship set should have no descriptive attributes. 

The idea of strong and weak entity sets is related to the existence 

dependencies seen earlier. 

Member of a strong entity set a dominant entity. Member of a weak entity set 

is a subordinate entity. 

A weak entity set does not have a primary key, but we need a means os 

distinguishing among the entities. The discriminator of a weak entity set is a set of 

attributes that allows this distinction to be made. 

The primary key of a weak entity set is formed by taking the primary key of 

the strong entity set on which its existence depends (see Mapping Constraints) plus 

its discriminator. 



Example : 5 

Transaction is a weak entity. It is existence - dependent on account. 

The primary key of account is account - number. 

Transaction - number distinguishes transaction entities with in the same account (and is 

thus the discriminator). 

So the primary key for transaction will be (account - number, transaction - number). 

Note : The primary key of a weak entity is found by taking the primary key of the strong 

entity on which it is existence - dependent, plus the discriminator of the weak entity set. 

 

A weak entity set is indicated by a doubly - outlined box. For example, the 

previously - mentioned weak entity set transaction is dependent on the strong entity 

set account via the relationship set log. 

 

Example : 6 

 

 

 

 

 

 

E-R diagram of weak entities. Observe that transaction is placed in double rectangle. 

 

Example : 7 

 

Non - binary ER diagram (ternary) between three entity sets a customer, Account, Branch 

is as shown below which says that a customer may have several accounts, each located in a 

specific bank branch, and that an account may belong to several different customers. 

 

 

 



 

 

Reducing E-R Diagram into tables 

A database conforming to an E-R diagram can be represent by a collection 

tables. Let us see how it can be done. 

• For each entity set and relationship set, there is a unique table which is assigned the 

name of the corresponding set. 
 

• Each table has a number of columns with unique names. 
 

Rules to followed to reduce ER diagrams in to tables are as given below. 

• Primary keys allow entity sets and relationship sets to be expressed uniform as 

relation TABLES that represent the content of the database. 
 

• Relationship TABLE that is assigned the entity set. 
 

• A strong entity set reduces to a TABLE with the same attributes. 
 

• A weak entity set becomes a table that includes a column for the primary key of 

the identifying strong entity set. 
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Consider ER diagram constaining weak entity set as shown below. Here payment is weak entity 

set. 

 

 

 

 

• Each TABLE has a number of column (generally corresponding to attributes). which have unique names. 
 

• A many - to - many ralationship set is represented as a TABLE with attributes for the primary keys of the two 

participating entity sets, and any descriptives attributes of the relationship set. 
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Example 

 

Given entity set customer with composite attribute name with component attributes 

first - name and last - name the table corresponding to the entity set has two attributes. 

name. first _ name and name. last _ name 

 

• A multivalued attribute M of an entity E is represented by a separate table EM. Table 

EM has attributes corresponding to the primary key of E and an attribute corresponding to 

multivalued attribute M. 
 

Example 

Multivalued attribute dependent - names of employee is represented by a table. 

employee - dependent - names (employee -id,dname) 

• Each value of the multivalued attribute maps to a separate row of the table EM. 
 

Example 
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An employee entity with primary key 19444 and dependents John and Maria maps to rows 

(19444, John) and (19444,Maria) 

Example 

Reduce the following ER diagram into tables. 

 

 

 

 

 

 

 

 

Each entity set customer and account will have a table and the relationship Cust_acct will have a 

table hence there will be three tables with the columns as given below. 

 

Customer table with columns customer _ name, Social _ security, Street, Customer _ city. 
 

Account table with columns account _ number, balance. 
 

Custacct table with attributes Social _ security, account _ number, date. 

 

Procedure for conversion of ER Diagram into a database table 

 

1. The E – R diagram of any database can be represented by a collection of tables. 

2. For each entity set and for each relationship set there is unique table to which is assigned the name of the 

corresponding entity set or relationship. 
3. Each table has a number of columns which again have unique names i.e. attributes. 

4. The values of all attributes are called records. 
5. The column value which uniquely identifies the record in the table will be defined as primary key. 

6. Other keys will be defined according to the relationship with other tables / entities. 

 

Reduction to Relational Schemas 

We can represent a database that conforms to an E-R database schema by a col-lection of relation 
schemas. For each entity set and for each relationship set in the database design, there is a unique relation 
schema to which we assign the name of the corresponding entity set or relationship set. 
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Both the E-R model and the relational database model are abstract, logical representations of real-
world enterprises. Because the two models employ similar design principles, we can convert an E-R 
design into a relational design. 
 

In this section, we describe how an E-R schema can be represented by relation schemas and how 
constraints arising from the E-R design can be mapped to constraints on relation schemas. 

 

Representation of Strong Entity Sets with Simple Attributes 

 

Let E be a strong entity set with only simple descriptive attributes a1, a2, . . . , an. We represent this entity 
by a schema called E with n distinct attributes. Each tuple in a relation on this schema corresponds to one 
entity of the entity set E. 
 

For schemas derived from strong entity sets, the primary key of the entity set serves as the primary key 
of the resulting schema. This follows directly from the fact that each tuple corresponds to a specific entity 
in the entity set. 
 

As an illustration, consider the entity set student of the E-R diagram in Fig-ure 7.15. This entity set has 
three attributes: ID, name, tot cred. We represent this entity set by a schema called student with three 
attributes: 
 

student (ID, name, tot cred) 
 

Note that since student ID is the primary key of the entity set, it is also the primary key of the relation 
schema. 

Continuing with our example, for the E-R diagram in Figure 7.15, all the strong entity sets, 
except time slot, have only simple attributes. The schemas derived from these strong entity sets 
are: 

classroom (building, room number, capacity) 
department (dept name, building, budget) 
course (course id, title, credits) 
instructor (ID, name, salary) 
student (ID, name, tot cred) 

 
 
As you can see, both the instructor and student schemas are different from the schemas we have used in 
the previous chapters (they do not contain the attribute dept name). We shall revisit this issue shortly. 
 

Representation of Strong Entity Sets with Complex Attributes 

 

When a strong entity set has nonsimple attributes, things are a bit more complex. We handle composite 
attributes by creating a separate attribute for each of the component attributes; we do not create a separate 
attribute for the composite attribute itself. To illustrate, consider the version of the instructor entity set de-
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picted in Figure 7.11. For the composite attribute name, the schema generated for instructor contains the 
attributes first name, middle name, and last name; there is no separate attribute or schema for name. 
Similarly, for the composite attribute address, the schema generated contains the attributes street, city, 
state, and zip code. Since street is a composite attribute it is replaced by street number, street name, and 
apt number. We revisit this matter  
 

Multivalued attributes are treated differently from other attributes. We have seen that attributes in an 
E-R diagram generally map directly into attributes for the appropriate relation schemas. Multivalued 
attributes, however, are an exception; new relation schemas are created for these attributes, as we shall see 
shortly. 
 

Derived attributes are not explicitly represented in the relational data model. However, they can be 
represented as “methods” in other data models such as the object-relational data model,  
 

The relational schema derived from the version of entity set instructor with complex attributes, 
without including the multivalued attribute, is thus: 

 

instructor (ID, first name, middle name, last name, street 

number, street name, apt number, city, state, zip code, 
date of birth) 

 

 

For a multivalued attribute M, we create a relation schema R with an attribute A that corresponds to M 

and attributes corresponding to the primary key of the entity set or relationship set of which M is an 
attribute. 
 

As an illustration, consider the E-R diagram in Figure 7.11 that depicts the entity set instructor, which 
includes the multivalued attribute phone number. The primary key of instructor is ID. For this multivalued 
attribute, we create a relation schema 
 

instructor phone (ID, phone number) 

Each phone number of an instructor is represented as a unique tuple in the relation on this schema. 
Thus, if we had an instructor with ID 22222, and phone numbers 555-1234 and 555-4321, the relation 
instructor phone would have two tuples (22222, 555-1234) and (22222, 555-4321). 

 

We create a primary key of the relation schema consisting of all attributes of the schema. In the 
above example, the primary key consists of both attributes of the relation instructor phone. 

 

In addition, we create a foreign-key constraint on the relation schema created from the multivalued 
attribute, with the attribute generated from the primary key of the entity set referencing the relation 
generated from the entity set. In the above example, the foreign-key constraint on the instructor phone 
relation would be that attribute ID references the instructor relation. 
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In the case that an entity set consists of only two attributes — a single primary-key attribute B and a 
single multivalued attribute M — the relation schema for the entity set would contain only one attribute, 
namely the primary-key attribute B. We can drop this relation, while retaining the relation schema with 
the attribute B and attribute A that corresponds to M. 

 

To illustrate, consider the entity set time slot depicted in Figure 7.15. Here, time slot id is the 
primary key of the time slot entity set and there is a single multivalued attribute that happens also to be 
composite. The entity set can be represented by just the following schema created from the multivalued 
composite attribute: 

 

time slot (time slot id, day, start time, end time) 
 

Although not represented as a constraint on the E-R diagram, we know that there cannot be two 
meetings of a class that start at the same time of the same day-of-the-week but end at different times; 
based on this constraint, end time has been omitted from the primary key of the time slot schema. 

 

The relation created from the entity set would have only a single attribute time slot id; the 
optimization of dropping this relation has the benefit of simplifying the resultant database schema, 
although it has a drawback related to foreign keys. 

Representation of Weak Entity Sets 

 

Let A be a weak entity set with attributes a1, a2, . . . , am. Let B be the strong entity set on which A 
depends. Let the primary key of B consist of attributes b1, b2, . . . , bn. We represent the entity set A by a 
relation schema called A with one attribute for each member of the set: 

{a1, a2, . . . , am} ∪ {b1, b2, . . . , bn} 

For schemas derived from a weak entity set, the combination of the pri-mary key of the strong entity 
set and the discriminator of the weak entity set serves as the primary key of the schema. In addition to 
creating a primary key, we also create a foreign-key constraint on the relation A, specifying that the 
attributes b1, b2, . . . , bn reference the primary key of the relation B. The foreign-key constraint ensures 
that for each tuple representing a weak entity, there is a corresponding tuple representing the 
corresponding strong entity. 

 

As an illustration, consider the weak entity set section in the E-R diagram of Figure 7.15. This entity 
set has the attributes: sec id, semester, and year. The primary key of the course entity set, on which section 
depends, is course id. Thus, we represent section by a schema with the following attributes: 
 

section (course id, sec id, semester, year) 
 

The primary key consists of the primary key of the entity set course, along with the discriminator of 
section, which is sec id, semester, and year. We also create a foreign-key constraint on the section schema, 
with the attribute course id refer-encing the primary key of the course schema, and the integrity constraint 
“on delete cascade”.7 Because of the “on delete cascade” specification on the foreign key constraint, if a 
course entity is deleted, then so are all the associated section entities. 
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Representation of Relationship Sets 

 

Let R be a relationship set, let a1, a2, . . . , am be the set of attributes formed by the union of the primary 
keys of each of the entity sets participating in R, and let the descriptive attributes (if any) of R be b1, b2, . . 
. , bn. We represent this relationship set by a relation schema called R with one attribute for each member 
of the set: 

 

{a1, a2, . . . , am} ∪ {b1, b2, . . . , bn} 

 

We described earlier, in Section 7.3.3, how to choose a primary key for a binary relationship set. As we 
saw in that section, taking all the primary-key attributes from all the related entity sets serves to identify a 
particular tuple, but for one-to-one, many-to-one, and one-to-many relationship sets, this turns out to be a 
larger set of attributes than we need in the primary key. The primary key is instead chosen as follows: 

For a binary many-to-many relationship, the union of the primary-key at-tributes from the participating 
entity sets becomes the primary key. 
 

For a binary one-to-one relationship set, the primary key of either entity set can be chosen as the primary 
key. The choice can be made arbitrarily. 
 

For a binary many-to-one or one-to-many relationship set, the primary key of the entity set on the “many” 
side of the relationship set serves as the primary key. 

 For an n-ary relationship set without any arrows on its edges, the union of the primary key-attributes 
from the participating entity sets becomes the primary key. 

 

 For an n-ary relationship set with an arrow on one of its edges, the primary keys of the entity sets not 
on the “arrow” side of the relationship set serve as the primary key for the schema. Recall that we 
allowed only one arrow out of a relationship set. 

 

We also create foreign-key constraints on the relation schema R as follows: For each entity set Ei 
related to relationship set R, we create a foreign-key con-straint from relation schema R, with the 
attributes of R that were derived from primary-key attributes of Ei referencing the primary key of the 
relation schema representing Ei . 

 

As an illustration, consider the relationship set advisor in the E-R diagram of 

Figure 7.15. This relationship set involves the following two entity sets: 

 instructor with the primary key ID. 
 student with the primary key ID. 

 

Since the relationship set has no attributes, the advisor schema has two attributes, the primary keys of 
instructor and student. Since both attributes have the same name, we rename them i ID and s ID. Since 
the advisor relationship set is many-to-one from student to instructor the primary key for the advisor 
relation schema is s ID. 
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We also create two foreign-key constraints on the advisor relation, with at-tribute i ID referencing 
the primary key of instructor and attribute s ID referencing the primary key of student. 

 

Continuing with our example, for the E-R diagram in Figure 7.15, the schemas derived from a 
relationship set are depicted in Figure 7.16. 

 

Observe that for the case of the relationship set prereq, the role indicators associated with the 
relationship are used as attribute names, since both roles refer to the same relation course. 

 

Similar to the case of advisor, the primary key for each of the relations sec course, sec time slot, sec 

class, inst dept, stud dept and course dept consists of the primary key of only one of the two related 
entity sets, since each of the corresponding relationships is many-to-one. 

 

Foreign keys are not shown in Figure 7.16, but for each of the relations in the figure there are two 
foreign-key constraints, referencing the two relations created from the two related entity sets. Thus, for 
example, sec course has foreign keys referencing section and classroom, teaches has foreign keys 
referencing instructor and section, and takes has foreign keys referencing student and section. 

 

The optimization that allowed us to create only a single relation schema from the entity set time slot, 
which had a multivalued attribute, prevents the creation of a foreign key from the relation schema sec 

time slot to the relation created from entity set time slot, since we dropped the relation created from the 
entity set time 

teaches (ID, course id, sec id, semester, year) 
takes (ID, course id, sec id, semester, year, grade) 
prereq (course id, prereq id) 
advisor (s ID, i ID) 
sec course (course id, sec id, semester, year) 
sec time slot (course id, sec id, semester, year, time slot id) 
sec class (course id, sec id, semester, year, building, room number)  

inst dept (ID, dept name) 
 

stud dept (ID, dept name) 
 

course dept (course id, dept name) 
 

slot. We retained the relation created from the multivalued attribute, and named it time slot, but 
this relation may potentially have no tuples corresponding to a time slot id, or may have multiple 
tuples corresponding to a time slot id; thus, time slot id in sec time slot cannot reference this 
relation. 

 

The astute reader may wonder why we have not seen the schemas sec course, sec time slot, 
sec class, inst dept, stud dept, and course dept in the previous chapters. The reason is that the 
algorithm we have presented thus far results in some schemas that can be either eliminated or 
combined with other schemas. We ex-plore this issue next. 
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Entity-Relationship Design Issues 

The notions of an entity set and a relationship set are not precise, and it is possible to define a set 
of entities and the relationships among them in a number of different ways. In this section, we examine 
basic issues in the design of an E-R database schema. Section 7.10 covers the design process in further 
detail. 

Use of Entity Sets versus Attributes 

Consider the entity set instructor with the additional attribute phone number (Fig-ure 7.17a.) It can 
easily be argued that a phone is an entity in its own right with attributes phone number and location; the 
location may be the office or home where the phone is located, with mobile (cell) phones perhaps 
represented by the value “mobile.” If we take this point of view, we do not add the attribute phone number 
to the instructor. Rather, we create: 
 

 A phone entity set with attributes phone number and location. 
 

 A relationship set inst phone, denoting the association between instructors and the phones that they have.  

 

This alternative is shown in Figure 7.17b. 
 

What, then, is the main difference between these two definitions of an instruc-tor? Treating a phone as 
an attribute phone number implies that instructors have precisely one phone number each. Treating a 
phone as an entity phone permits instructors to have several phone numbers (including zero) associated 
with them. However, we could instead easily define phone number as a multivalued attribute to allow 
multiple phones per instructor. 
 

The main difference then is that treating a phone as an entity better models a situation where one may 
want to keep extra information about a phone, such as its location, or its type (mobile, IP phone, or plain 
old phone), or all who share 

 

 

the 

phone. Thus, treating phone as an entity is more general than treating it as an attribute and is appropriate 
when the generality may be useful. 
 

In contrast, it would not be appropriate to treat the attribute name (of an instructor) as an entity; it is 
difficult to argue that name is an entity in its own right (in contrast to the phone). Thus, it is appropriate to 
have name as an attribute of the instructor entity set. 
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Two natural questions thus arise: What constitutes an attribute, and what constitutes an entity set? 
Unfortunately, there are no simple answers. The distinc-tions mainly depend on the structure of the real-
world enterprise being modeled, and on the semantics associated with the attribute in question. 
 

A common mistake is to use the primary key of an entity set as an attribute of another entity set, instead of 
using a relationship. For example, it is incorrect to model the ID of a student as an attribute of an 
instructor even if each instructor advises only one student. The relationship advisor is the correct way to 
represent the connection between students and instructors, since it makes their connection explicit, rather 
than implicit via an attribute. 
 

Another related mistake that people sometimes make is to designate the primary-key attributes of the 
related entity sets as attributes of the relationship set. For example, ID (the primary-key attributes of 
student) and ID (the primary key of instructor) should not appear as attributes of the relationship advisor. 
This should not be done since the primary-key attributes are already implicit in the relationship set.8 

Use of Entity Sets versus Relationship Sets 

 

It is not always clear whether an object is best expressed by an entity set or a relationship set. In Figure 
7.15, we used the takes relationship set to model the situation where a student takes a (section of a) course. 
An alternative is to imagine that there is a course-registration record for each course that each student 
takes. Then, we have an entity set to represent the course-registration record. Let us call that entity set 
registration. Each registration entity is related to exactly one student and to exactly one section, so we 
have two relationship sets, one to relate course-registration records to students and one to relate course-
registration records to sections. In Figure 7.18, we show the entity sets section and student from Figure 
7.15 with the takes relationship set replaced by one entity set and two relationship sets: 

 registration, the entity set representing course-registration records. 
 

 section reg, the relationship set relating registration and course. 
 

 student reg, the relationship set relating registration and student.  
 

 

 

Replacement 
of takes by 
registration 
and two 
relationship 
sets 

 

One possible 
guideline in determining whether to use an entity set or a relationship set is to designate a relationship set 
to describe an action that occurs between entities. This approach can also be useful in deciding whether 
certain attributes may be more appropriately expressed as relationships. 
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Extended E-R Features 

Although the basic E-R concepts can model most database features, some aspects of a database may be 

more aptly expressed by certain extensions to the basic E-R model. In this section, we discuss the 
extended E-R features of specialization, generalization, higher- and lower-level entity sets, attribute 
inheritance, and aggregation. 

To help with the discussions, we shall use a slightly more elaborate database schema for the 
university. In particular, we shall model the various people within a university by defining an entity set 
person, with attributes ID, name, and address. 

Specialization 

 

An entity set may include subgroupings of entities that are distinct in some way from other 
entities in the set. For instance, a subset of entities within an entity set may have attributes that 
are not shared by all the entities in the entity set. The E-R model provides a means for 
representing these distinctive entity groupings. 

 

As an example, the entity set person may be further classified as one of the following: 

 employee. 
 student. 

 

Each of these person types is described by a set of attributes that includes all the attributes of 
entity set person plus possibly additional attributes. For exam-ple, employee entities may be 
described further by the attribute salary, whereas student entities may be described further by 
the attribute tot cred. The process of designating sub groupings within an entity set is called 
specialization. The specialization of person allows us to distinguish among person entities 
according to whether they correspond to employees or students: in general, a person could be an 
employee, a student, both, or neither. 

As another example, suppose the university divides students into two categories: graduate 
and undergraduate. Graduate students have an office assigned to them. Undergraduate students 
are assigned to a residential college. Each of these student types is described by a set of 
attributes that includes all the attributes of the entity set student plus additional attributes. 

The university could create two specializations of student, namely graduate and 
undergraduate. As we saw earlier, student entities are described by the attributes ID, name, 
address, and tot cred. The entity set graduate would have all the attributes of student and an 
additional attribute office number. The entity set undergraduate would have all the attributes of 
student, and an additional attribute residential college. 

 

We can apply specialization repeatedly to refine a design. For instance, university 
employees may be further classified as one of the following: 

 instructor. 
 secretary. 
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Each of these employee types is described by a set of attributes that includes all the attributes of 
entity set employee plus additional attributes. For example, instructor entities may be described 
further by the attribute rank while secretary entities are described by the attribute hours per 

week. Further, secretary entities may participate in a relationship secretary for between the 
secretary and employee entity sets, which identifies the employees who are assisted by a 
secretary. 

 

An entity set may be specialized by more than one distinguishing feature. In our example, 
the distinguishing feature among employee entities is the job the employee performs. Another, 
coexistent, specialization could be based on whether the person is a temporary (limited term) 
employee or a permanent employee, resulting in the entity sets temporary employee and 
permanent employee. When more than one specialization is formed on an entity set, a particular 
entity may belong to multiple specializations. For instance, a given employee may be a 
temporary employee who is a secretary. 

 

In terms of an E-R diagram, specialization is depicted by a hollow arrow-head pointing from 
the specialized entity to the other entity (see Figure 7.21). We refer to this relationship as the 
ISA relationship, which stands for “is a” and represents, for example, that an instructor “is a” 
employee. 

 

The way we depict specialization in an E-R diagram depends on whether an entity may 
belong to multiple specialized entity sets or if it must belong to at most one specialized entity 
set. The former case (multiple sets permitted) is called overlapping specialization, while the 
latter case (at most one permitted) is called disjoint specialization. For an overlapping 
specialization (as is the case for student and employee as specializations of person), two separate 
arrows are used. For a disjoint specialization (as is the case for instructor and secretary as 
specializations of employee), a single arrow is used. The specialization relationship may also be 
referred to as a superclass-subclass relationship. Higher- and lower-level entity 

 

 

 

  

 

 

 

 

 

Specialization and generalization. 

sets are depicted as regular entity sets — that is, as rectangles containing the name of the entity set. 

Generalization 
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The refinement from an initial entity set into successive levels of entity subgroup-ings represents a top-

down design process in which distinctions are made explicit. The design process may also proceed in a 
bottom-up manner, in which multiple entity sets are synthesized into a higher-level entity set on the 
basis of common features. The database designer may have first identified: 

 instructor entity set with attributes instructor id, instructor name, instructor salary, and rank. 
 secretary entity set with attributes secretary id, secretary name, secretary salary, and hours per week.  

There are similarities between the instructor entity set and the secretary entity set in the sense that they 
have several attributes that are conceptually the same across the two entity sets: namely, the identifier, 
name, and salary attributes. This commonality can be expressed by generalization, which is a 
containment relationship that exists between a higher-level entity set and one or more lower-level entity 
sets. In our example, employee is the higher-level entity set and instructor and secretary are lower-level 
entity sets. In this case, attributes that are conceptually the same had different names in the two lower-
level entity sets. To create a generalization, the attributes must be given a common name and 
represented with the higher-level entity person. We can use the attribute names ID, name, address, as 
we saw in the example in Section 7.8.1 

Higher- and lower-level entity sets also may be designated by the terms superclass and 

subclass, respectively. The person entity set is the superclass of the employee and student 

subclasses. 
 

For all practical purposes, generalization is a simple inversion of specialization. We apply 
both processes, in combination, in the course of designing the E-R schema for an enterprise. In 
terms of the E-R diagram itself, we do not distinguish between specialization and generalization. 
New levels of entity representation are distinguished (specialization) or synthesized 
(generalization) as the design schema comes to express fully the database application and the 
user requirements of the database. Differences in the two approaches may be characterized by 
their starting point and overall goal. 

Specialization stems from a single entity set; it emphasizes differences among entities within 
the set by creating distinct lower-level entity sets. These lower-level entity sets may have 
attributes, or may participate in relationships, that do not apply to all the entities in the higher-
level entity set. Indeed, the reason a designer applies specialization is to represent such 
distinctive features. If student and employee have exactly the same attributes as person entities, 
and participate in exactly the same relationships as person entities, there would be no need to 
specialize the person entity set. 

 

Generalization proceeds from the recognition that a number of entity sets share some 
common features (namely, they are described by the same attributes and participate in the same 
relationship sets). On the basis of their commonalities, generalization synthesizes these entity 
sets into a single, higher-level entity set. Generalization is used to emphasize the similarities 
among lower-level entity sets and to hide the differences; it also permits an economy of 
representation in that shared attributes are not repeated. 

Aggregation 

One limitation of the E-R model is that it cannot express relationships among relationships. To 
illustrate the need for such a construct, consider the ternary relationship proj guide, which we saw earlier, 
between an instructor, student and project (see Figure 7.13). 

Now suppose that each instructor guiding a student on a project is required tofile a monthly 
evaluation report.We model the evaluation report as an entity evaluation,with a primary key evaluation id. 
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One alternative for recording the (student,project, instructor) combination to which an evaluation 

corresponds is to create a quaternary (4-way) relationship set eval for between instructor, student, project, 
and evaluation. (A quaternary relationship is required—a binary relationship between 
student and evaluation, for example, would not permit us to represent the (project, instructor) combination 
to which an evaluation corresponds.) Using the basic E-R modeling constructs, we obtain the E-R diagram 
of Figure 7.22. (We have omitted the attributes of the entity sets, for simplicity.) 
It appears that the relationship sets proj guide and eval for can be combined into one single relationship 
set. Nevertheless, we should not combine them into a single relationship, since some instructor, student, 
project combinations may not have an associated evaluation. There is redundant information in the 
resultant figure, however, since every instructor, student, project combination in eval for must also be in 
proj guide. If the evaluation were a value rather than a entity, we could instead make evaluation 

a multivalued composite attribute of the relationship set proj guide. However, this alternative may not be 
be an option if an evaluation may also be related to other entities; for example, each evaluation report may 
be associated with a secretary who is responsible for further processing of the evaluation report to make 
scholarship payments. The best way to model a situation such as the one just described is to use 
aggregation.  

Aggregation is an abstraction through which relationships are treated as higher-level entities. 
Thus, for our example, we regard the relationship set proj guide (relating the entity sets instructor, 
student, and project) as a higher-level entity set called proj guide. Such an entity set is treated in the same 
manner as is any other entity set. We can then create a binary relationship eval for between proj 
guide and evaluation to represent which (student, project, instructor) combination an evaluation is for. Figure 7.23 

 

 

 

 

 

 

 

 

 

 

Alternative Notations for Modeling Data 
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A diagrammatic representation of the data model of an application is a very important part of 
designing a database schema. Creation of a database schema requires not only data modeling experts, 
but also domain experts who know the requirements of the application but may not be familiar with data 
modeling. An intuitive diagrammatic representation is particularly important since it eases 
communication of information between these groups of experts. A number of alternative notations for 
modeling data have been proposed, of which E-R diagrams and UML class diagrams are the most 
widely used. There is no universal standard for E-R diagram notation, and different books and E-R 
diagram software use different notations. We have chosen a particular notation 
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Other Aspects of Database Design 

Our extensive discussion of schema design in this chapter may create the false impression that 
schema design is the only component of a database design. There are indeed several other considerations 
that we address more fully in subsequent chapters, and survey briefly here. 

Data Constraints and Relational Database Design 

We have seen a variety of data constraints that can be expressed using SQL, including primary-
key constraints, foreign-key constraints, check constraints, assertions, and triggers. Constraints 
serve several purposes. The most obvious one is the automation of consistency preservation. By 
expressing constraints in the SQL data-definition language, the designer is able to ensure that 
the database system itself enforces the constraints. This is more reliable than relying on each 
application program individually to enforce constraints. It also provides a central location for the 
update of constraints and the addition of new ones. 

 

A further advantage of stating constraints explicitly is that certain constraints are particularly 
useful in designing relational database schemas. 

 If we know, for example, that a social-security number uniquely identifies a 
person, then we can use a person’s social-security number to link data related to that 
person even if these data appear in multiple relations. Contrast that with, for 
example, eye color, which is not a unique identifier. Eye color could not be used to 
link data pertaining to a specific person across relations because that person’s data 
could not be distinguished from data pertaining to other people with the same eye 
color. 

 

Data constraints are useful as well in determining the physical structure of data. It may be useful to 
store data that are closely related to each other in physical proximity on disk so as to gain efficiencies in 
disk access. Certain index structures work better when the index is on a primary key. 

 

Constraint enforcement comes at a potentially high price in performance each time the database is 
updated. For each update, the system must check all of the constraints and either rejects updates that fail 
the constraints or execute appropriate triggers. The significance of the performance penalty depends not 
only on the frequency of update but also on how the database is designed 

Usage Requirements: Queries, Performance 

Database system performance is a critical aspect of most enterprise information systems. 
Performance pertains not only to the efficient use of the computing and storage hardware being used, 
but also to the efficiency of people who interact with the system and of processes that depend upon 
database data. 

There are two main metrics for performance: 

 Throughput— the number of queries or updates (often referred to as trans-actions) that 
can be processed on average per unit of time. 
 

 Response time— the amount of time a single transaction takes from start to finish in 
either the average case or the worst case. 
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Systems that process large numbers of transactions in a batch style focus on having high throughput. 
Systems that interact with people or time-critical systems often focus on response time. These two 
metrics are not equivalent. High throughput arises from obtaining high utilization of system 
components. Doing so may result in certain transactions being delayed until such time that they can be 
run more efficiently. Those delayed transactions suffer poor response time. 

 

Most commercial database systems historically have focused on throughput; however, a variety of 
applications including Web-based applications and telecommunication information systems require 
good response time on average and a reasonable bound on worst-case response time. 

 

An understanding of types of queries that are expected to be the most frequent helps in the 
design process. Queries that involve joins require more resources to evaluate than those that do 
not. In cases where a join is required, the database administrator may choose to create an index 
that facilitates evaluation of that join. For queries — whether a join is involved or not — indices 
can be created to speed evaluation of selection predicates (SQL where clause) that are likely to 
appear. Another aspect of queries that affects the choice of indices is the relative mix of update 
and read operations. While an index may speed queries, it also slows updates, which are forced 
to do extra work to maintain the accuracy of the index. 

Authorization Requirements 

Authorization constraints affect design of the database as well because SQL allows access to be 
granted to users on the basis of components of the logical design of the database. A relation 
schema may need to be decomposed into two or more schemas to facilitate the granting of 
access rights in SQL. For example, an employee record may include data relating to payroll, job 
functions, and medical benefits. Because different administrative units of the enterprise may 
manage each of these types of data, some users will need access to payroll data while being 
denied access to the job data, medical data, etc. If these data are all in one relation, the desired 
division of access, though still feasible through the use of views, is more cumbersome.  

Data Flow, Workflow 

Database applications are often part of a larger enterprise application that interacts not only with 
the database system but also with various specialized applications.  

For example, in a manufacturing company, a computer-aided design (CAD) system 
may assist in the design of new products. The CAD system may extract data from 
the database via an SQL statement, process the data internally, perhaps interacting 
with a product designer, and then update the database. During this process, control 
of the data may pass among several product designers as well as other people. As 
another example, consider a travel-expense report. It is created by an employee 
returning from a business trip (possibly by means of a special software package) 
and is subsequently routed to the employee’s manager, perhaps other higher-level 
managers, and eventually to the accounting department for payment (at which point 
it interacts with the enterprise’s accounting information systems). 

 

The term workflow refers to the combination of data and tasks involved in processes like those of 
the preceding examples. Workflows interact with the database system as they move among users and users 
perform their tasks on the workflow. In addition to the data on which workflows operate, the database may 
store data about the workflow itself, including the tasks making up a workflow and how they are to be 
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routed among users. Workflows thus specify a series of queries and updates to the database that may be 
taken into account as part of the database-design process. Put in other terms, modeling the enterprise 
requires us not only to understand the semantics of the data but also the business processes that use those 
data. 
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UNIT-III 

Introduction to Schema Refinement: 

We now present an overview of the problems that schema refinement is intended to address and a 

refinement approach based on decompositions. Redundant storage of information is the root cause of these 

problems. Although decomposition can eliminate redundancy, it can lead to problems of its own and 

should be used with caution. 

Problems Caused by Redundancy 

Storing the same information redundantly, that is, in more than one place within a database, can lead 

to several problems: 

Redundant storage: Some information is stored repeatedly.  

Update anomalies: If one copy of such repeated data is updated, an inconsistency is created unless all 

copies are similarly updated.  

Insertion anomalies: It may not be possible to store some information unless some other information 

is stored as well.  

Deletion anomalies: It may not be possible to delete some information without losing some other 

information as well. 

In general, the goal of relational database design is to generate a set of relation schemas that allows us 

to store information without unnecessary redundancy, yet also allows us to retrieve information easily. 

This is accomplished by designing schemas that are in an appropriate normal form.  

To determine whether a relation schema is in one of the desirable normal forms, we need information 

about the real-world enterprise that we are modeling with the database. Some of this information exists in 

a well-designed E-R diagram, but additional information about the enterprise may be needed as well. 

Features of Good Relational Designs 

It is possible to generate a set of relation schemas directly from the E-R design. Obviously, the 
goodness (or badness) of the resulting set of schemas depends on how good the E-R design was in the first 
place However, we can go a long way toward a good design using concepts we have already studied. 

Feature of Good Relational Database Design Normalization  

i) In the Relational Database Design, the process of organizing data to minimizing redundancy is 

known as Normalization 
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ii) The main aim of the Normalization is to decompose complex relation into smaller, well-structured 

relation 

iii) Normalization is the process that involves dividing a large table into smaller table(which contain 

less redundant data) and stating the relationship among the tables.  

iv) Data normalization or Database Normalization is also canonical synthesis  is mean for preventing  

the inconsistent in a set of data by using unique values to reference common information  

v) The main objective of the normalization is to isolate the data so that user can apply the operation 

such as addition, deletion and modification of a field in one table  and then its propagated to the 

rest of the database through the well defined relationships  

vi) The same set of data is repeated in multiple tables of database so there are chances that data in the 

database may lead to be inconsistent, so while updating , deleting or inserting the data into the 

inconsistent database which leads to problem of data integrity 

vii) If we can apply the normalization on the table we can reduce the problem of data inconsistency for 

some extent 

Definition of Normalization: 

 In the Relational Database Design, the process of organizing data to minimizing redundancy is 

known as Normalization 

Main aim of the Normalization  

1. Ensure data integrity  

i) The correct data should be stored in the database 

 ii) This can be achieved by applying integrity rules in the database iii) Integrity rules prevent   

    duplicate values in the database  

2. Prevent Data Redundancy in database  

i) Non-Normalized data is more vulnerable to data anomalies. The same set of information is 

present in the multiple rows, now if we applying the updating rule on the table then it lead to 

logical inconsistence this is known as update anomaly 

ADVANTAGES OF NORMALIZATION 

The following are the advantages of the normalization.  

• More efficient data structure.  

• Avoid redundant fields or columns. 

• More flexible data structure i.e. we should be able to add new rows and data values easily Better 

understanding of data.  

• Ensures that distinct tables exist when necessary.  

• Easier to maintain data structure i.e. it is easy to perform operations and complex queries can be 

easily handled.  

• Minimizes data duplication.  

• Close modeling of real world entities, processes and their relationships.  
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DISADVANTAGES OF NORMALIZATION 

The following are disadvantages of normalization.  

• Requires much more CPU, memory, and I/O to process thus normalized data gives reduced 

database performance. 

• Requires more joins to get the desired result. A poorly-written query can bring the database down. 

• Maintenance overhead. The higher the level of normalization, the greater the number of tables in 

the database. 

• You cannot start building the database before you know what the user needs.  

• On Normalizing the relations to higher normal forms i.e. 4NF, 5NF the performance degrades.  

• It is very time consuming and difficult process in normalizing relations of higher degree. 

• Careless decomposition may leads to bad design of database which may leads to serious problems.  

How many normal forms are there? 

They are 

 First Normal Form  
Second Normal Form  
Third Normal Form  
Boyce-Codd Normal Form 
Fourth Normal Form 
Fifth Normal Form Sixth  

 

Atomic Domains and First Normal Form 

The E-R model allows entity sets and relationship sets to have attributes that have some degree of 

substructure. Specifically, it allows multivalued attributes such as phone number and composite attributes 
(such as an attribute address with component attributes street, city, state, and zip). When we create tables 
from E-R designs that contain these types of attributes, we eliminate this substructure. For composite 

attributes, we let each component be an attribute in its own right. For multivalued attributes, we create one 
tuple for each item in a multivalued set. 
 

In the relational model, we formalize this idea that attributes do not have any substructure. A domain 
is atomic if elements of the domain are considered to be indivisible units. We say that a relation schema R 
is in first normal form (1NF) if the domains of all attributes of R are atomic. 
 

A set of names is an example of a nonatomic value. For example, if the schema of a relation employee 
included an attribute children whose domain elements are sets of names, the schema would not be in first 
normal form. 
 

Composite attributes, such as an attribute address with component attributes street, city, state, and zip 

also have nonatomic domains. 
 

Integers are assumed to be atomic,  
so the set of integers is an atomic domain;  
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however, the set of all sets of integers is a nonatomic domain.  
 
The distinction is that we do not normally consider integers to have subparts, but we consider sets of 

integers to have subparts — namely, the integers making up the set. But the important issue is not what the 
domain itself is, but rather how we use domain elements in our database. The domain of all integers would 
be nonatomic if we considered each integer to be an ordered list of digits. 
 

As a practical illustration of the above point, consider an organization that assigns employees 
identification numbers of the following form: The first two letters specify the department and the 
remaining four digits are a unique number within the department for the employee. Examples of such 
numbers would be “CS001” and “EE1127”. Such identification numbers can be divided into smaller units, 
and are therefore nonatomic. If a relation schema had an attribute whose domain consists of identification 
numbers encoded as above, the schema would not be in first normal form. 

When such identification numbers are used, the department of an employee can be found by writing 
code that breaks up the structure of an identification number. Doing so requires extra programming, and 
information gets encoded in the application program rather than in the database. Further problems arise if 
such identification numbers are used as primary keys: When an employee changes departments, the 
employee’s identification number must be changed everywhere it occurs, which can be a difficult task, or 
the code that interprets the number would give a wrong result. 

From the above discussion, it may appear that our use of course identifiers such as “CS-101”, where 
“CS” indicates the Computer Science department, means that the domain of course identifiers is not 
atomic. Such a domain is not atomic as far as humans using the system are concerned. However, the 
database application still treats the domain as atomic, as long as it does not attempt to split the identifier 
and interpret parts of the identifier as a department abbreviation. The course schema stores the department 
name as a separate attribute, and the database application can use this attribute value to find the 
department of a course, instead of interpreting particular characters of the course identifier. Thus, our 
university schema can be considered to be in first normal form. 
 

The use of set-valued attributes can lead to designs with redundant storage of data, which in turn can 
result in inconsistencies. For instance, instead of having the relationship between instructors and sections 
being represented as a separate relation teaches, a database designer may be tempted to store a set of 
course section identifiers with each instructor and a set of instructor identifiers with each section. (The 
primary keys of section and instructor are used as identifiers.) Whenever data pertaining to which 
instructor teaches which section is changed, the update has to be performed at two places: in the set of 
instructors for the section, and the set of sections for the instructor. Failure to perform both updates can 
leave the database in an inconsistent state. Keeping only one of these sets, that either the set of instructors 
of a section, or the set of sections of an instructor, would avoid repeated information; however keeping 
only one of these would complicate some queries, and it is unclear which of the two to retain. 
 

Some types of nonatomic values can be useful, although they should be used with care.  

For example, composite-valued attributes are often useful, and set-valued attributes are also 
useful in many cases, which is why both are supported in the E-R model. In many domains where 
entities have a complex structure, forcing a first normal form representation represents an 
unnecessary burden on the application programmer, who has to write code to convert data into 
atomic form. There is also the runtime overhead of converting data back and forth from the atomic 
form. Support for nonatomic values can thus be very useful in such domains. In fact, modern 
database systems do support many types of nonatomic values. 
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Basics of Functional Dependency 

 Functional dependency (FD) is a property of the information represented by the relation.Functional 
dependency allows the database designer to express facts about the enterprise that  the designer is 
modeling with the enterprise databases. It allows the designer to express constraints, which cannot be 
expressed with super keys. Functional dependency is a term derived from mathematical theory, which 
states that for every  element in the attribute (which appears on some row), there is a unique 
corresponding element (on the same row).  

 Let us assume that rows (tuples) of a relational table T is represented by the notation r1 ,r2 ,…….., 
and individual attributes (columns) of the table is represented by letters A, B,…. The letters X, Y , 
….., represent the subsets of attributes. 

Thus, as per mathematical theory, for a given table T containing at least two attributes A and B, we 
can say that A -> B.  The arrow notation '->' is read as "functionally determines". 
 
Thus, we can say that, A functionally determines B or B is functionally dependent on A. In other 
words, we can say that, given two rows  R1,and R2, in table T, if R1(A)=R2(A) then R1(B)=R2(B). 
 
The attributes in subset A are sometimes known as the determinant of FD: A -> B. 

The left hand side of the functional dependency is sometimes called determinant whereas that of the 
right hand side is called the dependent. The determinant and dependent are both sets of attributes.  A 
functional dependency is a many-to-one relationship between two sets of attributes X and Y of a given 
table T. Here X and Y are subsets of the set of attributes of table T. Thus, the functional dependency X 
-> Y is said to hold in relation R if and only if, whenever two tuples (rows or records) of T have the 
same value of X, they also have the same value for Y.  

Functional Dependency Diagram and Examples 

In a functional dependency diagram (FDD), functional dependency is represented by rectangles  representing attributes 

and a heavy arrow showing dependency. Fig. shows A functional 

dependency diagram for the simplest functional dependency, 

that is, FD: Y  ->  X. In functional dependency diagram, each FD is 

displayed as a horizontal line. 

The left-hand side attributes  of the FD, i.e. determinants, are connected by Vertical lines to line representing the FD. 

The right-hand side attributes are connected by arrows pointing towards the attibutes.  

  

 

                                                                            

Relation schema R along with FD: Y -> X 
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Basic Concepts 

Functional dependencies. 

Functional dependencies are a constraint on the set of legal relations in a database. 

They allow us to express facts about the real world we are modeling. 

The notion generalizes the idea of a superkey. 

Let  and  . 

Then the functional dependency  holds on R if in any legal relation r(R), for all pairs of 

tuples  and  in r such that  , it is also the case that  . 

Using this notation, we say K is a superkey of R if  . 

In other words, K is a superkey of R if, whenever  , then  (and 

thus  ). 

Functional dependencies allow us to express constraints that cannot be expressed with superkeys. 

Consider the scheme 

 Loan-info-schema = (bname, loan#, cname, amount)  

if a loan may be made jointly to several people (e.g. husband and wife) then we would not 
expect loan# to be a superkey. That is, there is no such dependency 

loan#    cname 

We do however expect the functional dependency 

  loan#    amount 

 loan#    bname 

to hold, as a loan number can only be associated with one amount and one branch. 

A set F of functional dependencies can be used in two ways: 

To specify constraints on the set of legal relations. (Does F hold on R?) 

To test relations to see if they are legal under a given set of functional dependencies. 
(Does r satisfy F?) 

Figure: shows a relation r that we can examine. 
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Figure:   Sample relation r. 

We can see that  is satisfied (in this particular relation), but  is not.  is also 
satisfied. 

Functional dependencies are called trivial if they are satisfied by all relations. 

In general, a functional dependency  is trivial if  . 

In the customer relation of figure 5.4, we see that  is satisfied by this relation. 
However, as in the real world two cities can have streets with the same names (e.g. Main, Broadway, 
etc.), we would not include this functional dependency in our list meant to hold on Customer-scheme. 

The list of functional dependencies for the example database is: 

On Branch-scheme: 
  bname    bcity  

  bname    assets  

On Customer-scheme: 
 cname    ccity 

 cname    street 

On Loan-scheme: 
  loan#    amount  

  loan#    bname  

On Account-scheme: 
  account#    balance  

  account#    bname  

 

There are no functional dependencies for Borrower-schema, nor for Depositor-schema. 

Boyce–Codd Normal Form 

One of the more desirable normal forms that we can obtain is Boyce – Codd normal form 
(BCNF). It eliminates all redundancy that can be discovered based on functional dependencies, though, 
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as we shall see in Section 8.6, there may be other types of redundancy remaining. A relation schema R 
is in BCNF with respect to a set F of functional dependencies if, for all functional dependencies in F + 
of the form a → b, where a ⊆ R and b ⊆ R, at least one of the following holds: 

 a → b is a trivial functional dependency (that is, b ⊆ a). 
 

 a is a superkey for schema R. 
 

A database design is in BCNF if each member of the set of relation schemas that constitutes the design 
is in BCNF. 

We have already seen in Section 8.1 an example of a relational schema that is not in BCNF: 

inst dept (ID, name, salary, dept name, building, budget) 
 

The functional dependency dept name → budget holds on inst dept, but dept name is not a superkey 
(because, a department may have a number of different instruc-tors). In Section 8.1.2, we saw that the 
decomposition of inst dept into instructor and department is a better design. The instructor schema is in 
BCNF. All of the nontrivial functional dependencies that hold, such as: 

 

ID → name, dept name, salary 

 

include ID on the left side of the arrow, and ID is a superkey (actually, in this case, the primary key) for 
instructor. (In other words, there is no nontrivial functional dependency with any combination of name, 
dept name, and salary, without ID, on the side.) Thus, instructor is in BCNF. 

 

Similarly, the department schema is in BCNF because all of the nontrivial func-tional dependencies 
that hold, such as: 

dept name → building, budget 

include dept name on the left side of the arrow, and dept name is a superkey (and the primary 
key) for department. Thus, department is in BCNF. 

 

We now state a general rule for decomposing that are not in BCNF. Let R be a schema that 
is not in BCNF. Then there is at least one nontrivial functional dependency a → b such that a is 
not a superkey for R. We replace R in our design with two schemas: 

 

 (a ∪ b) 
 

 (R − (b − a)) 
 

In the case of inst dept above, a = dept name, b = {building, budget}, and inst dept is replaced by 
 

 (a ∪ b) = (dept name, building,budget) 
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 (R − (b − a)) = (ID, name, dept name, salary)  

In this example, it turns out that b − a = b. We need to state the rule as we did so as to deal 
correctly with functional dependencies that have attributes that appear on both sides of the 
arrow. The technical reasons for this are covered later in Section 8.5.1. 

When we decompose a schema that is not in BCNF, it may be that one or more of the resulting schemas 
are not in BCNF. In such cases, further decomposition is required, the eventual result of which is a set of 
BCNF schemas. 

Third Normal Form 

BCNF requires that all nontrivial dependencies be of the form a → b, where a is a superkey. Third 

normal form (3NF) relaxes this constraint slightly by allowing certain nontrivial functional dependencies 

whose left side is not a superkey. Before we define 3NF, we recall that a candidate key is a minimal 

superkey — that is, a superkey no proper subset of which is also a superkey. 
 

A relation schema R is in third normal form with respect to a set F of functional dependencies if, 
for all functional dependencies in F + of the form a → b, where 
 

 ⊆ R and b ⊆ R, at least one of the following holds: 
 

 a → b is a trivial functional dependency. 
 

 a is a superkey for R. 
 

 Each attribute A in b − a is contained in a candidate key for R. 
 

Note that the third condition above does not say that a single candidate key must contain all the 
attributes in b − a; each attribute A in b − a may be contained in a different candidate key. 

 

The first two alternatives are the same as the two alternatives in the definition of BCNF. The 
third alternative of the 3NF definition seems rather unintuitive, and it is not obvious why it is 
useful. It represents, in some sense, a minimal relaxation of the BCNF conditions that helps 
ensure that every schema has a dependency-preserving decomposition into 3NF. Its purpose will 
become more clear later, when we study decomposition into 3NF. 

 

Observe that any schema that satisfies BCNF also satisfies 3NF, since each of its functional 
dependencies would satisfy one of the first two alternatives. BCNF is therefore a more 
restrictive normal form than is 3NF. 

 

The definition of 3NF allows certain functional dependencies that are not allowed in BCNF. 
A dependency a → b that satisfies only the third alternative of the 3NF definition is not allowed 
in BCNF, but is allowed in 3NF.6 

 

Now, let us again consider the dept advisor relationship set, which has the following functional 
dependencies: 
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i ID → dept name 

 
 

s ID, dept name → i ID 

 

we argued that the functional dependency “i ID → dept name” caused the dept advisor schema not to be in 

BCNF. Note that here a = i ID, b = dept name, and b − a = dept name. Since the functional dependency s 

ID, dept name →ID holds on dept advisor, the attribute dept name is contained in a candidate key and, 

therefore, dept advisor is in 3NF. 
 

We have seen the trade-off that must be made between BCNF and 3NF when there is no 
dependency-preserving BCNF design. 

FUNCTIONAL DEPENDENCY THEORY 

 

Closure of a Set of Functional Dependencies 

We need to consider all functional dependencies that hold. Given a set F of functional dependencies, 
we can prove that certain other ones also hold. We say these ones are logically implied by F. 

Suppose we are given a relation scheme R=(A,B,C,G,H,I), and the set of functional dependencies: 
A    B 

A    C 

CG    H 

CG    I 

B    H 

Then the functional dependency A � H  is logically implied. To see why, 

let  and  be tuples such that 

     

As we are given A  B , it follows that we must also have 

   

Further, since we also have B  H , we must also have 
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Thus, whenever two tuples have the same value on A, they must also have the same value 
on H, and we can say that A  H . 

The closure of a set F of functional dependencies is the set of all functional dependencies logically 
implied by F. 

We denote the closure of F by  . 

To compute  , we can use some rules of inference called Armstrong's Axioms: 

Reflexivity rule: if  is a set of attributes and  , then  holds. 

Augmentation rule: if  holds, and  is a set of attributes, then  holds. 

Transitivity rule: if  holds, and  holds, then  holds. 

These rules are sound because they do not generate any incorrect functional dependencies. They are 
also complete as they generate all of  . 

To make life easier we can use some additional rules, derivable from Armstrong's Axioms: 

Union rule: if  and  , then  holds. 

Decomposition rule: if  holds, then  and  both hold. 

Pseudotransitivity rule: if  holds, and  holds, then  holds. 

Let us apply our rules to the example of schema R = (A, B, C, G, H, I ) and the set F of functional 

dependencies { A → B, A → C, CG → H, CG → I , B → H}. We list several members of F + here: 

 A → H. Since A → B and B → H hold, we apply the transitivity rule. Observe that it was 
much easier to use Armstrong’s axioms to show that A → H holds than it was to argue 
directly from the definitions, as we did earlier in this section. 

 

 CG → HI . Since CG → H and CG → I , the union rule implies that CG → HI . 

 

 AG → I . Since A → C and CG → I , the pseudotransitivity rule implies that AG → I holds. 
 

Another way of finding that AG → I holds is as follows: We use the augmentation rule 

on A → C to infer AG → C G. Applying the transitivity rule to this dependency and C G → 

I , we infer AG → I . 
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A procedure that demonstrates formally how to use Arm-strong’s axioms to compute F + . In 

this procedure, when a functional dependency is added to F + , it may be already present, and in 

that case there is no change to F 
+
 .  

F 
+
 = F 

repeat 

  for each functional dependency f in F 
+ 

apply reflexivity and augmentation rules on f  
add the resulting functional dependencies to F + 

 
for each pair of functional dependencies f1 and f2 in F 

+
  

if f1 and f2 can be combined using transitivity 
add the resulting functional dependency to F +  

until F 
+
 does not change any further 

 
The left-hand and right-hand sides of a functional dependency are both sub-sets of R. Since a 

set of size n has 2n subsets, there are a total of 2n × 2n = 22n possible functional dependencies, 

where n is the number of attributes in R. Each iteration of the repeat loop of the procedure, 

except the last iteration, adds at least one functional dependency to F + . Thus, the procedure is 

guaranteed to terminate. 

Closure of Attribute Sets 

We say that an attribute B is functionally determined by a if a → B. To test whether a set a is a 

superkey, we must devise an algorithm for computing the set of attributes functionally determined by a. 

One way of doing this is to compute F 
+
 , take all functional dependencies with a as the left-hand side, and 

take the union of the right-hand sides of all such dependencies. However, doing so can be expensive, since 

F + can be large. 

An efficient algorithm for computing the set of attributes functionally deter-mined by a is useful not 

only for testing whether a is a superkey, but also for several other tasks 

Let  be a set of attributes. We call the set of attributes determined by  under a set F of functional 

dependencies the closure of  under F, denoted  . 

To illustrate how the algorithm works, we shall use it to compute (AG)+ We start with result = AG. 

The first time that we execute the repeat loop to test each functional dependency, we find that: 

 A → B causes us to include B in result. To see this fact, we observe that A → B is in F, A ⊆ result 

(which is AG), so result := result ∪ B. 
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 A → C causes result to become ABCG. 
 

 CG → H causes result to become ABCGH. 
 

 CG → I causes result to become ABCGHI. 
 

The second time that we execute the repeat loop, no new attributes are added to result, and the 
algorithm terminates. 

 

The following algorithm computes  : 

 result := a; 
 

repeat 

for each functional dependency b → g in F do 

begin 

if b ⊆ result then result := result ∪ g ; 

end 

   until (result does not change) 
 

If we use this algorithm on our example to calculate  then we find: 

We start with result = AG. 

A  B causes us to include B in result. 

A  C causes result to become ABCG. 

CG  H causes result to become ABCGH. 

CG  I causes result to become ABCGHI. 

The next time we execute the while loop, no new attributes are added, and the algorithm 
terminates. 

This algorithm has worst case behavior quadratic in the size of F. There is a linear algorithm that is 
more complicated. 

Canonical Cover 

To minimize the number of functional dependencies that need to be tested in case of an update we may 

restrict F to a canonical cover  . 
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A canonical cover for F is a set of dependencies such that F logically implies all dependencies in  , 
and vice versa. 

 must also have the following properties: 

Every functional dependency  in  contains no extraneous attributes in  (ones that 

can be removed from  without changing  ). So A is extraneous in  if  and 

 

logically implies  . 

Every functional dependency  in  contains no extraneous attributes in  (ones that 

can be removed from  without changing  ). So A is extraneous in  if  and 

 

logically implies  . 

Each left side of a functional dependency in  is unique. That is there are no two 

dependencies  and  in  such that  . 

To compute a canonical cover  for F, 

 Fc = F 

repeat 

Use the union rule to replace any dependencies in Fc of the form 

a1  →  b1 and a1  →  b2 with a1  →  b1 b2. 
 

Find a functional dependency a → b in Fc with an extraneous attribute either in a or in 
b. 

/* Note: the test for extraneous attributes is done using Fc , not F */ If an extraneous 
attribute is found, delete it from a → b in Fc . 

until (Fc does not change) 

An example: for the relational scheme R=(A,B,C), and the set F of functional dependencies 
A    BC 

B    C 

A    B 

AB    C 
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we will compute  . 

We have two dependencies with the same left hand side: 
A    BC 

A    B 

We can replace these two with just A  BC . 

A is extraneous in AB  C because B  C logically implies AB  C . 

Then our set is 
A    BC 

B    C 

We still have an extraneous attribute on the right-hand side of the first dependency. C is 
extraneous in A  BC because A  B and B  C logically imply that A  BC . 

So we end up with, our canonical cover is 

    A    B 

     B    C 
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Decomposition 

A functional decomposition is the process of breaking down the functions of an organization into 

progressively greater (finer and finer) levels of detail.  

 

   In decomposition, one function is described in greater detail by a set of other supporting functions.  

The decomposition of a relation scheme R consists of replacing the relation schema by two or more 

relation schemas that each contain a subset of the attributes of R and together include all attributes in R. 

Decomposition helps in eliminating some of the problems of bad design such as redundancy, 

inconsistencies and anomalies.  

 

There are two types of decomposition : 

1. Lossy Decomposition 
2. Lossless Join Decomposition 

Decomposition 

 

1. The previous example might seem to suggest that we should decompose schema as much as 
possible. 

Careless decomposition, however, may lead to another form of bad design. 

2. Consider a design where Lending-schema is decomposed into two schemas 

Branch-customer-schema = (bname, bcity, assets, cname) 

   Customer-loan-schema = (cname, loan#, amount)  

3. We construct our new relations from lending by: 

 branch-customer =    

 customer-loan =     

  

  
Figure:   The decomposed lending relation. 
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4. It appears that we can reconstruct the lending relation by performing a natural join on the two new 
schemas. 

5. The following Figure shows what we get by computing branch-customer  customer-loan. 

    
Figure :   Join of the decomposed relations. 

6. We notice that there are tuples in branch-customer  customer-loan that are not in lending. 
7. How did this happen? 

o The intersection of the two schemas is cname, so the natural join is made on the basis of 
equality in the cname. 

o If two lendings are for the same customer, there will be four tuples in the natural join. 
o Two of these tuples will be spurious - they will not appear in the original lending relation, 

and should not appear in the database. 
o Although we have more tuples in the join, we have less information. 
o Because of this, we call this a lossy or lossy-join decomposition. 
o A decomposition that is not lossy-join is called a lossless-join decomposition. 
o The only way we could make a connection between branch-customer and customer-

loan was through cname. 
8. When we decomposed Lending-schema into Branch-schema and Loan-info-schema, we will not 

have a similar problem. Why not? 

  Branch-schema = (bname, bcity, assets) 

   Branch-loan-schema = (bname, cname, loan#, amount) 

o The only way we could represent a relationship between tuples in the two relations is 
through bname. 

o This will not cause problems. 
o For a given branch name, there is exactly one assets value and branch city. 

9. For a given branch name, there is exactly one assets value and exactly one bcity; whereas a similar 
statement associated with a loan depends on the customer, not on the amount of the loan (which is 
not unique). 

10. We'll make a more formal definition of lossless-join: 

Let R be a relation schema. 

A set of relation schemas  is a decomposition of R if 

 

That is, every attribute in R appears in at least one  for  . 

Let r be a relation on R, and let 
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That is,  is the database that results from decomposing R into  . 

It is always the case that: 

 

To see why this is, consider a tuple  . 

When we compute the relations  , the tuple t gives rise to one tuple  in 
each  . 

These n tuples combine together to regenerate t when we compute the natural join of 
the  . 

Thus every tuple in r appears in  . 

However, in general, 

 

We saw an example of this inequality in our decomposition of lending into branch-

customer and customer-loan. 

In order to have a lossless-join decomposition, we need to impose some constraints on the set 
of possible relations. 

Let C represent a set of constraints on the database. 

A decomposition  of a relation schema R is a lossless-join 

decomposition for R if, for all relations r on schema R that are legal under C: 

 

11. In other words, a lossless-join decomposition is one in which, for any legal relation r, if we 
decompose r and then ``recompose'' r, we get what we started with - no more and no less. 

Desirable Properties of Decomposition 

1. We'll take another look at the schema 

 Lending-schema = (bname, assets, bcity, loan#, cname, amount) 

which we saw was a bad design. 

2. The set of functional dependencies we required to hold on this schema was: 
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   bname    assets bcity 

   loan#    amount bname 

3. If we decompose it into 

   Branch-schema = (bname, assets, bcity) 

   Loan-info-schema = (bname, loan#, amount) 

   Borrow-schema = (cname, loan#) 

we claim this decomposition has several desirable properties. 

 Lossless-Join Decomposition 

1. We claim the above decomposition is lossless. How can we decide whether a decomposition is 
lossless? 

o Let R be a relation schema. 
o Let F be a set of functional dependencies on R. 

o Let  and  form a decomposition of R. 
o The decomposition is a lossless-join decomposition of R if at least one of the following 

functional dependencies are in  : 

1.  

2.  

Why is this true? Simply put, it ensures that the attributes involved in the natural join (  ) 

are a candidate key for at least one of the two relations. 

This ensures that we can never get the situation where spurious tuples are generated, as for any 
value on the join attributes there will be a unique tuple in one of the relations. 

2. We'll now show our decomposition is lossless-join by showing a set of steps that generate the 
decomposition: 

First we decompose Lending-schema into 

   Branch-schema = (bname, bcity, assets) 

   Loan-info-schema = (bname, cname, loan#, amount) 

Since bname  assets bcity, the augmentation rule for functional dependencies implies that 

   bname    bname assets bcity 

Since Branch-schema  Borrow-schema = bname, our decomposition is lossless join. 

Next we decompose Borrow-schema into 
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   Loan-schema = (bname, loan#, amount) 

   Borrow-schema = (cname, loan#) 

As loan# is the common attribute, and 

   loan#    amount bname 

This is also a lossless-join decomposition. 

Dependency Preservation 

1. Another desirable property in database design is dependency preservation. 
o We would like to check easily that updates to the database do not result in illegal relations 

being created. 
o It would be nice if our design allowed us to check updates without having to compute 

natural joins. 
o To know whether joins must be computed, we need to determine what functional 

dependencies may be tested by checking each relation individually. 
o Let F be a set of functional dependencies on schema R. 

o Let  be a decomposition of R. 

o The restriction of F to  is the set of all functional dependencies in  that include only 

attributes of  . 
o Functional dependencies in a restriction can be tested in one relation, as they involve 

attributes in one relation schema. 

o The set of restrictions  is the set of dependencies that can be checked 
efficiently. 

o We need to know whether testing only the restrictions is sufficient. 

o Let  . 

o F' is a set of functional dependencies on schema R, but in general,  . 
o However, it may be that  . 
o If this is so, then every functional dependency in F is implied by F', and if F' is satisfied, 

then F must also be satisfied. 
o A decomposition having the property that  is a dependency-

preserving decomposition. 
2. The algorithm for testing dependency preservation follows this method: 

compute F + ; 
for each schema Ri in D do 

begin 

Fi : = the restriction of F 
+
 to Ri ; 

end 

F  := ∅ 

for each restriction Fi do 

begin 

F  = F ∪ Fi 
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end 

compute F  + ; 

if (F 
 +

  = F 
+
 ) then return (true) 

else return (false); 

3. We can now show that our decomposition of Lending-schema is dependency preserving. 
o The functional dependency 
o  bname    assets bcity 

can be tested in one relation on Branch-schema. 

o The functional dependency 
o  loan#    amount bname 

can be tested in Loan-schema. 

4. As the above example shows, it is often easier not to apply the algorithm shown to test dependency 
preservation, as computing  takes exponential time. 

5. An Easier Way To Test For Dependency Preservation 

Really we only need to know whether the functional dependencies in F and not in F' are implied 
by those in F'. 

In other words, are the functional dependencies not easily checkable logically implied by those that 
are? 

Rather than compute  and  , and see whether they are equal, we can do this: 

o Find F - F', the functional dependencies not checkable in one relation. 
o See whether this set is obtainable from F' by using Armstrong's Axioms. 
o This should take a great deal less work, as we have (usually) just a few functional 

dependencies to work on. 

Use this simpler method on exams and assignments (unless you have exponential time available to 

you). 

Repetition of Information 

1. Our decomposition does not suffer from the repetition of information problem. 
o Branch and loan data are separated into distinct relations. 
o Thus we do not have to repeat branch data for each loan. 
o If a single loan is made to several customers, we do not have to repeat the loan amount for 

each customer. 
o This lack of redundancy is obviously desirable. 
o We will see how this may be achieved through the use of normal forms. 

Boyce-Codd Normal Form 
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A relation schema R is in Boyce-Codd Normal Form (BCNF) with respect to a set F of functional 

dependencies if for all functional dependencies in  of the form  , where  and  , 
at least one of the following holds: 

 is a trivial functional dependency (i.e.  ). 

 is a superkey for schema R. 

A database design is in BCNF if each member of the set of relation schemas is in BCNF. 

Let's assess our example banking design: 

 Customer-schema = (cname, street, ccity) 

   cname    street ccity  

 Branch-schema = (bname, assets, bcity) 

   bname    assets bcity  

 Loan-info-schema = (bname, cname, loan#, amount) 

   loan#    amount bname 

Customer-schema and Branch-schema are in BCNF. 

Let's look at Loan-info-schema: 

We have the non-trivial functional dependency loan#  amount, and 

loan# is not a superkey. 

Thus Loan-info-schema is not in BCNF. 

We also have the repetition of information problem. 

For each customer associated with a loan, we must repeat the branch name and amount of the 
loan. 

We can eliminate this redundancy by decomposing into schemas that are all in BCNF. 

If we decompose into 

 Loan-schema = (bname, loan#, amount) 

   Borrow-schema = (cname, loan#) 
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we have a lossless-join decomposition. (Remember why?) 

To see whether these schemas are in BCNF, we need to know what functional dependencies apply 
to them. 

o For Loan-schema, we have loan#  amount bname applying. 
o Only trivial functional dependencies apply to Borrow-schema. 
o Thus both schemas are in BCNF. 

We also no longer have the repetition of information problem. Branch name and loan amount 
information are not repeated for each customer in this design. 

Now we can give a general method to generate a collection of BCNF schemas. 

result := {R}; 

done := false; 

compute F + ; 

while (not done) do 

if (there is a schema Ri in result that is not in BCNF) 

then begin 

let a → b be a nontrivial functional dependency that holds on Ri such that a 
→ Ri is not in F + , and a ∩ b = ∅ ; 

result := (result − Ri ) ∪ (Ri − b) ∪ ( a, b); 

end 

else done := true; 

This algorithm generates a lossless-join BCNF decomposition. Why? 

We replace a schema  with  and  . 

The dependency  holds on  . 

 . 

So we have  , and thus a lossless join. 

Let's apply this algorithm to our earlier example of poor database design: 

 Lending-schema = (bname, assets, bcity, loan#, cname, amount) 

 

The set of functional dependencies we require to hold on this schema are 
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 bname    assets bcity  

 loan#    amount bname 

A candidate key for this schema is {loan#, cname}. 

We will now proceed to decompose: 

The functional dependency 

 bname    assets bcity  

holds on Lending-schema, but bname is not a superkey. 

We replace Lending-schema with 

 Branch-schema = (bname, assets, bcity) 

Loan-info-schema = (bname, loan#, cname, amount) 

Branch-schema is now in BCNF. 

The functional dependency 

  loan#    amount bname  

holds on Loan-info-schema, but loan# is not a superkey. 

We replace Loan-info-schema with 

   Loan-schema = (bname, loan#, amount) 

   Borrow-schema = (cname, loan#) 

 

These are both now in BCNF. 

We saw earlier that this decomposition is both lossless-join and dependency-preserving. 

2. Not every decomposition is dependency-preserving. 

Consider the relation schema 

 Banker-schema = (bname, cname, banker-name) 

The set F of functional dependencies is 

   banker-name    bname  
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   cname bname    banker-name  

 

The schema is not in BCNF as banker-name is not a superkey. 

If we apply our algorithm, we may obtain the decomposition 

   Banker-branch-schema = (bname, banker-name) 

   Cust-banker-schema = (cname, banker-name) 

The decomposed schemas preserve only the first (and trivial) functional dependencies. 

The closure of this dependency does not include the second one. 

Thus a violation of cname bname  banker-name cannot be detected unless a join is 
computed. 

This shows us that not every BCNF decomposition is dependency-preserving. 

It is not always possible to satisfy all three design goals: 

BCNF. 

Lossless join. 

Dependency preservation. 

We can see that any BCNF decomposition of Banker-schema must fail to preserve 

 cname bname    banker-name  

 

Some Things To Note About BCNF 

There is sometimes more than one BCNF decomposition of a given schema. 

The algorithm given produces only one of these possible decompositions. 

Some of the BCNF decompositions may also yield dependency preservation, while others may 
not. 

Changing the order in which the functional dependencies are considered by the algorithm may 
change the decomposition. 

For example, try running the BCNF algorithm on 
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Then change the order of the last two functional dependencies and run the algorithm again. 
Check the two decompositions for dependency preservation. 

Third Normal Form 

When we cannot meet all three design criteria, we abandon BCNF and accept a weaker form 
called third normal form (3NF). 

It is always possible to find a dependency-preserving lossless-join decomposition that is in 3NF. 

A relation schema R is in 3NF with respect to a set F of functional dependencies if for all functional 

dependencies in  of the form  , where  and  , at least one of the following 
holds: 

 is a trivial functional dependency. 

 is a superkey for schema R. 

Each attribute A in  is contained in a candidate key for R. 

A database design is in 3NF if each member of the set of relation schemas is in 3NF. 

We now allow functional dependencies satisfying only the third condition. These dependencies are 
called transitive dependencies, and are not allowed in BCNF. 

As all relation schemas in BCNF satisfy the first two conditions only, a schema in BCNF is also in 
3NF. 

BCNF is a more restrictive constraint than 3NF. 

Our Banker-schema decomposition did not have a dependency-preserving lossless-join decomposition 
into BCNF. The schema was already in 3NF though (check it out). 

We now present an algorithm for finding a dependency-preserving lossless-join decomposition into 
3NF. 

Note that we require the set F of functional dependencies to be in canonical form. 

 let Fc be a canonical cover for F; 

 i:= 0; 
for each functional dependency a → b in Fc 
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 i:= i + 1; Ri := a b; 
if none of the schemas Rj , j = 1, 2, . . . , i contains a candidate key for R 

then 

 i:= i + 1; 
Ri := any candidate key for R; 

/* Optionally, remove redundant relations */ 

repeat 

if any schema Rj is contained in another schema Rk 

then 

/* Delete Rj */ 

Rj := Ri ; 
 

 i:= i + 1; 
until no more Rj s can be deleted 

return (R1, R2, . . . , Ri) 

Each relation schema is in . Why? (A proof is given is [Ullman 1988].) 

The design is as a schema is built for each given dependency. 

is guaranteed by the requirement that a candidate key for R be in at least one of the schemas. 

To review our Banker-schema consider an extension to our example: 

 Banker-info-schema = (bname, cname, banker-name, office#) 

The set F of functional dependencies is 

   banker-name    bname office#  

   cname bname    banker-name  

The for loop in the algorithm gives us the following decomposition: 

   Banker-office-schema = (banker-name, bname, office#) 

   Banker-schema = (cname, bname, banker-name) 

 

Since Banker-schema contains a candidate key for Banker-info-schema, the process is finished. 

Comparison of BCNF and 3NF 

1. We have seen BCNF and 3NF. 
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o It is always possible to obtain a 3NF design without sacrificing lossless-join or 
dependency-preservation. 

o If we do not eliminate all transitive dependencies, we may need to use null values to 
represent some of the meaningful relationships. 

o Repetition of information occurs. 
2. These problems can be illustrated with Banker-schema. 

o As banker-name  bname , we may want to express relationships between a banker and 
his or her branch. 

    
Figure :   An instance of Banker-schema. 

o The above Figure shows how we must either have a corresponding value for customer 
name, or include a null. 

o Repetition of information also occurs. 
o Every occurrence of the banker's name must be accompanied by the branch name. 

3. If we must choose between BCNF and dependency preservation, it is generally better to opt for 
3NF. 

o If we cannot check for dependency preservation efficiently, we either pay a high price in 
system performance or risk the integrity of the data. 

o The limited amount of redundancy in 3NF is then a lesser evil. 
4. To summarize, our goal for a relational database design is 

o BCNF. 
o Lossless-join. 
o Dependency-preservation. 

5. If we cannot achieve this, we accept 
o 3NF 
o Lossless-join. 
o Dependency-preservation. 

6. A final point: there is a price to pay for decomposition. When we decompose a relation, we have 
to use natural joins or Cartesian products to put the pieces back together. This takes computation 
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Normalization Using Multivalued Dependencies (not to be covered) 

Suppose that in our banking example, we had an alternative design including the schema: 

 BC-schema = (loan#, cname, street, ccity)  

We can see this is not BCNF, as the functional dependency 

 cname    street ccity  

holds on this schema, and cname is not a superkey. 

If we have customers who have several addresses, though, then we no longer wish to enforce this 
functional dependency, and the schema is in BCNF. 

However, we now have the repetition of information problem. For each address, we must repeat the 
loan numbers for a customer, and vice versa. 

Multivalued Dependencies 

Functional dependencies rule out certain tuples from appearing in a relation. 

If A  B, then we cannot have two tuples with the same A value but different B values. 

Multivalued dependencies do not rule out the existence of certain tuples. 

Instead, they require that other tuples of a certain form be present in the relation. 

Let R be a relation schema, and let  and  . 

The multivalued dependency 

 

holds on R if in any legal relation r(R), for all pairs of tuples  and  in r such that  , 

there exist tuples  and  in r such that: 
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Figure 1 (textbook 6.10) shows a tabular representation of this. It looks horrendously complicated, 
but is really rather simple. A simple example is a table with the schema (name, address, car), as 
shown in Figure 2. 

    

Figure 1:   Tabular representation of  . 

    
Figure 2:   (name, address, car) where  and  . 

o Intuitively,  says that the relationship between  and  is independent of the 

relationship between  and  . 

o If the multivalued dependency  is satisfied by all relations on schema R, then we 
say it is a trivial multivalued dependency on schema R. 

o Thus  is trivial if  or  . 

Look at the example relation bc relation in Figure 3. 

    
Figure 3:   Relation bc, an example of redundancy in a BCNF relation. 

o We must repeat the loan number once for each address a customer has. 
o We must repeat the address once for each loan the customer has. 
o This repetition is pointless, as the relationship between a customer and a loan is 

independent of the relationship between a customer and his or her address. 
o If a customer, say ``Smith'', has loan number 23, we want all of Smith's addresses to be 

associated with that loan. 
o Thus the relation of Figure 4  is illegal. 
o If we look at our definition of multivalued dependency, we see that we want the 

multivalued dependency 
o  cname    street ccity 

o  

to hold on BC-schema. 
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Figure 4:   An illegal be relation. 

Note that if a relation r fails to satisfy a given multivalued dependency, we can construct a 
relation r' that does satisfy the multivalued dependency by adding tuples to r. 

Theory of Multivalued Dependencies 

We will need to compute all the multivalued dependencies that are logically implied by a given set 
of multivalued dependencies. 

o Let D denote a set of functional and multivalued dependencies. 
o The closure  of D is the set of all functional and multivalued dependencies logically 

implied by D. 
o We can compute  from D using the formal definitions, but it is easier to use a set of 

inference rules. 

The following set of inference rules is sound and complete. The first three rules are Armstrong's 
axioms from Chapter 5. 

Reflexivity rule: if  is a set of attributes and  , then  holds. 

Augmentation rule: if  holds, and  is a set of attributes, then  holds. 

Transitivity rule: if  holds, and  holds, then  holds. 

Complementation rule: if  holds, then  holds. 

Multivalued augmentation rule: if  holds, and  and  , 

then  holds. 

Multivalued transitivity rule: if  holds, and  holds, then  holds. 

Replication rule: if  holds, then  . 

Coalescence rule: if  holds, and  , and there is a  such 

that  and  and  , then  holds. 

 An example of multivalued transitivity rule is as 

follows.  and  . Thus we have  , 

where  . 
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An example of coalescence rule is as follows. If we have  , 
and  , then we have  . 

 Let's do an example: 

Let R=(A,B,C,G,H,I) be a relation schema. 

Suppose  holds. 

The definition of multivalued dependencies implies that if  , then there exists 

tuples  and  such that: 

      

      

      

      

       

The complementation rule states that if  then  . 

Tuples  and  satisfy  if we simply change the subscripts. 

 We can simplify calculating  , the closure of D by using the following rules, derivable from the 
previous ones: 

o Multivalued union rule: if  holds and  holds, then  holds. 

o Intersection rule: if  holds and  holds, then  holds. 

o Difference rule: if  holds and  holds, then  holds 

and  holds. 
 An example will help: 

Let R=(A,B,C,G,H,I) with the set of dependencies: 

       

      

       

We list some members of  : 
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 : since  , complementation rule implies that  , and R -
 B - A = CGHI. 

 : Since  and  , multivalued transitivity rule implies 

that  . 

 : coalescence rule can be 

applied.  holds,  and  and  , so we can satisfy the 

coalescence rule with  being B,  being HI,  being CG, and  being H. We conclude 
that  . 

 : now we know that  and  . By the difference 

rule,  . 

Fourth Normal Form (4NF) 

We saw that BC-schema was in BCNF, but still was not an ideal design as it suffered from 
repetition of information. We had the multivalued dependency cname  street ccity, but no non-
trivial functional dependencies. 

We can use the given multivalued dependencies to improve the database design by decomposing it 
into fourth normal form. 

A relation schema R is in 4NF with respect to a set D of functional and multivalued dependencies 

if for all multivalued dependencies in  of the form  , where  and  , at least 
one of the following hold: 

o  is a trivial multivalued dependency. 
o  is a superkey for schema R. 

A database design is in 4NF if each member of the set of relation schemas is in 4NF. 

The definition of 4NF differs from the BCNF definition only in the use of multivalued 
dependencies. 

o Every 4NF schema is also in BCNF. 
o To see why, note that if a schema is not in BCNF, there is a non-trivial functional 

dependency  holding on R, where  is not a superkey. 

o Since  implies  , by the replication rule, R cannot be in 4NF. 

We have an algorithm similar to the BCNF algorithm for decomposing a schema into 4NF: 

 result := {R}; 

done := false; 
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compute D
+
 ; Given schema Ri , let Di denote the restriction of D+

 to Ri while (not 
done) do 

if (there is a schema Ri in result that is not in 4NF w.r.t. Di ) 

then begin 

let a →→ b be a nontrivial multivalued dependency that holds 
 

on Ri such that a → Ri is not in Di , and a ∩ b = ∅; result := (result − 
Ri ) ∪ (Ri − b) ∪ (a, b); 

end 
 

else done := true; 

If we apply this algorithm to BC-schema: 

cname  loan# is a nontrivial multivalued dependency and cname is not a superkey for the 
schema. 

We then replace BC-schema by two schemas: 

  Cust-loan-schema=(cname, loan#) 

   Customer-schema=(cname, street, ccity) 

These two schemas are in 4NF. 

We can show that our algorithm generates only lossless-join decompositions. 

Let R be a relation schema and D a set of functional and multivalued dependencies on R. 

Let  and  form a decomposition of R. 

This decomposition is lossless-join if and only if at least one of the following multivalued 
dependencies is in  : 

    

 

       

We saw similar criteria for functional dependencies. 

This says that for every lossless-join decomposition of R into two schemas  and  , one of 
the two above dependencies must hold. 

You can see, by inspecting the algorithm, that this must be the case for every decomposition. 
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Dependency preservation is not as simple to determine as with functional dependencies. 

Let R be a relation schema. 

Let  be a decomposition of R. 

Let D be the set of functional and multivalued dependencies holding on R. 

The restriction of D to  is the set  consisting of: 

All functional dependencies in  that include only attributes of  . 

All multivalued dependencies of the form  where  and  is 
in  . 

A decomposition of schema R is dependency preserving with respect to a set D of functional 

and multivalued dependencies if for every set of relations  such that 

for all i,  satisfies  , there exists a relation r(R) that satisfies D and for 

which  for all i. 

What does this formal statement say? It says that a decomposition is dependency preserving if for 
every set of relations on the decomposition schema satisfying only the restrictions on D there 
exists a relation r on the entire schema R that the decomposed schemas can be derived from, and 
that r also satisfies the functional and multivalued dependencies. 

We'll do an example using our decomposition algorithm and check the result for dependency 
preservation. 

Let R=(A,B,C,G,H,I). 

Let D be 

      

      

 

       

R is not in 4NF, as we have  and A is not a superkey. 

The algorithm causes us to decompose using this dependency into 
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 is now in 4NF, but  is not. 

Applying the multivalued dependency  (how did we get this?), our algorithm then 

decomposes  into 

      

       

 is now in 4NF, but  is not. 

Why? As  is in  (why?) then the restriction of this dependency to  gives 
us  . 

Applying this dependency in our algorithm finally decomposes  into 

      

       

The algorithm terminates, and our decomposition is  and  . 

Let's analyze the result. 

    
Figure 1:   Projection of relation r onto a 4NF decomposition of R. 

This decomposition is not dependency preserving as it fails to preserve  . 

Figure 1 - shows four relations that may result from projecting a relation onto the four schemas 
of our decomposition. 

The restriction of D to (A,B) is  and some trivial dependencies. 

We can see that  satisfies  as there are no pairs with the same A value. 

Also,  satisfies all functional and multivalued dependencies since no two tuples have the 
same value on any attribute. 

We can say the same for  and  . 

So our decomposed version satisfies all the dependencies in the restriction of D. 
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However, there is no relation r on (A,B,C,G,H,I) that satisfies D and decomposes 
into  and  . 

Figure 2 (textbook 6.15) shows  . 

Relation r does not satisfy  . 

Any relation s containing r and satisfying  must include the 

tuple  . 

However,  includes a tuple  that is not in  . 

Thus our decomposition fails to detect a violation of  . 

    
Figure 2:   A relation r(R) that does not satisfy  . 

We have seen that if we are given a set of functional and multivalued dependencies, it is best to 
find a database design that meets the three criteria: 

o 4NF. 
o Dependency Preservation. 
o Lossless-join. 

If we only have functional dependencies, the first criteria is just BCNF. 

We cannot always meet all three criteria. When this occurs, we compromise on 4NF, and accept 
BCNF, or even 3NF if necessary, to ensure dependency preservation. 

 

More Normal Forms 

The fourth normal form is by no means the “ultimate” normal form. As we saw earlier, 

multivalued dependencies help us understand and eliminate some forms of repetition of information that 

cannot be understood in terms of functional dependencies. There are types of constraints called join 

dependencies that generalize multivalued dependencies, and lead to another normal form called project-

join normal form (PJNF) (PJNF is called fifth normal form in some books). There is a class of even 

more general constraints that leads to a normal form called domain-key normal form (DKNF). 

A practical problem with the use of these generalized constraints is that they are not only 
hard to reason with, but there is also no set of sound and complete inference rules for reasoning 
about the constraints. Hence PJNF and DKNF are used quite rarely.  

 

Database-Design Process 
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So far we have looked at detailed issues about normal forms and normalization. In this section, we study 
how normalization fits into the overall database-design process. 

we assumed that a relation schema r(R) is given, and proceeded to normalize it. There are several ways 
in which we could have come up with the schema r(R): 

 r(R) could have been generated in converting an E-R diagram to a set of relation schemas. 
 

 r(R) could have been a single relation schema containing all attributes that are of interest. 
The normalization process then breaks up r(R) into smaller schemas. 

 

 r(R) could have been the result of an ad-hoc design of relations that we then test to verify 
that it satisfies a desired normal form. 

 

We also examine some practical issues in database design, including denormalization for performance and 
examples of bad design that are not detected by normalization. 

E-R Model and Normalization 

 When we define an E-R diagram carefully, identifying all entities correctly, the relation schemas 
generated from the E-R diagram should not need much further normalization. However, there can be 
functional dependencies between attributes of an entity. For instance, suppose an instructor entity set had 
attributes dept name and dept address, and there is a functional dependency dept name → dept address. 
We would then need to normalize the relation generated from instructor. 
 

Most examples of such dependencies arise out of poor E-R diagram design.  

In the above example, if we had designed the E-R diagram correctly, we would have created a 

department entity set with attribute dept address and a relationship set between instructor and department. 

Similarly, a relationship set involving more than two entity sets may result in a schema that may not be in 

a desirable normal form. Since most relationship sets are binary, such cases are relatively rare. 

(In fact, some E-R-diagram variants actually make it difficult or impossible to specify nonbinary 
relationship sets.) 
 

Functional dependencies can help us detect poor E-R design. If the generated relation schemas are not 
in desired normal form, the problem can be fixed in the E-R diagram. That is, normalization can be done 
formally as part of data modeling. Alternatively, normalization can be left to the designer’s intuition 
during E-R modeling, and can be done formally on the relation schemas generated from the E-R model. 

A careful reader will have noted that in order for us to illustrate a need for multivalued dependencies 
and fourth normal form, we had to begin with schemas that were not derived from our E-R design. Indeed, 
the process of creating an E-R design tends to generate 4NF designs. If a multivalued dependency holds 
and is not implied by the corresponding functional dependency,  

it usually arises from one of the following sources: 

 A many-to-many relationship set. 
 

 A multivalued attribute of an entity set. 
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For a many-to-many relationship set each related entity set has its own schema and there is an additional 
schema for the relationship set. For a multivalued attribute, a separate schema is created consisting of that 
attribute and the primary key of the entity set (as in the case of the phone number attribute of the entity set 
instructor). 
 

The universal-relation approach to relational database design starts with an assumption that there is 
one single relation schema containing all attributes of interest. This single schema defines how users and 
applications interact with the database. 

Naming of Attributes and Relationships 

desirable feature of a database design is the unique-role assumption, which means that each attribute 
name has a unique meaning in the database. This prevents us from using the same attribute to mean 
different things in different schemas.  
 

 For example, we might otherwise consider using the attribute number for phone number in the 
instructor schema and for room number in the classroom schema. The join of a relation on 
schema instructor with one on classroom is meaningless. While users and application 
developers can work carefully to ensure use of the right number in each circumstance, having a 
different attribute name for phone number and for room number serves to reduce user errors.  

While it is a good idea to keep names for incompatible attributes distinct, if attributes of different relations 

have the same meaning, it may be a good idea to use the same attribute name. For this reason we used the 

same attribute name “name” for both the instructor and the student entity sets. If this was not the case 

(that is, we used different naming conventions for the instructor and student names), then if we wished to 

generalize these entity sets by creating a person entity set, we would have to rename the attribute. Thus, 

even if we did not currently have a generalization of student and instructor, if we foresee such a 

possibility it is best to use the same name in both entity sets (and relations). 

Denormalization for Performance 

Occasionally database designers choose a schema that has redundant information; that is, it is not 
normalized. They use the redundancy to improve performance for specific applications. The penalty 
paid for not using a normalized schema is the extra work (in terms of coding time and execution time) 
to keep redundant data consistent. 

For instance, suppose all course prerequisites have to be displayed along with a course information, 
every time a course is accessed. In our normalized schema, this requires a join of course with prereq. 

 

One alternative to computing the join on the fly is to store a relation containing all the attributes of 
course and prereq. This makes displaying the “full” course information faster. However, the 
information for a course is repeated for every course prerequisite, and all copies must be updated by the 
application, whenever a course prerequisite is added or dropped. The process of taking a normalized 
schema and making it nonnormalized is called denormalization, and designers use it to tune 
performance of systems to support time-critical operations. 

 

Other Design Issues 
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There are some aspects of database design that are not addressed by normalization, and can thus lead 
to bad database design. Data pertaining to time or to ranges of time have several such issues. We give 
examples here; obviously, such designs should be avoided. 

Consider a university database, where we want to store the total number of instructors in each 
department in different years. A relation total inst(dept name, year, size) could be used to store the desired 
information. The only functional dependency on this relation is dept name, year→ size, and the relation is 
in BCNF.An alternative design is to use multiple relations, each storing the size information for a different 
year. Let us say the years of interest are 2007, 2008, and 2009; we would then have relations of the form 
total inst 2007, total inst 2008, total inst 2009, all of which are on the schema (dept name, size). The only 
functional dependency here on each relation would be dept name → size, so these relations are also in 
BCNF. However, this alternative design is clearly a bad idea — we would have to create a new relation 
every year, and we would also have to write new queries every year, to take each new relation into 
account. Queries would also be more complicated since they may have to refer to many relations. 
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UNIT - IV 

Basic Concepts 

An index for a file in a database system works in much the same way as the index in this textbook. If 
we want to learn about a particular topic (specified by a word or a phrase) in this textbook, we can search 
for the topic in the index at the back of the book, find the pages where it occurs, and then read the pages to 
find the information for which we are looking. The words in the index are in sorted order, making it easy 
to find the word we want. Moreover, the index is much smaller than the book, further reducing the effort 
needed. 
 

Database-system indices play the same role as book indices in libraries. For example, to retrieve a 
student record given an ID, the database system would look up an index to find on which disk block the 
corresponding record resides, and then fetch the disk block, to get the appropriate student record. 
 

Keeping a sorted list of students’ ID would not work well on very large databases with thousands of 

students, since the index would itself be very big; further, even though keeping the index sorted reduces 

the search time, finding a student can still be rather time-consuming. Instead, more sophisticated indexing 

techniques may be used. 

There are two basic kinds of indices: 

o Ordered indices. Based on a sorted ordering of the values  
o Hash indices. Based on a uniform distribution of values across a range of buckets. The 

bucket to which a value is assigned is determined by a function, called a hash function. 
 

We shall consider several techniques for both ordered indexing and hashing. No one technique is 
the best. Rather, each technique is best suited to particular database applications. Each technique must be 
evaluated on the basis of these factors: 

o Access types: The types of access that are supported efficiently. Access types can include 
finding records with a specified attribute value and finding records whose attribute values 
fall in a specified range. 

 

o Access time: The time it takes to find a particular data item, or set of items, using the 
technique in question. 

 

o Insertion time: The time it takes to insert a new data item. This value includes the time it 
takes to find the correct place to insert the new data item, as well as the time it takes to 
update the index structure. 

 

o Deletion time: The time it takes to delete a data item. This value includes the time it takes to 
find the item to be deleted, as well as the time it takes to update the index structure. 

 

o Space overhead: The additional space occupied by an index structure. Pro-vided that the 
amount of additional space is moderate, it is usually worth-while to sacrifice the space to 
achieve improved performance. 

 

We often want to have more than one index for a file. For example, we may wish to search for a 
book by author, by subject, or by title. 
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An attribute or set of attributes used to look up records in a file is called a search key. Note that 
this definition of key differs from that used in primary key, candidate key, and superkey. This duplicate 
meaning for key is (unfortunately) well established in practice. Using our notion of a search key, we see 
that if there are several indices on a file, there are several search keys. 

Ordered Indices 

1. In order to allow fast random access, an index structure may be used. 
2. A file may have several indices on different search keys. 
3. If the file containing the records is sequentially ordered, the index whose search key specifies the 

sequential order of the file is the primary index, or clustering index. Note: The search key of a 
primary index is usually the primary key, but it is not necessarily so. 

4. Indices whose search key specifies an order different from the sequential order of the file are 
called the secondary indices, or nonclustering indices. 

Primary Index 

1. Index-sequential files: Files are ordered sequentially on some search key, and a primary index is 

associated with it. 

    
Figure 11.1:   Sequential file for deposit records. 

Dense and Sparse Indices 

An index entry, or index record, consists of a search-key value and pointers to one or more 
records with that value as their search-key value. The pointer to a record consists of the identifier of a disk 
block and an offset within the disk block to identify the record within the block. 

There are Two types of ordered indices: 

 Dense index: In a dense index, an index entry appears for every search-key value in the file. In a 
dense clustering index, the index record contains the search-key value and a pointer to the first data 
record with that search-key value. The rest of the records with the same search-key value would be stored 
sequentially after the first record, since, because the index is a clustering one, records are sorted on the 
same search key.   

In a dense nonclustering index, the index must store a list of pointers to all records with the same 
search-key value. 
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 Sparse index: In a sparse index, an index entry appears for only some of the search-key values. 
Sparse indices can be used only if the relation is stored in sorted order of the search key, that is, if the 
index is a clustering index. As is true in dense indices, each index entry contains a search-key value and a 
pointer to the first data record with that search-key value. To locate a record, we find the index entry with 
the largest search-key value that is less than or equal to the search-key value for which we are looking. We 
start at the record pointed to by that index entry, and follow the pointers in the file until we find the 
desired record. 

Figures 11.2 and 11.3 show dense and sparse indices for the deposit file. 

    
Figure 11.2:   Dense index. 

Notice how we would find records for Perryridge branch using both methods. (Do it!) 

    
Figure 11.3:   Sparse index. 

1. Dense indices are faster in general, but sparse indices require less space and impose less 

maintenance for insertions and deletions. (Why?) 

2. A good compromise: to have a sparse index with one entry per block. 

Why is this good? 

o Biggest cost is in bringing a block into main memory. 

o We are guaranteed to have the correct block with this method, unless record is on an 

overflow block (actually could be several blocks). 

o Index size still small. 
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Multi-Level Indices 

Even with a sparse index, index size may still grow too large. For 100,000 records, 10 per block, at 

one index record per block, that's 10,000 index records! Even if we can fit 100 index records per 

block, this is 100 blocks. 

If index is too large to be kept in main memory, a search results in several disk reads. 

o If there are no overflow blocks in the index, we can use binary search. 

o This will read as many as  blocks (as many as 7 for our 100 blocks). 

o If index has overflow blocks, then sequential search typically used, reading all b index 

blocks. 

Solution: Construct a sparse index on the index (Figure 11.4). 

    
Figure 11.4:   Two-level sparse index. 

Use binary search on outer index. Scan index block found until correct index record found. Use 

index record as before - scan block pointed to for desired record. 

For very large files, additional levels of indexing may be required. 

Indices must be updated at all levels when insertions or deletions require it. 

Frequently, each level of index corresponds to a unit of physical storage (e.g. indices at the level 

of track, cylinder and disk). 

Index Update 

Regardless of what form of index is used, every index must be updated whenever a record is either 
inserted into or deleted from the file. 

1. Deletion: 
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o Find (look up) the record 

o If the last record with a particular search key value, delete that search key value from 

index. 

o For dense indices, this is like deleting a record in a file. 

o For sparse indices, delete a key value by replacing key value's entry in index by next 

search key value. If that value already has an index entry, delete the entry. 

2. Insertion: 

o Find place to insert. 

o Dense index: insert search key value if not present. 

o Sparse index: no change unless new block is created. (In this case, the first search key 

value appearing in the new block is inserted into the index). 

Secondary Indices 

1. If the search key of a secondary index is not a candidate key, it is not enough to point to just the 

first record with each search-key value because the remaining records with the same search-key 

value could be anywhere in the file. Therefore, a secondary index must contain pointers to all the 

records. 

    
Figure 11.5:   Sparse secondary index on cname. 

2. We can use an extra-level of indirection to implement secondary indices on search keys that are 

not candidate keys. A pointer does not point directly to the file but to a bucket that contains 

pointers to the file. 

o See Figure 11.5 on secondary key cname. 

o To perform a lookup on Peterson, we must read all three records pointed to by entries in 

bucket 2. 

o Only one entry points to a Peterson record, but three records need to be read. 

o As file is not ordered physically by cname, this may take 3 block accesses. 

3. Secondary indices must be dense, with an index entry for every search-key value, and a pointer 

to every record in the file. 

4. Secondary indices improve the performance of queries on non-primary keys. 

5. They also impose serious overhead on database modification: whenever a file is updated, every 

index must be updated. 

6. Designer must decide whether to use secondary indices or not. 
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B  -Tree Index Files 

1. Primary disadvantage of index-sequential file organization is that performance degrades as the file 
grows. This can be remedied by costly re-organizations. 

2. B  -tree file structure maintains its efficiency despite frequent insertions and deletions. It imposes 
some acceptable update and space overheads. 

3. A B  -tree index is a balanced tree in which every path from the root to a leaf is of the same 
length. 

4. Each nonleaf node in the tree must have between  and n children, where n is fixed for a 
particular tree. 

Structure of a B  -Tree 

1. A B  -tree index is a multilevel index but is structured differently from that of multi-level index sequential 

files. 

2. A typical node (Figure 11.6) contains up to n-1 search key values  , 

and n pointers  . Search key values in a node are kept in sorted order. 

    
Figure 11.6:   Typical node of a B+-tree. 

3. For leaf nodes,  (  ) points to either a file record with search key value  , or a bucket 

of pointers to records with that search key value. Bucket structure is used if search key is not a primary 

key, and file is not sorted in search key order. 

Pointer  (nth pointer in the leaf node) is used to chain leaf nodes together in linear order (search 
key order). This allows efficient sequential processing of the file. 

The range of values in each leaf do not overlap. 

4. Non-leaf nodes form a multilevel index on leaf nodes. 

A non-leaf node may hold up to n pointers and must hold  pointers. The number of pointers 
in a node is called the fan-out of the node. 

Consider a node containing m pointers. Pointer  (  ) points to a subtree containing 

search key values  and  . Pointer  points to a subtree containing search key 

values  . Pointer  points to a subtree containing search key values  . 

5. Figures 11.7 (textbook Fig. 11.8) and textbook Fig. 11.9 show B  -trees for 

the deposit file with n=3 and n=5. 
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Figure 11.7:   B+-tree for deposit file with n = 3. 

Queries on B  -Trees 

1. Suppose we want to find all records with a search key value of k. 

o Examine the root node and find the smallest search key value  . 

o Follow pointer  to another node. 

o If  follow pointer  . 

o Otherwise, find the appropriate pointer to follow. 

o Continue down through non-leaf nodes, looking for smallest search key value 

> k and following the corresponding pointer. 

o Eventually we arrive at a leaf node, where pointer will point to the desired 

record or bucket. 

2. In processing a query, we traverse a path from the root to a leaf node. If there 

are K search key values in the file, this path is no longer than  . 

This means that the path is not long, even in large files. For a 4k byte disk block with a 
search-key size of 12 bytes and a disk pointer of 8 bytes, n is around 200. If n =100, a 

look-up of 1 million search-key values may take  nodes to be 
accessed. Since root is in usually in the buffer, so typically it takes only 3 or fewer disk 
reads. 

Updates on B  -Trees 

1. Insertions and Deletions: 

Insertion and deletion are more complicated, as they may require splitting or 
combining nodes to keep the tree balanced. If splitting or combining are not required, 
insertion works as follows: 

o Find leaf node where search key value should appear. 

o If value is present, add new record to the bucket. 

o If value is not present, insert value in leaf node (so that search keys are still in 

order). 

o Create a new bucket and insert the new record. 

If splitting or combining are not required, deletion works as follows: 
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o Deletion: Find record to be deleted, and remove it from the bucket. 

o If bucket is now empty, remove search key value from leaf node. 

2. Insertions Causing Splitting: 

When insertion causes a leaf node to be too large, we split that node. In Figure 11.8, 
assume we wish to insert a record with a bname value of ``Clearview''. 

o There is no room for it in the leaf node where it should appear. 

o We now have n values (the n-1 search key values plus the new one we wish to 

insert). 

o We put the first  values in the existing node, and the remainder into a new 

node. 

o Figure 11.10 shows the result. 

o The new node must be inserted into the B  -tree. 

o We also need to update search key values for the parent (or higher) nodes of 

the split leaf node. (Except if the new node is the leftmost one) 

o Order must be preserved among the search key values in each node. 

o If the parent was already full, it will have to be split. 

o When a non-leaf node is split, the children are divided among the two new 

nodes. 

o In the worst case, splits may be required all the way up to the root. (If the root 

is split, the tree becomes one level deeper.) 

o Note: when we start a B  -tree, we begin with a single node that is both the 

root and a single leaf. When it gets full and another insertion occurs, we split it 

into two leaf nodes, requiring a new root. 

3. Deletions Causing Combining: 

Deleting records may cause tree nodes to contain too few pointers. Then we must 
combine nodes. 

o If we wish to delete ``Downtown'' from the B  -tree of Figure 11.11, this occurs. 

o In this case, the leaf node is empty and must be deleted. 

o If we wish to delete ``Perryridge'' from the B  -tree of Figure 11.11, the parent 

is left with only one pointer, and must be coalesced with a sibling node. 

o Sometimes higher-level nodes must also be coalesced. 

o If the root becomes empty as a result, the tree is one level less deep (Figure 

11.13). 

o Sometimes the pointers must be redistributed to keep the tree balanced. 

o Deleting ``Perryridge'' from Figure 11.11 produces Figure 11.14. 

4. To summarize: 

o Insertion and deletion are complicated, but require relatively few operations. 

o Number of operations required for insertion and deletion is proportional to 

logarithm of number of search keys. 
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o B  -trees are fast as index structures for database. 

B + Tree Extensions: 

B  -Tree File Organization 

1. The B  -tree structure is used not only as an index but also as an organizer for records 

into a file. 

2. In a B  -tree file organization, the leaf nodes of the tree store records instead of 

storing pointers to records, as shown in Fig. 11.17. 

3. Since records are usually larger than pointers, the maximum number of records that 

can be stored in a leaf node is less than the maximum number of pointers in a nonleaf 

node. 

4. However, the leaf node are still required to be at least half full. 

5. Insertion and deletion from a B  -tree file organization are handled in the same way 

as that in a B  -tree index. 

6. When a B  -tree is used for file organization, space utilization is particularly 

important. We can improve the space utilization by involving more sibling nodes in 

redistribution during splits and merges. 

7. In general, if m nodes are involved in redistribution, each node can be guaranteed to 

contain at least  entries. However, the cost of update becomes higher as 

more siblings are involved in redistribution. 

B-Tree Index Files 

1. B-tree indices are similar to B  -tree indices. 
o Difference is that B-tree eliminates the redundant storage of search key values. 
o In B  -tree of Figure 11.11, some search key values appear twice. 
o A corresponding B-tree of Figure 11.18 allows search key values to appear only 

once. 
o Thus we can store the index in less space. 

     

 

Figure 11.8:   Leaf and nonleaf node of a B-tree. 

2. Advantages: 
o Lack of redundant storage (but only marginally different). 
o Some searches are faster (key may be in non-leaf node). 

3. Disadvantages: 
o Leaf and non-leaf nodes are of different size (complicates storage) 
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o Deletion may occur in a non-leaf node (more complicated) 

Generally, the structural simplicity of B  -tree is preferred. 

Indexing Strings 

 

Creating B+-tree indices on string-valued attributes raises two problems. The first problem is that 

strings can be of variable length. The second problem is that strings can be long, leading to a low fanout 

and a correspondingly increased tree height. 

With variable-length search keys, different nodes can have different fanouts even if they are full. A 

node must then be split if it is full, that is, there is no space to add a new entry, regardless of how many 

search entries it has. Similarly, nodes can be merged or entries redistributed depending on what fraction of 

the space in the nodes is used, instead of being based on the maximum number of entries that the node can 

hold. 

The fanout of nodes can be increased by using a technique called prefix compression. With prefix 

compression, we do not store the entire search key value at nonleaf nodes. We only store a prefix of each 

search key value that is sufficient to distinguish between the key values in the subtrees that it separates. 

For example, if we had an index on names, the key value at a nonleaf node could be a prefix of a name; it 

may suffice to store “Silb” at a nonleaf node, instead of the full “Silberschatz” if the closest values in the 

two subtrees that it separates are, say, “Silas” and “Silver” respectively. 

Multiple-Key Access 

For some queries, it is advantageous to use multiple indices if they exist. 

If there are two indices on deposit, one on bname and one on cname, then suppose we 
have a query like 

 select balance from deposit  

 where bname = ``Perryridge'' and balance = 1000 

There are 3 possible strategies to process this query: 

o Use the index on bname to find all records pertaining to Perryridge branch. Examine them 
to see if balance = 1000 

o Use the index on balance to find all records pertaining to Williams. Examine them to see 
if bname = ``Perryridge''. 

o Use index on bname to find pointers to records pertaining to Perryridge branch. Use index 
on balance to find pointers to records pertaining to 1000. Take the intersection of these 
two sets of pointers. 
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The third strategy takes advantage of the existence of multiple indices. This may still not work 
well if 

o There are a large number of Perryridge records AND 
o There are a large number of 1000 records AND 
o Only a small number of records pertain to both Perryridge and 1000. 

To speed up multiple search key queries special structures can be maintained. 

Static Hashing 

1. Index schemes force us to traverse an index structure. Hashing avoids this. 

Hash File Organization 

1. Hashing involves computing the address of a data item by computing a function on the 

search key value. 

2. A hash function h is a function from the set of all search key values K to the set of all 

bucket addresses B. 

o We choose a number of buckets to correspond to the number of search key 

values we will have stored in the database. 

o To perform a lookup on a search key value  , we compute  , and search 

the bucket with that address. 

o If two search keys i and j map to the same address, because  , 

then the bucket at the address obtained will contain records with both search 

key values. 

o In this case we will have to check the search key value of every record in the 

bucket to get the ones we want. 

o Insertion and deletion are simple. 

Hash Functions 

1. A good hash function gives an average-case lookup that is a small constant, 

independent of the number of search keys. 

2. We hope records are distributed uniformly among the buckets. 

3. The worst hash function maps all keys to the same bucket. 

4. The best hash function maps all keys to distinct addresses. 

5. Ideally, distribution of keys to addresses is uniform and random. 

6. Suppose we have 26 buckets, and map names beginning with ith letter of the alphabet 

to the ith bucket. 

o Problem: this does not give uniform distribution. 

o Many more names will be mapped to ``A'' than to ``X''. 
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o Typical hash functions perform some operation on the internal binary machine 

representations of characters in a key. 

o For example, compute the sum, modulo # of buckets, of the binary 

representations of characters of the search key. 

o See Figure 11.18, using this method for 10 buckets (assuming the ith character 

in the alphabet is represented by integer i). 

Handling of bucket overflows 

1. Open hashing occurs where records are stored in different buckets. Compute the hash 

function and search the corresponding bucket to find a record. 

2. Closed hashing occurs where all records are stored in one bucket. Hash function 

computes addresses within that bucket. (Deletions are difficult.) Not used much in 

database applications. 

3. Drawback to our approach: Hash function must be chosen at implementation time. 

o Number of buckets is fixed, but the database may grow. 

o If number is too large, we waste space. 

o If number is too small, we get too many ``collisions'', resulting in records of 

many search key values being in the same bucket. 

o Choosing the number to be twice the number of search key values in the file 

gives a good space/performance tradeoff. 

Hash Indices 

1. A hash index organizes the search keys with their associated pointers into a hash file 

structure. 

2. We apply a hash function on a search key to identify a bucket, and store the key and 

its associated pointers in the bucket (or in overflow buckets). 

3. Strictly speaking, hash indices are only secondary index structures, since if a file itself is 

organized using hashing, there is no need for a separate hash index structure on it. 

Dynamic Hashing 

1. As the database grows over time, we have three options: 
o Choose hash function based on current file size. Get performance degradation as 

file grows. 
o Choose hash function based on anticipated file size. Space is wasted initially. 
o Periodically re-organize hash structure as file grows. Requires selecting new 

hash function, recomputing all addresses and generating new bucket 
assignments. Costly, and shuts down database. 

2. Some hashing techniques allow the hash function to be modified dynamically to 
accommodate the growth or shrinking of the database. These are called dynamic hash 

functions. 
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o Extendable hashing is one form of dynamic hashing. 
o Extendable hashing splits and coalesces buckets as database size changes. 
o This imposes some performance overhead, but space efficiency is maintained. 
o As reorganization is on one bucket at a time, overhead is acceptably low. 

3. How does it work? 

    
Figure 11.9:   General extendable hash structure. 

o We choose a hash function that is uniform and random that generates values over 
a relatively large range. 

o Range is b-bit binary integers (typically b=32). 
o  is over 4 billion, so we don't generate that many buckets! 
o Instead we create buckets on demand, and do not use all b bits of the hash 

initially. 

o At any point we use i bits where  . 
o The i bits are used as an offset into a table of bucket addresses. 
o Value of i grows and shrinks with the database. 
o Figure 11.19 shows an extendable hash structure. 
o Note that the i appearing over the bucket address table tells how many bits are 

required to determine the correct bucket. 
o It may be the case that several entries point to the same bucket. 
o All such entries will have a common hash prefix, but the length of this prefix 

may be less than i. 
o So we give each bucket an integer giving the length of the common hash prefix. 

o This is shown in Figure 11.9 (textbook 11.19) as  . 
o Number of bucket entries pointing to bucket j is then  . 

4. To find the bucket containing search key value  : 

o Compute  . 

o Take the first i high order bits of  . 
o Look at the corresponding table entry for this i-bit string. 
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o Follow the bucket pointer in the table entry. 
5. We now look at insertions in an extendable hashing scheme. 

o Follow the same procedure for lookup, ending up in some bucket j. 
o If there is room in the bucket, insert information and insert record in the file. 
o If the bucket is full, we must split the bucket, and redistribute the records. 
o If bucket is split we may need to increase the number of bits we use in the hash. 

6. Two cases exist: 

1. If  , then only one entry in the bucket address table points to bucket j. 

o Then we need to increase the size of the bucket address table so that we can 
include pointers to the two buckets that result from splitting bucket j. 

o We increment i by one, thus considering more of the hash, and doubling the size 
of the bucket address table. 

o Each entry is replaced by two entries, each containing original value. 
o Now two entries in bucket address table point to bucket j. 
o We allocate a new bucket z, and set the second pointer to point to z. 

o Set  and  to i. 
o Rehash all records in bucket j which are put in either j or z. 
o Now insert new record. 
o It is remotely possible, but unlikely, that the new hash will still put all of the 

records in one bucket. 
o If so, split again and increment i again. 

2. If  , then more than one entry in the bucket address table points to bucket j. 

o Then we can split bucket j without increasing the size of the bucket address table 
(why?). 

o Note that all entries that point to bucket j correspond to hash prefixes that have 

the same value on the leftmost  bits. 

o We allocate a new bucket z, and set  and  to the original  value plus 1. 
o Now adjust entries in the bucket address table that previously pointed to bucket j. 
o Leave the first half pointing to bucket j, and make the rest point to bucket z. 
o Rehash each record in bucket j as before. 
o Reattempt new insert. 

7. Note that in both cases we only need to rehash records in bucket j. 
8. Deletion of records is similar. Buckets may have to be coalesced, and bucket address 

table may have to be halved. 
9. Insertion is illustrated for the example deposit file of Figure 11.20. 

o 32-bit hash values on bname are shown in Figure 11.21. 
o An initial empty hash structure is shown in Figure 11.22. 
o We insert records one by one. 
o We (unrealistically) assume that a bucket can only hold 2 records, in order to 

illustrate both situations described. 
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o As we insert the Perryridge and Round Hill records, this first bucket becomes 
full. 

o When we insert the next record (Downtown), we must split the bucket. 

o Since  , we need to increase the number of bits we use from the hash. 
o We now use 1 bit, allowing us  buckets. 
o This makes us double the size of the bucket address table to two entries. 
o We split the bucket, placing the records whose search key hash begins with 1 in 

the new bucket, and those with a 0 in the old bucket (Figure 11.23). 
o Next we attempt to insert the Redwood record, and find it hashes to 1. 

o That bucket is full, and  . 
o So we must split that bucket, increasing the number of bits we must use to 2. 
o This necessitates doubling the bucket address table again to four entries (Figure 

11.24). 
o We rehash the entries in the old bucket. 
o We continue on for the deposit records of Figure 11.20, obtaining the extendable 

hash structure of Figure 11.25. 

Advantages: 

o Extendable hashing provides performance that does not degrade as the file 
grows. 

o Minimal space overhead - no buckets need be reserved for future use. Bucket 
address table only contains one pointer for each hash value of current prefix 
length. 

Disadvantages: 

o Extra level of indirection in the bucket address table 
o Added complexity 

Summary: A highly attractive technique, provided we accept added complexity. 

 

Static Hashing versus Dynamic Hashing 

We now examine the advantages and disadvantages of extendable hashing, com-pared with static 
hashing. The main advantage of extendable hashing is that performance does not degrade as the file grows. 
Furthermore, there is minimal space overhead. Although the bucket address table incurs additional 
overhead, it contains one pointer for each hash value for the current prefix length. This table is thus small. 
The main space saving of extendable hashing over other forms of hashing is that no buckets need to be 
reserved for future growth; rather, buckets can be allocated dynamically. 

A disadvantage of extendable hashing is that lookup involves an additional level of indirection, since 
the system must access the bucket address table before accessing the bucket itself. This extra reference has 
only a minor effect on per-formance. 
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Thus, extendable hashing appears to be a highly attractive technique, pro-vided that we are willing to 
accept the added complexity involved in its im-plementation. The bibliographical notes reference more 
detailed descriptions of extendable hashing implementation. 
 

The bibliographical notes also provide references to another form of dynamic hashing called linear 

hashing, which avoids the extra level of indirection associ-ated with extendable hashing, at the possible 
cost of more overflow buckets. 

Comparison of Ordered Indexing and Hashing 

We have seen several ordered-indexing schemes and several hashing schemes. We can organize files 
of records as ordered files by using index-sequential organi-zation or B+-tree organizations. Alternatively, 
we can organize the files by using hashing. Finally, we can organize them as heap files, where the records 
are not ordered in any particular way. 
 

Each scheme has advantages in certain situations. A database-system imple-mentor could provide 
many schemes, leaving the final decision of which schemes to use to the database designer. However, 
such an approach requires the imple-mentor to write more code, adding both to the cost of the system and 
to the space that the system occupies. Most database systems support B+-trees and may additionally 
support some form of hash file organization or hash indices. 
 

To make a choice of file organization and indexing techniques for a relation, the implementor or the 
database designer must consider the following issues: 

 Is the cost of periodic reorganization of the index or hash organization acceptable? 
 What is the relative frequency of insertion and deletion? 

 

 Is it desirable to optimize average access time at the expense of increasing the worst-case access time?  

 What types of queries are users likely to pose? 

 

We have already examined the first three of these issues, first in our review of the relative merits of 
specific indexing techniques, and again in our discussion of hashing techniques. The fourth issue, the 
expected type of query, is critical to the choice of ordered indexing or hashing. 

If most queries are of the form: 

select A1, A2, . . . , An  from r  where Ai  =  c; 

then, to process this query, the system will perform a lookup on an ordered index or a hash structure for 
attribute Ai , for value c. For queries of this form, a hashing scheme is preferable. An ordered-index 
lookup requires time proportional to the log of the number of values in r for Ai . In a hash structure, 
however, the average lookup time is a constant independent of the size of the database. The only 
advantage to an index over a hash structure for this form of query is that the worst-case lookup time is 
proportional to the log of the number of values in r for Ai . By contrast, for hashing, the worst-case lookup 
time is proportional to the number of values in r for Ai . However, the worst-case lookup time is unlikely 
to occur with hashing, and hashing is preferable in this case. 
 

Ordered-index techniques are preferable to hashing in cases where the query specifies a range of 
values. Such a query takes the following form: 
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select A1, A2, ..., An from r where Ai  ≤  c2 and Ai  ≥  c1; 

In other words, the preceding query finds all the records with Ai values between c1 and c2. 
 

Let us consider how we process this query using an ordered index. First, we perform a lookup on 
value c1. Once we have found the bucket for value c1, we follow the pointer chain in the index to read the 
next bucket in order, and we continue in this manner until we reach c2. 
 

If, instead of an ordered index, we have a hash structure, we can perform a lookup on c1 and can locate 
the corresponding bucket—but it is not easy, in general, to determine the next bucket that must be 
examined. The difficulty arises because a good hash function assigns values randomly to buckets. Thus, 
there is no simple notion of “next bucket in sorted order.” The reason we cannot chain buckets together in 
sorted order on Ai is that each bucket is assigned many search-key values. Since values are scattered 
randomly by the hash function, the values in the specified range are likely to be scattered across many or 
all of the buckets. Therefore, we have to read all the buckets to find the required search keys. 
 

Usually the designer will choose ordered indexing unless it is known in advance that range queries 
will be infrequent, in which case hashing would be chosen. Hash organizations are particularly useful for 
temporary files created during query processing, if lookups based on a key value are required, but no 
range queries will be performed. 

 

Bitmap Indices 

Bitmap indices are a specialized type of index designed for easy querying on multiple keys, 
although each bitmap index is built on a single key. 

 

For bitmap indices to be used, records in a relation must be numbered sequentially, starting from, say, 
0. Given a number n, it must be easy to retrieve the record numbered n. This is particularly easy to achieve 
if records are fixed in size, and allocated on consecutive blocks of a file. The record number can then be 
translated easily into a block number and a number that identifies the record within the block. 

Consider a relation r , with an attribute A that can take on only one of a small number (for example, 2 
to 20) values. For instance, a relation instructor info may have an attribute gender, which can take only 
values m (male) or f (female). Another example would be an attribute income level, where income has 
been broken up into 5 levels: L1: $0−9999, L2: $10,000−19,999, L3: 20,000−39,999, L4: 40,000−74,999, 
and L5: 75,000−∞. Here, the raw data can take on many values, but a data analyst has split the values into 
a small number of ranges to simplify analysis of the data. 

Bitmap Index Structure 

 

A bitmap is simply an array of bits. In its simplest form, a bitmap index on the attribute A of relation 
r consists of one bitmap for each value that A can take. Each bitmap has as many bits as the number of 
records in the relation. The ith bit of the bitmap for value v j is set to 1 if the record numbered i has the 
value v j for attribute A. All other bits of the bitmap are set to 0. 

In our example, there is one bitmap for the value m and one for f. The ith bit of the bitmap for m is set 
to 1 if the gender value of the record numbered i is m. All other bits of the bitmap for m are set to 0. 
Similarly, the bitmap for f has the value 1 for bits corresponding to records with the value f for the gender 
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attribute; all other bits have the value 0. Figure 11.35 shows an example of bitmap indices on a relation 
instructor info. 

We now consider when bitmaps are useful. The simplest way of retrieving all records with value m (or 
value f) would be to simply read all records of the relation and select those records with value m (or f, 
respectively). The bitmap index doesn’t really help to speed up such a selection. While it would allow us 
to read only those records for a specific gender, it is likely that every disk block for the file would have to be read 

anyway. 

 

In fact, bitmap indices are useful for selections mainly when there are selec-tions on multiple keys. Suppose we 
create a bitmap index on attribute income level, which we described earlier, in addition to the bitmap index 
on gender. 
 

Consider now a query that selects women with income in the range $10,000 to $19, 999. 
This query can be expressed as 

select * 
from r 

where gender = ’f’ and income level = ’L2’; 
 

To evaluate this selection, we fetch the bitmaps for gender value f and the bitmap for income level 
value L2, and perform an intersection (logical-and) of the two bitmaps. In other words, we compute a 
new bitmap where bit i has value 1 if the ith bit of the two bitmaps are both 1, and has a value 0 otherwise. 
In the example in Figure 11.35, the intersection of the bitmap for gender = f (01101) and the bitmap for i 
ncome level = L2 (01000) gives the bitmap 01000. 

 

Bitmaps and B
+
-Trees 

Bitmaps can be combined with regular B+-tree indices for relations where a few attribute values are 
extremely common, and other values also occur, but much less frequently. In a B+-tree index leaf, for each 
value we would normally maintain a list of all records with that value for the indexed attribute. Each 
element of the list would be a record identifier, consisting of at least 32 bits, and usually more. For a value 
that occurs in many records, we store a bitmap instead of a list of records. 

Suppose a particular value vi occurs in 16
1 of the records of a relation. Let N be the number of records 

in the relation, and assume that a record has a 64-bit number identifying it. The bitmap needs only 1 bit 
per record, or N bits in total. In contrast, the list representation requires 64 bits per record where the value 
occurs, or 64 ∗ N/16 = 4N bits. Thus, a bitmap is preferable for representing the list of records for value vi . 
In our example (with a 64-bit record identifier), if fewer than 1 in 64 records have a particular value, the 
list representation is preferable for identifying records with that value, since it uses fewer bits than the 
bitmap representation. If more than 1 in 64 records have that value, the bitmap representation is 
preferable. 
 

Thus, bitmaps can be used as a compressed storage mechanism at the leaf nodes of B+-trees for those 

values that occur very frequently. 

Index Definition in SQL 
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The SQL standard does not provide any way for the database user or administra-tor to control what 
indices are created and maintained in the database system. Indices are not required for correctness, since 
they are redundant data structures. However, indices are important for efficient processing of transactions, 
includ-ing both update transactions and queries. Indices are also important for efficient enforcement of 
integrity constraints. 

In principle, a database system can decide automatically what indices to create. However, because of 
the space cost of indices, as well as the effect of indices on update processing, it is not easy to 
automatically make the right choices about what indices to maintain. Therefore, most SQL 
implementations provide the programmer control over creation and removal of indices via data-definition-
language commands. 

We illustrate the syntax of these commands next. Although the syntax that we show is widely used 
and supported by many database systems, it is not part of the SQL standard. The SQL standard does not 
support control of the physical database schema; it restricts itself to the logical database schema. 

We create an index with the create index command, which takes the form: 

create index <index-name> on <relation-name> (<attribute-list>); 

The attribute-list is the list of attributes of the relations that form the search key for the index. 

To define an index named dept index on the instructor relation with dept name as the search key, we 
write: 

create index dept index on instructor (dept name); 
 

If we wish to declare that the search key is a candidate key, we add the attribute unique to the index 

definition. Thus, the command: 

create unique index dept index on instructor (dept name); 
 

declares dept name to be a candidate key for instructor (which is probably not what we actually would 
want for our university database). If, at the time we enter the create unique index command, dept name is 
not a candidate key, the system will display an error message, and the attempt to create the index will fail. 
If the index-creation attempt succeeds, any subsequent attempt to insert a tuple that violates the key 
declaration will fail. Note that the unique feature is redundant if the database system supports the unique 
declaration of the SQL standard. 
 

Many database systems also provide a way to specify the type of index to be used (such as B+-tree or 
hashing). Some database systems also permit one of the indices on a relation to be declared to be 
clustered; the system then stores the relation sorted by the search-key of the clustered index. 
 

The index name we specified for an index is required to drop an index. The drop index command 
takes the form: 

drop index <index-name>; 

 

Query Processing 
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Query processing refers to the range of activities involved in extracting data from a database. The 
activities include translation of queries in high-level database languages into expressions that can be used 
at the physical level of the file system, a variety of query-optimizing transformations, and actual 
evaluation of queries. 

Overview 

The steps involved in processing a query appear in Figure 12.1. The basic steps are: 

 Parsing and translation. 
 Optimization. 
 Evaluation. 

 

Before query processing can begin, the system must translate the query into a usable form. A 
language such as SQL is suitable for human use, but is ill suited to be the system’s internal representation 
of a query. A more useful internal representation is one based on the extended relational algebra. 
 

Thus, the first action the system must take in query processing is to translate a given query into its 
internal form. This translation process is similar to the work performed by the parser of a compiler. In 
generating the internal form of the query, the parser checks the syntax of the user’s query, verifies that the 
relation names appearing in the query are names of the relations in the database, and so on. The system 
constructs a parse-tree representation of the query, which it then translates into a relational-algebra 
expression. If the query was expressed in terms of a view, the translation phase also replaces all uses of 
the view by the relational-algebra expression that defines the view 

Measures of Query Cost 

There are multiple possible evaluation plans for a query, and it is important to be able to compare the 
alternatives in terms of their (estimated) cost, and choose the best plan. To do so, we must estimate the 
cost of individual operations, and combine them to get the cost of a query evaluation plan. Thus, as we 
study evaluation algorithms for each operation later in this chapter, we also outline how to estimate the 
cost of the operation. 

The cost of query evaluation can be measured in terms of a number of dif-ferent resources, including 
disk accesses, CPU time to execute a query, and, in a distributed or parallel database system, the cost of 
communication (which we discuss later, in Chapters 18 and 19). 
 

In large database systems, the cost to access data from disk is usually the most important cost, since 
disk accesses are slow compared to in-memory operations. Moreover, CPU speeds have been improving 
much faster than have disk speeds. Thus, it is likely that the time spent in disk activity will continue to 
dominate the total time to execute a query. The CPU time taken for a task is harder to estimate since it 
depends on low-level details of the execution code. Although real-life query optimizers do take CPU costs 
into account, for simplicity in this book we ignore CPU costs and use only disk-access costs to measure 
the cost of a query-evaluation plan. 

We use the number of block transfers from disk and the number of disk seeks to estimate the cost of a 
query-evaluation plan. If the disk subsystem takes an average of tT seconds to transfer a block of data, and 
has an average block-access time (disk seek time plus rotational latency) of tS seconds, then an operation 
that transfers b blocks and performs S seeks would take b ∗ tT + S ∗ tS seconds. The values of tT and tS must 
be calibrated for the disk system used, but typical values for high-end disks today would be tS = 4 
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milliseconds and tT = 0.1 milliseconds, assuming a 4-kilobyte block size and a transfer rate of 40 
megabytes per second.2 

 

We can refine our cost estimates further by distinguishing block reads from block writes, since block 
writes are typically about twice as expensive as reads (this is because disk systems read sectors back after 
they are written to verify that the write was successful). For simplicity, we ignore this detail, and leave it 
to you to work out more precise cost estimates for various operations. 

The cost estimates we give do not include the cost of writing the final result of an operation back to 
disk. These are taken into account separately where required. The costs of all the algorithms that we 
consider depend on the size of the buffer in main memory. In the best case, all data can be read into the 
buffers, and the disk does not need to be accessed again. In the worst case, we assume that the buffer can 
hold only a few blocks of data — approximately one block per relation. When presenting cost estimates, 
we generally assume the worst case. 

In addition, although we assume that data must be read from disk initially, it is possible that a block 
that is accessed is already present in the in-memory buffer. Again, for simplicity, we ignore this effect; as 
a result, the actual disk-access cost during the execution of a plan may be less than the estimated cost. 
 

The response time for a query-evaluation plan (that is, the wall-clock time required to execute the 
plan), assuming no other activity is going on in the computer, would account for all these costs, and could 
be used as a measure of the cost of the plan. Unfortunately, the response time of a plan is very hard to 
estimate without actually executing the plan, for the following reasons: 

 

 The response time depends on the contents of the buffer when the query begins execution; this 
information is not available when the query is opti-mized, and is hard to account for even if it were 
available. 
 

 In a system with multiple disks, the response time depends on how accesses are distributed among disks, 
which is hard to estimate without detailed knowledge of data layout on disk. 
 

Interestingly, a plan may get a better response time at the cost of extra resource consumption. For 
example, if a system has multiple disks, a plan A that requires extra disk reads, but performs the reads in 
parallel across multiple disks may finish faster than another plan B that has fewer disk reads, but from 
only one disk. However, if many instances of a query using plan A run concurrently, the overall response 
time may actually be more than if the same instances are executed using plan B, since plan A generates 
more load on the disks. 
 

As a result, instead of trying to minimize the response time, optimizers gen-erally try to minimize the 
total resource consumption of a query plan. Our model of estimating the total disk access time (including 
seek and data transfer) is an example of such a resource consumption–based model of query cost. 

 

Selection Operation 

In query processing, the file scan is the lowest-level operator to access data. File scans are search 
algorithms that locate and retrieve records that fulfill a selection condition. In relational systems, a file 
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scan allows an entire relation to be read in those cases where the relation is stored in a single, dedicated 
file. 

 

Selections Using File Scans and Indices 

Consider a selection operation on a relation whose tuples are stored together in one file. The most 
straightforward way of performing a selection is as follows: 

A1 (linear search). In a linear search, the system scans each file block and tests all records to see 
whether they satisfy the selection condition. An initial seek is required to access the first block of the file. 
In case blocks of the file are not stored contiguously, extra seeks may be required, but we ignore this 
effect for simplicity. 
 

Although it may be slower than other algorithms for implementing selec-tion, the linear-search 
algorithm can be applied to any file, regardless of the ordering of the file, or the availability of indices, or 
the nature of the selection operation. The other algorithms that we shall study are not applicable in all 
cases, but when applicable they are generally faster than linear search. 

 

Cost estimates for linear scan, as well as for other selection algorithms, are shown in Figure 12.3. In 
the figure, we use hi to represent the height of the B+-tree. Real-life optimizers usually assume that the 
root of the tree is present in the in-memory buffer since it is frequently accessed. Some optimizers even 
assume that all but the leaf level of the tree is present in memory, since they are accessed relatively 
frequently, and usually less than 1 percent of the nodes of a B+-tree are nonleaf nodes. The cost formulae 
can be modified appropriately. 
 

Index structures are referred to as access paths, since they provide a path through which data can be 
located and accessed. In Chapter 11, we pointed out that it is efficient to read the records of a file in an 
order corresponding closely to physical order. Recall that a primary index (also referred to as a clustering 

index) is an index that allows the records of a file to be read in an order that corresponds to the physical 
order in the file. An index that is not a primary index is called a secondary index. 

 

Search algorithms that use an index are referred to as index scans. We use the selection predicate to guide 
us in the choice of the index to use in processing the query. Search algorithms that use an index are: 

 

 A2 (primary index, equality on key). For an equality comparison on a key attribute with a 
primary index, we can use the index to retrieve a single record that satisfies the 
corresponding equality condition. Cost estimates are shown in Figure 12.3. 

 

 A3 (primary index, equality on nonkey). We can retrieve multiple records by using a 
primary index when the selection condition specifies an equality comparison on a nonkey 
attribute, A. The only difference from the previous case is that multiple records may need to 
be fetched. However, the records must be stored consecutively in the file since the file is 
sorted on the search key. Cost estimates are shown in Figure 12.3. 
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 A4 (secondary index, equality). Selections specifying an equality condition can use a 
secondary index. This strategy can retrieve a single record if the equality condition is on a 
key; multiple records may be retrieved if the index-ing field is not a key.  

In the first case, only one record is retrieved. The time cost in this case is the same as that for a 
primary index (case A2). 

In the second case, each record may be resident on a different block, which may result in one I/O 
operation per retrieved record, with each I/O operation requiring a seek and a block transfer. The worst-
case time cost in this case is 

 

 Algorithm Cost   Reason  

     

A1 Linear Search tS + br ∗ tT One initial seek plus br block transfers,  

     where br denotes the number of blocks  

     in the file.  

A1 Linear Search, Average 

+

Since at most one record satisfies con-  

 Equality on case tS dition, scan can be terminated as soon  

 Key 
(br /2) ∗ 
tT  as the required record is found. In the  

     worst case, br  blocks transfers are still  

     required.  

A2 Primary (hi   +  1) ∗ (Where hi  denotes the height of the in-  

 B+-tree Index, (tT + tS)  dex.) Index lookup traverses the height  

 Equality on    of the tree plus one I/O to fetch the  

 Key    record; each of these I/O operations re-  

     quires a seek and a block transfer.  

A3 Primary hi   ∗ (tT + One seek for each level of the tree, one  

 B+-tree Index, tS) + b ∗ tT seek for the first block. Here b is the  

 Equality on    number of blocks containing records  

 Nonkey    with the specified search key, all of  

     which are read. These blocks are leaf  

     blocks assumed to be stored sequen-  

     tially (since it is a primary index) and  
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     don’t require additional seeks.  

A4 Secondary (hi   +  1) ∗ This case is similar to primary index.  

 B+-tree Index, (tT + tS)    

 Equality on      

 Key      

A4 Secondary (hi   +  n) ∗ (Where n  is the number of records  

 B+-tree Index, (tT + tS)  fetched.) Here, cost of index traversal  

 Equality on    is the same as for A3, but each record  

 Nonkey    may be on a different block, requiring a  

     seek per record. Cost is potentially very  

     high if n is large.  

A5 Primary hi   ∗ (tT + Identical to the case of A3, equality on  

 B+-tree Index, tS) + b ∗ tT nonkey.  

 Comparison      

A6 Secondary (hi   +  n) ∗ Identical to the case of A4, equality on  

 B+-tree Index, (tT + tS)  nonkey.  

 Comparison      

 

Figure 12.3 Cost estimates for selection algorithms. 

(hi + n) ∗ (tS + tT ), where n is the number of records fetched, if each record is in a different disk 
block, and the block fetches are randomly ordered. The worst-case cost could become even worse than 
that of linear search if a large number of records are retrieved. 

If the in-memory buffer is large, the block containing the record may already be in the buffer. It is 
possible to construct an estimate of the average or expected cost of the selection by taking into account 
the probability of the block containing the record already being in the buffer. For large buffers, that 
estimate will be much less than the worst-case estimate. 

In certain algorithms, including A2, the use of a B+-tree file organization can save one access since 
records are stored at the leaf-level of the tree. 
 

As described in Section 11.4.2, when records are stored in a B+-tree file organi-zation or other file 
organizations that may require relocation of records, secondary indices usually do not store pointers to the 
records.3 Instead, secondary indices store the values of the attributes used as the search key in a B+-tree 
file organiza-tion. Accessing a record through such a secondary index is then more expensive: First the 
secondary index is searched to find the primary index search-key val-ues, then the primary index is looked 
up to find the records. The cost formulae described for secondary indices have to be modified 
appropriately if such indices are used. 
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Sorting 

Sorting of data plays an important role in database systems for two reasons. First, SQL queries can 

specify that the output be sorted. Second, and equally important for query processing, several of the 

relational operations, such as joins, can be implemented efficiently if the input relations are first sorted.  

We can sort a relation by building an index on the sort key, and then using that index to read the 
relation in sorted order. However, such a process orders the relation only logically, through an index, 
rather than physically. Hence, the reading of tuples in the sorted order may lead to a disk access (disk seek 
plus 

block transfer) for each record, which can be very expensive, since the number of records can be much 
larger than the number of blocks. For this reason, it may be desirable to order the records physically. 

 

The problem of sorting has been studied extensively, both for relations that fit entirely in main 
memory and for relations that are bigger than memory. In the first case, standard sorting techniques 
such as quick-sort can be used. Here, we discuss how to handle the second case. 

External Sort-Merge Algorithm 

Sorting of relations that do not fit in memory is called external sorting. The most commonly used 
technique for external sorting is the external sort – merge algorithm. We describe the external sort – 
merge algorithm next. Let M denote the number of blocks in the main-memory buffer available for 
sorting, that is, the number of disk blocks whose contents can be buffered in available main memory. 

In the first stage, a number of sorted runs are created; each run is sorted, but contains only some of the 
records of the relation. 

i = 0; 
repeat 

read M blocks of the relation, or the rest of the relation, whichever is smaller; 
sort the in-memory part of the relation; 
write the sorted data to run file Ri ; 
i = i + 1; 

until the end of the relation 
 In the second stage, the runs are merged. Suppose, for now, that the total number of runs, N, is less 

than M, so that we can allocate one block to each run and have space left to hold one block of 
output. The merge stage operates as follows: 

 

read one block of each of the N files Ri into a buffer block in memory; repeat 

 
choose the first tuple (in sort order) among all buffer blocks; write the tuple to the 
output, and delete it from the buffer block; if the buffer block of any run Ri is empty and 

not end-of-file(Ri ) 
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then read the next block of Ri into the buffer block; until all input buffer 
blocks are empty 

 

The output of the merge stage 
is the sorted relation. The output file 
is buffered to reduce the number of 

disk write operations. The 
preceding merge operation is a 
generalization of the two-way 
merge used by the standard in-
memory sort – merge algorithm; it 
merges N runs, so it is called an 
N-way merge. 

 

In general, if the relation is 
much larger than memory, there 
may be M or more runs generated 

in the first stage, and it is not 
possible to allocate a block for 
each run during the merge stage. 

In this case, the merge operation 
proceeds in multiple passes. Since 
there is enough memory for M − 1 

input buffer blocks, each merge can take M − 1 runs as input. 
 

The initial pass functions in this way: It merges the first M − 1 runs (as desc-ribed in item 2 above) to 
get a single run for the next pass. Then, it merges the next M − 1 runs similarly, and so on, until it has 
processed all the initial runs. At this point, the number of runs has been reduced by a factor of M − 1. If 
this reduced number of runs is still greater than or equal to M, another pass is made, with the runs created 
by the first pass as input. Each pass reduces the number of runs by a factor of M − 1. The passes repeat as 
many times as required, until the number of runs is less than M; a final pass then generates the sorted 
output. 
 

Figure 12.4 illustrates the steps of the external sort – merge for an example relation. For illustration 
purposes, we assume that only one tuple fits in a block ( fr = 1), and we assume that memory holds at most 
three blocks. During the merge stage, two blocks are used for input and one for output. 

 

Join Operation 

In this section, we study several algorithms for computing the join of relations, and we analyze their 
respective costs. 
 

We use the term equi-join to refer to a join of the form r r. A=s. B s, where A and B are attributes or sets of 
attributes of relations r and s, respectively. 

We use as a running example the expression: 

student takes 
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using the same relation schemas that we used in Chapter 2. We assume the following 
information about the two relations: 

 

 Number of records of student: nstudent  =  5, 000. 
 

 Number of blocks of student: bstudent  =  100. 
 

 Number of records of takes: ntakes  =  10, 000. 
 

 Number of blocks of takes: btakes  =  400. 
 

Nested-Loop Join 

 

Figure 12.5 shows a simple algorithm to compute the theta join, r u s, of two relations r and s. 
This algorithm is called the nested-loop join algorithm, since it basically consists of a pair of 
nested for loops. Relation r is called the outer relation and relation s the inner relation of the 
join, since the loop for r encloses the loop for s. The algorithm uses the notation tr ·  ts , where tr 
and ts are tuples; tr ·  ts denotes the tuple constructed by concatenating the attribute values of 
tuples 

tr and ts . 

Like the linear file-scan algorithm for selection, the nested-loop join algorithm requires no 
indices, and it can be used regardless of what the join condition is. Extending the algorithm to 
compute the natural join is straightforward, since the natural join can be expressed as a theta join 
followed by elimination of repeated attributes by a projection. The only change required is an 
extra step of deleting repeated attributes from the tuple tr ·  ts , before adding it to the result. 

 

The nested-loop join algorithm is expensive, since it examines every pair of tuples in the two 
relations. Consider the cost of the nested-loop join algorithm. The number of pairs of tuples to 
be considered is nr ∗ ns , where nr denotes the number of tuples in r , and ns denotes the number 
of tuples in s. For each record in r , we have to perform a complete scan on s. In the worst case, 
the buffer can hold only one block of each relation, and a total of nr ∗ bs + br block transfers 
would be required, where br and bs denote the number of blocks containing tuples of 

 and s, respectively. We need only one seek for each scan on the inner relation 
 since it is read sequentially, and a total of br seeks to read r , leading to a total of nr + br seeks. In 
the best case, there is enough space for both relations to fit simultaneously in memory, so each 
block would have to be read only once; hence, only br + bs block transfers would be required, 
along with 2 seeks. 

 

for each tuple tr in r do begin 

for each tuple ts in s do begin 

test pair (tr , ts ) to see if they satisfy the join condition u if they do, add 
tr ·  ts to the result; 

end 

end 

Figure 12.5 Nested-loop join. 
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for each block Br of r do begin 

for each block Bs of s do begin 

for each tuple tr in Br do begin 

for each tuple ts in Bs do begin 
 

test pair (tr , ts ) to see if they satisfy the join condition if they do, add tr ·  ts to 
the result; 

end 

end 

end 

end 

Figure 12.6 Block nested-loop join. 

If one of the relations fits entirely in main memory, it is beneficial to use that relation as the inner 
relation, since the inner relation would then be read only once. Therefore, if s is small enough to fit in 
main memory, our strategy requires only a total br + bs block transfers and 2 seeks — the same cost as 
that for the case where both relations fit in memory. 

Now consider the natural join of student and takes. Assume for now that we have no indices 
whatsoever on either relation, and that we are not willing to create any index. We can use the nested 
loops to compute the join; assume that student is the outer relation and takes is the inner relation in the 
join. We will have to examine 5000 ∗ 10, 000 = 50 ∗ 106 pairs of tuples. In the worst case, the number of 
block transfers is 5000 ∗ 400 + 100 = 2,000,100, plus 5000 + 100 = 5100 seeks. In the best-case 
scenario, however, we can read both relations only once, and perform the computation. This 
computation requires at most 100 + 400 = 500 block transfers, plus 2 seeks — a significant 
improvement over the worst-case scenario. If we had used takes as the relation for the outer loop and 
student for the inner loop, the worst-case cost of our final strategy would have been 10,000 ∗ 100 + 400 
= 1,000,400 block transfers, plus 10,400 disk seeks. The number of block transfers is significantly less, 
and although the number of seeks is higher, the overall cost is reduced, assuming tS = 4 milliseconds 
and tT = 0.1 milliseconds. 

 

12.5.4 Merge Join 

 

The merge-join algorithm (also called the sort-merge-join algorithm) can be used to compute natural 
joins and equi-joins. Let r (R) and s(S) be the relations whose natural join is to be computed, and let R ∩ 
S denote their common attributes. Suppose that both relations are sorted on the attributes R ∩ S. Then, 
their join can be computed by a process much like the merge stage in the merge – sort algorithm. 

Merge-Join Algorithm 

 

Figure 12.7 shows the merge-join algorithm. In the algorithm, JoinAttrs refers to the attributes in R ∩ S, 

and tr ts , where tr and ts are tuples that have the same 

pr := address of first tuple of r; 
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ps := address of first tuple of s; 
while (ps  =null and pr  =null) do 

begin 

ts := tuple to which ps points; 
Ss := {ts }; 
set ps to point to next tuple of s; 
done := false; 
while (not done and ps  =null) do 

begin 

ts  := tuple to which ps points; 
if (ts [JoinAttrs] =  ts [JoinAttrs]) 

then begin 

Ss := Ss ∪ {ts }; 

set ps to point to next tuple of s; 
end 

else done := true; 
end 

tr := tuple to which pr points; 
while ( pr =null and tr [JoinAttrs] < ts [JoinAttrs]) do begin 

 
set pr to point to next tuple of r; 
tr := tuple to which pr points; 

end 

 
while ( pr =null and tr [JoinAttrs] = ts [JoinAttrs]) do begin 

for each ts in Ss do 

begin 

add ts tr to result; 
end 

 
set pr to point to next tuple of r; 
tr := tuple to which pr points; 

end 

end. 
 

Figure 12.7 Merge join. 

values for JoinAttrs, denotes the concatenation of the attributes of the tuples, fol-lowed by projecting out 
repeated attributes. The merge-join algorithm associates one pointer with each relation. These pointers 
point initially to the first tuple of the respective relations. As the algorithm proceeds, the pointers move 
through the relation. A group of tuples of one relation with the same value on the join attributes is read 
into Ss . The algorithm in Figure 12.7 requires that every set of tuples Ss fit in main memory; we discuss 
extensions of the algorithm to avoid this requirement shortly. Then, the corresponding tuples (if any) of 
the other relation are read in, and are processed as they are read. 
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Sorted relations for merge join. 

Figure 12.8 shows two relations that are sorted 
on their join attribute a 1. It is instructive to go 
through the steps of the merge-join algorithm on the 
relations shown in the figure. 
 

 

The merge-join algorithm of Figure 12.7 requires 
that each set Ss of all tuples with the same value for 
the join attributes must fit in main memory. This 
require-ment can usually be met, even if the relation 
s is large. If there are some join attribute values for 
which Ss is larger than available memory, a block 
nested-loop join can be performed for such sets Ss , 
matching them with corresponding blocks of tuples 

in r with the same values for the join attributes. 
 

If either of the input relations r and s is not sorted on the join attributes, they can be sorted first, and 
then the merge-join algorithm can be used. The merge-join algorithm can also be easily extended from 
natural joins to the more general case of equi-joins. 

Other Operations 

Other relational operations and extended relational operations — such as dupli-cate elimination, 
projection, set operations, outer join, and aggregation — can be implemented as outlined in Sections 
12.6.1 through 12.6.5. 

Duplicate Elimination 

We can implement duplicate elimination easily by sorting. Identical tuples will appear adjacent to each 
other as a result of sorting, and all but one copy can be removed. With external sort – merge, duplicates 
found while a run is being created can be removed before the run is written to disk, thereby reducing the 
number of block transfers. The remaining duplicates can be eliminated during merging, and the final 
sorted run has no duplicates. The worst-case cost estimate for duplicate elimination is the same as the 
worst-case cost estimate for sorting of the relation. 
 

We can also implement duplicate elimination by hashing, as in the hash-join algorithm. First, the relation 
is partitioned on the basis of a hash function on the whole tuple. Then, each partition is read in, and an in-
memory hash index is constructed. While constructing the hash index, a tuple is inserted only if it is not 
already present. Otherwise, the tuple is discarded. After all tuples in the partition have been processed, the 
tuples in the hash index are written to the result. The cost estimate is the same as that for the cost of 
processing (partitioning and reading each partition) of the build relation in a hash join. 
 

Because of the relatively high cost of duplicate elimination, SQL requires an explicit request by the user to 
remove duplicates; otherwise, the duplicates are retained. 

Projection 

We can implement projection easily by performing projection on each tuple, which gives a relation that 
could have duplicate records, and then removing duplicate records. Duplicates can be eliminated by the 
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methods described in Section 12.6.1. If the attributes in the projection list include a key of the relation, no 
duplicates will exist; hence, duplicate elimination is not required. Generalized projection can be 
implemented in the same way as projection. 

Set Operations 

We can implement the union, intersection, and set-difference operations by first sorting both relations, and 
then scanning once through each of the sorted relations to produce the result. In r ∪  s, when a concurrent 
scan of both relations reveals the same tuple in both files, only one of the tuples is retained. The result of r 
∩ s will contain only those tuples that appear in both relations. We implement set difference, r − s, 
similarly, by retaining tuples in r only if they are absent in s. 
 

For all these operations, only one scan of the two sorted input relations is required, so the cost is br + bs 
block transfers if the relations are sorted in the same order. Assuming a worst case of one block buffer for 
each relation, a total of br + bs disk seeks would be required in addition to br + b s block transfers. The 
number of seeks can be reduced by allocating extra buffer blocks. 
 

If the relations are not sorted initially, the cost of sorting has to be included. Any sort order can be used in 
evaluation of set operations, provided that both inputs have that same sort order 

Hashing provides another way to implement these set operations. The first step in each case is to partition 
the two relations by the same hash function, and thereby create the partitions r0, r1, . . . , rnh and s 0, s 1, . . . 
, snh . Depending on the operation, the system then takes these steps on each partition i = 0, 1, . . . , nh : 

• r ∪  s 

 Build an in-memory hash index on ri . 
 Add the tuples in si to the hash index only if they are not already present. 

 

 Add the tuples in the hash index to the result. 
 r ∩ s 

 Build an in-memory hash index on ri .  

 For each tuple in si , probe the hash index and output the tuple to the result only if it is already 
present in the hash index. 

 r − s 
 Build an in-memory hash index on ri .  

 For each tuple in si , probe the hash index, and, if the tuple is present in the hash index, delete 
it from the hash index. 

 

 Add the tuples remaining in the hash index to the result. 
 

Outer Join 

 

Recall the outer-join operations described in Section 4.1.2. For example, the natural left outer join takes 

 student contains the join of takes and student, and, in addition, for each takes tuple t that has no 

matching tuple in student (that is, where ID is not in student), the following tuple t1 is added to the 

result. For all attributes in the schema of takes, tuple t1 has the same values as tuple t. The remaining 

attributes (from the schema of student) of tuple t1 contain the value null. 

We can implement the outer-join operations by using one of two strategies: 
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 Compute the corresponding join, and then add further tuples to the join result to get the outer-join 
result. Consider the left outer-join operation and two relations: r (R) and s(S). To evaluate r  u s, we first 
compute r u s, and save that result as temporary relation q1. Next, we compute r − R(q1) to obtain those 
tuples in r that do not participate in the theta join. We can use any of the algorithms for computing the 
joins, projection, and set difference described earlier to compute the outer joins. We pad each of these 
tuples with null values for attributes from s, and add it to q1 to get the result of the outer join. 
 

The right outer-join operation r  u s is equivalent to s  u r , and can therefore be implemented in a 
symmetric fashion to the left outer join. We can implement the full outer-join operation r  u s by 
computing the join r s, and then adding the extra tuples of both the left and right outer-join operations, as 
before. 

 

 Modify the join algorithms. It is easy to extend the nested-loop join algo-rithms to compute the left 
outer join: Tuples in the outer relation that do not match any tuple in the inner relation are written to the 
output after being padded with null values. However, it is hard to extend the nested-loop join to compute 
the full outer join. 

Natural outer joins and outer joins with an equi-join condition can be computed by extensions of 
the merge-join and hash-join algorithms. Merge join can be extended to compute the full outer join as 
follows: When the merge of the two relations is being done, tuples in either relation that do not match any 
tuple in the other relation can be padded with nulls and written to the output. Similarly, we can extend 
merge join to compute the left and right outer joins by writing out nonmatching tuples (padded with nulls) 
from only one of the relations. Since the relations are sorted, it is easy to detect whether or not a tuple 
matches any tuples from the other relation. For example, when a merge join of takes and student is done, 
the tuples are read in sorted order of ID, and it is easy to check, for each tuple, whether there is a matching 
tuple in the other. 

  

The cost estimates for implementing outer joins using the merge-join algorithm are the same as are those 
for the corresponding join. The only difference lies in size of the result, and therefore in the block transfers 
for writing it out, which we did not count in our earlier cost estimates. 

  
 The extension of the hash-join algorithm to compute outer joins is left for you to do as an 
exercise (Exercise 12.15). 

  

Aggregation 

Recall the aggregation function (operator), discussed in Section 3.7. For example, the function 

  
 select dept name, avg (salary)   
 from instructor 

 group by dept name;   
  
 computes the average salary in each university department.   

The aggregation operation can be implemented in the same way as duplicate elimination. We use 
either sorting or hashing, just as we did for duplicate elimina-tion, but based on the grouping attributes 
(branch name in the preceding example). However, instead of eliminating tuples with the same value for 
the grouping at-tribute, we gather them into groups, and apply the aggregation operations on each group to 
get the result. 
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The cost estimate for implementing the aggregation operation is the same as the cost of duplicate 
elimination, for aggregate functions such as min, max, sum, count, and avg. 

  

Instead of gathering all the tuples in a group and then applying the aggre-gation operations, we can 
implement the aggregation operations sum, min, max, count, and avg on the fly as the groups are being 
constructed. For the case of sum, min, and max, when two tuples in the same group are found, the system 

replaces them by a single tuple containing the sum, min, or max, respectively, of the columns being 
aggregated. For the count operation, it maintains a running count for each group for which a tuple has 
been found. Finally, we implement the avg operation by computing the sum and the count values on the 
fly, and finally dividing the sum by the count to get the average. 

  

If all tuples of the result fit in memory, both the sort-based and the hash-based implementations do 
not need to write any tuples to disk. As the tuples are read in, they can be inserted in a sorted tree structure 
or in a hash index. When we use on-the-fly aggregation techniques, only one tuple needs to be stored for 
each of the groups. Hence, the sorted tree structure or hash index fits in memory, and the aggregation can 
be processed with just br block transfers (and 1 seek) instead of the 3br transfers (and a worst case of up to 
2br seeks) that would be required otherwise. 

Evaluation of Expressions 

  
 So far, we have studied how individual relational operations are carried out. Now we consider how 
to evaluate an expression containing multiple operations. The obvious way to evaluate an expression is 
simply to evaluate one operation at a time, in an appropriate order. The result of each evaluation is 
materialized in a temporary relation for subsequent use. A disadvantage to this approach is the need to 
construct the temporary relations, which (unless they are small) must be written to disk. An alternative 
approach is to evaluate several operations simultaneously in a pipeline, with the results of one operation 
passed on to the next, without the need to store a temporary relation.   
 In Sections 12.7.1 and 12.7.2, we consider both the materialization approach and the pipelining 
approach. We shall see that the costs of these approaches can differ substantially, but also that there are 
cases where only the materialization approach is feasible. 

  

Materialization 

  
 It is easiest to understand intuitively how to evaluate an expression by looking at a pictorial 
representation of the expression in an operator tree. Consider the expression: 

  

name (sbuilding = “Watson”(department)instructor ) 
  
 in Figure 12.11.   
 If we apply the materialization approach, we start from the lowest-level op-erations in the expression 
(at the bottom of the tree). In our example, there is only one such operation: the selection operation on 

department. The inputs to the lowest-level operations are 
relations in the database. We execute these operations by 
the algorithms that we studied earlier, and we store the 
results in temporary relations. We can use these 
temporary relations to execute the operations at the next 
level up in the tree, where the inputs now are either 
temporary relations or relations stored in the database. In 
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our example, the inputs to the join are the in-structor relation and the temporary relation created by the 
selection on department. The join can now be evaluated, creating another temporary relation. 
  
 By repeating the process, we will eventually evaluate the operation at the root of the tree, giving the 
final result of the expression. In our example, we get the final result by executing the projection operation 
at the root of the tree, using as input the temporary relation created by the join.   
 Evaluation as just described is called materialized evaluation, since the re-sults of each 
intermediate operation are created (materialized) and then are used for evaluation of the next-level 
operations.   
 The cost of a materialized evaluation is not simply the sum of the costs of the operations involved. 
When we computed the cost estimates of algorithms, we ignored the cost of writing the result of the 
operation to disk. To compute the cost of evaluating an expression as done here, we have to add the costs 
of all the operations, as well as the cost of writing the intermediate results to disk. We assume that the 
records of the result accumulate in a buffer, and, when the buffer is full, they are written to disk. The 
number of blocks written out, br , can be estimated as nr / fr , where nr is the estimated number of tuples in 
the result relation r , and fr is the blocking factor of the result relation, that is, the number of records of r 
that will fit in a block. In addition to the transfer time, some disk seeks may be required, since the disk 
head may have moved between successive writes. The number of seeks can be estimated as br /bb where bb 
is the size of the output buffer (measured in blocks).   
 Double buffering (using two buffers, with one continuing execution of the algorithm while the 
other is being written out) allows the algorithm to execute more quickly by performing CPU activity in 
parallel with I/O activity. The number of seeks can be reduced by allocating extra blocks to the output 
buffer, and writing out multiple blocks at once. 

  

Pipelining 

We can improve query-evaluation efficiency by reducing the number of tem-porary files that are 
produced. We achieve this reduction by combining several relational operations into a pipeline of 
operations, in which the results of one operation are passed along to the next operation in the pipeline. 
Evaluation as just described is called pipelined evaluation. 
 

For example, consider the expression ( a 1,a 2(r s)). If materialization were applied, evaluation would 
involve creating a temporary relation to hold the result of the join, and then reading back in the result to 
perform the projection. These operations can be combined: When the join operation generates a tuple of 
its result, it passes that tuple immediately to the project operation for processing. By combining the join 
and the projection, we avoid creating the intermediate result, and instead create the final result directly. 

Creating a pipeline of operations can provide two benefits: 

 It eliminates the cost of reading and writing temporary relations, reducing the cost of query evaluation. 
 

 It can start generating query results quickly, if the root operator of a query-evaluation plan is combined in 
a pipeline with its inputs. This can be quite useful if the results are displayed to a user as they are 
generated, since otherwise there may be a long delay before the user sees any query results. 
 

Implementation of Pipelining 

We can implement a pipeline by constructing a single, complex operation that combines the 
operations that constitute the pipeline. Although this approach may be feasible for some frequently 
occurring situations, it is desirable in general to reuse the code for individual operations in the 
construction of a pipeline. 
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In the example of Figure 12.11, all three operations can be placed in a pipeline, which passes the 
results of the selection to the join as they are generated. In turn, it passes the results of the join to the 
projection as they are generated. The memory requirements are low, since results of an operation are not 
stored for long. However, as a result of pipelining, the inputs to the operations are not available all at once 
for processing. 
 

Pipelines can be executed in either of two ways: 

 In a demand-driven pipeline, the system makes repeated requests for tuples from the operation at the top 
of the pipeline. Each time that an operation receives a request for tuples, it computes the next tuple (or 
tuples) to be returned, and then returns that tuple. If the inputs of the operation are not pipelined, the next 
tuple(s) to be returned can be computed from the input relations, while the system keeps track of what has 
been returned so far. If it has some pipelined inputs, the operation also makes requests for tuples from its 
pipelined inputs. Using the tuples received from its pipelined inputs, the operation computes tuples for its 
output, and passes them up to its parent. 
 

In a producer-driven pipeline, operations do not wait for requests to pro-duce tuples, but instead 

generate the tuples eagerly. Each operation in a producer-driven pipeline is modeled as a separate process 
or thread within the system that takes a stream of tuples from its pipelined inputs and gen-erates a stream 
of tuples for its output. 

 

We describe below how demand-driven and producer-driven pipelines can be implemented. 
 

Each operation in a demand-driven pipeline can be implemented as an iter-ator that provides the 
following functions: open(), next(), and close(). After a call to open(), each call to next() returns the next 
output tuple of the operation. The implementation of the operation in turn calls open() and next() on its 
inputs, to get its input tuples when required. The function close() tells an iterator that no more tuples are 
required. The iterator maintains the state of its execution in between calls, so that successive next() 
requests receive successive result tuples. 
 

For example, for an iterator implementing the select operation using linear search, the open() operation 
starts a file scan, and the iterator’s state records the point to which the file has been scanned. When the 
next() function is called, the file scan continues from after the previous point; when the next tuple 
satisfying the selection is found by scanning the file, the tuple is returned after storing the point where it 
was found in the iterator state. A merge-join iterator’s open() operation would open its inputs, and if they 
are not already sorted, it would also sort the inputs. On calls to next(), it would return the next pair of 
matching tuples. The state information would consist of up to where each input had been scanned. Details 
of the implementation of iterators are left for you to complete in Practice Exercise 12.7. 

 

Producer-driven pipelines, on the other hand, are implemented in a different manner. For each pair of 
adjacent operations in a producer-driven pipeline, the system creates a buffer to hold tuples being passed 
from one operation to the next. The processes or threads corresponding to different operations execute 
concurrently. Each operation at the bottom of a pipeline continually generates output tuples, and puts them 
in its output buffer, until the buffer is full. An operation at any other level of a pipeline generates output 
tuples when it gets input tuples from lower down in the pipeline, until its output buffer is full. Once the 
operation uses a tuple from a pipelined input, it removes the tuple from its input buffer. In either case, 
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once the output buffer is full, the operation waits until its parent operation removes tuples from the buffer, 
so that the buffer has space for more tuples. At this point, the operation generates more tuples, until the 
buffer is full again. The operation repeats this process until all the output tuples have been generated. 

 

It is necessary for the system to switch between operations only when an output buffer is full, or an 
input buffer is empty and more input tuples are needed to generate any more output tuples. In a parallel-
processing system, operations in a pipeline may be run concurrently on distinct processors (see Chapter 
18). 
 

Using producer-driven pipelining can be thought of as pushing data up an operation tree from below, 
whereas using demand-driven pipelining can be thought of as pulling data up an operation tree from the 
top. Whereas tuples are generated eagerly in producer-driven pipelining, they are generated lazily, on 
demand, in demand-driven pipelining. Demand-driven pipelining is used 

Evaluation Algorithms for Pipelining 

Some operations, such as sorting, are inherently blocking operations, that is, they may not be able to 
output any results until all tuples from their inputs have been examined.5 

Other operations, such as join, are not inherently blocking, but specific eval-uation algorithms may be 
blocking. For example, the hash-join algorithm is a blocking operation, since it requires both its inputs to 
be fully retrieved and parti-tioned, before it outputs any tuples. On the other hand, the indexed nested 
loops join algorithm can output result tuples as it gets tuples for the outer relation. It is therefore said to be 
pipelined on its outer (left-hand side) relation, although it is blocking on its indexed (right-hand side) 
input, since the index must be fully constructed before the indexed nested-loop join algorithm can execute. 
 

Hybrid hash join can be viewed as partially pipelined on the probe relation, since it can output tuples 
from the first partition as tuples are received for the probe relation. However, tuples that are not in the first 
partition will be output only after the entire pipelined input relation is received. Hybrid hash join thus 
provides pipelined evaluation on its probe input if the build input fits entirely in memory, or nearly 
pipelined evaluation if most of the build input fits in memory. 
 

If both inputs are sorted on the join attribute, and the join condition is an equi-join, merge join can be 
used, with both its inputs pipelined. 
 

However, in the more common case that the two inputs that we desire to pipeline into the join are not 
already sorted, another alternative is the double-pipelined join technique, shown in Figure 12.12. The 
algorithm assumes that the input tuples for both input relations, r and s, are pipelined. Tuples made 
available for both relations are queued for processing in a single queue. Special queue entries, called Endr 
and Ends , which serve as end-of-file markers, are inserted in the queue after all tuples from r and s 
(respectively) have been generated. For efficient evaluation, appropriate indices should be built on the 
relations r and s. As tuples are added to r and s, the indices must be kept up to date. When hash indices are 
used on r and s, the resultant algorithm is called the double-pipelined hash-join technique. 

 

The double-pipelined join algorithm in Figure 12.12 assumes that both inputs fit in memory. In case 
the two inputs are larger than memory, it is still possible to use the double-pipelined join technique as 
usual until available memory is full. When available memory becomes full, r and s tuples that have arrived 
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up to that point can be treated as being in partition r0 and s0, respectively. Tuples for r and s that arrive 
subsequently are assigned to partitions r1 and s1, respectively, which 

doner := false; 
dones := false; 
  

while not doner or not dones do begin 

 

if queue is empty, then wait until queue is not empty; t := top entry in queue; 
if t = Endr then doner := true 

else if t = End s then dones := true else if t is from input r 

then 

begin 

r := r ∪  {t}; 
result := result ∪  ({t} s); 
end 

else /* t is from input s */ 
begin 

s := s ∪  {t}; 
result := result ∪  (r {t}); 
end 

end 

 
Figure 12.12 Double-pipelined join algorithm. 
 
are written to disk, and are not added to the in-memory index. However, tuples assigned to r1 and s1 are 
used to probe s0 and r0, respectively, before they are written to disk. Thus, the join of r1 with s0, and s0 
with r1, is also carried out in a pipelined fashion. After r and s have been fully processed, the join of r1 
tuples with s1 tuples must be carried out, to complete the join; any of the join techniques we have seen 
earlier can be used to join r1 with s1. 
 

Query Optimization 
 

Query optimization is the process of selecting the most efficient query-evaluation plan from 
among the many strategies usually possible for processing a given query, especially if the query is 
complex. We do not expect users to write their queries so that they can be processed efficiently. Rather, 
we expect the system to construct a query-evaluation plan that minimizes the cost of query evaluation. 
This is where query optimization comes into play. 
 

One aspect of optimization occurs at the relational-algebra level, where the system attempts to find 
an expression that is equivalent to the given expression, but more efficient to execute. Another aspect is 
selecting a detailed strategy for processing the query, such as choosing the algorithm to use for executing 
an operation, choosing the specific indices to use, and so on. 
 

The difference in cost (in terms of evaluation time) between a good strategy and a bad strategy is 
often substantial, and may be several orders of magnitude. Hence, it is worthwhile for the system to spend 
a substantial amount of time on the selection of a good strategy for processing a query, even if the query is 
executed only once. 
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Transformation of Relational Expressions 

A query can be expressed in several different ways, with different costs of eval-uation. In this 
section, rather than take the relational expression as given, we consider alternative, equivalent expressions. 
 

Two relational-algebra expressions are said to be equivalent if, on every legal database instance, 
the two expressions generate the same set of tuples. (Recall that a legal database instance is one that 
satisfies all the integrity constraints specified in the database schema.) Note that the order of the tuples is 
irrelevant; the two expressions may generate the tuples in different orders, but would be considered 
equivalent as long as the set of tuples is the same. 
 

In SQL, the inputs and outputs are multisets of tuples, and the multiset version of the relational 
algebra (described in the box in page 238) is used for evaluating SQL queries. Two expressions in the 
multiset version of the relational algebra are said to be equivalent if on every legal database the two 
expressions generate the same multiset of tuples. The discussion in this chapter is based on the relational 
 

 

 

 

 

 

 

 

 

 

 

 Pictorial representation of equivalences. 

algebra. We leave extensions to the multiset version of the relational algebra to you as exercises. 

 

Equivalence Rules 

An equivalence rule says that expressions of two forms are equivalent. We can replace an expression 
of the first form by an expression of the second form, or vice versa — that is, we can replace an 
expression of the second form by an expression of the first form — since the two expressions generate 
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the same result on any valid database. The optimizer uses equivalence rules to transform expressions 
into other logically equivalent expressions. 

 

We now list a number of general equivalence rules on relational-algebra expressions. Some of the 
equivalences listed appear in Figure 13.3. We use u, u1, u2, and so on to denote predicates, L1, L2, L3, 
and so on to denote lists of attributes, and E, E1, E 2, and so on to denote relational-algebra expressions. 
A relation name r is simply a special case of a relational-algebra expression, and can be used wherever 
E appears. 

 Conjunctive selection operations can be deconstructed into a sequence of individual selections. 
This transformation is referred to as a cascade of s. 

su1∧u2 
(E) =  su1 

(su2 
(E)) 

 Selection operations are commutative. 
 

su1 (su2 (E)) = su2 (su1 (E)) 

Only the final operations in a sequence of projection operations are needed; the others can be omitted. 
This transformation can also be referred to as a cascade of . 

L1 (  L2 (. . . (  Ln (E)) . . .)) =    L1 (E) 

Selections can be combined with Cartesian products and theta joins. 
 su (E1 × E2) = E1   u E2 

This expression is just the definition of the theta join. 

 su1 
(E1   u2  

E2) =  E1   u1∧u2  
E2 

Theta-join operations are commutative. 
E1 u E2  =  E2 u E1 

Actually, the order of attributes differs between the left-hand side and right-hand side, so the equivalence 
does not hold if the order of attributes is taken into account. A projection operation can be added to one of 
the sides of the equivalence to appropriately reorder attributes, but for simplicity we omit the projection 
and ignore the attribute order in most of our examples. 
 

Recall that the natural-join operator is simply a special case of the theta-join operator; hence, natural joins 
are also commutative. 

a.  Natural-join operations are associative. 
 

(E1 E2) E3  =  E1 (E2 E3) 

b. Theta joins are associative in the following manner: 

(E1u1  
E2) u2∧u3  

E3  = E1   u1∧u3  
(E2   u2  

E3) 

 

where u2 involves attributes from only E2 and E3. Any of these condi-tions may be empty; hence, it 
follows that the Cartesian product (×) operation is also associative. The commutativity and associativity of 
join operations are important for join reordering in query optimization. 
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The selection operation distributes over the theta-join operation under the following two conditions:  

It distributes when all the attributes in selection condition u0 involve only the attributes of one of the 
expressions (say, E1) being joined. 
 

su0 (E1 u E2) =  (su0 (E1))  u E2 

It distributes when selection condition u1 involves only the attributes of E1 and u2 involves only the 
attributes of E2. 
 

su1∧u2 
(E1u E2) =  (su1 

(E1)) u (su2 
(E2)) 

The projection operation distributes over the theta-join operation under the following conditions.  

Let L1 and L2 be attributes of E1 and E2, respectively. Suppose that the join condition u involves only 

attributes in L1 ∪ L2. Then,  

L1∪L2 
(E1   u 

E2)
 = 

(
  L1 

(E1))
  u 

(
  L2 

(E2)) 

 

Consider a join E1 u E2. Let L1 and L2 be sets of attributes from E1 and E2, respectively. Let L3 be attributes 
of E1 that are involved in join condition u, but are not in L1 ∪ L2, and let L4 be attributes of E2 that are 
involved in join condition u, but are not in L1 ∪ L2. Then, 
 

L1∪L2 
(E1   u 

E2)
 =   L1∪L2 

((
  L1∪L3 

(E1))
  u 

(
  L2∪L4 

(E2))) 

 The set operations union and intersection are commutative. 

E1  ∪  E2 

E1  ∩  E2 

Set difference is not commutative. 

 E2  ∪  E1 
 E2  ∩  E1 

 Set union and intersection are associative. 

(E1  ∪  E2) ∪  E3  = E1  ∪  (E2  ∪  E3) 

(E1  ∩  E2) ∩  E3  = E1  ∩  (E2  ∩  E3) 

 The selection operation distributes over the union, intersection, and set-difference operations. 
sP (E1  −  E2) =  sP (E1) −  sP (E2) 

 

Similarly, the preceding equivalence, with − replaced with either ∪ or ∩, also holds. Further: 

sP (E1  −  E2) = sP (E1) −  E2 

The preceding equivalence, with − replaced by ∩, also holds, but does not hold if − is replaced by ∪. 
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The projection operation distributes over the union operation. L (E1 ∪ E2) = ( L (E1)) ∪ ( L (E2)) 

This is only a partial list of equivalences. More equivalences involving ex-tended relational operators, 
such as the outer join and aggregation, are discussed in the exercises. 

Estimating Statistics of Expression Results 

The cost of an operation depends on the size and other statistics of its inputs. Given an expression 
such as a (b c) to estimate the cost of joining a with (b c), we need to have estimates of statistics such as 
the size of b c. 

  
In this section, we first list some statistics about database relations that are stored in database-

system catalogs, and then show how to use the statistics to estimate statistics on the results of various 
relational operations.   

One thing that will become clear later in this section is that the estimates are not very accurate, 
since they are based on assumptions that may not hold exactly. A query-evaluation plan that has the 
lowest estimated execution cost may therefore not actually have the lowest actual execution cost. 
However, real-world experience has shown that even if estimates are not precise, the plans with the lowest 
estimated costs usually have actual execution costs that are either the lowest actual execution costs, or are 
close to the lowest actual execution costs. 

Catalog Information 

  
 The database-system catalog stores the following statistical information about database 
relations: 

 nr , the number of tuples in the relation r.  

 br , the number of blocks containing tuples of relation r .  

 lr , the size of a tuple of relation r in bytes.  

 fr , the blocking factor of relation r — that is, the number of tuples of relation r that fit into one block. 
 

 V(A, r ), the number of distinct values that appear in the relation r for attribute A. This value is the 

same as the size of A(r ). If Ais a key for relation r , V(A, r ) is nr . 
 

 

The last statistic, V(A, r ), can also be maintained for sets of attributes, if desired, instead of just for 
individual attributes. Thus, given a set of attributes, A, V(A, r ) is the size of A(r ). 

 

If we assume that the tuples of relation r are stored together physically in a file, the following 
equation holds: 

br = nr 

 

fr 

Statistics about indices, such as the heights of B+-tree indices and number of leaf pages in the indices, 
are also maintained in the catalog. 
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If we wish to maintain accurate statistics, then, every time a relation is modi-fied, we must also 
update the statistics. This update incurs a substantial amount of overhead. Therefore, most systems do 
not update the statistics on every mod-ification. Instead, they update the statistics during periods of light 
system load. As a result, the statistics used for choosing a query-processing strategy may not be 
completely accurate. However, if not too many updates occur in the intervals between the updates of the 
statistics, the statistics will be sufficiently accurate to provide a good estimation of the relative costs of 
the different plans. 

 

The statistical information noted here is simplified. Real-world optimizers often maintain further 
statistical information to improve the accuracy of their cost estimates of evaluation plans. For instance, 
most databases store the distribution of values for each attribute as a histogram: in a histogram the 
values for the attribute are divided into a number of ranges, and with each range the histogram 
associates the number of tuples whose attribute value lies in that range. Figure 13.6 shows an example 
of a histogram for an integer-valued attribute that takes values in the range 1 to 25. 

Histograms used in database systems usually record the number of distinct values in each range, in 
addition to the number of tuples with attribute values in that range. 

As an example of a histogram, the range of values for an attribute age of a re-lation person could be 

divided into 0 – 9, 10 – 19, . . . , 90 – 99 (assuming a maximum age of 99). With each range we store a 

count of the number of person tuples whose age values lie in that range, and the number of distinct age 

values that lie in that 

range. Without such histogram information, an optimizer would have to assume that the 
distribution of values is uniform; that is, each range has the same count. 

A histogram takes up only a little space, so histograms on several different at-tributes can be 
stored in the system catalog. There are several types of histograms used in database systems. For 
example, an equi-width histogram divides the range of values into equal-sized ranges, whereas 
an equi-depth histogram ad-justs the boundaries of the ranges such that each range has the same 
number of values. 

Selection Size Estimation 

The size estimate of the result of a selection operation depends on the selection predicate. We first 
consider a single equality predicate, then a single comparison predicate, and finally combinations of 
predicates. 

 

 sA= a (r ): If we assume uniform distribution of values (that is, each value ap-pears with equal probability), 
the selection result can be estimated to have nr / V(A, r ) tuples, assuming that the value a appears in 
attribute A of some record of r. The assumption that the value a in the selection appears in some record is 
generally true, and cost estimates often make it implicitly. However, it is often not realistic to assume that 
each value appears with equal prob-ability. The course id attribute in the takes relation is an example 
where the assumption is not valid. It is reasonable to expect that a popular undergradu-ate course will have 
many more students than a smaller specialized graduate course. Therefore, certain course id values appear 
with greater probability than do others. Despite the fact that the uniform-distribution assumption is often 
not correct, it is a reasonable approximation of reality in many cases, and it helps us to keep our 
presentation relatively simple. 
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If a histogram is available on attribute A, we can locate the range that contains the value a , and 
modify the above-mentioned estimate nr / V(A, r ) 

by using the frequency count for that range instead of nr , and the number of distinct values that occurs in 
that range instead of V(A, r). 

 

 sA≤v (r ): Consider a selection of the form sA≤v (r ). If the actual value used in the comparison (v) is 
available at the time of cost estimation, a more 
accurate estimate can be made. The lowest and highest values (min( A, r ) and max(A, r)) for the attribute 

can be stored in the catalog. Assuming that values are uniformly distributed, we can estimate the number 

of records that will satisfy the condition A ≤ v as 0 if v < min(A, r ), as nr if v ≥ max(A, r), and: 

v − min(A, r) 

nr · max(A, r) − min(A, r ) 
 

otherwise. 
 

If a histogram is available on attribute A, we can get a more accurate estimate; we leave the details as 
an exercise for you. In some cases, such as when the query is part of a stored procedure, the value v may 
not be available when the query is optimized. In such cases, we assume that approximately one-half the 
records will satisfy the comparison condition. That is, we assume the result has nr /2 tuples; the estimate 
may be very inaccurate, but is the best we can do without any further information. 

 

 Complex selections: 
 

 Conjunction: A conjunctive selection is a selection of the form: 
 

su1∧u2∧···∧un 
(r ) 

We can estimate the result size of such a selection: For each ui , we estimate the size of the selection sui (r 
), denoted by si , as described previously. Thus, the probability that a tuple in the relation satisfies 
selection condition ui is 

si /nr . 

The preceding probability is called the selectivity of the selection sui (r ). Assuming that the conditions are 
independent of each other, the probability that a tuple satisfies all the conditions is simply the product of 
all these probabilities. Thus, we estimate the number of tuples in the full selection as: 

 

nr ∗ 

s1 ∗ s2 ∗ · · · ∗ 

sn 

nr
n 

 

Disjunction: A disjunctive selection is a selection of the form:  

su1∨u2∨···∨un 
(r ) 
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A disjunctive condition is satisfied by the union of all records satisfying the individual, simple conditions 
ui . 
 

As before, let si /nr denote the probability that a tuple satisfies condition ui . The probability that the tuple 
will satisfy the disjunction is then 1 minus the probability that it will satisfy none of the conditions: 
 

1 − (1 − 

s1

) ∗ (1 − 

s2
) ∗ · · · ∗ (1 
− 

sn 

)nr nr nr 

Multiplying this value by nr gives us the estimated number of tuples that satisfy the selection. 

Negation: In the absence of nulls, the result of a selection s¬u(r ) is simply the tuples of r that are not in su 
(r ). We already know how to estimate the number of tuples in su(r ). The number of tuples in s¬u (r ) is 
therefore estimated to be n(r ) minus the estimated number of tuples in su (r ).  

We can account for nulls by estimating the number of tuples for which the condition u would evaluate to 
unknown, and subtracting that number from the above estimate, ignoring nulls. Estimating that number 
would require extra statistics to be maintained in the catalog. 

 

Choice of Evaluation Plans 

Generation of expressions is only part of the query-optimization process, since each operation in 
the expression can be implemented with different algorithms. An evaluation plan defines exactly 
what algorithm should be used for each op-eration, and how the execution of the operations 
should be coordinated. 

 

Given an evaluation plan, we can estimate its cost using statistics estimated by the 
techniques in Section 13.3 coupled with cost estimates for various algorithms and evaluation 
methods described in Chapter 12. 

 

A cost-based optimizer explores the space of all query-evaluation plans that are equivalent 
to the given query, and chooses the one with the least estimated cost. We have seen how 
equivalence rules can be used to generate equivalent plans. However, cost-based optimization 
with arbitrary equivalence rules is fairly complicated. We first cover a simpler version of cost-
based optimization, which involves only join-order and join algorithm selection, in Section 
13.4.1. Later in Section 13.4.2 we briefly sketch how a general-purpose optimizer based on 
equivalence rules can be built, without going into details. 

 

Exploring the space of all possible plans may be too expensive for complex queries. Most 
optimizers include heuristics to reduce the cost of query optimiza-tion, at the potential risk of 
not finding the optimal plan. We study some such heuristics in Section 13.4.3. 

Cost-Based Join Order Selection 

The most common type of query in SQL consists of a join of a few relations, with join predicates 
and selections specified in the where clause. In this section we consider the problem of choosing the 
optimal join order for such a query. 
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For a complex join query, the number of different query plans that are equiv-alent to the query can 
be large. As an illustration, consider the expression: 

r1 r2 · · · rn 

 

where the joins are expressed without any ordering. With n = 3, there are 12 different join orderings: 

 

In general, with n 
relations, there are (2(n 
− 1))!/(n − 1)! different 
join orders. (We leave 

the computation of this expression for you to do in Exercise 13.10.) For joins involving small numbers of 
relations, this number is acceptable; for example, with n = 5, the number is 1680. However, as n increases, 
this number rises quickly. With n = 7, the number is 665,280; with n = 10, the number is greater than 17.6 
billion! 

Luckily, it is not necessary to generate all the expressions equivalent to a given expression. For 
example, suppose we want to find the best join order of the form: 

(r1 r2 r3) r4 r5 

which represents all join orders where r1, r2, and r3 are joined first (in some order), and the result is 
joined (in some order) with r4 and r5. There are 12 different join orders for computing r1 r2 r3, and 12 
orders for computing the join of this result with r4 and r5. Thus, there appear to be 144 join orders to 
examine. However, once we have found the best join order for the subset of relations {r1, r2, r3}, we can 
use that order for further joins with r4 and r5, and can ignore all costlier join orders of r1 r2 r3. Thus, 
instead of 144 choices to examine, we need to examine only 12 + 12 choices. 

 

Using this idea, we can develop a dynamic-programming algorithm for finding optimal join orders. 
Dynamic-programming algorithms store results of computa-tions and reuse them, a procedure that can 
reduce execution time greatly. 

 

A recursive procedure implementing the dynamic-programming algorithm appears in Figure 13.7. The 
procedure applies selections on individual relations at the earliest possible point, that is, when the relations 
are accessed. It is easiest to understand the procedure assuming that all joins are natural joins, although the 
procedure works unchanged with any join condition. With arbitrary join con-ditions, the join of two 
subexpressions is understood to include all join conditions that relate attributes from the two 
subexpressions procedure FindBestPlan(S) 
 

if (bestpla n[S].cost = ∞) /* bestpla n[S] already computed */ return 
bestpla n[S] 

if (S contains only 1 relation) 
 

set bestpla n[S]. pla n and bestpla n[S].cost based on best way of accessing S else for 
each non-empty subset S1 of S such that S1 =S 

P1 = FindBestPlan(S1) 
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P2 = FindBestPlan(S − S1) 
 

A = best algorithm for joining results of P1 and P2 cost = 
P1.cost + P2.cost + cost of A 

if cost < bestpla n[S].cost 

bestpla n[S].cost = cost 

bestpla n[S]. pla n = “execute P1. pla n; execute P2. pla n; join results 
of P1 and P2 using A” 

return bestpla n[S] 

Figure 13.7Dynamic-programming algorithm for join order optimization. 

 

The procedure stores the evaluation plans it computes in an associative array bestpla n, which is 
indexed by sets of relations. Each element of the associative array contains two components: the cost of 
the best plan of S, and the plan itself. The value of bestpla n[S].cost is assumed to be initialized to ∞ if 
bestpla n[S] has not yet been computed. 
 

The procedure first checks if the best plan for computing the join of the given set of relations S 
has been computed already (and stored in the associative array bestpla n); if so, it returns the already 
computed plan. 
 

If S contains only one relation, the best way of accessing S (taking selections on S, if any, into 
account) is recorded in bestpla n. This may involve using an index to identify tuples, and then fetching 
the tuples (often referred to as an index scan), or scanning the entire relation (often referred to as a 
relation scan).1 If there is any selection condition on S, other than those ensured by an index scan, a 
selection operation is added to the plan, to ensure all selections on S are satisfied. 
  

Otherwise, if S contains more than one relation, the procedure tries every way of dividing S into 
two disjoint subsets. For each division, the procedure recursively finds the best plans for each of the 
two subsets, and then computes the cost of the overall plan by using that division.2 The procedure picks 
the cheapest plan from among all the alternatives for dividing S into two sets. The cheapest plan and its 
cost are stored in the array bestpla n, and returned by the procedure. The time complexity of the 
procedure can be shown to be O(3n) (see Practice Exercise 13.11). 

Actually, the order in which tuples are generated by the join of a set of relations is also important for 
finding the best overall join order, since it can affect the cost of further joins (for instance, if merge join is 
used). A particular sort order of the tuples is said to be an interesting sort order if it could be useful for a 
later operation. For instance, generating the result of r1 r 2 r3 sorted on the attributes common with r4 or r5 
may be useful, but generating it sorted on the attributes common to only r1 and r2 is not useful. Using 
merge join for computing r1 r2 r3 may be costlier than using some other join technique, but it may provide 
an output sorted in an interesting sort order. 
 

Hence, it is not sufficient to find the best join order for each subset of the set of n given relations. 
Instead, we have to find the best join order for each subset, for each interesting sort order of the join result 
for that subset. The number of subsets of n relations is 2n. The number of interesting sort orders is 
generally not large. Thus, about 2n join expressions need to be stored. The dynamic-programming 
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algorithm for finding the best join order can be easily extended to handle sort orders. The cost of the 
extended algorithm depends on the number of interesting orders for each subset of relations; since this 
number has been found to be small in practice, the cost remains at O(3n). With n = 10, this number is 
around 59,000, which is much better than the 17.6 billion different join orders. More important, the 
storage required is much less than before, since we need to store only one join order for each interesting 
sort order of each of 1024 subsets of r1, . . . , r10. Although both numbers still increase rapidly with n, 
commonly occurring joins usually have less than 10 relations, and can be handled easily. 

13.4.2 Cost-Based Optimization with Equivalence Rules 

The join order optimization technique we just saw handles the most common class of queries, which 
perform an inner join of a set of relations. However, clearly many queries use other features, such as 
aggregation, outer join, and nested queries, which are not addressed by join order selection. 
 

Many optimizers follow an approach based on using heuristic transforma-tions to handle constructs 
other than joins, and applying the cost-based join order selection algorithm to subexpressions involving 
only joins and selections. Details of such heuristics are for the most part specific to individual optimizers, 
and we do not cover them. However, heuristic transformations to handle nested queries are widely used, 
and are considered in more detail in Section 13.4.4. 
 

In this section, however, we outline how to create a general-purpose cost-based optimizer based on 
equivalence rules, which can handle a wide variety of query constructs. 
 

The benefit of using equivalence rules is that it is easy to extend the optimizer with new rules to handle 
different query constructs. For example, nested queries can be represented using extended relational-
algebra constructs, and transforma-tions of nested queries can be expressed as equivalence rules. We have 
already seen equivalence rules with aggregation operations, and equivalence rules can also be created for 
outer joins. 
 

In Section 13.2.4, we saw how an optimizer could systematically generate all expressions equivalent to 
the given query. The procedure for generating equiv-alent expressions can be modified to generate all 
possible evaluation plans as follows: A new class of equivalence rules, called physical equivalence rules, 
is added that allows a logical operation, such as a join, to be transformed to a phys-ical operation, such as 
a hash join, or a nested-loops join. By adding such rules to the original set of equivalence rules, the 
procedure can generate all possible evaluation plans. The cost estimation techniques we have seen earlier 
can then be used to choose the optimal (that is, the least-cost) plan. 
 

However, the procedure shown in Section 13.2.4 is very expensive, even if we do not consider 
generation of evaluation plans. To make the approach work efficiently requires the following: 

A space-efficient representation of expressions that avoids making multiple copies of the same 
subexpressions when equivalence rules are applied. 
 

Efficient techniques for detecting duplicate derivations of the same expression. 
A form of dynamic programming based on memoization, which stores the optimal query evaluation plan 
for a subexpression when it is optimized for the first time; subsequent requests to optimize the same 
subexpression are handled by returning the already memoized plan. 
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Techniques that avoid generating all possible equivalent plans, by keeping track of the cheapest plan 
generated for any subexpression up to any point of time, and pruning away any plan that is more 
expensive than the cheapest plan found so far for that subexpression. 

 

The details are more complex than we wish to deal with here. This approach was pioneered by the 
Volcano research project, and the query optimizer of SQL Server is based on this approach. See the 
bibliographical notes for references containing further information. 

Heuristics in Optimization 

A drawback of cost-based optimization is the cost of optimization itself. Although the cost of query 
optimization can be reduced by clever algorithms, the number of different evaluation plans for a query can 
be very large, and finding the optimal plan from this set requires a lot of computational effort. Hence, 
optimizers use heuristics to reduce the cost of optimization. 

An example of a heuristic rule is the following rule for transforming relational-algebra queries: 

Perform selection operations as early as possible. A heuristic optimizer would use this rule without finding 
out whether the cost is reduced by this transformation. In the first transformation example in Section 13.2, 
the selection operation was pushed into a join. 
 

We say that the preceding rule is a heuristic because it usually, but not always, helps to reduce the cost. 
For an example of where it can result in an increase in cost, consider an expression su(r s), where the 
condition u refers to only attributes in s. The selection can certainly be performed before the join. 
However, if r is extremely small compared to s, and if there is an index on the join attributes of s, but no 
index on the attributes used by u, then it is probably a bad idea to perform the selection early. Performing 
the selection early — that is, directly on s — would require doing a scan of all tuples in s. It is probably 
cheaper, in this case, to compute the join by using the index, and then to reject tuples that fail the 
selection. 

 

The projection operation, like the selection operation, reduces the size of relations. Thus, whenever we 
need to generate a temporary relation, it is advan-tageous to apply immediately any projections that are 
possible. This advantage suggests a companion to the “perform selections early” heuristic: 
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UNIT-V 

Distributed Databases 

In a distributed database, there are a number of databases that may be geographically distributed 

all over the world. A distributed DBMS manages the distributed database in a manner so that it appears as 

one single database to users. In the later part of the chapter, we go on to study the factors that lead to 

distributed databases, its advantages and disadvantages. 

A distributed database is a collection of multiple interconnected databases, which are spread physically 

across various locations that communicate via a computer network. 

Features 

• Databases in the collection are logically interrelated with each other. Often they represent a single 

logical database. 

• Data is physically stored across multiple sites. Data in each site can be managed by a DBMS 

independent of the other sites. 

• The processors in the sites are connected via a network. They do not have any multiprocessor 

configuration. 

• A distributed database is not a loosely connected file system. 

• A distributed database incorporates transaction processing, but it is not synonymous with a 

transaction processing system. 

Distributed Database Management System 

A distributed database management system (DDBMS) is a centralized software system that manages a 

distributed database in a manner as if it were all stored in a single location. 

Features 

• It is used to create, retrieve, update and delete distributed databases. 

• It synchronizes the database periodically and provides access mechanisms by the virtue of which 

the distribution becomes transparent to the users. 

• It ensures that the data modified at any site is universally updated. 

• It is used in application areas where large volumes of data are processed and accessed by 

numerous users simultaneously. 

• It is designed for heterogeneous database platforms. 

• It maintains confidentiality and data integrity of the databases. 

Factors Encouraging DDBMS 

The following factors encourage moving over to DDBMS − 
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• Distributed Nature of Organizational Units − Most organizations in the current times are 

subdivided into multiple units that are physically distributed over the globe. Each unit requires its 

own set of local data. Thus, the overall database of the organization becomes distributed. 

• Need for Sharing of Data − The multiple organizational units often need to communicate with 

each other and share their data and resources. This demands common databases or replicated 

databases that should be used in a synchronized manner. 

• Support for Both OLTP and OLAP − Online Transaction Processing (OLTP) and Online 

Analytical Processing (OLAP) work upon diversified systems which may have common data. 

Distributed database systems aid both these processing by providing synchronized data. 

• Database Recovery − One of the common techniques used in DDBMS is replication of data 

across different sites. Replication of data automatically helps in data recovery if database in any 

site is damaged. Users can access data from other sites while the damaged site is being 

reconstructed. Thus, database failure may become almost inconspicuous to users. 

• Support for Multiple Application Software − Most organizations use a variety of application 

software each with its specific database support. DDBMS provides a uniform functionality for 

using the same data among different platforms. 

Advantages of Distributed Databases 

Following are the advantages of distributed databases over centralized databases. 

Modular Development − If the system needs to be expanded to new locations or new units, in centralized 

database systems, the action requires substantial efforts and disruption in the existing functioning. 

However, in distributed databases, the work simply requires adding new computers and local data to the 

new site and finally connecting them to the distributed system, with no interruption in current functions. 

More Reliable − In case of database failures, the total system of centralized databases comes to a halt. 

However, in distributed systems, when a component fails, the functioning of the system continues may be 

at a reduced performance. Hence DDBMS is more reliable. 

Better Response − If data is distributed in an efficient manner, then user requests can be met from local 

data itself, thus providing faster response. On the other hand, in centralized systems, all queries have to 

pass through the central computer for processing, which increases the response time. 

Lower Communication Cost − In distributed database systems, if data is located locally where it is 

mostly used, then the communication costs for data manipulation can be minimized. This is not feasible in 

centralized systems. 

Adversities of Distributed Databases 

Following are some of the adversities associated with distributed databases. 
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• Need for complex and expensive software − DDBMS demands complex and often expensive 

software to provide data transparency and co-ordination across the several sites. 

• Processing overhead − Even simple operations may require a large number of communications 

and additional calculations to provide uniformity in data across the sites. 

• Data integrity − The need for updating data in multiple sites pose problems of data integrity. 

• Overheads for improper data distribution − Responsiveness of queries is largely dependent 

upon proper data distribution. Improper data distribution often leads to very slow response to user 

requests. 

In this part of the tutorial, we will study the different aspects that aid in designing distributed database 

environments. This chapter starts with the types of distributed databases. Distributed databases can be 

classified into homogeneous and heterogeneous databases having further divisions. The next section of 

this chapter discusses the distributed architectures namely client – server, peer – to – peer and multi – 

DBMS. Finally, the different design alternatives like replication and fragmentation are introduced. 

Types of Distributed Databases 

Distributed databases can be broadly classified into homogeneous and heterogeneous distributed database 

environments, each with further sub-divisions, as shown in the following illustration. 

 

Homogeneous Distributed Databases 

In a homogeneous distributed database, all the sites use identical DBMS and operating systems. Its 

properties are − 

• The sites use very similar software. 

• The sites use identical DBMS or DBMS from the same vendor. 

• Each site is aware of all other sites and cooperates with other sites to process user requests. 

• The database is accessed through a single interface as if it is a single database. 

Types of Homogeneous Distributed Database 

There are two types of homogeneous distributed database − 

• Autonomous − Each database is independent that functions on its own. They are integrated by a 

controlling application and use message passing to share data updates. 



194 

 

• Non-autonomous − Data is distributed across the homogeneous nodes and a central or master 

DBMS co-ordinates data updates across the sites. 

Heterogeneous Distributed Databases 

In a heterogeneous distributed database, different sites have different operating systems, DBMS products 

and data models. Its properties are − 

• Different sites use dissimilar schemas and software. 

• The system may be composed of a variety of DBMSs like relational, network, hierarchical or 

object oriented. 

• Query processing is complex due to dissimilar schemas. 

• Transaction processing is complex due to dissimilar software. 

• A site may not be aware of other sites and so there is limited co-operation in processing user 

requests. 

Types of Heterogeneous Distributed Databases 

• Federated − The heterogeneous database systems are independent in nature and integrated 

together so that they function as a single database system. 

• Un-federated − The database systems employ a central coordinating module through which the 

databases are accessed. 

 

Distributed Data Storage 

 1.Data Replication 

Data replication is the process of storing separate copies of the database at two or more sites. It is a 

popular fault tolerance technique of distributed databases. 

Advantages of Data Replication 

• Reliability − In case of failure of any site, the database system continues to work since a copy is 

available at another site(s). 

• Reduction in Network Load − Since local copies of data are available, query processing can be 

done with reduced network usage, particularly during prime hours. Data updating can be done at 

non-prime hours. 

• Quicker Response − Availability of local copies of data ensures quick query processing and 

consequently quick response time. 

• Simpler Transactions − Transactions require less number of joins of tables located at different 

sites and minimal coordination across the network. Thus, they become simpler in nature. 

Disadvantages of Data Replication 
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• Increased Storage Requirements − Maintaining multiple copies of data is associated with 

increased storage costs. The storage space required is in multiples of the storage required for a 

centralized system. 

• Increased Cost and Complexity of Data Updating − Each time a data item is updated, the 

update needs to be reflected in all the copies of the data at the different sites. This requires 

complex synchronization techniques and protocols. 

• Undesirable Application – Database coupling − If complex update mechanisms are not used, 

removing data inconsistency requires complex co-ordination at application level. This results in 

undesirable application – database coupling. 

Some commonly used replication techniques are − 

• Snapshot replication 

• Near-real-time replication 

• Pull replication 

2. Fragmentation 

Fragmentation is the task of dividing a table into a set of smaller tables. The subsets of the table 

are called fragments. Fragmentation can be of three types: horizontal, vertical, and hybrid (combination 

of horizontal and vertical). Horizontal fragmentation can further be classified into two techniques: primary 

horizontal fragmentation and derived horizontal fragmentation. 

Fragmentation should be done in a way so that the original table can be reconstructed from the 

fragments. This is needed so that the original table can be reconstructed from the fragments whenever 

required. This requirement is called “reconstructiveness.” 

Advantages of Fragmentation 

• Since data is stored close to the site of usage, efficiency of the database system is increased. 

• Local query optimization techniques are sufficient for most queries since data is locally available. 

• Since irrelevant data is not available at the sites, security and privacy of the database system can be 

maintained. 

Disadvantages of Fragmentation 

• When data from different fragments are required, the access speeds may be very high. 

• In case of recursive fragmentations, the job of reconstruction will need expensive techniques. 

• Lack of back-up copies of data in different sites may render the database ineffective in case of 

failure of a site. 

Vertical Fragmentation 
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In vertical fragmentation, the fields or columns of a table are grouped into fragments. In order to 

maintain reconstructiveness, each fragment should contain the primary key field(s) of the table. Vertical 

fragmentation can be used to enforce privacy of data. 

For example, let us consider that a University database keeps records of all registered students in a 

Student table having the following schema. 

STUDENT 

Regd_No Name Course Address Semester Fees Marks 

Now, the fees details are maintained in the accounts section. In this case, the designer will fragment the 

database as follows − 

CREATE TABLE STD_FEES AS  

   SELECT Regd_No, Fees  

   FROM STUDENT; 

Horizontal Fragmentation 

Horizontal fragmentation groups the tuples of a table in accordance to values of one or 

more fields. Horizontal fragmentation should also confirm to the rule of reconstructiveness. Each 

horizontal fragment must have all columns of the original base table. 

For example, in the student schema, if the details of all students of Computer Science 

Course needs to be maintained at the School of Computer Science, then the designer will 

horizontally fragment the database as follows − 

CREATE COMP_STD AS  

   SELECT * FROM STUDENT   

   WHERE COURSE = "Computer Science"; 

Hybrid Fragmentation 

In hybrid fragmentation, a combination of horizontal and vertical fragmentation techniques 

are used. This is the most flexible fragmentation technique since it generates fragments with 

minimal extraneous information. However, reconstruction of the original table is often an 

expensive task. 

Hybrid fragmentation can be done in two alternative ways − 

• At first, generate a set of horizontal fragments; then generate vertical fragments from one or more 

of the horizontal fragments. 

• At first, generate a set of vertical fragments; then generate horizontal fragments from one or more 

of the vertical fragments. 

3. Transparency 



197 

 

Distribution transparency is the property of distributed databases by the virtue of which the 

internal details of the distribution are hidden from the users. The DDBMS designer may choose to 

fragment tables, replicate the fragments and store them at different sites. However, since users are 

oblivious of these details, they find the distributed database easy to use like any centralized 

database. 

The three dimensions of distribution transparency are − 

• Location transparency 

• Fragmentation transparency 

• Replication transparency 

Location Transparency 

Location transparency ensures that the user can query on any table(s) or fragment(s) of a 

table as if they were stored locally in the user’s site. The fact that the table or its fragments are 

stored at remote site in the distributed database system, should be completely oblivious to the end 

user. The address of the remote site(s) and the access mechanisms are completely hidden. 

In order to incorporate location transparency, DDBMS should have access to updated and 

accurate data dictionary and DDBMS directory which contains the details of locations of data. 

Fragmentation Transparency 

Fragmentation transparency enables users to query upon any table as if it were 

unfragmented. Thus, it hides the fact that the table the user is querying on is actually a fragment or 

union of some fragments. It also conceals the fact that the fragments are located at diverse sites. 

This is somewhat similar to users of SQL views, where the user may not know that they are 

using a view of a table instead of the table itself. 

Replication Transparency 

Replication transparency ensures that replication of databases are hidden from the users. It 

enables users to query upon a table as if only a single copy of the table exists. 

Replication transparency is associated with concurrency transparency and failure 

transparency. Whenever a user updates a data item, the update is reflected in all the copies of the 
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table. However, this operation should not be known to the user. This is concurrency transparency. 

Also, in case of failure of a site, the user can still proceed with his queries using replicated copies 

without any knowledge of failure. This is failure transparency. 

Combination of Transparencies 

In any distributed database system, the designer should ensure that all the stated 

transparencies are maintained to a considerable extent. The designer may choose to fragment 

tables, replicate them and store them at different sites; all oblivious to the end user. However, 

complete distribution transparency is a tough task and requires considerable design efforts. 

 

Distributed Transactions 

Access to the various data items in a distributed system is usually accomplished through 

transactions, which must preserve the ACID properties.  

There are two types of transaction that we need to consider.  

The local transactions are those that access and update data in only one local database; the 

global transactions are those that access and update data in several local databases. 

 The failure of one of these sites, or the failure of a communication link connecting these 

sites, may result in erroneous computations. 

System Structure 

Each site has its own local transaction manager, whose function is to ensure the ACID properties 

of those transactions that execute at that site. The various trans-action managers cooperate to execute 

global transactions. To understand how such a manager can be implemented, consider an abstract model 

of a transaction system, in which each site contains two subsystems: 

 The transaction manager manages the execution of those transactions (or subtransactions) that 

access data stored in a local site. Note that each such transaction may be either a local transaction (that is, 

a transaction that exe-cutes at only that site) or part of a global transaction (that is, a transaction that 

executes at several sites). 

 

 The transaction coordinator coordinates the execution of the various trans-actions (both local 

and global) initiated at that site. 

The overall system architecture appears in Figure 1. 

The structure of a transaction manager is similar in many respects to the structure of a centralized 

system. Each transaction manager is responsible for: 
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 Maintaining a log for recovery purposes. 

 

 

 

 

 

Figure 1 System architecture. 

 Participating in an appropriate concurrency-control scheme to coordinate the concurrent execution of 

the transactions executing at that site. 

 

As we shall see, we need to modify both the recovery and concurrency schemes to accommodate the 

distribution of transactions. 

 

The transaction coordinator subsystem is not needed in the centralized en-vironment, since a 

transaction accesses data at only a single site. A transaction coordinator, as its name implies, is 

responsible for coordinating the execution of all the transactions initiated at that site. For each such 

transaction, the coordinator is responsible for: 

 Starting the execution of the transaction. 

 

 Breaking the transaction into a number of subtransactions and distributing these subtransactions to the 

appropriate sites for execution. 

 

 Coordinating the termination of the transaction, which may result in the transaction being committed 

at all sites or aborted at all sites. 

 

System Failure Modes 

Distributed system may suffer from the same types of failure that a centralized system does 

(for example, software errors, hardware errors, or disk crashes). There are, however, additional 

types of failure with which we need to deal in a distributed environment. The basic failure types 

are: 

Failure of a site. 

Loss of messages 

Failure of a communication link. 

Network partition. 
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The loss or corruption of messages is always a possibility in a distributed system. The 

system uses transmission-control protocols, such as TCP/IP, to handle such errors. Information 

about such protocols may be found in standard textbooks on networking (see the bibliographical 

notes). 

 

However, if two sites A and B are not directly connected, messages from one to the other 

must be routed through a sequence of communication links. If a communication link fails, 

messages that would have been transmitted across the link must be rerouted. In some cases, it is 

possible to find another route through the network, so that the messages are able to reach their 

destination. In other cases, a failure may result in there being no connection between some pairs of 

sites. A system is partitioned if it has been split into two (or more) subsystems, called partitions, 

that lack any connection between them. Note that, under this definition, a partition may consist of a 

single node. 

 

Distributed DBMS - Controlling Concurrency 

Concurrency controlling techniques ensure that multiple transactions are executed 

simultaneously while maintaining the ACID properties of the transactions and serializability in the 

schedules. 

Locking Based Concurrency Control Protocols 

Locking-based concurrency control protocols use the concept of locking data items. A lock 

is a variable associated with a data item that determines whether read/write operations can be 

performed on that data item. Generally, a lock compatibility matrix is used which states whether a 

data item can be locked by two transactions at the same time. 

Locking-based concurrency control systems can use either one-phase or two-phase locking 

protocols. 

One-phase Locking Protocol 

In this method, each transaction locks an item before use and releases the lock as soon as it 

has finished using it. This locking method provides for maximum concurrency but does not always 

enforce serializability. 

Two-phase Locking Protocol 

In this method, all locking operations precede the first lock-release or unlock operation. 

The transaction comprise of two phases. In the first phase, a transaction only acquires all the locks 

it needs and do not release any lock. This is called the expanding or the growing phase. In the 
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second phase, the transaction releases the locks and cannot request any new locks. This is called 

the shrinking phase. 

Every transaction that follows two-phase locking protocol is guaranteed to be serializable. 

However, this approach provides low parallelism between two conflicting transactions. 

Timestamp Concurrency Control Algorithms 

Timestamp-based concurrency control algorithms use a transaction’s timestamp to 

coordinate concurrent access to a data item to ensure serializability. A timestamp is a unique 

identifier given by DBMS to a transaction that represents the transaction’s start time. 

These algorithms ensure that transactions commit in the order dictated by their timestamps. 

An older transaction should commit before a younger transaction, since the older transaction enters 

the system before the younger one. 

Timestamp-based concurrency control techniques generate serializable schedules such that 

the equivalent serial schedule is arranged in order of the age of the participating transactions. 

Some of timestamp based concurrency control algorithms are − 

• Basic timestamp ordering algorithm. 

• Conservative timestamp ordering algorithm. 

• Multiversion algorithm based upon timestamp ordering. 

Timestamp based ordering follow three rules to enforce serializability − 

• Access Rule − When two transactions try to access the same data item simultaneously, for 

conflicting operations, priority is given to the older transaction. This causes the younger 

transaction to wait for the older transaction to commit first. 

• Late Transaction Rule − If a younger transaction has written a data item, then an older 

transaction is not allowed to read or write that data item. This rule prevents the older transaction 

from committing after the younger transaction has already committed. 

• Younger Transaction Rule − A younger transaction can read or write a data item that has already 

been written by an older transaction. 

Optimistic Concurrency Control Algorithm 

In systems with low conflict rates, the task of validating every transaction for serializability 

may lower performance. In these cases, the test for serializability is postponed to just before commit. 

Since the conflict rate is low, the probability of aborting transactions which are not serializable is also 

low. This approach is called optimistic concurrency control technique. 

In this approach, a transaction’s life cycle is divided into the following three phases − 

• Execution Phase − A transaction fetches data items to memory and performs operations upon 

them. 
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• Validation Phase − A transaction performs checks to ensure that committing its changes to the 

database passes serializability test. 

• Commit Phase − A transaction writes back modified data item in memory to the disk. 

This algorithm uses three rules to enforce serializability in validation phase − 

Rule 1 − Given two transactions Ti and Tj, if Ti is reading the data item which Tj is writing, then 

Ti’s execution phase cannot overlap with Tj’s commit phase. Tj can commit only after Ti has 

finished execution. 

Rule 2 − Given two transactions Ti and Tj, if Ti is writing the data item that Tj is reading, then Ti’s 

commit phase cannot overlap with Tj’s execution phase. Tj can start executing only after Ti has 

already committed. 

Rule 3 − Given two transactions Ti and Tj, if Ti is writing the data item which Tj is also writing, 

then Ti’s commit phase cannot overlap with Tj’s commit phase. Tj can start to commit only after Ti 

has already committed. 

Concurrency Control in Distributed Systems 

In this section, we will see how the above techniques are implemented in a distributed 

database system. 

Distributed Two-phase Locking Algorithm 

The basic principle of distributed two-phase locking is same as the basic two-phase locking 

protocol. However, in a distributed system there are sites designated as lock managers. A lock 

manager controls lock acquisition requests from transaction monitors. In order to enforce co-

ordination between the lock managers in various sites, at least one site is given the authority to see 

all transactions and detect lock conflicts. 

Depending upon the number of sites who can detect lock conflicts, distributed two-phase locking 

approaches can be of three types − 

• Centralized two-phase locking − In this approach, one site is designated as the central lock 

manager. All the sites in the environment know the location of the central lock manager and obtain 

lock from it during transactions. 

• Primary copy two-phase locking − In this approach, a number of sites are designated as lock 

control centers. Each of these sites has the responsibility of managing a defined set of locks. All 

the sites know which lock control center is responsible for managing lock of which data 

table/fragment item. 

• Distributed two-phase locking − In this approach, there are a number of lock managers, where 

each lock manager controls locks of data items stored at its local site. The location of the lock 

manager is based upon data distribution and replication. 
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Distributed Timestamp Concurrency Control 

In a centralized system, timestamp of any transaction is determined by the physical clock 

reading. But, in a distributed system, any site’s local physical/logical clock readings cannot be used as 

global timestamps, since they are not globally unique. So, a timestamp comprises of a combination of 

site ID and that site’s clock reading. 

For implementing timestamp ordering algorithms, each site has a scheduler that maintains a 

separate queue for each transaction manager. During transaction, a transaction manager sends a lock 

request to the site’s scheduler. The scheduler puts the request to the corresponding queue in increasing 

timestamp order. Requests are processed from the front of the queues in the order of their timestamps, 

i.e. the oldest first. 

Conflict Graphs 

Another method is to create conflict graphs. For this transaction classes are defined. A transaction 

class contains two set of data items called read set and write set. A transaction belongs to a particular class 

if the transaction’s read set is a subset of the class’ read set and the transaction’s write set is a subset of the 

class’ write set. In the read phase, each transaction issues its read requests for the data items in its read set. 

In the write phase, each transaction issues its write requests. 

A conflict graph is created for the classes to which active transactions belong. This contains a set 

of vertical, horizontal, and diagonal edges. A vertical edge connects two nodes within a class and denotes 

conflicts within the class. A horizontal edge connects two nodes across two classes and denotes a write-

write conflict among different classes. A diagonal edge connects two nodes across two classes and denotes 

a write-read or a read-write conflict among two classes. 

The conflict graphs are analyzed to ascertain whether two transactions within the same class or 

across two different classes can be run in parallel. 

Distributed Optimistic Concurrency Control Algorithm 

Distributed optimistic concurrency control algorithm extends optimistic concurrency control 

algorithm. For this extension, two rules are applied − 

Rule 1 − According to this rule, a transaction must be validated locally at all sites when it executes. If a 

transaction is found to be invalid at any site, it is aborted. Local validation guarantees that the transaction 

maintains serializability at the sites where it has been executed. After a transaction passes local validation 

test, it is globally validated. 

Rule 2 − According to this rule, after a transaction passes local validation test, it should be globally 

validated. Global validation ensures that if two conflicting transactions run together at more than one site, 

they should commit in the same relative order at all the sites they run together. This may require a 

transaction to wait for the other conflicting transaction, after validation before commit. This requirement 
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makes the algorithm less optimistic since a transaction may not be able to commit as soon as it is validated 

at a site. 

Distributed DBMS - Deadlock Handling 

What are Deadlocks? 

Deadlock is a state of a database system having two or more transactions, when each transaction is 

waiting for a data item that is being locked by some other transaction. A deadlock can be indicated by a 

cycle in the wait-for-graph. This is a directed graph in which the vertices denote transactions and the 

edges denote waits for data items. 

For example, in the following wait-for-graph, transaction T1 is waiting for data item X which is 

locked by T3. T3 is waiting for Y which is locked by T2 and T2 is waiting for Z which is locked by T1. 

Hence, a waiting cycle is formed, and none of the transactions can proceed executing. 

 

Deadlock Handling in Centralized Systems 

There are three classical approaches for deadlock handling, namely − 

• Deadlock prevention. 

• Deadlock avoidance. 

• Deadlock detection and removal. 

All of the three approaches can be incorporated in both a centralized and a distributed database 

system. 

Deadlock Prevention 

The deadlock prevention approach does not allow any transaction to acquire locks that will 

lead to deadlocks. The convention is that when more than one transactions request for locking the 

same data item, only one of them is granted the lock. 
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One of the most popular deadlock prevention methods is pre-acquisition of all the locks. In this 

method, a transaction acquires all the locks before starting to execute and retains the locks for the 

entire duration of transaction. If another transaction needs any of the already acquired locks, it has to 

wait until all the locks it needs are available. Using this approach, the system is prevented from being 

deadlocked since none of the waiting transactions are holding any lock. 

Deadlock Avoidance 

The deadlock avoidance approach handles deadlocks before they occur. It analyzes the 

transactions and the locks to determine whether or not waiting leads to a deadlock. 

The method can be briefly stated as follows. Transactions start executing and request data 

items that they need to lock. The lock manager checks whether the lock is available. If it is available, 

the lock manager allocates the data item and the transaction acquires the lock. However, if the item is 

locked by some other transaction in incompatible mode, the lock manager runs an algorithm to test 

whether keeping the transaction in waiting state will cause a deadlock or not. Accordingly, the 

algorithm decides whether the transaction can wait or one of the transactions should be aborted. 

There are two algorithms for this purpose, namely wait-die and wound-wait. Let us assume 

that there are two transactions, T1 and T2, where T1 tries to lock a data item which is already locked 

by T2. The algorithms are as follows − 

• Wait-Die − If T1 is older than T2, T1 is allowed to wait. Otherwise, if T1 is younger than 

T2, T1 is aborted and later restarted. 

• Wound-Wait − If T1 is older than T2, T2 is aborted and later restarted. Otherwise, if T1 is 

younger than T2, T1 is allowed to wait. 

Deadlock Detection and Removal 

The deadlock detection and removal approach runs a deadlock detection algorithm 

periodically and removes deadlock in case there is one. It does not check for deadlock when a 

transaction places a request for a lock. When a transaction requests a lock, the lock manager 

checks whether it is available. If it is available, the transaction is allowed to lock the data item; 

otherwise the transaction is allowed to wait. 

Since there are no precautions while granting lock requests, some of the transactions may 

be deadlocked. To detect deadlocks, the lock manager periodically checks if the wait-forgraph has 
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cycles. If the system is deadlocked, the lock manager chooses a victim transaction from each cycle. 

The victim is aborted and rolled back; and then restarted later. Some of the methods used for 

victim selection are − 

• Choose the youngest transaction. 

• Choose the transaction with fewest data items. 

• Choose the transaction that has performed least number of updates. 

• Choose the transaction having least restart overhead. 

• Choose the transaction which is common to two or more cycles. 

This approach is primarily suited for systems having transactions low and where fast 

response to lock requests is needed. 

Deadlock Handling in Distributed Systems 

Transaction processing in a distributed database system is also distributed, i.e. the same 

transaction may be processing at more than one site. The two main deadlock handling concerns in 

a distributed database system that are not present in a centralized system are transaction location 

and transaction control. Once these concerns are addressed, deadlocks are handled through any of 

deadlock prevention, deadlock avoidance or deadlock detection and removal. 

Transaction Location 

Transactions in a distributed database system are processed in multiple sites and use data 

items in multiple sites. The amount of data processing is not uniformly distributed among these 

sites. The time period of processing also varies. Thus the same transaction may be active at some 

sites and inactive at others. When two conflicting transactions are located in a site, it may happen 

that one of them is in inactive state. This condition does not arise in a centralized system. This 

concern is called transaction location issue. 

This concern may be addressed by Daisy Chain model. In this model, a transaction carries 

certain details when it moves from one site to another. Some of the details are the list of tables 

required, the list of sites required, the list of visited tables and sites, the list of tables and sites that 

are yet to be visited and the list of acquired locks with types. After a transaction terminates by 

either commit or abort, the information should be sent to all the concerned sites. 
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Transaction Control 

Transaction control is concerned with designating and controlling the sites required for 

processing a transaction in a distributed database system. There are many options regarding the choice 

of where to process the transaction and how to designate the center of control, like − 

• One server may be selected as the center of control. 

• The center of control may travel from one server to another. 

• The responsibility of controlling may be shared by a number of servers. 

Distributed Deadlock Prevention 

Just like in centralized deadlock prevention, in distributed deadlock prevention approach, a 

transaction should acquire all the locks before starting to execute. This prevents deadlocks. 

The site where the transaction enters is designated as the controlling site. The controlling 

site sends messages to the sites where the data items are located to lock the items. Then it waits for 

confirmation. When all the sites have confirmed that they have locked the data items, transaction 

starts. If any site or communication link fails, the transaction has to wait until they have been 

repaired. 

Though the implementation is simple, this approach has some drawbacks − 

• Pre-acquisition of locks requires a long time for communication delays. This increases the time 

required for transaction. 

• In case of site or link failure, a transaction has to wait for a long time so that the sites recover. 

Meanwhile, in the running sites, the items are locked. This may prevent other transactions from 

executing. 

• If the controlling site fails, it cannot communicate with the other sites. These sites continue to 

keep the locked data items in their locked state, thus resulting in blocking. 

Distributed Deadlock Avoidance 

As in centralized system, distributed deadlock avoidance handles deadlock prior to 

occurrence. Additionally, in distributed systems, transaction location and transaction control issues 

needs to be addressed. Due to the distributed nature of the transaction, the following conflicts may 

occur − 

• Conflict between two transactions in the same site. 

• Conflict between two transactions in different sites. 
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In case of conflict, one of the transactions may be aborted or allowed to wait as per 

distributed wait-die or distributed wound-wait algorithms. 

Let us assume that there are two transactions, T1 and T2. T1 arrives at Site P and tries to 

lock a data item which is already locked by T2 at that site. Hence, there is a conflict at Site P. The 

algorithms are as follows − 

• Distributed Wound-Die 

o If T1 is older than T2, T1 is allowed to wait. T1 can resume execution after Site P receives 

a message that T2 has either committed or aborted successfully at all sites. 

o If T1 is younger than T2, T1 is aborted. The concurrency control at Site P sends a message 

to all sites where T1 has visited to abort T1. The controlling site notifies the user when T1 

has been successfully aborted in all the sites. 

• Distributed Wait-Wait 

o If T1 is older than T2, T2 needs to be aborted. If T2 is active at Site P, Site P aborts and 

rolls back T2 and then broadcasts this message to other relevant sites. If T2 has left Site P 

but is active at Site Q, Site P broadcasts that T2 has been aborted; Site L then aborts and 

rolls back T2 and sends this message to all sites. 

o If T1 is younger than T1, T1 is allowed to wait. T1 can resume execution after Site P 

receives a message that T2 has completed processing. 

Distributed Deadlock Detection 

Just like centralized deadlock detection approach, deadlocks are allowed to occur and are 

removed if detected. The system does not perform any checks when a transaction places a lock 

request. For implementation, global wait-for-graphs are created. Existence of a cycle in the global 

wait-for-graph indicates deadlocks. However, it is difficult to spot deadlocks since transaction 

waits for resources across the network. 

Alternatively, deadlock detection algorithms can use timers. Each transaction is associated 

with a timer which is set to a time period in which a transaction is expected to finish. If a 

transaction does not finish within this time period, the timer goes off, indicating a possible 

deadlock. 

Another tool used for deadlock handling is a deadlock detector. In a centralized system, 

there is one deadlock detector. In a distributed system, there can be more than one deadlock 

detectors. A deadlock detector can find deadlocks for the sites under its control. There are three 

alternatives for deadlock detection in a distributed system, namely. 

• Centralized Deadlock Detector − One site is designated as the central deadlock detector. 

• Hierarchical Deadlock Detector − A number of deadlock detectors are arranged in hierarchy. 
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• Distributed Deadlock Detector − All the sites participate in detecting deadlocks and removing 

them. 

 

Distributed DBMS - Commit Protocols 

In local database system, for committing a transaction, the transaction manager has to only convey 

the decision to commit to the recovery manager. However, in a distributed system, the transaction 

manager should convey the decision to commit to all the servers in the various sites where the transaction 

is being executed and uniformly enforce the decision. When processing is complete at each site, it reaches 

the partially committed transaction state and waits for all other transactions to reach their partially 

committed states. When it receives the message that all the sites are ready to commit, it starts to commit. 

In a distributed system, either all sites commit or none of them does. 

The different distributed commit protocols are − 

• One-phase commit 

• Two-phase commit 

• Three-phase commit 

Distributed One-phase Commit 

Distributed one-phase commit is the simplest commit protocol. Let us consider that there is a 

controlling site and a number of slave sites where the transaction is being executed. The steps in 

distributed commit are − 

• After each slave has locally completed its transaction, it sends a “DONE” message to the 

controlling site. 

• The slaves wait for “Commit” or “Abort” message from the controlling site. This waiting 

time is called window of vulnerability. 

• When the controlling site receives “DONE” message from each slave, it makes a decision 

to commit or abort. This is called the commit point. Then, it sends this message to all the 

slaves. 

• On receiving this message, a slave either commits or aborts and then sends an 

acknowledgement message to the controlling site. 

Distributed Two-phase Commit 

Distributed two-phase commit reduces the vulnerability of one-phase commit protocols. 

The steps performed in the two phases are as follows − 

Phase 1: Prepare Phase 
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• After each slave has locally completed its transaction, it sends a “DONE” message to the 

controlling site. When the controlling site has received “DONE” message from all slaves, it sends 

a “Prepare” message to the slaves. 

• The slaves vote on whether they still want to commit or not. If a slave wants to commit, it sends a 

“Ready” message. 

• A slave that does not want to commit sends a “Not Ready” message. This may happen when the 

slave has conflicting concurrent transactions or there is a timeout. 

Phase 2: Commit/Abort Phase 

• After the controlling site has received “Ready” message from all the slaves − 

o The controlling site sends a “Global Commit” message to the slaves. 

o The slaves apply the transaction and send a “Commit ACK” message to the controlling site. 

o When the controlling site receives “Commit ACK” message from all the slaves, it 

considers the transaction as committed. 

• After the controlling site has received the first “Not Ready” message from any slave − 

o The controlling site sends a “Global Abort” message to the slaves. 

o The slaves abort the transaction and send a “Abort ACK” message to the controlling site. 

o When the controlling site receives “Abort ACK” message from all the slaves, it considers 

the transaction as aborted. 

Distributed Three-phase Commit 

The steps in distributed three-phase commit are as follows − 

Phase 1: Prepare Phase 

The steps are same as in distributed two-phase commit. 

Phase 2: Prepare to Commit Phase 

• The controlling site issues an “Enter Prepared State” broadcast message. 

• The slave sites vote “OK” in response. 

Phase 3: Commit / Abort Phase 

The steps are same as two-phase commit except that “Commit ACK”/”Abort ACK” 

message is not required. 

 

Availability 

One of the goals in using distributed databases is high availability; that is, the database must 

function almost all the time. In particular, since failures are more likely in large distributed systems, a 
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distributed database must continue func-tioning even when there are various types of failures. The ability 

to continue functioning even during failures is referred to as robustness. 

For a distributed system to be robust, it must detect failures, reconfigure the system so that 

computation may continue, and recover when a processor or a link is repaired. 

The different types of failures are handled in different ways. For example, message loss is handled 

by retransmission. Repeated retransmission of a message across a link, without receipt of an 

acknowledgment, is usually a symptom of a link failure. The network usually attempts to find an 

alternative route for the message. Failure to find such a route is usually a symptom of network partition. 

It is generally not possible, however, to differentiate clearly between site failure and network 

partition. The system can usually detect that a failure has occurred, but it may not be able to identify the 

type of failure. For example, suppose that site S1 is not able to communicate with S2. It could be that S2 has 

failed. However, another possibility is that the link between S1 and S2 has failed, resulting in network 

partition. The problem is partly addressed by using multiple links between sites, so that even if one link 

fails the sites will remain connected. However, multiple link failure can still occur, so there are situations 

where we cannot be sure whether a site failure or network partition has occurred. 

Suppose that site S1 has discovered that a failure has occurred. It must then initiate a procedure that 

will allow the system to reconfigure, and to continue with the normal mode of operation. 

 If transactions were active at a failed/inaccessible site at the time of the failure, these 

transactions should be aborted. It is desirable to abort such transactions promptly, since they may hold 

locks on data at sites that are still active; waiting for the failed/inaccessible site to become accessible again 

may impede other transactions at sites that are operational. However, in some cases, when data objects are 

replicated it may be possible to proceed with reads and updates even though some replicas are 

inaccessible. In this case, when a failed site recovers, if it had replicas of any data object, it must obtain 

the current values of these data objects, and must ensure that it receives all future updates. We address this 

issue in Section 19.6.1. 

 If replicated data are stored at a failed/inaccessible site, the catalog should be updated so that 

queries do not reference the copy at the failed site. When a site rejoins, care must be taken to ensure that 

data at the site are consistent. 

 If a failed site is a central server for some subsystem, an election must be held to determine 

the new server (see Section 19.6.5). Examples of central servers include a name server, a concurrency 

coordinator, or a global deadlock detector. 

Since it is, in general, not possible to distinguish between network link failures and site failures, 

any reconfiguration scheme must be designed to work correctly in case of a partitioning of the network. In 

particular, these situations must be avoided to ensure consistency: 
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 Two or more central servers are elected in distinct partitions. 

 More than one partition updates a replicated data item. 

 

Distributed Query Processing: 

When a query is placed, it is at first scanned, parsed and validated. An internal representation of the query 

is then created such as a query tree or a query graph. Then alternative execution strategies are devised for 

retrieving results from the database tables. The process of choosing the most appropriate execution 

strategy for query processing is called query optimization. 

Query Optimization Issues in DDBMS 

In DDBMS, query optimization is a crucial task. The complexity is high since number of alternative 

strategies may increase exponentially due to the following factors − 

• The presence of a number of fragments. 

• Distribution of the fragments or tables across various sites. 

• The speed of communication links. 

• Disparity in local processing capabilities. 

Hence, in a distributed system, the target is often to find a good execution strategy for query processing 

rather than the best one. The time to execute a query is the sum of the following − 

• Time to communicate queries to databases. 

• Time to execute local query fragments. 

• Time to assemble data from different sites. 

• Time to display results to the application. 

Query Processing 

Query processing is a set of all activities starting from query placement to displaying the results of the 

query. The steps are as shown in the following diagram − 

 

 

 

 

 

 

 

 

 

Relational Algebra 



213 

 

Relational algebra defines the basic set of operations of relational database model. A sequence of 

relational algebra operations forms a relational algebra expression. The result of this expression represents 

the result of a database query. 

The basic operations are − 

• Projection 

• Selection 

• Union 

• Intersection 

• Minus 

• Join  

Projection 

Projection operation displays a subset of fields of a table. This gives a vertical partition of the table. 

Syntax in Relational Algebra 

$$\pi_{<{AttributeList}>}{(<{Table Name}>)}$$ 

For example, let us consider the following Student database − 

STUDENT 

Roll_No Name Course Semester Gender 

2 Amit Prasad BCA 1 Male 

4 Varsha Tiwari BCA 1 Female 

5 Asif Ali MCA 2 Male 

6 Joe Wallace MCA 1 Male 

8 Shivani Iyengar BCA 1 Female 

If we want to display the names and courses of all students, we will use the following relational algebra 

expression − 

$$\pi_{Name,Course}{(STUDENT)}$$ 

Selection 

Selection operation displays a subset of tuples of a table that satisfies certain conditions. This gives a 

horizontal partition of the table. 

Syntax in Relational Algebra 

$$\sigma_{<{Conditions}>}{(<{Table Name}>)}$$ 

For example, in the Student table, if we want to display the details of all students who have opted for 

MCA course, we will use the following relational algebra expression − 

$$\sigma_{Course} = {\small "BCA"}^{(STUDENT)}$$ 
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Combination of Projection and Selection Operations 

For most queries, we need a combination of projection and selection operations. There are two ways to 

write these expressions − 

• Using sequence of projection and selection operations. 

• Using rename operation to generate intermediate results. 

For example, to display names of all female students of the BCA course − 

• Relational algebra expression using sequence of projection and selection operations 

$$\pi_{Name}(\sigma_{Gender = \small "Female" AND \: Course = \small "BCA"}{(STUDENT)})$$ 

• Relational algebra expression using rename operation to generate intermediate results 

$$FemaleBCAStudent \leftarrow \sigma_{Gender = \small "Female" AND \: Course = \small "BCA"} 

{(STUDENT)}$$ 

$$Result \leftarrow \pi_{Name}{(FemaleBCAStudent)}$$ 

Union 

If P is a result of an operation and Q is a result of another operation, the union of P and Q ($p \cup Q$) is 

the set of all tuples that is either in P or in Q or in both without duplicates. 

For example, to display all students who are either in Semester 1 or are in BCA course − 

$$Sem1Student \leftarrow \sigma_{Semester = 1}{(STUDENT)}$$ 

$$BCAStudent \leftarrow \sigma_{Course = \small "BCA"}{(STUDENT)}$$ 

$$Result \leftarrow Sem1Student \cup BCAStudent$$ 

Intersection 

If P is a result of an operation and Q is a result of another operation, the intersection of P and Q ( $p \cap 

Q$ ) is the set of all tuples that are in P and Q both. 

For example, given the following two schemas − 

EMPLOYEE 

EmpID Name City Department Salary 

PROJECT 

PId City Department Status 

To display the names of all cities where a project is located and also an employee resides − 

$$CityEmp \leftarrow \pi_{City}{(EMPLOYEE)}$$ 

$$CityProject \leftarrow \pi_{City}{(PROJECT)}$$ 

$$Result \leftarrow CityEmp \cap CityProject$$ 

Minus 

If P is a result of an operation and Q is a result of another operation, P - Q is the set of all tuples that are in 

P and not in Q. 
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For example, to list all the departments which do not have an ongoing project (projects with status = 

ongoing) − 

$$AllDept \leftarrow \pi_{Department}{(EMPLOYEE)}$$ 

$$ProjectDept \leftarrow \pi_{Department} (\sigma_{Status = \small "ongoing"}{(PROJECT)})$$ 

$$Result \leftarrow AllDept - ProjectDept$$ 

Join 

Join operation combines related tuples of two different tables (results of queries) into a single table. 

For example, consider two schemas, Customer and Branch in a Bank database as follows − 

CUSTOMER 

CustID AccNo TypeOfAc BranchID DateOfOpening 

BRANCH 

BranchID BranchName IFSCcode Address 

To list the employee details along with branch details − 

$$Result \leftarrow CUSTOMER \bowtie_{Customer.BranchID=Branch.BranchID}{BRANCH}$$ 

Translating SQL Queries into Relational Algebra 

SQL queries are translated into equivalent relational algebra expressions before optimization. A query is at 

first decomposed into smaller query blocks. These blocks are translated to equivalent relational algebra 

expressions. Optimization includes optimization of each block and then optimization of the query as a 

whole. 

Examples 

Let us consider the following schemas − 

EMPLOYEE 

EmpID Name City Department Salary 

PROJECT 

PId City Department Status 

WORKS 

EmpID PID Hours 

Example 1 

To display the details of all employees who earn a salary LESS than the average salary, we write the SQL 

query − 

SELECT * FROM EMPLOYEE  

WHERE SALARY < ( SELECT AVERAGE(SALARY) FROM EMPLOYEE ) ; 

This query contains one nested sub-query. So, this can be broken down into two blocks. 
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The inner block is − 

SELECT AVERAGE(SALARY)FROM EMPLOYEE ; 

If the result of this query is AvgSal, then outer block is − 

SELECT * FROM EMPLOYEE WHERE SALARY < AvgSal; 

Relational algebra expression for inner block − 

$$AvgSal \leftarrow \Im_{AVERAGE(Salary)}{EMPLOYEE}$$ 

Relational algebra expression for outer block − 

$$\sigma_{Salary <{AvgSal}>}{EMPLOYEE}$$ 

Example 2 

To display the project ID and status of all projects of employee 'Arun Kumar', we write the SQL query − 

SELECT PID, STATUS FROM PROJECT  

WHERE PID = ( SELECT FROM WORKS  WHERE EMPID = ( SELECT EMPID FROM EMPLOYEE  

            WHERE NAME = 'ARUN KUMAR')); 

This query contains two nested sub-queries. Thus, can be broken down into three blocks, as follows − 

SELECT EMPID FROM EMPLOYEE WHERE NAME = 'ARUN KUMAR';  

SELECT PID FROM WORKS WHERE EMPID = ArunEmpID;  

SELECT PID, STATUS FROM PROJECT WHERE PID = ArunPID; 

(Here ArunEmpID and ArunPID are the results of inner queries) 

Relational algebra expressions for the three blocks are − 

$$ArunEmpID \leftarrow \pi_{EmpID}(\sigma_{Name = \small "Arun Kumar"} {(EMPLOYEE)})$$ 

$$ArunPID \leftarrow \pi_{PID}(\sigma_{EmpID = \small "ArunEmpID"} {(WORKS)})$$ 

$$Result \leftarrow \pi_{PID, Status}(\sigma_{PID = \small "ArunPID"} {(PROJECT)})$$ 

Computation of Relational Algebra Operators 

The computation of relational algebra operators can be done in many different ways, and each 

alternative is called an access path. 

The computation alternative depends upon three main factors − 

• Operator type 

• Available memory 

• Disk structures 

The time to perform execution of a relational algebra operation is the sum of − 

• Time to process the tuples. 

• Time to fetch the tuples of the table from disk to memory. 
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Since the time to process a tuple is very much smaller than the time to fetch the tuple from the storage, 

particularly in a distributed system, disk access is very often considered as the metric for calculating cost 

of relational expression. 

Computation of Selection 

Computation of selection operation depends upon the complexity of the selection condition and the 

availability of indexes on the attributes of the table. 

Following are the computation alternatives depending upon the indexes − 

• No Index − If the table is unsorted and has no indexes, then the selection process involves 

scanning all the disk blocks of the table. Each block is brought into the memory and each tuple in 

the block is examined to see whether it satisfies the selection condition. If the condition is 

satisfied, it is displayed as output. This is the costliest approach since each tuple is brought into 

memory and each tuple is processed. 

• B+ Tree Index − Most database systems are built upon the B+ Tree index. If the selection 

condition is based upon the field, which is the key of this B+ Tree index, then this index is used for 

retrieving results. However, processing selection statements with complex conditions may involve 

a larger number of disk block accesses and in some cases complete scanning of the table. 

• Hash Index − If hash indexes are used and its key field is used in the selection condition, then 

retrieving tuples using the hash index becomes a simple process. A hash index uses a hash function 

to find the address of a bucket where the key value corresponding to the hash value is stored. In 

order to find a key value in the index, the hash function is executed and the bucket address is 

found. The key values in the bucket are searched. If a match is found, the actual tuple is fetched 

from the disk block into the memory. 

Computation of Joins 

When we want to join two tables, say P and Q, each tuple in P has to be compared with each tuple 

in Q to test if the join condition is satisfied. If the condition is satisfied, the corresponding tuples are 

concatenated, eliminating duplicate fields and appended to the result relation. Consequently, this is the 

most expensive operation. 

The common approaches for computing joins are − 

Nested-loop Approach 

This is the conventional join approach. It can be illustrated through the following pseudocode 

(Tables P and Q, with tuples tuple_p and tuple_q and joining attribute a) − 

For each tuple_p in P  

For each tuple_q in Q 

If tuple_p.a = tuple_q.a Then  
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   Concatenate tuple_p and tuple_q and append to Result  

End If  

Next tuple_q  

Next tuple-p  

Sort-merge Approach 

In this approach, the two tables are individually sorted based upon the joining attribute and then 

the sorted tables are merged. External sorting techniques are adopted since the number of records is very 

high and cannot be accommodated in the memory. Once the individual tables are sorted, one page each of 

the sorted tables are brought to the memory, merged based upon the joining attribute and the joined tuples 

are written out. 

Hash-join Approach 

This approach comprises of two phases: partitioning phase and probing phase. In partitioning 

phase, the tables P and Q are broken into two sets of disjoint partitions. A common hash function is 

decided upon. This hash function is used to assign tuples to partitions. In the probing phase, tuples in a 

partition of P are compared with the tuples of corresponding partition of Q. If they match, then they are 

written out. 

 

Heterogeneous Distributed Databases 

Many new database applications require data from a variety of preexisting databases located in a 

heterogeneous collection of hardware and software en-vironments. Manipulation of information located in 

a heterogeneous distributed database requires an additional software layer on top of existing database sys-

tems. This software layer is called a multidatabase system. The local database systems may employ 

different logical models and data-definition and data-manipulation languages, and may differ in their 

concurrency-control and trans-action-management mechanisms. A multidatabase system creates the 

illusion of logical database integration without requiring physical database integration. 

Full integration of heterogeneous systems into a homogeneous distributed database is often 

difficult or impossible: 

Technical difficulties. The investment in application programs based on ex-isting database 

systems may be huge, and the cost of converting these appli-cations may be prohibitive. 

 Organizational difficulties. Even if integration is technically possible, it may not be 

politically possible, because the existing database systems belong to different corporations 

or organizations. In such cases, it is important for a multidatabase system to allow the local 
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database systems to retain a high degree of autonomy over the local database and 

transactions running against that data. 

 

 

For these reasons, multidatabase systems offer significant advantages that outweigh their overhead. 

In this section, we provide an overview of the challenges faced in constructing a multidatabase 

environment from the standpoint of data definition and query processing. 

1. Unified View of Data 

Each local database management system may use a different data model. For instance, some 

may employ the relational model, whereas others may employ older data models, such as the 

network model (see Appendix D) or the hierarchical model . 

Since the multidatabase system is supposed to provide the illusion of a single, integrated 

database system, a common data model must be used. A commonly used choice is the relational 

model, with SQL as the common query language. Indeed, there are several systems available 

today that allow SQL queries to a nonrelational database-management system. 

2. Query Processing 

Query processing in a heterogeneous database can be complicated. Some of the issues are: 

 Given a query on a global schema, the query may have to be translated into queries on local schemas 

at each of the sites where the query has to be executed. The query results have to be translated back 

into the global schema. 

The task is simplified by writing wrappers for each data source, which provide a view of the 

local data in the global schema. Wrappers also translate queries on the global schema into queries 

on the local schema, and translate results back into the global schema. Wrappers may be provided 

by individual sites, or may be written separately as part of the multidatabase system. 

 

Wrappers can even be used to provide a relational view of nonrelational data sources, such as 

Web pages (possibly with forms interfaces), flat files, hierarchical and network databases, and 

directory systems. 

 Some data sources may provide only limited query capabilities; for instance, they may support 

selections, but not joins. They may even restrict the form of selections, allowing selections only on 

certain fields; Web data sources with form interfaces are an example of such data sources. Queries 

may therefore have to be broken up, to be partly performed at the data source and partly at the site 

issuing the query. 
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 In general, more than one site may need to be accessed to answer a given query. Answers retrieved 

from the sites may have to be processed to remove duplicates. Suppose one site contains account 

tuples satisfying the selection ba la nce < 100, while another contains account tuples satisfying ba 

la nce > 50. A query on the entire account relation would require access to both sites and removal 

of duplicate answers resulting from tuples with balance between 50 and 100, which are replicated at 

both sites. 

 Global query optimization in a heterogeneous database is difficult, since the query execution 

system may not know what the costs are of alternative query plans at different sites. The usual 

solution is to rely on only local-level optimization, and just use heuristics at the global level. 

3. Transaction Management in Multidatabases 

A multidatabase system supports two types of transactions: 

 Local transactions. These transactions are executed by each local database system outside 

of the multidatabase system’s control. 

 Global transactions. These transactions are executed under the multidata-base system’s 

control. 

 

The multidatabase system is aware of the fact that local transactions may run at the local sites, 

but it is not aware of what specific transactions are being executed, or of what data they may 

access. 

Cloud-Based Databases 

 

Cloud computing is a relatively new concept in computing that emerged in the late 1990s and 

the 2000s, first under the name software as a service. Initial vendors of software services 

provided specific customizable applications that they hosted on their own machines. The 

concept of cloud computing developed as vendors began to offer generic computers as a service 

on which clients could run software applications of their choosing. A client can make 

arrangements with a cloud-computing vendor to obtain a certain number of machines of a 

certain capacity as well as a certain amount of data storage. Both the number of machines and 

the amount of storage can grow and shrink as needed. In addition to providing computing 

services, many vendors also provide other services such as data storage services, map services, 

and other services that can be accessed using a Web-service application programming interface. 

Many enterprises are finding the model of cloud computing and services beneficial. It saves 

client enterprises the need to maintain a large system-support staff and allows new enterprises to 

begin operation without having to make a large, up-front capital investment in computing 
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systems. Further, as the needs of the enterprise grow, more resources (computing and storage) 

can be added as required; the cloud-computing vendor generally has very large clusters of 

computers, making it easy for the vendor to allocate resources on demand. 

1. Data Storage Systems on the Cloud 

 

Applications on the Web have extremely high scalability requirements. Popular applications 

have hundreds of millions of users, and many applications have seen their load increase 

manyfold within a single year, or even within a few months. To handle the data management 

needs of such applications, data must be partitioned across thousands of processors. 

A number of systems for data storage on the cloud have been developed and deployed over 

the past few years to address data management requirements of such applications; these include 

Bigtable from Google, Simple Storage Service (S3) from Amazon, which provides a Web 

interface to Dynamo, which is a key-value storage system, Cassandra, from FaceBook, which is 

similar to Bigtable, and Sherpa/PNUTS from Yahoo!, the data storage component of the Azure 

environment from Microsoft, and several other systems. 

  1.1.Data Representation 

As an example of data management needs of Web applications, consider the pro-file 

of a user, which needs to be accessible to a number of different applications that are run by 

an organization. The profile contains a variety of attributes, and there are frequent additions 

to the attributes stored in the profile. Some attributes may contain complex data. A simple 

relational representation is often not sufficient for such complex data. 

Some cloud-based data-storage systems support XML (described in Chap-ter 23) 

for representing such complex data. Others support the JavaScript Object Notation 

(JSON) representation, which has found increasing acceptance for repre-senting complex 

data. The XML and JSON representations provide flexibility in the set of attributes that a 

record contains, as well as the types of these attributes. Yet others, such as Bigtable, define 

their own data model for complex data including support for records with a very large 

number of optional columns. We revisit the Bigtable data model later in this section. 

  1.2.Partitioning and Retrieving Data 

 

Partitioning of data is, of course, the key to handling extremely large scale in data-

storage systems. Unlike regular parallel databases, it is usually not possible to decide on a 

partitioning function ahead of time. Further, if load increases, more servers need to be 

added and each server should be able to take on parts of the load incrementally. 
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To solve both these problems, data-storage systems typically partition data into 

relatively small units (small on such systems may mean of the order of hundreds of 

megabytes). These partitions are often called tablets, reflecting the fact that each tablet is a 

fragment of a table. The partitioning of data should be done on the search key, so that a 

request for a specific key value is directed to a single tablet; otherwise each request would 

require processing at multiple sites, increasing the load on the system greatly. Two 

approaches are used: either range partitioning is used directly on the key, or a hash function 

is applied on the key, and range partitioning is applied on the result of the hash function. 

The site to which a tablet is assigned acts as the master site for that tablet. All 

updates are routed through this site, and updates are then propagated to replicas of the 

tablet. Lookups are also sent to the same site, so that reads are consistent with writes. 

The partitioning of data into tablets is not fixed up front, but happens dy-namically. 

As data are inserted, if a tablet grows too big, it is broken into smaller parts. Further, even 

if a tablet is not large enough to merit being broken up, if the load (get/put operations) on 

that tablet are excessive, the tablet may be broken into smaller tablets, which can be 

distributed across two or more sites to share the load. Usually the number of tablets is much 

larger than the number of sites, for the same reason that virtual partitioning is used in 

parallel databases. 

It is important to know which site in the overall system is responsible for a 

particular tablet. This can be done by having a tablet controller site which tracks the 

partitioning function, to map a get() request to one or more tablets, and a mapping function 

from tablets to sites, to find which site were responsible for which tablet. Each request 

coming into the system must be routed to the correct site; if a single tablet controller site is 

responsible for this task, it would soon 

 

 

 

 

 

 

 

get overloaded. 

Instead, the mapping 
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information can be replicated on a set of router sites, which route requests to the site with the 

appropriate tablet. Protocols to update mapping information when a tablet is split or moved are 

designed in such a way that no locking is used; a request may as a result end up at a wrong site. 

The problem is handled by detecting that the site is no longer responsible for the key specified by 

the request, and rerouting the request based on up-to-date mapping information. 

 

The above Figure depicts the architecture of a cloud data-storage system, based loosely on 

the PNUTS architecture. Other systems provide similar functionality, although their architecture 

may vary. For example, Bigtable does not have sepa-rate routers; the partitioning and tablet-

server mapping information is stored in the Google file system, and clients read the information 

from the file system, and decide where to send their requests. 

 

2. Traditional Databases on the Cloud 

We now consider the issue of implementing a traditional distributed database system, 

supporting ACID properties and queries, on a cloud. 

The concept of computing utilities is an old one, envisioned back in the 1960s. The first 

manifestation of the concept was in timesharing systems in which several users shared 

access to a single mainframe computer. Later, in the late 1960s, the concept of virtual 

machines was developed, in which a user was given the illusion of having a private 

computer, while in reality a single computer simulated several virtual machines. 

3. Challenges with Cloud-Based Databases 

 

Cloud-based databases certainly have several important advantages compared to 

building a computing infrastructure from scratch, and are in fact essential for certain 

applications. 

However, cloud-based database systems also have several disadvantages that we 

shall now explore. Unlike purely computational applications in which parallel 

computations run largely independently, distributed database systems require frequent 

communication and coordination among sites for: 

 access to data on another physical machine, either because the data are owned by another virtual 

machine or because the data are stored on a storage server separate from the computer hosting the 

virtual machine. 

 obtaining locks on remote data. 

 ensuring atomic transaction commit via two-phase commit. 
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In our earlier study of distributed databases, we assumed (implicitly) that the database administrator 

had control over the physical location of data. In a cloud system, the physical location of data is under 

the control of the vendor, not the client. As a result, the physical placement of data may be suboptimal 

in terms of communication cost, and this may result in a large number of remote lock requests and large 

transfers of data across virtual machines. Effective query optimization requires that the optimizer have 

accurate cost measures for opera-tions. Lacking knowledge of the physical placement of data, the 

optimizer has to rely on estimates that may be highly inaccurate, resulting in poor execution strategies. 

Because remote accesses are relatively slow compared to local access, these issues can have a 

significant impact on performance. 

 

Directory Systems 

Consider an organization that wishes to make data about its employees avail-able to a variety of 

people in the organization; examples of the kinds of data include name, designation, employee-id, address, 

email address, phone number, fax number, and so on. In the precomputerization days, organizations would 

cre-ate physical directories of employees and distribute them across the organization. Even today, 

telephone companies create physical directories of customers. 

In general, a directory is a listing of information about some class of objects such as persons. 

Directories can be used to find information about a specific object, or in the reverse direction to find 

objects that meet a certain requirement. In the world of physical telephone directories, directories that 

satisfy lookups in the forward direction are called white pages, while directories that satisfy lookups in 

the reverse direction are called yellow pages. 

In today’s networked world, the need for directories is still present and, if anything, even more 

important. However, directories today need to be available over a computer network, rather than in a 

physical (paper) form. 

1. Directory Access Protocols 

Directory information can be made available through Web interfaces, as many organizations, 

and phone companies in particular, do. Such interfaces are good for humans. However, 

programs too need to access directory information. Direc-tories can be used for storing other 

types of information, much like file system directories. For instance, Web browsers can store 

personal bookmarks and other browser settings in a directory system. A user can thus access the 

same settings from multiple locations, such as at home and at work, without having to share a 

file system. 
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Several directory access protocols have been developed to provide a stan-dardized way 

of accessing data in a directory. The most widely used among them today is the Lightweight 

Directory Access Protocol (LDAP). 

Obviously all the types of data in our examples can be stored without much trouble in a 

database system, and accessed through protocols such as JDBC or ODBC. The question then is, 

why come up with a specialized protocol for accessing directory information? There are at least 

two answers to the question. 

 First, directory access protocols are simplified protocols that cater to a limited type of access to 

data. They evolved in parallel with the database access protocols. 

 

 Second, and more important, directory systems provide a simple mecha-nism to name objects in a 

hierarchical fashion, similar to file system directory names, which can be used in a distributed 

directory system to specify what information is stored in each of the directory servers. For example, 

a partic-ular directory server may store information for Bell Laboratories employees in Murray Hill, 

while another may store information for Bell Laboratories employees in Bangalore, giving both 

sites autonomy in controlling their lo-cal data. The directory access protocol can be used to obtain 

data from both directories across a network. More important, the directory system can be set up to 

automatically forward queries made at one site to the other site, without user intervention. 

For these reasons, several organizations have directory systems to make or-ganizational 

information available online through a directory access protocol. Information in an organizational 

directory can be used for a variety of purposes, such as to find addresses, phone numbers, or email 

addresses of people, to find which departments people are in, and to track department hierarchies. 

Directories are also used to authenticate users: applications can collect authentication infor-mation 

such as passwords from users and authenticate them using the directory. 

As may be expected, several directory implementations find it beneficial to use relational 

databases to store data, instead of creating special-purpose storage systems. 

2. LDAP: Lightweight Directory Access Protocol 

In general a directory system is implemented as one or more servers, which service multiple 

clients. Clients use the application programmer interface defined by the directory system to 

communicate with the directory servers. Directory access protocols also define a data model and 

access control. 

 

The X.500 directory access protocol, defined by the International Organiza-tion for 

Standardization (ISO), is a standard for accessing directory information. However, the protocol is 
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rather complex, and is not widely used. The Lightweight Directory Access Protocol (LDAP) 

provides many of the X.500 features, but with less complexity, and is widely used. In the rest of 

this section, we shall outline the data model and access protocol details of LDAP. 

 2.1.LDAP Data Model 

In LDAP, directories store entries, which are similar to objects. Each entry must have a 

distinguished name (DN), which uniquely identifies the entry. A DN is in turn made up of a 

sequence of relative distinguished names (RDNs). For example, an entry may have the 

following distinguished name: 

cn=Silberschatz, ou=Computer Science, o=Yale University, c=USA 

As you can see, the distinguished name in this example is a combination of a name and 

(organizational) address, starting with a person’s name, then giving the organizational unit (ou), 

the organization (o), and country (c). The order of the components of a distinguished name 

reflects the normal postal address order, rather than the reverse order used in specifying path 

names for files. The set of RDNs for a DN is defined by the schema of the directory system. 

Entries can also have attributes. LDAP provides binary, string, and time types, and 

additionally the types tel for telephone numbers, and PostalAddress for addresses (lines 

separated by a “$” character). Unlike those in the relational model, attributes are multivalued by 

default, so it is possible to store multiple telephone numbers or addresses for an entry. 

 

LDAP allows the definition of object classes with attribute names and types. Inheritance can 

be used in defining object classes. Moreover, entries can be spec-ified to be of one or more 

object classes. It is not necessary that there be a single most-specific object class to which an 

entry belongs. 

Entries are organized into a directory information tree (DIT), according to their 

distinguished names. Entries at the leaf level of the tree usually represent specific objects. 

Entries that are internal nodes represent objects such as orga-nizational units, organizations, or 

countries. The children of a node have a DN containing all the RDNs of the parent, and one or 

more additional RDNs. For in-stance, an internal node may have a DN c=USA, and all entries 

below it have the value USA for the RDN c. 

The entire distinguished name need not be stored in an entry. The system can generate the 

distinguished name of an entry by traversing up the DIT from the entry, collecting the 

RDN=value components to create the full distinguished name. 
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Entries may have more than one distinguished name — for example, an entry for a person in 

more than one organization. To deal with such cases, the leaf level of a DIT can be an alias, 

which points to an entry in another branch of the tree. 

 2.2.Data Manipulation 

Unlike SQL, LDAP does not define either a data-definition language or a data-

manipulation language. However, LDAP defines a network protocol for carrying out data 

definition and manipulation. Users of LDAP can either use an application programming 

interface or use tools provided by various vendors to perform data definition and manipulation. 

LDAP also defines a file format called LDAP Data Interchange Format (LDIF) that can be 

used for storing and exchanging information. 

The querying mechanism in LDAP is very simple, consisting of just selections and 

projections, without any join. A query must specify the following: 

 A base — that is, a node within a DIT — by giving its distinguished name (the path from the root to 

the node). 

 A search condition, which can be a Boolean combination of conditions on individual attributes. 

Equality, matching by wild-card characters, and ap-proximate equality (the exact definition of 

approximate equality is system dependent) are supported. 

 A scope, which can be just the base, the base and its children, or the entire subtree beneath the base. 

 Attributes to return. 

 Limits on number of results and resource consumption. 

The query can also specify whether to automatically dereference aliases; if alias dereferences are turned 

off, alias entries can be returned as answers. 

One way of querying an LDAP data source is by using LDAP URLs. Examples of LDAP URLs are: 

ldap:://codex.cs.yale.edu/o=YaleUniversity,c=USA ldap:://codex.cs.yale.edu/o=Yale 

University,c=USA??sub?cn=Silberschatz 

The first URL returns all attributes of all entries at the server with organization being Yale 

University, and country being USA. The second URL executes a search query (selection) 

cn=Silberschatz on the subtree of the node with distinguished name o=Yale University, c=USA. The 

question marks in the URL separate different fields. The first field is the distinguished name, here 

o=Yale University,c=USA. The second field, the list of attributes to return, is left empty, meaning 

return all attributes. The third attribute, sub, indicates that the entire subtree is to be searched. The last 

parameter is the search condition. 
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A second way of querying an LDAP directory is by using an application programming 

interface. Figure 19.8 shows a piece of C code used to connect to an LDAP server and run a query 

against the server. The code first opens a connection to an LDAP server by ldap open and ldap 

bind. It then executes a query by ldap search s. The arguments to ldap search s are the LDAP 

connection handle, the DN of the base from which the search should be done, the scope of the 

search, the search condition, the list of attributes to be returned, and an attribute called attrsonly, 

which, if set to 1, would result in only the schema of the result being returned, without any actual 

tuples. The last argument is an output argument that returns the result of the search as an 

LDAPMessage structure. 

 2.3.Distributed Directory Trees 

Information about an organization may be split into multiple DITs, each of which stores 

information about some entries. The suffix of a DIT is a sequence of RDN=value pairs that 

identify what information the DIT stores; the pairs are con-catenated to the rest of the 

distinguished name generated by traversing from the entry to the root. For instance, the suffix of 

a DIT may be o=Lucent, c=USA, while another may have the suffix o=Lucent, c=India. The 

DITs may be organizationally and geographically separated. 

A node in a DIT may contain a referral to another node in another DIT; for instance, the 

organizational unit Bell Labs under o=Lucent, c=USA may have its own DIT, in which case the 

DIT for o=Lucent, c=USA would have a node ou=Bell Labs representing a referral to the DIT 

for Bell Labs. 

Referrals are the key component that help organize a distributed collection of directories into 

an integrated system. When a server gets a query on a DIT, it may return a referral to the client, 

which then issues a query on the referenced DIT. Access to the referenced DIT is transparent, 

proceeding without the user’s knowledge. Alternatively, the server itself may issue the query to 

the referred DIT and return the results along with locally computed results. 

The hierarchical naming mechanism used by LDAP helps break up control of information 

across parts of an organization. The referral facility then helps integrate all the directories in an 

organization into a single virtual directory. 

Although it is not an LDAP requirement, organizations often choose to break up information 

either by geography (for instance, an organization may maintain a directory for each site where 

the organization has a large presence) or by orga-nizational structure (for instance, each 

organizational unit, such as department, maintains its own directory). 



229 

 

Many LDAP implementations support master–slave and multimaster replication of DITs, 

although replication is not part of the current LDAP version 3 standard. Work on standardizing 

replication in LDAP is in progress. 

 


